JPS63125628A - Copper alloy for semiconductor device lead material - Google Patents

Copper alloy for semiconductor device lead material

Info

Publication number
JPS63125628A
JPS63125628A JP26775386A JP26775386A JPS63125628A JP S63125628 A JPS63125628 A JP S63125628A JP 26775386 A JP26775386 A JP 26775386A JP 26775386 A JP26775386 A JP 26775386A JP S63125628 A JPS63125628 A JP S63125628A
Authority
JP
Japan
Prior art keywords
copper alloy
size
semiconductor device
lead material
device lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26775386A
Other languages
Japanese (ja)
Inventor
Tetsuo Kawahara
河原 哲男
Masahiro Tsuji
正博 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP26775386A priority Critical patent/JPS63125628A/en
Publication of JPS63125628A publication Critical patent/JPS63125628A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a copper alloy for semiconductor device lead material excellent in solderability, adhesive strength of plating, and etching characteristic, by specifying a composition consisting of Cr, Si, and Cu and also by controlling the size of a precipitate. CONSTITUTION:The copper alloy for semiconductor device lead material has a composition consisting of, by weight, 0.05-1.0% Cr, 0.02-0.8% Si, and the balance essentially Cu and further containing, if necessary, 0.01-1% of one or more elements among Zn, Mg, P, Sn, Fe, Be, Ti, Hf, Co, and In and also has a structure in which size of a precipitate is regulated to <=1.0mum. This copper alloy is excellent in strength, electric conductivity and heat resistance and further has superior workability, etc. The size of the above precipitate is controlled by properly selecting a combination of solution heat treating, cold working, and age treating conditions.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、トランジスタや集積回路(IC)などの半導
体機器のリード材用銅合金、特にめっき密着性及びエツ
チング性が改善された、Cu−Qr−3i系合金に関す
るものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a copper alloy for lead materials of semiconductor devices such as transistors and integrated circuits (ICs), particularly a Cu-based alloy with improved plating adhesion and etching properties. This relates to Qr-3i alloys.

[従来の技術] 従来、半導体機器のリード材としては熱膨張係数が低く
、素子及びセラミックとの接看および封着性の良好な]
バール(F e −29N 1−16CO)、42合金
などの高ニッケル合金が好んで使われてきた。しかし、
近年、半導体回路の集積度の内子に伴い消費電力の高い
ICが多く使用されるようになってきたことと、封止材
料として樹脂が多く使用され、かつ素子とリードフレー
ムの接着も改良か加えられたことにより使用されるリー
ド材の放熱性の良い銅基合金が使われるようになってき
た。
[Prior art] Conventionally, lead materials for semiconductor devices have a low coefficient of thermal expansion and good contact and sealing properties with elements and ceramics.]
High nickel alloys such as Var (Fe-29N 1-16CO), 42 alloy have been preferred. but,
In recent years, as semiconductor circuits have become more integrated, many ICs with high power consumption have come into use, resins have been increasingly used as sealing materials, and bonding between elements and lead frames has also improved. As a result, copper-based alloys with good heat dissipation properties have come to be used as lead materials.

[発明が解決しようとする問題点] 一般に半導体機器のリード材としては以下のような特性
が要求されている。
[Problems to be Solved by the Invention] Generally, lead materials for semiconductor devices are required to have the following characteristics.

(1)リードが電気信号伝達部であるとともに、パッグ
−−ジング工程中及び回路使用中に発生する熱を外部に
放出する機能を併せ持つことを要求されるため、優れた
熱及び電気伝導性を示すもの。
(1) Since the lead is required to act as an electrical signal transmission part and also have the function of releasing heat generated during the packaging process and circuit use to the outside, it must have excellent thermal and electrical conductivity. Something to show.

(2)リードとモールドとの密着性が半導体素子保護の
観点から不要であるため、リード材とモールド月の熱膨
張係数が近く、リードの表面に生成される酸化膜の密着
性が良好であること。
(2) Adhesion between the lead and the mold is unnecessary from the perspective of protecting the semiconductor element, so the thermal expansion coefficients of the lead material and the mold are close, and the adhesion of the oxide film formed on the surface of the lead is good. thing.

(3)パッケージング時に種々の加熱工程が加わるため
、耐熱性が良好であること。
(3) It must have good heat resistance since various heating processes are involved during packaging.

(4)リードはリード材を打ち抜き加工し、また曲げ加
工して作製されるものがほとんどであるため、これらの
加工性が良好であること。
(4) Since most leads are manufactured by punching and bending lead material, the workability of these materials must be good.

(5)エツチング加工性に優れていること。(5) Excellent etching processability.

(6)リードは表面に貴金属めっきを行なうため、これ
ら貴金属とのめつき密着性が良好であること。
(6) Since the surface of the lead is plated with precious metals, the lead should have good plating adhesion to these precious metals.

(7)パッケージング後に封止材の外に露出している、
アウターリード部に半田付けするものが多いので、良好
な半田付しり性を示すとともに、使用時の経時変化に対
して耐剥離性をイjすること。
(7) Exposed outside the sealing material after packaging;
Since many items are soldered to the outer leads, they must exhibit good solderability and have good peeling resistance against changes over time during use.

(8)機器の信頼性及び寿命の観点から耐食性が良好な
こと。
(8) Good corrosion resistance from the viewpoint of equipment reliability and lifespan.

(9)価格が低度であること。(9) The price is low.

これら各種の要求特性に対し従来より使用されている無
酸素銅、錫入り銅、りん青銅、]バール、42合金はい
ずれも一長一短があり、これらの特性の覆べてを必ずし
も満足しえるものではない。
Oxygen-free copper, tin-containing copper, phosphor bronze, ]Var, and 42 alloys that have been conventionally used to meet these various required properties all have advantages and disadvantages, and cannot necessarily satisfy all of these properties. do not have.

一方、Cu−Cr−3i系合金は上記の特性をかなり満
足するものの、析出物の大きさによって、半田付は性、
めっき密着性あるいはエツチング加工性において大きな
差異が生じてくるため、析出物の大きざの規定はリード
フレーム材用銅合金として不可欠なものとなっている。
On the other hand, although the Cu-Cr-3i alloy satisfies the above characteristics to a large extent, it has poor soldering properties due to the size of the precipitates.
Since there is a large difference in plating adhesion or etching workability, it is essential to specify the size of the precipitates in copper alloys for lead frame materials.

そこで本発明は、このような問題点を解決して、半田付
は性、めっき密着性、更にエツチング性が優れていると
ともに、前記開時性にも優れている銅合金をリード材用
として提供することを目的とするものである。
Therefore, the present invention solves these problems and provides a copper alloy for lead material that has excellent soldering properties, plating adhesion, and etching properties, as well as excellent opening properties. The purpose is to

[問題点を解決するための手段] 本発明は、前記の問題点を解決するための手段として、
以下のように構成する。
[Means for solving the problems] The present invention provides the following as means for solving the problems described above.
Configure as below.

すなわち、本発明の第一の発明は、0.05wt%以上
で1.0wt%以下のCrと、0.02wt%以上で0
.8wt%以下の3iとを含み、残部が実質上Cuであ
り、かつ析出物の大ぎさが1.0μm以下であることを
特徴とする、半導体機器のリード材用銅合金である。同
じく第二の発明は、0、05wt%以上で1.0wt%
以下のCrと、0.02wt%以上で0.8wt%以下
のSiと及びZn、Mg、P、Sn、Fe5Be、T 
i 、l−1fSCo、Inからなる群より選択された
1種又は2種以上の元素を単独又は複合して、0.01
wt%以上でi、owt%以下含有し、残部か実質上C
uであり、かつ析出物の大きさが1.0μm以下である
ことを特徴とする半導体機器のリード材用銅合金である
That is, in the first aspect of the present invention, Cr is 0.05 wt% or more and 1.0 wt% or less, and 0.02 wt% or more is 0.
.. This is a copper alloy for a lead material of a semiconductor device, which is characterized by containing 8 wt% or less of 3i, the remainder being substantially Cu, and having a precipitate size of 1.0 μm or less. Similarly, the second invention is 0.05 wt% or more and 1.0 wt%
The following Cr, 0.02 wt% or more and 0.8 wt% or less Si, and Zn, Mg, P, Sn, Fe5Be, T
i, l-1fSCo, one or more elements selected from the group consisting of In, singly or in combination, 0.01
Contains i at wt% or more, owt% or less, and the balance is substantially C.
This is a copper alloy for lead material of semiconductor devices, characterized in that the size of the precipitates is 1.0 μm or less.

次に本発明(1) 、(2)の両合金を構成する合金成
分の限定理由を説明する。Crの含有量を0、05wt
%以−1−1,0wt%以下とするのは、Crの含有量
が0.05wt%未満では期待する強度、耐熱性が得ら
れず、逆に1.0wt%を越えると、導電率が低下し、
さらにめっき性(加熱によるめっきのふくれ〉及び半田
の耐剥離性が劣化するためである。3iの含有量を0.
02wt%以十0.8wt%以下とするのは、3iの含
有量が0.02wt%未満ではOrの共添を行なっても
期待する強度、耐熱性か得られずo、awt%を越える
と他の添加元素の含有量との関係で金属間化合物を生成
せずCLIに固溶する3i量が多くなり導電率が低下す
るためである。さらにZn、IVF、P、Sn、Fe1
Be、Ti5Hf、Co、Inからなる群より選択され
た1種又は2種以上の元素を添加覆る理由は、これらの
添加によって導電率を大ぎく低下させずに強度と、耐熱
性を向上させ、中でも7n、Mg、Inは酸化膜密着性
、半田の耐剥離性をも向上させる効果があるためで、含
有量を単独又は複合して0.01wt%以上1.Owt
%以下とする理由は0.01wt%未満では前述の効果
が期待できず1.0wt%を越えると導電率が著しく低
下するためである。また、析出物の大きさを1,0μm
Jy、下にする理由は1.0μm以下の微細粒をCu中
に析出させることにより強度、導電性、半田付性、めっ
き密着性、エツチング性等が良好な合金を得ることがで
きるからである。
Next, the reasons for limiting the alloy components constituting both the alloys of the present invention (1) and (2) will be explained. Cr content 0.05wt
% to 1.0 wt% or less is because if the Cr content is less than 0.05 wt%, the expected strength and heat resistance will not be obtained, and if it exceeds 1.0 wt%, the electrical conductivity will decrease. decreases,
Furthermore, the plating properties (blistering of the plating due to heating) and peeling resistance of the solder deteriorate.The content of 3i is reduced to 0.
The reason why the content of 3i is set to 0.02 wt% or more and 0.8 wt% or less is that if the 3i content is less than 0.02 wt%, the expected strength and heat resistance cannot be obtained even if Or is co-added, and if it exceeds O or awt%. This is because, in relation to the content of other additive elements, the amount of 3i that does not form an intermetallic compound and is solidly dissolved in CLI increases, resulting in a decrease in electrical conductivity. Furthermore, Zn, IVF, P, Sn, Fe1
The reason for adding one or more elements selected from the group consisting of Be, Ti5Hf, Co, and In is that these additions improve strength and heat resistance without significantly reducing conductivity. Among these, 7n, Mg, and In have the effect of improving oxide film adhesion and solder peeling resistance, and their content alone or in combination is 0.01 wt% or more. Owt
% or less because if it is less than 0.01 wt %, the above-mentioned effect cannot be expected, and if it exceeds 1.0 wt %, the conductivity will drop significantly. In addition, the size of the precipitates was reduced to 1.0 μm.
Jy, the reason for lowering is that by precipitating fine grains of 1.0 μm or less in Cu, an alloy with good strength, conductivity, solderability, plating adhesion, etching property, etc. can be obtained. .

すなわち、析出物の大きさが1.0μmを越えると、強
度、導電性が低下し始める。さらに、半田付けあるいは
めっきを施した時に、析出物のぬれ性が悪いため析出物
の上に正常な半田、めっきがつきにくく、めっき密着性
も急激に低下する。エツチング性についてもマトリック
スと析出物で腐食速度が異なるため、析出物の大ぎさが
1.0μmを超えると急激にエツチング性が低下し、パ
リ状の析出物かエツチング面にとり残され、リード材と
しての所定の寸法がでないという現象が起こる。従って
Cu−Cr−3i系合金においては析出物の大きさを1
.0μm以下にしなければ実用に供する合金とならない
That is, when the size of the precipitates exceeds 1.0 μm, the strength and conductivity begin to decrease. Furthermore, when soldering or plating is applied, the wettability of the precipitates is poor, making it difficult for normal solder and plating to adhere to the precipitates, and the adhesion of the plating to the product is also rapidly reduced. As for etching properties, the corrosion rate differs between the matrix and the precipitates, so if the size of the precipitates exceeds 1.0 μm, the etching properties drop sharply, leaving paris-like precipitates on the etched surface, which can be used as lead material. A phenomenon occurs in which the predetermined dimensions of the object are not met. Therefore, in the Cu-Cr-3i alloy, the size of the precipitates is reduced to 1
.. Unless the thickness is 0 μm or less, the alloy cannot be used for practical use.

析出物の大きさを1.0μm以下とするには溶体化処理
、冷間加T、時効処理条件の組合せを選定することによ
り得られる。
The size of the precipitates can be reduced to 1.0 μm or less by selecting a combination of solution treatment, cold working T, and aging treatment conditions.

[実施例] 第1表に示ず本発明(1)、(2)に係る各種成分組成
の合金インゴットを電気銅あるいは無酸素銅を原料とし
て高周波溶解炉で、大気、又は不活性あるいは還元性雰
囲気中で溶解・鋳造した。次にこれを850’Cで1時
間加熱し熱間圧延して厚さ8mmの板とした後面側を行
ない、冷間圧延で厚さ2.5mmの板とした。この2.
5mmの板を950°Cで1時間溶体化処理を施し水焼
き入れを行ない、冷間圧延で厚さ0.25mmの板とし
、最後に種々の条件の時効処理を施した。こうして得ら
れた供試材の析出物の大きさを確認するとともにリード
材としての評価を以下の方法で行なった。
[Example] Alloy ingots having various component compositions according to the present invention (1) and (2) not shown in Table 1 were melted in the atmosphere, or inert or reducible, using electrolytic copper or oxygen-free copper as raw materials in a high-frequency melting furnace. Melted and cast in an atmosphere. Next, this was heated at 850'C for 1 hour and hot rolled to form a plate with a thickness of 8 mm.The rear side was then cold rolled to form a plate with a thickness of 2.5 mm. This 2.
A 5 mm plate was solution treated at 950°C for 1 hour, water quenched, cold rolled into a 0.25 mm thick plate, and finally aged under various conditions. The size of the precipitates in the sample material thus obtained was confirmed, and its use as a lead material was evaluated in the following manner.

強度と伸びは引張試験により、曲げ性は板の板の圧延方
向に平行な方向における曲げ(〃)同直角な方向におけ
る曲げ(土〉について、定荷重(225qf)負荷によ
る板厚と同一の曲げR(0,25mm)での繰り返し曲
げ(破断させずに曲げることのできる90°曲げ往復回
数)により、耐熱性は加熱時間5分における軟化温度に
より、また電気伝導性と放熱性とを導電率(%■△C8
〉により示したが、これは電気伝導性と熱伝導性は相互
に比例関係にあり、共に導電率で評価し得るからである
。半田付は性は、垂直式浸漬法によって、230±5℃
の半田浴(Sn60%、Pb40%)に5秒間浸漬して
、半田のぬれ状態を目視観察することにより評価した。
Strength and elongation are determined by tensile tests, and bendability is determined by bending in the direction parallel to the rolling direction of the plate (〃), bending in the direction perpendicular to the same (for earth), bending with the same thickness as the plate under a constant load (225qf). Heat resistance is determined by the softening temperature at a heating time of 5 minutes, and electrical conductivity and heat dissipation are determined by repeated bending at R (0.25 mm) (the number of 90° bending cycles that can be bent without breaking). (%■△C8
This is because electrical conductivity and thermal conductivity are in a proportional relationship with each other, and both can be evaluated by electrical conductivity. Soldering is done by vertical dipping method at 230±5℃.
The solder was immersed in a solder bath (60% Sn, 40% Pb) for 5 seconds, and the wetting state of the solder was evaluated by visually observing it.

半田の耐剥離性は上記の方法で半田付けした試料を大気
中で150°C11500hr加熱後、板厚と同一の曲
げR(0,25mm)の90°曲げを行ない、剥離の有
無を評価した。エツチング性は供試材を塩化第二鉄でエ
ツチングを行ない、その断面のパリ状の突出物の有無に
よって評価した。
The peeling resistance of the solder was evaluated by heating a sample soldered by the above method in the air at 150° C. for 11,500 hours, then bending it at 90° with a bending radius (0.25 mm) equal to the thickness of the plate, and evaluating the presence or absence of peeling. Etching properties were evaluated by etching the sample material with ferric chloride and checking the presence or absence of Paris-like protrusions on the cross section.

密着性は試料に厚さ3μmのAgめっきを施−9= し、表面に発生するフクレの有無を目視観察することに
より評価した。酸化膜密着性は試料を400’Cで1分
加熱した後、試料表面に2mm間隔の格子をナイフで刻
み、粘着テープを貼り、試料からはがして、テープに付
着する酸化膜の有無により、密着性を評価した。これら
の結果を比較合金を含めて第1表に示した。
Adhesion was evaluated by applying Ag plating with a thickness of 3 μm to the sample and visually observing the presence or absence of blisters on the surface. Oxide film adhesion was determined by heating the sample at 400'C for 1 minute, cutting grids at 2 mm intervals on the sample surface with a knife, applying adhesive tape, and peeling it off from the sample. The gender was evaluated. These results are shown in Table 1, including comparative alloys.

第1表に示すように、本発明の合金は強度、曲げ性、導
電性、耐熱性、半田付は性、半田耐剥離性、エツチング
性、めっき密着性、酸化膜密着性に優れていることが明
白であり、半導体機器のり一ド祠として好適であるとい
うことができる。
As shown in Table 1, the alloy of the present invention has excellent strength, bendability, electrical conductivity, heat resistance, solderability, solder peeling resistance, etching property, plating adhesion, and oxide film adhesion. This is obvious, and it can be said that it is suitable for use as a bonding shrine for semiconductor devices.

[発明の効果] 本発明(1)、 (2)による銅合金は、強度、電気伝
導性及び耐熱性に優れており、更に打抜及び曲げ加工を
実施でるのに、適度に良好な強度、伸び等の機械的性質
を示づ−とともに、半田付は性、めっき密着性、エツチ
ング性、耐食性等にも良好である。
[Effects of the Invention] The copper alloys according to the present invention (1) and (2) have excellent strength, electrical conductivity, and heat resistance, and can be punched and bent, yet have moderately good strength and In addition to exhibiting mechanical properties such as elongation, it also has good solderability, plating adhesion, etching resistance, corrosion resistance, etc.

また、リードフレーム材に銅合金を使用する際に、ポイ
ントとなるイハ頼性を低小さ′t!ないということに対
して、重要な技術項目であるところの半田の剥離性、酸
化膜の密着性か良好である。史に熱膨張係数はプラスチ
ックのそれに近いのてヅラスヂックパッケージ用に適し
ている。
In addition, when using copper alloy for lead frame material, the key point is to maintain low reliability! On the other hand, the solder removability and oxide film adhesion, which are important technical items, are good. Historically, its coefficient of thermal expansion is close to that of plastic, making it suitable for use in solid packaging.

先行技術の合金にd3いて、このような総合的時性をも
つものは無い。
None of the prior art alloys of d3 have such an overall temporality.

Claims (2)

【特許請求の範囲】[Claims] (1)Cr:0.05〜1.0重量%及びSi:0.0
2〜0.8重量%を含み、残部が実質上Cuであり、か
つ析出物の大きさが1.0μm以下であることを特徴と
する半導体機器のリード材用銅合金。
(1) Cr: 0.05-1.0% by weight and Si: 0.0
A copper alloy for a lead material of a semiconductor device, characterized in that the copper alloy contains 2 to 0.8% by weight, the remainder is substantially Cu, and the size of precipitates is 1.0 μm or less.
(2)Cr:0.05〜1.0重量%、Si:0.02
〜0.8重量%及びZn、Mg、P、Sn、Fe、Be
、Ti、Hf、Co、Inからなる群より選択された1
種又は2種以上の元素を単独又は複合して0.01〜1
重量%含み、残部が実質上Cuであり、かつ析出物の大
きさが1.0μm以下であることを特徴とする半導体機
器のリード材用銅合金。
(2) Cr: 0.05-1.0% by weight, Si: 0.02
~0.8% by weight and Zn, Mg, P, Sn, Fe, Be
, Ti, Hf, Co, In.
0.01 to 1 of a species or two or more elements alone or in combination
1. A copper alloy for a lead material of a semiconductor device, characterized in that the balance is substantially Cu and the size of precipitates is 1.0 μm or less.
JP26775386A 1986-11-12 1986-11-12 Copper alloy for semiconductor device lead material Pending JPS63125628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26775386A JPS63125628A (en) 1986-11-12 1986-11-12 Copper alloy for semiconductor device lead material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26775386A JPS63125628A (en) 1986-11-12 1986-11-12 Copper alloy for semiconductor device lead material

Publications (1)

Publication Number Publication Date
JPS63125628A true JPS63125628A (en) 1988-05-28

Family

ID=17449100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26775386A Pending JPS63125628A (en) 1986-11-12 1986-11-12 Copper alloy for semiconductor device lead material

Country Status (1)

Country Link
JP (1) JPS63125628A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19600864A1 (en) * 1996-01-12 1997-07-17 Wieland Werke Ag Copper-chrome-titanium-silicon alloy and its use
JP2007270305A (en) * 2006-03-31 2007-10-18 Nikko Kinzoku Kk Cu-Cr-Si-BASED ALLOY AND Cu-Cr-Si-BASED ALLOY FOIL FOR ELECTRICAL/ELECTRONIC COMPONENT
EP2248921A1 (en) * 2008-01-31 2010-11-10 The Furukawa Electric Co., Ltd. Copper alloy material for electric/electronic component and method for manufacturing the copper alloy material
CN103966475A (en) * 2014-05-15 2014-08-06 江西理工大学 Copper-chromium-titanium alloy contact wire and preparation method thereof
CN109937262A (en) * 2017-10-18 2019-06-25 株式会社豊山 Copper alloy band with high heat resistance and heat dissipation performance

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19600864A1 (en) * 1996-01-12 1997-07-17 Wieland Werke Ag Copper-chrome-titanium-silicon alloy and its use
DE19600864C2 (en) * 1996-01-12 2000-02-10 Wieland Werke Ag Use of a copper-chrome-titanium-silicon-magnesium alloy
JP2007270305A (en) * 2006-03-31 2007-10-18 Nikko Kinzoku Kk Cu-Cr-Si-BASED ALLOY AND Cu-Cr-Si-BASED ALLOY FOIL FOR ELECTRICAL/ELECTRONIC COMPONENT
EP2248921A1 (en) * 2008-01-31 2010-11-10 The Furukawa Electric Co., Ltd. Copper alloy material for electric/electronic component and method for manufacturing the copper alloy material
EP2248921A4 (en) * 2008-01-31 2011-03-16 Furukawa Electric Co Ltd Copper alloy material for electric/electronic component and method for manufacturing the copper alloy material
CN103966475A (en) * 2014-05-15 2014-08-06 江西理工大学 Copper-chromium-titanium alloy contact wire and preparation method thereof
CN103966475B (en) * 2014-05-15 2015-12-02 江西理工大学 A kind of copper chromium titanium alloy osculatory and preparation method thereof
CN109937262A (en) * 2017-10-18 2019-06-25 株式会社豊山 Copper alloy band with high heat resistance and heat dissipation performance
CN109937262B (en) * 2017-10-18 2021-03-30 株式会社豊山 Copper alloy strip with high heat resistance and heat dissipation
US11697864B2 (en) 2017-10-18 2023-07-11 Poongsan Corporation Copper alloy strip having high heat resistance and thermal dissipation properties

Similar Documents

Publication Publication Date Title
JP2670670B2 (en) High strength and high conductivity copper alloy
JPS6250425A (en) Copper alloy for electronic appliance
JPH0372691B2 (en)
JPH0372045A (en) High strength and high conductivity copper alloy having excellent adhesion for oxidized film
JPS63143230A (en) Precipitation strengthening high tensile copper alloy having high electrical conductivity
JPS6314056B2 (en)
JPH02163331A (en) High strength and high conductivity copper alloy having excellent adhesion for oxidized film
JPS63125628A (en) Copper alloy for semiconductor device lead material
JPS59145746A (en) Copper alloy for lead material of semiconductor apparatus
JPH0424417B2 (en)
JPS6267144A (en) Copper alloy for lead frame
JPH02118037A (en) High tensile and high conductivity copper alloy having excellent adhesion of oxidized film
JPH02122039A (en) High strength and high conductivity copper alloy having excellent adhesion of oxidized film
JPS61264144A (en) High-strength and high conductivity copper alloy excelling in thermal peeling resistance of solder
JPH02122035A (en) High strength and high conductivity copper alloy having excellent adhesion of oxidized film
JPS639574B2 (en)
JPS6393835A (en) Copper alloy for lead material of semiconductor equipment
JPH0219432A (en) High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material
JPS5853700B2 (en) Copper alloy for lead material of semiconductor equipment
JPS63125629A (en) Copper alloy for semiconductor device lead material
JPH02145734A (en) High strength and high conductivity copper alloy having excellent adhesion of oxidized film
JPH01268834A (en) Copper alloy for lead material of semiconductor device
JPS6157379B2 (en)
JPH01268833A (en) Copper alloy for lead material of semiconductor device
JPS6218617B2 (en)