JPH03162538A - High strength conductivity copper alloy having excellent flexibility - Google Patents

High strength conductivity copper alloy having excellent flexibility

Info

Publication number
JPH03162538A
JPH03162538A JP30114889A JP30114889A JPH03162538A JP H03162538 A JPH03162538 A JP H03162538A JP 30114889 A JP30114889 A JP 30114889A JP 30114889 A JP30114889 A JP 30114889A JP H03162538 A JPH03162538 A JP H03162538A
Authority
JP
Japan
Prior art keywords
strength
weight
copper alloy
copper
high strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30114889A
Other languages
Japanese (ja)
Other versions
JPH0530895B2 (en
Inventor
Kosuke Ohashi
大橋 康佑
Tamotsu Nishijima
西島 保
Toshihiro Fujino
年弘 藤野
Yasuhito Taki
滝 康仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP30114889A priority Critical patent/JPH03162538A/en
Publication of JPH03162538A publication Critical patent/JPH03162538A/en
Publication of JPH0530895B2 publication Critical patent/JPH0530895B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To improve the flexibility in the copper alloy without causing the drastical deterioration in its electric conductivity by specifying Ni, Si, In, Co and Cu. CONSTITUTION:The high strength conductivity copper alloy is formed of a compsn. constituted of, by weight, 2 to 4% Ni, 0.4 to 1% Si, 0.05 to 0.3% In, 0.01 to 0.2% Co and the balance Cu. The copper alloy has high strength to mechanical impact and in which disconnection caused by drawing and bending can be reduced without causing the drastical deterioration in its electric conductivity.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野1 本発明は、銅合金に係り、特に、例えば自動車用電線の
導体等として用いた場合に、導電率の大巾な低下を招く
ことなく、機械的衝撃に対し高強度で,圧着端子部にお
ける引張り及び屈曲による断線を減少させることができ
、かつ軽量化を図ることのできる耐屈曲性に優れた導電
用高力洞合金に関する。
[Industrial Application Field 1] The present invention relates to copper alloys, and in particular, when used as a conductor for electric wires for automobiles, etc., the present invention provides high strength against mechanical shock without causing a large decrease in electrical conductivity. The present invention relates to a high-strength conductive alloy having excellent bending resistance, which can reduce wire breakage due to tension and bending in crimp terminal portions, and reduce weight.

【従来の技術] 一般に自動車は,マニアル・トランス・ミッション車と
、オート・トランス・ミッション車(AT車)とがある
。これら自動車の自動車用電線の導体としては軟銅線が
主として用いられている。 近年、AT車の普及に伴ってキャブレタから電子燃料噴
射装置への転換が図られ、各種計器類等車軟装置の電子
化が図られている。このような車載装置の電子化等に伴
い、自動車内における電気、電子配線回路の数が著しく
増加し、自動車における自動車用電線の占積空間の増加
及び、この自動車用電線による重量の増加を招いている
。 しかし、自動車の車体は、燃費の向上の点から軽量であ
ることが望ましく、自動車用電線の使用量の増加は,車
体の軽量化に逆行することとなる。 そこで、車体の軽量化を図る上から、自動車内における
電気、電子配線回路に用いられる自動車用電線において
は,その軽量化及び自動車内における占積空間の狭小化
の要望が強まっている。 従来は、自動車用電線の中で例えばマイクロコンピュー
タを含む微小電流回路に用いられる電線においては、リ
ード線等極細い径の電線で充分であるにも拘らず,自動
車走行中に生じる振動衝撃は甚だしく大きいものである
ため、充分な機械的強度を有していないと接合部がはず
れたり,断線を生じ,自動車走行に支障を生じたりする
ことがある。このようなことから従来,充分な機械的強
度を確保するため、電気的な必要径より大きな径の導体
を用いている。 しかし、充分な機械的強度を確保するため、電気的な必
要径より大きな径の導体を用いていたのでは、自動車内
における電気,電子配線回路に用いる自動車用電線の軽
量化及び占積空間の狭小化を図ることはできない。 そこで、自動車用電線を軽量化するため導体外径を小さ
くしても機械的強度を確保することのできる硬銅線が検
討されたが,硬銅線は材質的に伸びが著しく小さい。こ
のため、硬銅線を用いて端子間を圧着接合しても、自動
車走行中に生じる振動衝撃等の外力による機械的負荷が
接合部に加わると、この接合部が損傷してしまうことが
ある。 このように硬銅線を用いて端子間を圧着接合すると、端
子圧着箇所が機械的な弱点部となり外的衝撃によって断
線を生じやすく信頼性に乏しいという結果を招来してい
る。 また,自動車用電線の使用重量を小さくすることは,導
体径を小さくすることによって実現が可能であるが、従
来の如き軟銅線にあっては、導体外径を小さくすると機
械的強度が低下してしまう。 そこで,近年、導体外径を小さくしても,機械的強度を
確保でき、比較的良好な繰返し屈曲強度及び導電性を有
する銅合金として、Cu  Ni  Ti合金、C u
 − N i − S i合金等が考案されている。 【発明が解決しようとする課題1 このCu−Ni−Ti合金は、Ni−Tiの金属間化合
物を,Cuマトリックス中に析出させることにより,導
電性を大きく低下させずに、引張り強さを向上させたも
のである。しかしながら、このC u =N i −T
 i合金は、自動車走行中に生じる振動衝撃等の外力に
よる機械的負荷に耐え得るに充分な引張り強さを得るこ
とができないという問題点を有している。 また、Cu−Ni−Si合金は.Ni−Siの金属間化
合物を.Cuマトリックス中に析出させることにより、
導電性を大きく低下させずに、引張り強さを向上させた
ものである。しかしながら、このCu−Ni−Si合金
は、自動車走行中に生じる振動it等の外力による機械
的負荷に耐え得るに充分な引張り強さを得ることができ
ないという問題点を有している。 本発明は、導電率の大巾な低下を招くことなく、機械的
衝撃に対し高強度で、圧着端子部における引張り及び屈
曲による断線を減少させることができ,かつ軽量化を図
ることのできる耐屈曲性に優れた導電用高力銅合金を提
供することを目的としている。 (課題を解決するための手段] 上記目的を達或するために、本発明の耐屈曲性に優れた
導電用高力銅合金においては、Niを2.0〜460重
量%、Siを0.4〜1.0重量%、Inを0.05〜
0.3重量%.Co{il−0.01〜0.2重量%を
含有し,残部を基本的にCuによって構威したものであ
る。 すなわち,上記目的を達成するために,本発明の耐屈曲
性に優れた導電用高力銅合金においては、Cuマトリッ
クス中にNiとSiの金属間化合物を析出させ、これに
よって導電性を大幅に低下させることなく,引張り強さ
を向上し、In.Coを加えることにより,引張り強さ
をさらに高めたものである。 本発明において、Niの含有量を2.0〜4.0重景%
としたのは,Niが2.0重量%未満では、Siとの金
属間化合物の析出による引張強さの向上が小さく,また
、Niが4.0重量%を超えると,引張強さは向上する
がCu母相中へ固溶するNiが多くなり,導電性を著し
く損ない、加工性が悪化するためである。 また、本発明において,Siの含有量を0.4〜l.○
重量%とじたのは、Siが0.4重量%未満では、N1
との金属間化合物の析出による引張強さの向上が小さく
、また、Siが1.0重量%を超えると、Cu母相中に
固溶するSiが多くなり、導電性が低下するためである
。 さらに、本発明において、Inの含有量を0.05−0
.3重量%とじたのは.Inが0.05重量%未満では
、引張強さを向上させる効果が小さく、0.3重量%を
超えるとCu母相中に固溶するInが多くなり,導電性
を著しく低下させ,コスト高を招くからである。 さらにまた、本発明において、Coの含有量を0.01
−0.2重量%とじたのは、Coが0.0上重量%末満
では、引張強さを向上させる効果が小さく、Coが0.
2重量%を超えると導電性を大きく低下させ、加工性を
悪化させるからである。 [作用] 上記のように構或された酎屈曲性に優れた導電用高力銅
合金を用いると、導電率は、従来の導電用高力銅合金と
ほぼ同等であり、約45%IACSの導電率を有するこ
とができる。 また、上記のように構威された耐屈曲性に優れた導電用
高力鋼合金を用いると,引張強さは、硬銅の約1.7倍
と飛躍的強さを有し、従来の導電用高力洞合金に比して
も、向上することができる。 さらに、上記のように構或された耐屈曲性に優れた導電
用高力銅合金を用いると伸びは、軟銅より小さくなるが
,硬銅に比して5倍以上の伸びを有しており、軟銅と同
等以上の繰返し屈曲強度を得ることができる。さらに、
伸びは、従来の導電用高力洞合金に比しても,低下する
ことがない。 そして,上記した理由から本発明のように構或された6
t屈曲性に優れた導電用高力銅合金を自動車用電線の導
体等として用いた場合に、自動車用電線の導体に適した
特性を得ることができ、導体外径の小型化に対する機械
的強度の確保と端子圧着箇所での引張荷重及び屈曲によ
る断線を減少させることができる。したがって、上記の
ように構戊された耐屈曲性に優れた導電用高力鋼合金を
電子機器内配線用電線の導体,半導体のリード材等とし
て用いると好適である。 以上の点から明確なように、上記のように構或された耐
屈曲性に優れた導電用高力副合金を例えば自動車用電線
の導体等として用いた場合に、機賊的衝撃に対して高強
度で、しかも電気的特性において高導電性を有し,かつ
導線の小径化が行むわれ、自動車用電線の軽量化する方
向に働く。 【実施例1 以下,本発明の実施例について説明する。 本発明の実施例として,不活性ガス雰囲気に保たれた溶
解炉で、黒鉛粒被覆下にて銅を溶解した後、Ni,In
を純金属、Co.Siを母合金の形態で添加し、均一な
溶湯を得,これを、連続鋳造により、第1表に示す如き
組戊の20nn+φの鋳造捧を作製した。これらを冷間
圧延,伸線により3. 2rLtQφにした後、不活性
ガス雰囲気中約900℃でl時間、加熱保持し、その後
、水冷して溶体化処理を施した。その後、↓.Ommφ
まで伸線し、さらに不活性ガス雰囲気中約470℃で6
時間の時効処理を行ない、引張強さ、伸び、4電率、繰
返し屈曲強度を測定した。比較例も同様の製造方法によ
ったものである。 なお,NA曲試験は、第1図に示す如<.’+Y;具1
に供試材2を挟持し、他端を2kgの引張荷重Wを加え
た状態で第1図図示(A)→(B)→(C)→(D)と
左右90”曲げを1回として破断するまで、繰返し行な
い,その回数を繰返し屈曲強度とした。 第1表には、本発明に係る耐屈曲性に優れた導電用高力
銅合金の特徴を明確にするために、実施例と合わせて、
比較例及び従来例のm或.特性値が示してある。 なお、比較例の合金Nn4、Xα5は,組或がCu、N
i.Si.In.Coと本発明と同一であるが、各組成
の含有量が本発明とは異なっている。 第1表の実施例(Nal〜Nα5)と比較例(Nα1〜
Na5)との比較から明らかな如く、本発明によると、
Ni−Siの金属間化合物を銅マトリクス中に析出させ
ることにより、導電率を大幅に低下させることなく、引
張強さを向上させることができる。 さらに、本発明によると、Cu母相中にIn,Coを固
溶させているため,このCu母相中へのIn.Coの固
溶により、導電率の幾分の低下は生じるが、引張強さの
より一層の向上を図ることができる。この導電率は、銅
マトリクス中に固溶した合金元素In,Coにより比較
例(Nut)に比して低下は有るが、約45%■ACS
を確保し、繰返し屈曲強度は、軟鋼より優れ、引張強さ
は,硬銅より格段向上させることができる。 このように,本発明に係る耐屈曲性に優れた導電用高力
銅合金は、硬銅と比較すると、約1.7倍と格段に優れ
た引張強さを有しており、導電率は低下するが、添加元
素の一部を析出させることにより,その低下を約45%
IACSと極力抑え、伸びは,軟鋼より小さくなるも、
硬銅の5倍以上有り、繰返し屈曲強度は、極めて良好な
軟鋼よりも優れている。 [発明の効果】 以上説明したように、本発明によれば、硬銅と比較する
と、約工.7倍と格段に優れた引張強さを有し、導電率
は低下するが、添加元素の一部を析出させることにより
,その低下を約45%IACSと極力抑えることができ
る。 また、本発明によれば,伸びは、軟銅より小さくなるが
,硬銅の5倍以上の伸びを有しており,繰返し屈曲強度
の極めて良好な軟銅よりも優れた繰返し屈曲強度を得る
ことができる。 したがって、本発明によれば、自動車用電線として用い
る導体に適した特性を得ることができ,導体外径の小型
化に対する機械的強度の確保と端子圧着箇所での引張荷
重及び屈曲による断線を減少させることができる。 また,本発明によれば、電子機器内配線用@線の導体,
半導体のリード材等として用いるにも好適である。
[Prior Art] Automobiles generally include manual transmission vehicles and auto transmission vehicles (AT vehicles). Annealed copper wire is mainly used as the conductor of the electric wires for these automobiles. In recent years, with the spread of automatic transmission vehicles, carburetors have been replaced with electronic fuel injection devices, and vehicle soft devices such as various instruments have been made electronic. Along with the computerization of in-vehicle devices, the number of electrical and electronic wiring circuits in automobiles has increased significantly, leading to an increase in the space occupied by automobile electric wires in automobiles and an increase in the weight of these automobile electric wires. I'm there. However, it is desirable for automobile bodies to be lightweight in order to improve fuel efficiency, and an increase in the amount of automobile electric wire used goes against the weight reduction of automobile bodies. Therefore, in order to reduce the weight of the vehicle body, there is an increasing demand for reducing the weight of automotive electric wires used for electrical and electronic wiring circuits within the vehicle and for reducing the space occupied within the vehicle. Conventionally, among the electric wires for automobiles, for example, for electric wires used in minute current circuits including microcomputers, extremely thin diameter electric wires such as lead wires are sufficient, but the vibration and shock that occurs while the car is running is severe. Because they are large, if they do not have sufficient mechanical strength, the joints may come off or the wires may break, which may impede the running of the vehicle. For this reason, conventionally, in order to ensure sufficient mechanical strength, a conductor with a diameter larger than the electrically required diameter has been used. However, in order to ensure sufficient mechanical strength, conductors with a diameter larger than the required electrical diameter have been used to reduce the weight of automotive electric wires used for electrical and electronic wiring circuits in automobiles, and to reduce the amount of space occupied. It is not possible to narrow the scope. Therefore, in order to reduce the weight of electric wires for automobiles, hard copper wires were considered, which can ensure mechanical strength even if the outer diameter of the conductor is reduced, but hard copper wires have extremely low elongation due to their material nature. For this reason, even if the terminals are crimped and bonded using hard copper wire, the joint may be damaged if mechanical loads are applied to the joint due to external forces such as vibrations and shocks that occur while the car is running. . When terminals are crimped and bonded using hard copper wire in this manner, the terminal crimped portion becomes a mechanical weak point, which is likely to break due to external impact, resulting in poor reliability. In addition, reducing the weight of automotive electric wires can be achieved by reducing the conductor diameter, but with conventional annealed copper wire, reducing the outer diameter of the conductor reduces the mechanical strength. It ends up. Therefore, in recent years, copper alloys such as Cu Ni Ti alloy and Cu
-Ni-Si alloys and the like have been devised. [Problem to be solved by the invention 1] This Cu-Ni-Ti alloy has improved tensile strength without significantly reducing conductivity by precipitating a Ni-Ti intermetallic compound in the Cu matrix. This is what I did. However, this C u =N i −T
The i-alloy has a problem in that it cannot obtain sufficient tensile strength to withstand mechanical loads due to external forces such as vibration shocks generated during driving of a car. Moreover, Cu-Ni-Si alloy. Ni-Si intermetallic compound. By precipitating in the Cu matrix,
It has improved tensile strength without significantly reducing conductivity. However, this Cu-Ni-Si alloy has a problem in that it cannot obtain sufficient tensile strength to withstand mechanical loads due to external forces such as vibrations generated during driving of an automobile. The present invention has high strength against mechanical shock without causing a large decrease in electrical conductivity, can reduce disconnection due to tension and bending in the crimp terminal part, and can reduce weight. The purpose is to provide a high-strength copper alloy for conductive use with excellent flexibility. (Means for Solving the Problems) In order to achieve the above object, the high-strength copper alloy for electrical conduction with excellent bending resistance of the present invention contains 2.0 to 460% by weight of Ni and 0.0% by weight of Si. 4~1.0% by weight, In 0.05~
0.3% by weight. It contains Co{il-0.01 to 0.2% by weight, and the balance is basically made up of Cu. That is, in order to achieve the above object, in the high-strength conductive copper alloy with excellent bending resistance of the present invention, an intermetallic compound of Ni and Si is precipitated in the Cu matrix, thereby significantly improving the conductivity. Improves tensile strength without decreasing In. By adding Co, the tensile strength is further increased. In the present invention, the Ni content is 2.0 to 4.0%
This is because when Ni is less than 2.0% by weight, the improvement in tensile strength due to the precipitation of intermetallic compounds with Si is small, and when Ni is more than 4.0% by weight, the tensile strength is improved. However, this is because a large amount of Ni becomes solid solution in the Cu matrix, significantly impairing conductivity and deteriorating workability. Further, in the present invention, the Si content is set to 0.4 to 1. ○
The reason for the weight percent is that when Si is less than 0.4 weight percent, N1
This is because the improvement in tensile strength due to the precipitation of intermetallic compounds with Cu is small, and if Si exceeds 1.0% by weight, a large amount of Si dissolves in the Cu matrix, resulting in a decrease in electrical conductivity. . Furthermore, in the present invention, the In content is set to 0.05-0
.. 3% by weight was added. If In is less than 0.05% by weight, the effect of improving tensile strength is small, and if it exceeds 0.3% by weight, a large amount of In will be dissolved in the Cu matrix, significantly reducing conductivity and increasing costs. This is because it invites Furthermore, in the present invention, the Co content is set to 0.01
-0.2% by weight was chosen because if the Co content is 0.0% by weight or less, the effect of improving the tensile strength is small.
This is because if it exceeds 2% by weight, the conductivity will be greatly reduced and workability will be deteriorated. [Function] When the high-strength conductive copper alloy with excellent flexibility is used as described above, the conductivity is almost the same as that of conventional high-strength conductive copper alloys, and is about 45% lower than IACS. It can have electrical conductivity. In addition, by using the high-strength conductive steel alloy with excellent bending resistance constructed as described above, the tensile strength is approximately 1.7 times that of hard copper, which is dramatically higher than that of conventional conductive steel. It can also be improved compared to high-strength alloys. Furthermore, if a high-strength conductive copper alloy with excellent bending resistance constructed as described above is used, the elongation will be smaller than that of soft copper, but it will have an elongation more than five times that of hard copper. , it is possible to obtain repeated bending strength equivalent to or higher than that of annealed copper. moreover,
The elongation does not decrease compared to conventional high-strength conductive alloys. And, for the above-mentioned reasons, the 6
When a high-strength conductive copper alloy with excellent bendability is used as a conductor for automobile electric wires, it is possible to obtain characteristics suitable for the conductor of automobile electric wires, and the mechanical strength is improved even when the outer diameter of the conductor is reduced. It is possible to ensure that the terminal is crimped and to reduce the tensile load and breakage due to bending at the terminal crimping point. Therefore, it is suitable to use the conductive high-strength steel alloy with excellent bending resistance constructed as described above as a conductor for wiring in electronic equipment, a lead material for semiconductors, and the like. As is clear from the above points, when the high-strength secondary alloy for electrical conductivity with excellent bending resistance constructed as described above is used, for example, as a conductor for electric wires for automobiles, It has high strength and high conductivity in terms of electrical properties, and the diameter of the conductor wire is being reduced, which is working toward reducing the weight of automotive wires. [Example 1] An example of the present invention will be described below. As an example of the present invention, after melting copper under graphite grain coating in a melting furnace maintained in an inert gas atmosphere, Ni, In
Pure Metal, Co. Si was added in the form of a master alloy to obtain a uniform molten metal, which was continuously cast to produce cast slabs of 20 nn + φ as shown in Table 1. 3. These are cold rolled and wire drawn. After the temperature was reduced to 2rLtQφ, the sample was heated and maintained at about 900° C. for 1 hour in an inert gas atmosphere, and then cooled with water and subjected to solution treatment. After that, ↓. Ommφ
The wire is drawn to a temperature of
A time aging treatment was performed, and tensile strength, elongation, tetraelectricity, and cyclic bending strength were measured. Comparative examples were also produced using the same manufacturing method. The NA song test is as shown in Figure 1. '+Y; Ingredients 1
Holding the sample material 2 between the two ends, and applying a tensile load W of 2 kg to the other end, bend the left and right 90" as shown in Figure 1 (A) → (B) → (C) → (D) as one time. This was repeated until it broke, and the number of repetitions was taken as the repeated bending strength. Together,
Comparative example and conventional example m or. Characteristic values are shown. In addition, alloys Nn4 and Xα5 of comparative examples have a combination of Cu and N
i. Si. In. Co is the same as the present invention, but the content of each composition is different from the present invention. Examples (Nal~Nα5) and comparative examples (Nα1~Nα5) in Table 1
According to the present invention, as is clear from the comparison with Na5),
By precipitating the Ni-Si intermetallic compound into the copper matrix, tensile strength can be improved without significantly reducing electrical conductivity. Further, according to the present invention, since In and Co are dissolved in the Cu matrix, In and Co are dissolved in the Cu matrix. Although the solid solution of Co causes a slight decrease in electrical conductivity, it is possible to further improve the tensile strength. Although this conductivity is lower than that of the comparative example (Nut) due to the alloying elements In and Co dissolved in the copper matrix, it is approximately 45% ACS
The cyclic bending strength is superior to mild steel, and the tensile strength can be significantly improved compared to hard copper. As described above, the high-strength conductive copper alloy with excellent bending resistance according to the present invention has significantly superior tensile strength of about 1.7 times compared to hard copper, and the electrical conductivity is However, by precipitating some of the added elements, the decrease can be reduced by about 45%.
Although the IACS is suppressed as much as possible and the elongation is smaller than mild steel,
It has more than 5 times the strength of hard copper, and its repeated bending strength is superior to that of mild steel, which has extremely good strength. [Effects of the Invention] As explained above, according to the present invention, compared to hard copper, it takes about 30 minutes to work. It has a significantly superior tensile strength of 7 times, and although the electrical conductivity decreases, by precipitating some of the additive elements, the decrease can be suppressed to about 45% IACS as much as possible. Further, according to the present invention, although the elongation is smaller than that of annealed copper, it has an elongation that is more than five times that of hard copper, and it is possible to obtain a cyclic flexural strength superior to that of annealed copper, which has an extremely good cyclic flexural strength. can. Therefore, according to the present invention, it is possible to obtain characteristics suitable for a conductor used as an electric wire for automobiles, to ensure mechanical strength while reducing the outer diameter of the conductor, and to reduce tensile load and wire breakage due to bending at terminal crimping points. can be done. Further, according to the present invention, the @ wire conductor for wiring inside electronic equipment,
It is also suitable for use as a lead material for semiconductors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例及び比較例の屈曲試験方法を
示す図である。
FIG. 1 is a diagram showing a bending test method of an example of the present invention and a comparative example.

Claims (1)

【特許請求の範囲】[Claims] (1)Niを2.0〜4.0重量%、Siを0.4〜1
.0重量%、Inを0.05〜0.3重量%、Coを0
.01〜0.2重量%を含有し、残部が基本的にCuか
らなる耐屈曲性に優れた導電用高力銅合金。
(1) 2.0 to 4.0% by weight of Ni, 0.4 to 1% of Si
.. 0% by weight, In 0.05-0.3% by weight, Co 0%
.. 01 to 0.2% by weight, and the balance basically consists of Cu.
JP30114889A 1989-11-20 1989-11-20 High strength conductivity copper alloy having excellent flexibility Granted JPH03162538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30114889A JPH03162538A (en) 1989-11-20 1989-11-20 High strength conductivity copper alloy having excellent flexibility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30114889A JPH03162538A (en) 1989-11-20 1989-11-20 High strength conductivity copper alloy having excellent flexibility

Publications (2)

Publication Number Publication Date
JPH03162538A true JPH03162538A (en) 1991-07-12
JPH0530895B2 JPH0530895B2 (en) 1993-05-11

Family

ID=17893364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30114889A Granted JPH03162538A (en) 1989-11-20 1989-11-20 High strength conductivity copper alloy having excellent flexibility

Country Status (1)

Country Link
JP (1) JPH03162538A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262448A (en) * 1987-04-21 1988-10-28 Nippon Mining Co Ltd Production of copper alloy having excellent peeling resistance of tin or tin alloy plating

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262448A (en) * 1987-04-21 1988-10-28 Nippon Mining Co Ltd Production of copper alloy having excellent peeling resistance of tin or tin alloy plating

Also Published As

Publication number Publication date
JPH0530895B2 (en) 1993-05-11

Similar Documents

Publication Publication Date Title
KR101336352B1 (en) Electrical wire conductor for wiring, electrical wire for wiring, and their production methods
JPH05311283A (en) Cu alloy extra fine wire excellent in wire drawability and repeated bendability
JP2724903B2 (en) High-strength copper alloy for electrical conduction with excellent bending resistance
JP4762701B2 (en) Electric wire conductor for wiring and electric wire for wiring using the same
EP0399070B1 (en) Electrical conductors based on Cu-Fe-P alloys
JP2011252185A (en) Al ALLOY CONDUCTIVE WIRE
JP2813652B2 (en) High strength copper alloy for conductive
JPH0368734A (en) High strength conductive copper alloy excellent in bending resistance
JPH03162538A (en) High strength conductivity copper alloy having excellent flexibility
JP3333654B2 (en) High-strength copper alloy for electric conduction excellent in elongation characteristics and bending characteristics, and method for producing the same
JP3302840B2 (en) High-strength copper alloy for electric conduction excellent in elongation characteristics and bending characteristics, and method for producing the same
JP2608817B2 (en) Conductive high-strength copper alloy with excellent elongation properties
JPH03162539A (en) High strength conductivity copper alloy having excellent flexibility
US5071494A (en) Aged copper alloy with iron and phosphorous
JP3156381B2 (en) Wire conductor for crimp connection
JPH01212732A (en) High strength and high electric conductive copper alloy
JP3275506B2 (en) Automotive wire and method of manufacturing the same
JP2711949B2 (en) Conductive high-strength copper alloy with excellent flex resistance
JPH0565571B2 (en)
JPH01139736A (en) Copper alloy
JPH07331362A (en) High strength conductive copper alloy excellent in bendability and wire drawability
JPH01188641A (en) High strength and high electric conductive copper alloy
JP2804966B2 (en) High strength copper alloy for conductive
JPS6176636A (en) Heat-resistant high-strength copper alloy having high electric conductivity
JPH06158201A (en) High strength and high electric conductivity copper alloy