JPH0530895B2 - - Google Patents
Info
- Publication number
- JPH0530895B2 JPH0530895B2 JP1301148A JP30114889A JPH0530895B2 JP H0530895 B2 JPH0530895 B2 JP H0530895B2 JP 1301148 A JP1301148 A JP 1301148A JP 30114889 A JP30114889 A JP 30114889A JP H0530895 B2 JPH0530895 B2 JP H0530895B2
- Authority
- JP
- Japan
- Prior art keywords
- strength
- weight
- copper
- present
- conductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010949 copper Substances 0.000 claims description 31
- 238000005452 bending Methods 0.000 claims description 24
- 229910052802 copper Inorganic materials 0.000 claims description 21
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 18
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 23
- 239000004020 conductor Substances 0.000 description 17
- 239000011159 matrix material Substances 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 230000035939 shock Effects 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 229910052738 indium Inorganic materials 0.000 description 6
- 229910000765 intermetallic Inorganic materials 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 230000001376 precipitating effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910001000 nickel titanium Inorganic materials 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 229910018098 Ni-Si Inorganic materials 0.000 description 2
- 229910018529 Ni—Si Inorganic materials 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 238000002788 crimping Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910017876 Cu—Ni—Si Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- KHYBPSFKEHXSLX-UHFFFAOYSA-N iminotitanium Chemical compound [Ti]=N KHYBPSFKEHXSLX-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910021484 silicon-nickel alloy Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
Landscapes
- Conductive Materials (AREA)
Description
本発明は、銅合金に係り、特に、冷えば自動車
用電線の導体等として用いた場合に、導電率の大
巾な低下を招くことなく、機械的衝撃に対し高強
度で、圧着端子部における引張り及び屈曲による
断線を減少させることができ、かつ軽量化を図る
ことのできる耐屈曲性に優れだ導電用高力銅合金
に関する。
The present invention relates to a copper alloy, and in particular, when it is used as a conductor for automobile electric wires when cooled, it has high strength against mechanical shock without causing a large decrease in electrical conductivity, and can be used as a conductor for crimp terminals. The present invention relates to a high-strength copper alloy for conductive use that has excellent bending resistance and can reduce wire breakage due to tension and bending, and can be lightweight.
一般に自動車は、マニアル・トランス・ミツシ
ヨン車と、オート・トランス・ミツシヨン車
(AT車)とがある。これら自動車の自動車用電
線の導体としては軟銅線が主として用いられてい
る。近年、AT車の普及に伴つてキヤブレタから
電子燃料噴射装置への転換が図られ、各種計器類
等車載装置の電子化が図られている。このような
車載装置の電子化等に伴い、自動車内における電
気、電子配線回路の数が著しく増加し、自動車に
おける自動車用電線の占積空間の増加及び、この
自動車用電線による重量の増加を招いている。
しかし、自動車の車体は、燃費の向上の点から
軽量であることが望ましく、自動車用電線の使用
量の増加は、車体の軽量化に逆行することとな
る。そこで、車体の軽量化を図る上から、自動車
内における電気、電子配線回路に用いられる自動
車用電線においては、その軽量化及び自動車内に
おける占積空間の狭小化の要望が強まつている。
従来は、自動車用電線の中で例えばマイクロコ
ンピユータを含む微小電流回路に用いられる電線
においては、リード線等極細い径の電線で充分で
あるにも拘らず、自動車走行中に生じる振動衝撃
は甚だしく大きいものであるため、充分な機械的
強度を有していないと接合部がはずれたり、断線
を生じ、自動車走行に支障を生じたりすることが
ある。このようなことから従来、充分な機械的強
度を確保するため、電気的な必要径より大きな径
の導体を用いている。
しかし、充分な機械的強度を確保するため、電
気的な必要径より大きな径の導体を用いていたの
では、自動車内における電気、電子配線回路に用
いる自動車用電線の軽量化及び占積空間の狭小化
を図ることができない。
そこで、自動車用電線を軽量化するため導体外
径を小さくしても機械的強度を確保することので
きる硬銅線が検討されたが、硬銅線は材質的に伸
びが著しく小さい。このため、硬銅線を用いて端
子間を圧着接合しても、自動車走行中に生じる振
動衝撃等の外力による機械的負荷が接合部に加わ
ると、この接合部が損傷してしまうことがある。
このように硬銅線を用いて端子間を圧着接合する
と、端子圧着箇所が機械的な弱点部となり外的衝
撃によつて断線を生じやすく信頼性に乏しいとい
う結果を招来している。
また、自動車用電線の使用重量を小さくするこ
とは、導体径を小さくすることによつて実現が可
能であるが、従来の如き軟銅線にあつては、導体
外径を小さくすると機械的強度が低下してしま
う。そこで、近年、導体外径を小さくしても、機
械的強度を確保でき、比較的良好な繰返し屈曲強
度及び導電性を有する銅合金として、Cu−Ni−
Ti合金、Cu−Ni−Si合金等が考案されている。
In general, there are two types of cars: manual transmission cars and automatic transmission cars (AT cars). Annealed copper wire is mainly used as the conductor of the electric wires for these automobiles. In recent years, with the spread of automatic transmission vehicles, there has been a shift from carburetors to electronic fuel injection systems, and efforts have been made to digitize on-vehicle devices such as various instruments. Along with the computerization of in-vehicle devices, the number of electrical and electronic wiring circuits in automobiles has increased significantly, leading to an increase in the space occupied by automobile electric wires in automobiles and an increase in the weight of these automobile electric wires. I'm there. However, it is desirable for automobile bodies to be lightweight in order to improve fuel efficiency, and an increase in the amount of automobile electric wires used goes against the weight reduction of automobile bodies. Therefore, in order to reduce the weight of the vehicle body, there is an increasing demand for reducing the weight of automotive electric wires used for electrical and electronic wiring circuits in the vehicle and reducing the space occupied within the vehicle. Conventionally, among the electric wires for automobiles, for example, for electric wires used in minute current circuits including microcomputers, extremely thin diameter electric wires such as lead wires are sufficient, but the vibration shock that occurs while the car is running is severe. Because they are large, if they do not have sufficient mechanical strength, the joints may come off or the wires may break, which may impede the running of the vehicle. For this reason, conventionally, in order to ensure sufficient mechanical strength, a conductor with a diameter larger than the electrically required diameter has been used. However, in order to ensure sufficient mechanical strength, conductors with a diameter larger than the required electrical diameter have been used to reduce the weight of automotive electric wires used for electrical and electronic wiring circuits in automobiles, and to save space. It is not possible to narrow the area. Therefore, in order to reduce the weight of electric wires for automobiles, hard copper wires were considered that can ensure mechanical strength even if the outer diameter of the conductor is reduced, but hard copper wires have extremely low elongation due to their material nature. For this reason, even if the terminals are crimped and bonded using hard copper wire, the joint may be damaged if mechanical loads are applied to the joint due to external forces such as vibrations and shocks that occur while the car is running. .
When terminals are crimped and bonded using a hard copper wire in this manner, the terminal crimped portion becomes a mechanical weak point, which tends to cause wire breakage due to external impact, resulting in poor reliability. In addition, reducing the weight of automotive electric wires can be achieved by reducing the conductor diameter, but with conventional annealed copper wire, reducing the outer diameter of the conductor reduces the mechanical strength. It will drop. Therefore, in recent years, Cu-Ni-
Ti alloy, Cu-Ni-Si alloy, etc. have been devised.
このCu−Ni−Ti合金は、Ni−Tiの金属間化合
物を、Cuマトリツクス中に析出させることによ
り、導電性を大きく低下させずに、引張り強さを
向上させたものである。しかしながら、このCu
−Ni−Ti合金は、自動車走行中に生じる振動衝
撃等の外力による機械的負荷に耐え得るに充分な
引張り強さを得ることができないという問題点を
有している。
また、Cu−Ni−Ti合金は、Ni−Siの金属間化
合物を、Cuマトリツクス中に析出させることに
より、導電性を大きく低下させずに、引張り強さ
を向上させたものである。しかしながら、この
Cu−Ni−Si合金は、自動車走行中に生じる振動
衝撃等の外力による機械的負荷に耐え得るに充分
な引張り強さを得ることができないという問題点
を有している。
本発明は、導電率の大巾な低下を招くことな
く、機械的衝撃に対し高強度で、圧着端子部にお
ける引張り及び屈曲による断線を減少させること
ができ、かつ軽量化を図ることのできる耐屈曲性
に優れた導電用高力銅合金を提供することを目的
としている。
This Cu-Ni-Ti alloy has improved tensile strength without significantly reducing conductivity by precipitating a Ni-Ti intermetallic compound in a Cu matrix. However, this Cu
-Ni-Ti alloys have a problem in that they cannot obtain sufficient tensile strength to withstand mechanical loads due to external forces such as vibration shocks that occur during driving of a car. Further, the Cu-Ni-Ti alloy has improved tensile strength without greatly reducing conductivity by precipitating a Ni-Si intermetallic compound in a Cu matrix. However, this
Cu--Ni--Si alloys have a problem in that they cannot obtain sufficient tensile strength to withstand mechanical loads due to external forces such as vibrations and shocks that occur during driving of automobiles. The present invention has high strength against mechanical shock without causing a large decrease in electrical conductivity, can reduce wire breakage due to tension and bending in the crimp terminal portion, and can reduce weight. The purpose is to provide a high-strength copper alloy for conductive use with excellent flexibility.
上記目的を達成するために、本発明の耐屈曲性
に優れた導電用高力銅合金においては、Niを2.0
〜4.0重量%、Siを0.4〜1.0重量%、Inを0.05〜0.3
重量%、Coを0.01〜0.2重量%を含有し、残部が
基本的にCuからなる鋳造棒を冷間圧延・伸線し、
溶体化処理した後、伸線して時効処理を行つて構
成したものである。
すなわち、上記目的を達成するために、本発明
の耐屈曲性に優れた導電用高力銅合金において
は、Cuマトリツクス中にNiとSiの金属間化合物
を析出させ、これによつて導電性を大幅に低下さ
せることなく、引張り強さを向上し、In、Coを
加えることにより、引張り強さをさらに高めたも
のである。
本発明におて、Niの含有量を2.0〜4.0重量%と
したのは、Niが2.0重量%未満では、Siとの金属
間化合物の析出による引張強さの向上が小さく、
また、Niが4.0重量%を超えると、引張強さは向
上するがCu母相中へ固溶するNiが多くなり、導
電性を著しく損ない、加工性が悪化するためであ
る。
また、本発明において、Siの含有量を0.4〜1.0
重量%としたのは、Siが0.4重量%未満では、Ni
との金属間化合物の析出による引張強さの向上が
小さく、また、Siが1.0重量%を超えると、Cu母
相中に固溶するSiが多くなり、導電性が低下する
ためである。
さらに、本発明において、Inの含有量を0.05〜
0.3重量%としたのは、Inが0.05重量%未満では、
引張強さを向上させる効果が小さく、0.3重量%
を超えるとCu母相中に固溶するInが多くなり、
導電性を著しく低下させ、コスト高を招くからで
ある。
さらにまた、本発明において、Coの含有量を
0.01〜0.2重量%としたのは、Coが0.01重量%未
満では、引張強さを向上させる効果が小さく、
Coが0.2重量%を超えると導電性を大きく低下さ
せ、加工性を悪化させるからである。
In order to achieve the above object, the high strength copper alloy for conductive use with excellent bending resistance of the present invention has a Ni content of 2.0%.
~4.0 wt%, Si 0.4~1.0 wt%, In 0.05~0.3
A cast rod containing 0.01 to 0.2 weight% of Co, with the balance basically consisting of Cu, is cold rolled and wire drawn.
It is constructed by solution treatment followed by wire drawing and aging treatment. That is, in order to achieve the above object, in the high-strength copper alloy for conductive use with excellent bending resistance of the present invention, an intermetallic compound of Ni and Si is precipitated in the Cu matrix, thereby improving the conductivity. The tensile strength has been improved without significantly decreasing it, and by adding In and Co, the tensile strength has been further increased. In the present invention, the Ni content is set to 2.0 to 4.0% by weight because if Ni is less than 2.0% by weight, the improvement in tensile strength due to precipitation of intermetallic compounds with Si is small.
On the other hand, if Ni exceeds 4.0% by weight, although the tensile strength improves, a large amount of Ni becomes solid solution in the Cu matrix, which significantly impairs electrical conductivity and deteriorates workability. In addition, in the present invention, the Si content is set to 0.4 to 1.0.
When Si is less than 0.4% by weight, Ni
This is because the improvement in tensile strength due to the precipitation of intermetallic compounds with Cu is small, and when Si exceeds 1.0% by weight, a large amount of Si dissolves in the Cu matrix, resulting in a decrease in electrical conductivity. Furthermore, in the present invention, the In content is set to 0.05~
The reason for setting it as 0.3% by weight is that if In is less than 0.05% by weight,
The effect of improving tensile strength is small, 0.3% by weight
When the value exceeds , the amount of In dissolved in the Cu matrix increases,
This is because the conductivity is significantly lowered, leading to higher costs. Furthermore, in the present invention, the Co content is
The reason why Co is set at 0.01 to 0.2% by weight is because if Co is less than 0.01% by weight, the effect of improving tensile strength is small.
This is because if Co exceeds 0.2% by weight, the conductivity will be greatly reduced and workability will be deteriorated.
上記のように構成された耐屈曲性に優れた導電
用高力銅合金を用いると、導電率は、従来の導電
用高力銅合金とほぼ同等であり、約45%IACSの
導電率を有することができる。
また、上記のように構成された耐屈曲性に優れ
た導電用高力銅合金を用いると、引張強さは、硬
銅の約1.7倍と飛躍的強さを有し、従来の導電用
高力銅合金に比しても、向上することができる。
さらに、上記のように構成された耐屈曲性に優
れた導電用高力銅合金を用いると伸びは、軟銅よ
り小さくなるが、硬銅に比して5倍以上の伸びを
有しており、軟銅と同等以上の繰返し屈曲強度を
得ることができる。さらに、伸びは、従来の導電
用高力銅合金に比しても、低下することがない。
そして、上記した理由から本発明のように構成
された耐屈曲性に優れた導電用高力銅合金を自動
車用電線の導体等として用いた場合に、自動車用
電線の導体に適した特性を得ることができ、導体
外径の小型化に対する機械的強度の確保と端子圧
着箇所での引張荷重及び屈曲による断線を減少さ
せることができる。したがつて、上記のように構
成された耐屈曲性に優れた導電用高力銅合金を電
子機器内配線用電線の導体、半導体のリード材等
として用いると好適である。
以上の点から明確なように、上記のように構成
された耐屈曲性に優れた導電用高力銅合金を例え
ば自動車用電線の導体等として用いた場合に、機
械的衝撃に対して高強度で、しかも電気的特性に
おいて高導電性を有し、かつ導線の小径化が行な
われ、自動車用電線の軽量化する方向に働く。
When using a high-strength conductive copper alloy with excellent bending resistance configured as described above, the conductivity is almost the same as that of conventional high-strength conductive copper alloys, and has a conductivity of about 45% IACS. be able to. In addition, when using the high-strength conductive copper alloy with excellent bending resistance constructed as above, the tensile strength is approximately 1.7 times that of hard copper, which is dramatically higher than that of conventional conductive high-strength copper alloy. The strength can also be improved compared to copper alloys. Furthermore, when using a high-strength conductive copper alloy with excellent bending resistance configured as described above, the elongation is smaller than that of soft copper, but it has an elongation more than five times that of hard copper. It is possible to obtain repeated bending strength equivalent to or higher than that of annealed copper. Furthermore, the elongation does not decrease compared to conventional high-strength copper alloys for conductive use. For the above-mentioned reasons, when the conductive high-strength copper alloy with excellent bending resistance constructed as in the present invention is used as a conductor of an electric wire for an automobile, characteristics suitable for the conductor of an electric wire for an automobile can be obtained. This makes it possible to ensure mechanical strength while reducing the outer diameter of the conductor, and to reduce tensile load and wire breakage due to bending at terminal crimping locations. Therefore, it is suitable to use the high-strength conductive copper alloy having excellent bending resistance configured as described above as a conductor for wiring in electronic equipment, a lead material for semiconductors, and the like. As is clear from the above points, when the high-strength conductive copper alloy with excellent bending resistance configured as described above is used as a conductor for electric wires for automobiles, for example, it has high strength against mechanical shock. In addition, it has high conductivity in terms of electrical properties, and the diameter of the conductor wire can be reduced, which contributes to the reduction in weight of electric wires for automobiles.
【実施例】
以下、本発明の実施例について説明する。
本発明の実施例として、不活性ガス雰囲気に保
たれた溶解炉で、黒鉛粒被覆下にて銅を溶解した
後、Ni、Inを純金属、Co、Siを母合金の形態で
添加し、均一な溶湯を得、これを、連続鋳造によ
り、第1表に示す如き組成の20mmφの鋳造棒を作
製した。これらを冷間圧延、伸線により3.2mmφ
にした後、不活性ガス雰囲気中約900℃で1時間、
加熱保持し、その後、水冷して溶体化処理を施し
た。その後、1.0mmφまで伸線し、さらに不活性
ガス雰囲気中約470℃で6時間の時効処理を行な
い、引張強さ、伸び、導電率、繰返し屈曲強度を
測定した。比較例も同様の製造方法によつたもの
である。
なお、屈曲試験は、第1図に示す如く、治具1
に供試材2を挟持し、他端を2Kgの引張荷重Wを
加えた状態で第1図図示A→B→C→Dと左右
90°曲げ1回として破断するまで、繰返し行ない、
その回数を繰返し屈曲強度とした。
第1表には、本発明に係る耐屈曲性に優れた導
電用高力銅合金の特徴を明確にするために、実施
例と合わせて、比較例及び従来例の組成、特性値
が示してある。
なお、比較例の合金No.4、No.5は、組成がCu、
Ni、Si、In、Coと本発明と同一であるが、各組
成の含有量が本発明とは異なつている。[Examples] Examples of the present invention will be described below. As an example of the present invention, after melting copper under graphite grain coating in a melting furnace maintained in an inert gas atmosphere, Ni and In are added in the form of pure metals and Co and Si in the form of a master alloy, A uniform molten metal was obtained, and cast rods of 20 mmφ having the compositions shown in Table 1 were produced by continuous casting. These are cold rolled and wire drawn to 3.2mmφ
After heating at about 900℃ in an inert gas atmosphere for 1 hour,
The mixture was kept heated and then cooled with water to perform solution treatment. Thereafter, the wire was drawn to a diameter of 1.0 mm, and then subjected to an aging treatment at approximately 470° C. for 6 hours in an inert gas atmosphere, and its tensile strength, elongation, electrical conductivity, and repeated bending strength were measured. Comparative examples were also produced using the same manufacturing method. The bending test was performed using jig 1 as shown in Figure 1.
Holding the specimen 2 between the two ends, and applying a tensile load W of 2 kg to the other end, move from left to right as shown in Figure 1 from A to B to C to D.
Repeat 90° bending until it breaks,
The number of repetitions was defined as the repeated bending strength. In order to clarify the characteristics of the high-strength copper alloy for conductive use with excellent bending resistance according to the present invention, Table 1 shows the compositions and characteristic values of comparative examples and conventional examples, as well as examples. be. In addition, alloys No. 4 and No. 5 of comparative examples have a composition of Cu,
Ni, Si, In, and Co are the same as the present invention, but the content of each composition is different from the present invention.
【表】【table】
【表】
第1表の実施例(No.1〜No.5)と比較例(No.1
〜No.5)との比較から明らかな如く、本発明によ
ると、Ni−Siの金属間化合物を銅マトリクス中
に析出させることにより、導電率を大幅に低下さ
せることなく、引張強さを向上させることができ
る。
さらに、本発明によると、Cu母相中にIn、Co
を固溶させているため、このCu母相中へのIn、
Coの固溶により、導電率と幾分の低下は生じる
が、引張強さのより一層の向上を図ることができ
る。この導電率は、銅マトリクス中に固溶した合
金元素In、Coにより比較例(No.1)に比して低
下は有るが、約45%IACSを確保し、繰返し屈曲
強度は、軟銅より優れ、引張強さは、硬銅より格
段向上させることができる。
このように、本発明に係る耐屈曲性に優れた導
電用高力銅合金は、硬銅と比較すると、約1.7倍
と格段に優れた引張強さを有しており、導電率は
低下するが、添加元素の一部を析出させることに
より、その低下を約45%IACSと極力抑え、伸び
は、軟銅より小さくなるも、硬銅の5倍以上有
り、繰返し屈曲強度は、極めて良好な軟銅よりも
優れている。[Table] Examples (No. 1 to No. 5) and comparative example (No. 1) in Table 1
~ No. 5), according to the present invention, by precipitating a Ni-Si intermetallic compound in the copper matrix, the tensile strength is improved without significantly reducing the electrical conductivity. can be done. Furthermore, according to the present invention, In and Co are present in the Cu matrix.
Because In is dissolved in solid solution, In,
Although the solid solution of Co causes a slight decrease in electrical conductivity, it is possible to further improve the tensile strength. Although this conductivity is lower than that of the comparative example (No. 1) due to the alloying elements In and Co dissolved in the copper matrix, approximately 45% IACS is secured, and the repeated bending strength is superior to annealed copper. , the tensile strength can be significantly improved compared to hard copper. As described above, the high-strength copper alloy for conductive use with excellent bending resistance according to the present invention has a significantly superior tensile strength of about 1.7 times compared to hard copper, and has a lower electrical conductivity. However, by precipitating some of the additive elements, this decrease is suppressed to about 45% IACS, and although the elongation is smaller than that of annealed copper, it is more than 5 times that of hard copper, and the cyclic bending strength is extremely good compared to annealed copper. better than.
以上説明したように、本発明によれば、硬銅と
比較すると、約1.7倍と格段に優れた引張強さを
有し、導電率は低下するが、添加元素の一部を析
出させることにより、その低下を約45%IACSと
極力抑えることができる。
また、本発明によれば、伸びは、軟銅より小さ
くなるが、硬銅の5倍以上の伸びを有しており、
繰返し屈曲強度の極めて良好な軟銅よりも優れた
繰返し屈曲強度を得ることができる。
したがつて、本発明によれば、自動車用電線と
して用いる導体に適した特性を得ることができ、
導体外径の小型化に対する機械的強度の確保と端
子圧着箇所での引張荷重及び屈曲による断線を減
少させることができる。
また、本発明によれば、電子機器内配線用電線
の導体、半導体のリード材等として用いるにも好
適である。
As explained above, according to the present invention, compared to hard copper, it has a significantly superior tensile strength of about 1.7 times, and although the electrical conductivity decreases, by precipitating some of the additive elements, , the decrease can be minimized to about 45% IACS. Further, according to the present invention, although the elongation is smaller than that of soft copper, it has an elongation that is more than five times that of hard copper,
It is possible to obtain a cyclic flexural strength superior to that of annealed copper, which has extremely good cyclic flexural strength. Therefore, according to the present invention, characteristics suitable for a conductor used as an electric wire for automobiles can be obtained,
It is possible to ensure mechanical strength while reducing the outer diameter of the conductor, and to reduce disconnection due to tensile load and bending at terminal crimping locations. Further, according to the present invention, it is suitable for use as a conductor for electric wires for wiring in electronic devices, a lead material for semiconductors, and the like.
第1図は、本発明の実施例及び比較例の屈曲試
験方法を示す図である。
1……治具、2……供試材。
FIG. 1 is a diagram showing a bending test method of an example of the present invention and a comparative example. 1... Jig, 2... Test material.
Claims (1)
Inを0.05〜0.3重量%、Coを0.01〜0.2重量%を含
有し、残部が基本的にCuからなる鋳造棒を冷間
圧延・伸線し、溶体化処理した後、伸線して時効
処理を行つて得られる耐屈曲性に優れた導電用高
力銅合金。1 Ni 2.0-4.0% by weight, Si 0.4-1.0% by weight,
A cast bar containing 0.05 to 0.3% by weight of In and 0.01 to 0.2% by weight of Co, with the balance basically consisting of Cu, is cold rolled and wiredrawn, subjected to solution treatment, then wiredrawn and aged. A high-strength copper alloy for conductive use with excellent bending resistance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30114889A JPH03162538A (en) | 1989-11-20 | 1989-11-20 | High strength conductivity copper alloy having excellent flexibility |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30114889A JPH03162538A (en) | 1989-11-20 | 1989-11-20 | High strength conductivity copper alloy having excellent flexibility |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03162538A JPH03162538A (en) | 1991-07-12 |
JPH0530895B2 true JPH0530895B2 (en) | 1993-05-11 |
Family
ID=17893364
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30114889A Granted JPH03162538A (en) | 1989-11-20 | 1989-11-20 | High strength conductivity copper alloy having excellent flexibility |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03162538A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63262448A (en) * | 1987-04-21 | 1988-10-28 | Nippon Mining Co Ltd | Production of copper alloy having excellent peeling resistance of tin or tin alloy plating |
-
1989
- 1989-11-20 JP JP30114889A patent/JPH03162538A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63262448A (en) * | 1987-04-21 | 1988-10-28 | Nippon Mining Co Ltd | Production of copper alloy having excellent peeling resistance of tin or tin alloy plating |
Also Published As
Publication number | Publication date |
---|---|
JPH03162538A (en) | 1991-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1973120B1 (en) | Electrical wire conductor for wiring, electrical wire for wiring, and their production methods | |
JP2724903B2 (en) | High-strength copper alloy for electrical conduction with excellent bending resistance | |
JPH0478704B2 (en) | ||
JP4762701B2 (en) | Electric wire conductor for wiring and electric wire for wiring using the same | |
EP0399070B1 (en) | Electrical conductors based on Cu-Fe-P alloys | |
JP2011252185A (en) | Al ALLOY CONDUCTIVE WIRE | |
JP2813652B2 (en) | High strength copper alloy for conductive | |
JPH0527699B2 (en) | ||
JPH0530896B2 (en) | ||
JPH0530895B2 (en) | ||
JP3333654B2 (en) | High-strength copper alloy for electric conduction excellent in elongation characteristics and bending characteristics, and method for producing the same | |
JP3302840B2 (en) | High-strength copper alloy for electric conduction excellent in elongation characteristics and bending characteristics, and method for producing the same | |
JP2608817B2 (en) | Conductive high-strength copper alloy with excellent elongation properties | |
US5071494A (en) | Aged copper alloy with iron and phosphorous | |
JP2000129377A (en) | Copper-base alloy for terminal | |
JP2711949B2 (en) | Conductive high-strength copper alloy with excellent flex resistance | |
JPH0565571B2 (en) | ||
JPH01212732A (en) | High strength and high electric conductive copper alloy | |
JP3275506B2 (en) | Automotive wire and method of manufacturing the same | |
JPH01139736A (en) | Copper alloy | |
JPH0461056B2 (en) | ||
JPH07331362A (en) | High strength conductive copper alloy excellent in bendability and wire drawability | |
JP2804966B2 (en) | High strength copper alloy for conductive | |
JPH0676630B2 (en) | Copper alloy for wiring connector | |
JPH02107732A (en) | High strength and high conductivity copper base alloy |