JPH0441632A - High strength and high conductivity copper alloy for electronic equipment and its manufacture - Google Patents

High strength and high conductivity copper alloy for electronic equipment and its manufacture

Info

Publication number
JPH0441632A
JPH0441632A JP14721590A JP14721590A JPH0441632A JP H0441632 A JPH0441632 A JP H0441632A JP 14721590 A JP14721590 A JP 14721590A JP 14721590 A JP14721590 A JP 14721590A JP H0441632 A JPH0441632 A JP H0441632A
Authority
JP
Japan
Prior art keywords
strength
copper alloy
less
conductivity copper
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14721590A
Other languages
Japanese (ja)
Inventor
Hiroaki Watanabe
宏昭 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Nikko Kyodo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, Nikko Kyodo Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP14721590A priority Critical patent/JPH0441632A/en
Publication of JPH0441632A publication Critical patent/JPH0441632A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/46Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones
    • H01B3/465Silicone oils

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To reduce the anisotropy of strength, electrical conductivity, heat resistance or the like in a high strength and high conductivity copper alloy by preparing a copper alloy contg. specified ratios of Cr and Sn. CONSTITUTION:An alloy ingot contg., by weight, >0.25 to l.0% Cr, >0.5 to <l.0% Sn, or contg., as auxiliary components, total 0.01 to 2.0% of one or more kinds selected from the group constituted of Be, Co, Fe, Hf, In and Zr and the balance Cu with inevitable impurities is subjected to hot and cold rolling into a sheet material, is thereafter heated at 900 to l000 deg.C for l to 120min, is cooled to <=400 deg.C at >=1 deg.C/sec cooling rate, is furthermore subjected to cold rolling of <96% and is subjected to aging treatment. In this way, the high strength and high conductivity copper alloy suitable as the Quad type lead material for a semiconductor integrated circuit (IC) and the spring material for terminals, connectors, relays, switches or the like can be obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体集積回路<XC>のリードフレーム材
及び端子、コネクター リレー スイッチ等の導電性ば
ね材に適する電子機器用高力高導電銅合金とその製造法
に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to high-strength, high-conductivity copper for electronic equipment suitable for lead frame materials and terminals of semiconductor integrated circuits (XC), conductive spring materials for connectors, relays, switches, etc. It concerns alloys and their manufacturing methods.

〔従来の技術及び問題点コ 従来、半導体機器のリード材としては、熱膨脹係数が低
く、素子及びセラミックスとの接着及び到着性の良好な
コバール(F e−29N i −16Co) 、42
合金(F e −42N i )などの高ニッケル合金
が好んで使われてきた。しかし、近年、半導体回路の集
積度の向上に伴い消費電力の高い■cが多くなってきた
ことと、封止材料として樹脂が多く使用され、かつ素子
とリードフレームの接着も改良が加えられたことにより
、使用されるリード材も放熱性のよい銅基合金が使われ
るようになってきた。
[Prior art and problems] Kovar (F e-29N i -16Co), which has a low coefficient of thermal expansion and has good adhesion and adhesion to elements and ceramics, has been used as a lead material for semiconductor devices.
High nickel alloys such as Fe-42Ni have been preferred. However, in recent years, with the increase in the degree of integration of semiconductor circuits, there has been an increase in the number of semiconductor circuits with high power consumption, resins are often used as sealing materials, and improvements have been made to the bonding between elements and lead frames. As a result, copper-based alloys with good heat dissipation properties have come to be used as lead materials.

一般に半導体機器のリード材としては以下のような特性
が要求されている。
Generally, lead materials for semiconductor devices are required to have the following properties.

(1)リードが電気信号伝達部であるとともに、バラケ
ージング工程中及び回路使用中に発生する熱を外部に放
出する機能を併せ持つことを要求されるため、優れた熱
及び電気伝導性を示すもの。
(1) Leads must exhibit excellent thermal and electrical conductivity, as they are required to act as an electrical signal transmission unit and also have the function of discharging heat generated during the unpacking process and during use of the circuit to the outside. .

(2)リードとモールドとの密着性が半導体素子保護の
観点から重要であるため、リード材とモールド材の熱膨
張係数が近いこと。
(2) Since the adhesion between the lead and the mold is important from the viewpoint of protecting the semiconductor element, the thermal expansion coefficients of the lead material and the mold material should be similar.

(3)パッケージング時に種々の加熱工程が加わるため
、耐熱性が良好であること。
(3) It must have good heat resistance since various heating processes are involved during packaging.

(4)リードはリード材を打ち抜き加工し、又、曲げ加
工して作製されるものがほとんどであるため、これらの
加工性が良好なこと。
(4) Most leads are manufactured by punching or bending lead material, so the workability of these is good.

(5)リードは表面に貴金属のメツキを行うため、これ
ら貴金属とのメツキ密着性が良好であること。
(5) Since the surface of the lead is plated with precious metals, the plating adhesion to these precious metals must be good.

(6)パッケージング後に封止材の外に露出している、
いわゆるアウターリード部に半田付けするものが多いの
で良好な半田付は性を示すこと。
(6) exposed outside the sealing material after packaging;
Many items are soldered to the so-called outer lead part, so good soldering shows good soldering properties.

(7)機器の信頼性及び寿命の観点から耐食性が良好な
こと。
(7) Good corrosion resistance from the standpoint of equipment reliability and lifespan.

(8) D I P型からQuad型への移行に伴い、
リード材に、特性上の異方性の小さいことが要求される
(8) With the transition from DIP type to Quad type,
Lead materials are required to have low anisotropy in their properties.

(9)姫路が低廉であること。(9) Himeji is inexpensive.

これら各種の要求特性に対し、従来から使用されている
合金は一長一短があり、満足すべきものは見いだされて
いない。
Alloys conventionally used have advantages and disadvantages with respect to these various required characteristics, and no one has been found that satisfies these requirements.

又、端子、コネクター リレー スイッチ等のばね材と
しては、安価な黄銅、優れたばね特性及び耐食性を有す
る洋白あるいは優れたばね特性を有するりん青銅が使用
されていた。しかし、黄銅は強度、ばね特性が劣ってお
り、又、強度、ばね特性の優れた洋白は多量のNiを含
むため、又、りん青銅は多量のSnを含むため、原料の
面及び製造上熱間加工性が悪い等の加工上の制約も加わ
り高価な合金であった。更には、電気機器用等に用いら
れる場合、導電率が低いという欠点を有していた。した
がって、導電性が良好であり、ばね特性に優れた安価な
合金の出現が待たれていた。
In addition, as spring materials for terminals, connectors, relays, switches, etc., inexpensive brass, nickel silver, which has excellent spring properties and corrosion resistance, or phosphor bronze, which has excellent spring properties, have been used. However, brass has poor strength and spring characteristics, nickel silver, which has excellent strength and spring characteristics, contains a large amount of Ni, and phosphor bronze contains a large amount of Sn, so it is difficult to use raw materials and manufacture. It was an expensive alloy due to processing constraints such as poor hot workability. Furthermore, when used for electrical equipment, etc., it has a drawback of low electrical conductivity. Therefore, the emergence of an inexpensive alloy with good electrical conductivity and excellent spring properties has been awaited.

[課題を解決するための手段] 本発明は、かかる点に鑑み種々研究の結果、上記緒特性
を満足する電子機器用高力高導電銅合金とその製造法を
開発したものである。
[Means for Solving the Problems] In view of the above points, the present invention has developed, as a result of various studies, a high-strength, high-conductivity copper alloy for electronic devices that satisfies the above-mentioned characteristics, and a method for manufacturing the same.

すなわち、本発明はCr 0.25νt%を超え1.0
wt%以下、S n 0.5νt%を超え1.0νt%
未満を含み、あるいは更にこれに副成分としてBe。
That is, the present invention has a Cr content of more than 0.25 νt% and 1.0
Wt% or less, S n more than 0.5νt% and 1.0νt%
or further contains Be as a subcomponent.

Co s F e −、Hf SI n s Z rか
らなる群より選択された1種又は2種以上を総量で0.
01〜2.0νt%含み、残部Cu及び不可避不純物か
らなることを特徴とする電子機器用高力高導電銅合金で
ある。
One or more selected from the group consisting of CosFe-, HfSInsZr in a total amount of 0.
This is a high-strength, high-conductivity copper alloy for electronic devices, characterized in that it contains 01 to 2.0 νt%, and the balance consists of Cu and unavoidable impurities.

本発明は又、上記合金の鋳塊を、熱間及び冷間圧延を行
い板材とした後、 9[10〜1000℃の温度で、1
〜120分加熱し、板材を1℃/sec以上の冷却速度
で400℃以下まで冷却し、更に96%未満の冷間圧延
を行い、その後時効処理を行うことを特徴とする電子機
器用高力導電銅合金の製造法である。
The present invention also provides that after hot and cold rolling the ingot of the above alloy into a plate material,
A high-strength product for electronic devices characterized by heating for ~120 minutes, cooling the plate material to 400°C or less at a cooling rate of 1°C/sec or more, further cold rolling to less than 96%, and then aging treatment. This is a method of manufacturing conductive copper alloy.

[発明の詳細な説明] 次に本発明を構成する合金成分の限定理由を説明する。[Detailed description of the invention] Next, the reasons for limiting the alloy components constituting the present invention will be explained.

Crは強度及び耐熱性を向上させるために添加するもの
で、その含有量を0.25wt%を超え1.0wt%以
下とするのは、0.25νt%未満では前述の効果が期
待できず、逆に1..0w1%を超えると著しい導電率
、メツキ密着性、はんだ付性の低下が起るためである。
Cr is added to improve strength and heat resistance, and the content is set to more than 0.25wt% and 1.0wt% or less because the above effects cannot be expected if it is less than 0.25vt%. On the contrary, 1. .. This is because if it exceeds 0w1%, the electrical conductivity, plating adhesion, and solderability will significantly deteriorate.

Snは強度、ばね特性を向上させるために添加するもの
で、その含有量を0 、5wt%を超え1、0wt%未
満とするのは、0.5wt%以下では前述の効果が期待
できず、逆に1.0wt%以上では著しい導電率の低下
が起こるためである。
Sn is added to improve strength and spring characteristics, and the reason why the content is more than 0.5 wt% and less than 1.0 wt% is because if it is less than 0.5 wt%, the above-mentioned effects cannot be expected. On the other hand, if the content exceeds 1.0 wt%, a significant decrease in conductivity occurs.

更に、Be5Co、Fe%Hf、In、Zrからなる群
より選択された1種又は2種以上を総量で、0,01〜
2,0νt%添加させるのは、導電性を大きく低下させ
ずに強度を向上させる効果が期待できるためで、その総
量が0.01wt%未満では前述の効果が期待できず、
逆に2,0νt%を超えると著しい導電性及び加工性の
劣化が起るためである。
Furthermore, the total amount of one or more selected from the group consisting of Be5Co, Fe%Hf, In, and Zr is 0.01~
The reason for adding 2.0 νt% is that it can be expected to have the effect of improving the strength without significantly reducing the conductivity, but if the total amount is less than 0.01 wt%, the above-mentioned effect cannot be expected.
On the other hand, if it exceeds 2.0 νt%, significant deterioration in conductivity and workability will occur.

本発明合金は上記組成範囲の合金鋳塊を、熱間及び冷間
圧延を行い板材とした後、900〜1000℃の温度で
、1〜120分加熱し、板材を1℃/sec以上の冷却
速度で、400℃以下まで冷却し、更に96%未満の冷
間圧延を行い、その後、時効処理を行うことにより製造
される。
The alloy of the present invention is produced by hot and cold rolling an alloy ingot having the above composition range into a sheet material, then heating it at a temperature of 900 to 1000°C for 1 to 120 minutes, and cooling the sheet material at a rate of 1°C/sec or more. It is produced by cooling to 400° C. or less at a speed, further cold rolling to less than 96%, and then aging treatment.

この製造工程において、熱間及び冷間圧延後、900〜
1000℃の温度で、1〜120分加熱し、その後、板
材を1℃/sec以上の冷却速度で、400℃以下まで
冷却するのは、添加しているCrを固溶状態に留め、C
rの冷却に伴う粗大析出物の発生を抑制するためである
。すなわち、この熱処理は一般に溶体化処理と呼ばれて
いるものである。加熱温度が9[10℃未満でも、加熱
時間が1分未満でも、前述の効果が期待できず目標の特
性(強度、耐熱性)が得られない。又、加熱温度が10
00℃を超えると、一部液相が現れる危険性があり、加
熱時間が120分を超えると、再結晶粒が粗大化し、強
度、耐熱性及び曲げ加工性が劣化するため好ましくない
。冷却速度が1℃/sec未満では、Crの粗大析出物
が発生し、強度及び耐熱性が低下してしまうため好まし
くない。好ましくは3℃/sec以上の冷却速度で冷却
するのが望ましい。又、時効前加工度を96%未満とし
たのは、リード材の特性の異方性を小さくすることがで
きるためで、時効前加工度が96%以上であると、(圧
延方向に対し)直角及び平行方向サンプルの強度差が大
きくなり、更に直角方向サンプルの曲げ加工性が平行サ
ンプルに比べ劣化してしまうので好ましくない。
In this manufacturing process, after hot and cold rolling, the
Heating at a temperature of 1000°C for 1 to 120 minutes and then cooling the plate material to 400°C or less at a cooling rate of 1°C/sec or more is to keep the added Cr in a solid solution state and reduce the carbon content.
This is to suppress the generation of coarse precipitates due to cooling of r. That is, this heat treatment is generally called solution treatment. Even if the heating temperature is less than 9 [10° C. or the heating time is less than 1 minute, the above-mentioned effects cannot be expected and the target properties (strength, heat resistance) cannot be obtained. Also, the heating temperature is 10
If the temperature exceeds 00°C, there is a risk that a liquid phase will appear in some parts, and if the heating time exceeds 120 minutes, the recrystallized grains will become coarser and the strength, heat resistance, and bending workability will deteriorate, which is not preferable. If the cooling rate is less than 1° C./sec, coarse Cr precipitates will be generated, resulting in a decrease in strength and heat resistance, which is not preferable. It is preferable to cool at a cooling rate of 3° C./sec or more. In addition, the reason why the degree of work before aging is set to less than 96% is that it is possible to reduce the anisotropy of the properties of the lead material, and when the degree of work before aging is 96% or more (with respect to the rolling direction) This is undesirable because the difference in strength between the orthogonal and parallel samples becomes large, and the bending workability of the orthogonal samples becomes worse than that of the parallel samples.

[実施例] 次に、本発明を実施例により具体的に説明する。[Example] Next, the present invention will be specifically explained using examples.

第1表に示す本発明合金及び比較合金に係る各種成分組
成のインゴットを電気銅あるいは無酸素銅を原料として
、高周波溶解炉で、大気、不活性又は還元性雰囲気中で
溶製した。これらインゴットの面側を行った後、850
℃で熱間圧延を行い8■の厚さとし、面側後、7■の厚
さで溶体化処理を行った。その後、時効前加工度を制御
する目的で、1,2.0.6.0.27mmそれぞれの
厚さに冷間圧延した。冷間圧延時、時効処理を行い、更
に0.25mmの板厚まで冷間圧延を行った。そして、
最後に歪取り焼鈍を加えて電子機器用高力導電銅合金を
製造した。溶体化処理以降の製造条件を第2表に示す。
Ingots having various compositions of the present invention alloy and comparative alloy shown in Table 1 were melted using electrolytic copper or oxygen-free copper as a raw material in a high frequency melting furnace in air, an inert atmosphere, or a reducing atmosphere. After performing the face side of these ingots, 850
It was hot rolled at ℃ to a thickness of 8 cm, and after the surface side, solution treatment was performed to a thickness of 7 cm. Thereafter, for the purpose of controlling the degree of work before aging, it was cold rolled to a thickness of 1, 2, 0, 6, and 0.27 mm, respectively. During cold rolling, aging treatment was performed, and further cold rolling was performed to a plate thickness of 0.25 mm. and,
Finally, strain relief annealing was added to produce a high-strength conductive copper alloy for electronic devices. Table 2 shows the manufacturing conditions after solution treatment.

リード材及びばね材としての評価項目として、強度、伸
びを引張試験により、曲げ性を90″繰り返し曲げ試験
により、−往復を一回として破断までの曲げ回数を測定
し、導電性(放熱性)を導電率(%IAC8)によって
示した。半田付は性は、垂直式浸漬法で230±5℃の
半田浴(錫60%、鉛40%)に5秒間浸漬し、半田の
ぬれの状態を目視観察することにより評価した。
As evaluation items for lead materials and spring materials, strength and elongation were measured by a tensile test, bendability was measured by a 90" repeated bending test, and the number of bends until breakage was measured, with a round trip being one time. Conductivity (heat dissipation) The solderability was determined by the electrical conductivity (%IAC8).The solderability was measured by immersing the solder in a solder bath (60% tin, 40% lead) at 230 ± 5°C for 5 seconds using the vertical dipping method. Evaluation was made by visual observation.

メツキ密着性は試料に厚さ 3μ■のAgメツキを施し
、450℃にて5分間加熱し、表面に発生するフクレの
有無を目視観察することにより評価した。耐熱性は5分
間焼鈍した場合、焼鈍前の硬さの80%となる焼鈍温度
で示した。
Plating adhesion was evaluated by applying Ag plating to a thickness of 3 μm on a sample, heating it at 450° C. for 5 minutes, and visually observing the presence or absence of blisters occurring on the surface. Heat resistance was expressed as the annealing temperature at which the hardness was 80% of the hardness before annealing when annealed for 5 minutes.

ばね性の評価は、ばね限界値(Kb)を測定することに
より行った。これらの結果を第3表に示す。
The spring properties were evaluated by measuring the spring limit value (Kb). These results are shown in Table 3.

第1表 第2表 第3表 本発明合金及び比較合金について、以下に説明を加える
Table 1 Table 2 Table 3 The present invention alloy and comparative alloy will be explained below.

本発明合金のNo、1〜5は、本発明の基本成分系のも
ので、又、No、6〜10は、基本成分系に副成分を添
加したものである。いずれも本発明の製造法を使用して
いるため、強度、導電性、耐熱性等の特性に優れ、かつ
、特性−ヒの異方性が小さい。
Inventive alloys Nos. 1 to 5 are based on the basic component system of the present invention, and Nos. 6 to 10 are alloys in which subcomponents are added to the basic component system. Since both use the manufacturing method of the present invention, they have excellent properties such as strength, conductivity, and heat resistance, and have small anisotropy in properties - H.

比較合金であるNo、11.12はそれぞれC「及びS
nの添加量が十分でなく、No、13.14はそれぞれ
Cr及びSnの添加量を1.0νt%以上とし、更に、
いずれの合金とも本発明の製造法の条件からはずれた条
件で製造した。すなわち、No、11は溶体化処理温度
を850℃で、No、12.13は溶体化処理の加熱時
間をそれぞれ0.5分と180分で、No、14は時効
前の冷間圧延の加工度を96%以上とした。したがって
、No、、11.12は本発明合金に比べ、強度、ばね
特性、耐熱性が劣っており、No、13は導電性、曲げ
加工性、半田付は性、メツキ密着性が劣っており、又、
No、14は導電性が劣っているのにつけ加えて、特性
上の異方性が大きくなっている。
Comparative alloys No. and 11.12 are C' and S, respectively.
The amount of n added was insufficient, and in No. 13.14, the amount of Cr and Sn added was 1.0 νt% or more, and further,
All alloys were manufactured under conditions different from those of the manufacturing method of the present invention. That is, No. 11 has a solution treatment temperature of 850°C, No. 12.13 has a solution treatment heating time of 0.5 minutes and 180 minutes, respectively, and No. 14 has a cold rolling process before aging. The degree was set to 96% or higher. Therefore, No. 11.12 is inferior in strength, spring characteristics, and heat resistance compared to the invention alloy, and No. 13 is inferior in conductivity, bending workability, solderability, and plating adhesion. ,or,
In addition to poor conductivity, No. 14 had large anisotropy in characteristics.

[発明の効果] 以上詳鍾したように、本発明合金は本発明製造法の適用
で強度、導電性、曲げ加工性等の特性に優れ、かつ、強
度、曲げ加工性等の異方性が小さくなる。したがって、
本発明合金は、半導体集積回路(IC)のQuad型の
リード材及び端子、コネクター リレー、スイッチ等の
ばね材に適している。
[Effects of the Invention] As detailed above, the alloy of the present invention has excellent properties such as strength, conductivity, and bending workability by applying the manufacturing method of the present invention, and has excellent anisotropy in strength, bending workability, etc. becomes smaller. therefore,
The alloy of the present invention is suitable for quad-type lead materials and terminals of semiconductor integrated circuits (IC), spring materials for connectors, relays, switches, etc.

Claims (3)

【特許請求の範囲】[Claims] (1)Cr0.25wt%を超え1.0wt%以下、S
n0.5wt%を超え1.0wt%未満を含み、残部C
u及び不可避不純物からなることを特徴とする電子機器
用高力高導電銅合金。
(1) Cr more than 0.25wt% and 1.0wt% or less, S
Contains more than n0.5wt% and less than 1.0wt%, the remainder C
A high-strength, high-conductivity copper alloy for electronic devices, characterized by comprising u and inevitable impurities.
(2)Cr0.25wt%を超え1.0wt%以下、S
n0.5wt%を超え1.0wt%未満、更に副成分と
してBe、Co、Fe、Hf、In、Zrからなる群よ
り選択された1種又は2種以上を総量で0.01〜2.
0wt%を含み、残部Cu及び不可避不純物からなるこ
とを特徴とする電子機器用高力高導電銅合金。
(2) More than 0.25 wt% Cr and less than 1.0 wt%, S
n more than 0.5 wt% and less than 1.0 wt%, and one or more selected from the group consisting of Be, Co, Fe, Hf, In, and Zr as subcomponents in a total amount of 0.01 to 2.
A high-strength, high-conductivity copper alloy for electronic devices, characterized in that it contains 0 wt% of Cu, and the balance consists of Cu and unavoidable impurities.
(3)特許請求の範囲(1)あるいは(2)項に記載し
た合金の鋳塊を、熱間及び冷間圧延を行い板材とした後
、900〜1000℃の温度で、1〜120分加熱し、
板材を1℃/sec以上の冷却速度で400℃以下まで
冷却し、更に96%未満の冷間圧延を行い、その後、時
効処理を行うことを特徴とする電子機器用高力高導電銅
合金の製造法。
(3) An ingot of the alloy described in claim (1) or (2) is hot- and cold-rolled into a plate material, and then heated at a temperature of 900 to 1000°C for 1 to 120 minutes. death,
A high-strength, high-conductivity copper alloy for electronic devices, characterized in that a sheet material is cooled to 400°C or less at a cooling rate of 1°C/sec or more, further cold-rolled to less than 96%, and then subjected to aging treatment. Manufacturing method.
JP14721590A 1990-06-07 1990-06-07 High strength and high conductivity copper alloy for electronic equipment and its manufacture Pending JPH0441632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14721590A JPH0441632A (en) 1990-06-07 1990-06-07 High strength and high conductivity copper alloy for electronic equipment and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14721590A JPH0441632A (en) 1990-06-07 1990-06-07 High strength and high conductivity copper alloy for electronic equipment and its manufacture

Publications (1)

Publication Number Publication Date
JPH0441632A true JPH0441632A (en) 1992-02-12

Family

ID=15425177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14721590A Pending JPH0441632A (en) 1990-06-07 1990-06-07 High strength and high conductivity copper alloy for electronic equipment and its manufacture

Country Status (1)

Country Link
JP (1) JPH0441632A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102232938B1 (en) 2020-08-07 2021-03-26 (주)케이에스전자 Assistance apparatus for correction of proofs for golf swing attitude

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102232938B1 (en) 2020-08-07 2021-03-26 (주)케이에스전자 Assistance apparatus for correction of proofs for golf swing attitude

Similar Documents

Publication Publication Date Title
JP3550233B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JP2670670B2 (en) High strength and high conductivity copper alloy
JPS60245754A (en) High strength copper alloy having high electric conductivity
JPH0372691B2 (en)
JPS63130739A (en) High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material
JPH0372045A (en) High strength and high conductivity copper alloy having excellent adhesion for oxidized film
JPS63262448A (en) Production of copper alloy having excellent peeling resistance of tin or tin alloy plating
JPS63143230A (en) Precipitation strengthening high tensile copper alloy having high electrical conductivity
JPS63149345A (en) High strength copper alloy having high electrical conductivity and improved heat resistance
JPH0424417B2 (en)
JPH0280532A (en) High tensile copper alloy having excellent bendability
JPH01139742A (en) Manufacture of high-strength and high-conductivity copper alloy
JPS61264144A (en) High-strength and high conductivity copper alloy excelling in thermal peeling resistance of solder
JPH0441632A (en) High strength and high conductivity copper alloy for electronic equipment and its manufacture
JPS63125631A (en) High-tensile high-conductivity copper alloy
JPS63192835A (en) Lead material for ceramic package
JPH0230727A (en) Copper alloy having high-strength and high-conductivity for semiconductor equipment lead material or conductive spring material
JPH03191043A (en) Manufacture of high strength and high conductivity copper alloy for electronic equipment
JPH0219432A (en) High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material
JPH06184666A (en) High strength and high electric conductivity copper alloy
JPH03191035A (en) High strength and high conductivity copper alloy for electronic equipment
JPH03188246A (en) Production of high strength and high conductivity copper alloy
JPH04141561A (en) Production of copper alloy for electronic appliance having high strength and electrical conductivity
JPH03199357A (en) Manufacture of high strength and high conductivity copper alloy for electronic equipment
JPH046231A (en) High strength and high conductivity copper alloy for electronic equipment