JP2020158817A - Cu-Ni-Si BASED ALLOY STRIP EXCELLENT IN STRENGTH AND BENDABILITY IN ROLLING PARALLEL DIRECTION AND ROLLING RECTANGULAR DIRECTION - Google Patents

Cu-Ni-Si BASED ALLOY STRIP EXCELLENT IN STRENGTH AND BENDABILITY IN ROLLING PARALLEL DIRECTION AND ROLLING RECTANGULAR DIRECTION Download PDF

Info

Publication number
JP2020158817A
JP2020158817A JP2019057779A JP2019057779A JP2020158817A JP 2020158817 A JP2020158817 A JP 2020158817A JP 2019057779 A JP2019057779 A JP 2019057779A JP 2019057779 A JP2019057779 A JP 2019057779A JP 2020158817 A JP2020158817 A JP 2020158817A
Authority
JP
Japan
Prior art keywords
rolling
bendability
based alloy
alloy strip
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019057779A
Other languages
Japanese (ja)
Inventor
英嗣 外村
Hidetsugu Tonomura
英嗣 外村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2019057779A priority Critical patent/JP2020158817A/en
Priority to KR1020200034833A priority patent/KR102345805B1/en
Publication of JP2020158817A publication Critical patent/JP2020158817A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

To provide a Cu-Ni-Si based alloy strip excellent in bendability in the rolling rectangular direction even when subjected to severe processing, such as notching, etc., while maintaining bendability in the rolling parallel direction.SOLUTION: The Cu-Ni-Si based alloy strip excellent in strength and bendability includes Ni of 1.0-4.5 mass%, Si of 0.25-1.5 mass% and the remainder consisting of copper and inevitable impurities, and has a texture that the maximum value of an X ray random intensity ratio in the range of the following (1)-(2) is 10.0 or more and 20.0 or less in a {111} positive pole figure and the maximum value of an X ray random intensity ratio in the range of the following (3) is 0 or more and 2 or less in a {200} positive pole figure. (1) α=65±10° and β=0 ±15°, (2) α=65±10°and β=180 ±15°, (3) α=80-90° (where, α: an axis perpendicular to the axis of rotation of a diffraction goniometer specified by the Shultz method and β: an axis parallel to the axis of rotation).SELECTED DRAWING: Figure 1

Description

本発明は銅合金に関し、より詳細にはコネクタ、端子、リレ−、スイッチ等の導電性ばね材に好適に用いられる銅合金条に関する。 The present invention relates to copper alloys, and more particularly to copper alloy strips preferably used for conductive spring materials such as connectors, terminals, relays and switches.

近年の電子機器の軽薄短小化に伴い、端子、コネクタ等の小型化、薄肉化が進み、これらに使用される電子材料用銅合金には以前にも増して、強度と曲げ加工性が要求されている。この要求に応じ、従来のりん青銅や黄銅といった固溶強化型銅合金に替わり、Cu−Ni−Si系のコルソン合金やチタン銅といった析出強化型銅合金が使用され、その需要は増加しつつある。析出強化型銅合金の中でもCu−Ni−Si系合金は高強度と比較的高い導電率を兼備する合金系であり、その強化機構は、Cuマトリックス中にNi−Si系の金属間化合物粒子が析出することにより強度を向上させたものである。 With the recent miniaturization of electronic devices, terminals, connectors, etc. have become smaller and thinner, and the copper alloys for electronic materials used for these are required to have higher strength and bendability than before. ing. In response to this demand, precipitation-reinforced copper alloys such as Cu-Ni-Si-based Corson alloys and titanium copper are being used in place of conventional solid-melt reinforced copper alloys such as phosphor bronze and brass, and the demand for them is increasing. .. Among the precipitation-strengthened copper alloys, Cu-Ni-Si alloys are alloys that have both high strength and relatively high conductivity, and the strengthening mechanism is that Ni-Si intermetallic compound particles are contained in the Cu matrix. The strength is improved by precipitating.

一般に強度と曲げ加工性は相反する性質であり、Cu−Ni−Si系合金においても、高強度を維持しつつ曲げ加工性を改善することが従来から望まれてきたが、高強度と優れた曲げ加工性の兼備は難しいのが現状である。特に、超小型化端子においては、ノッチング加工後に曲げを行う(箱曲げ)など厳しい曲げ加工が施されるため、ノッチ加工後の高曲げ性と高強度を併せ持つ銅合金条が要求されている。 In general, strength and bending workability are contradictory properties, and it has been conventionally desired to improve bending workability while maintaining high strength even in Cu—Ni—Si based alloys, but high strength and excellent bending workability have been conventionally desired. At present, it is difficult to combine bending workability. In particular, since ultra-miniaturized terminals are subjected to severe bending such as bending after notching (box bending), copper alloy strips having both high bendability and high strength after notching are required.

曲げ加工性改善の方法として、特許文献1にはCu−Ni−Si系合金系の結晶方位を制御する方法が開示されている。この発明では、(200)面、(220)面、(311)面のX線回折強度をI(200)、I(220)、I(311)として次式:I(200)+I(311))/I(220)≧0.5を満たす様な集合組織が形成されると、曲げ加工性が改善されるとしている。
しかし、I(200)、I(311)は再結晶時の粒径粗大化により増大すること、I(220)は冷間圧延の加工度上昇により増大することを考慮すると、上式を満足するには結晶粒径の粗大化と冷間圧延の加工度低減が必要であり、これは強度低下を引き起こす。そのため、強度低下を引き起こす結晶粒径の粗大化や冷間圧延の加工度低減などの製造工程の調整を必要とせずに曲げ加工性を改善できる方法が望まれていた。
As a method for improving bending workability, Patent Document 1 discloses a method for controlling the crystal orientation of a Cu—Ni—Si alloy system. In the present invention, the X-ray diffraction intensities of the (200) plane, (220) plane, and (311) plane are I (200), I (220), and I (311), and the following equation: I (200) + I (311) ) / I (220) ≥ 0.5, it is said that the bendability is improved when the texture is formed.
However, considering that I (200) and I (311) increase due to the coarsening of the particle size at the time of recrystallization, and I (220) increases due to the increase in the workability of cold rolling, the above equation is satisfied. It is necessary to coarsen the crystal grain size and reduce the workability of cold rolling, which causes a decrease in strength. Therefore, there has been a demand for a method capable of improving bending workability without requiring adjustment of a manufacturing process such as coarsening of crystal grain size causing a decrease in strength and reduction of workability in cold rolling.

そこで、特許文献2および3には、製造工程を調整し、集合組織を制御することで、高強度を維持しつつ、曲げ加工性が良好なCu−Ni−Si系合金が開示されている。しかし、これらの文献の製造工程で得られる合金は、圧延平行方向の曲げ性(圧延方向に対して曲げ軸が平行な「Bad way」)を改善するものの、圧延直角方向の曲げ性(圧延方向に対して曲げ軸が直交する「Good way」)については考慮されていない。
又、特許文献4には、直角方向の曲げ加工性が良好なCu−Ni−Si系合金が開示されている。一般に、ノッチング加工後に曲げ加工を行うと曲げ部にクラックが発生し、特にノッチング加工の切り込み深さが長いと大きなクラックが発生するが、この技術では深いノッチング加工後の曲げ性の改善については検討されていない。
Therefore, Patent Documents 2 and 3 disclose Cu—Ni—Si alloys having good bending workability while maintaining high strength by adjusting the manufacturing process and controlling the texture. However, although the alloys obtained in the manufacturing processes of these documents improve the bendability in the rolling parallel direction (“Bad way” in which the bending axis is parallel to the rolling direction), the bendability in the rolling orthogonal direction (rolling direction). “Good way”) whose bending axis is orthogonal to the above is not considered.
Further, Patent Document 4 discloses a Cu—Ni—Si based alloy having good bending workability in the perpendicular direction. In general, when bending is performed after notching, cracks occur in the bent portion, and especially when the notching depth is long, large cracks occur. However, this technique examines the improvement of bendability after deep notching. It has not been.

特開2000−80428号公報Japanese Unexamined Patent Publication No. 2000-80428 特開2007−92135号公報JP-A-2007-921135 特開2012−193408号公報Japanese Unexamined Patent Publication No. 2012-193408 特開2013−204079号公報Japanese Unexamined Patent Publication No. 2013-204079

ここで、コルソン合金は、一般にBad way方向の曲げ性が良いが、Good way方向の曲げ性が低いという特徴がある。そして、コルソン合金条をプレス加工する際、Good way方向の曲げ性が求められる場合がある。
そこで、本発明は、圧延平行方向の曲げ性を維持しつつ、ノッチング加工等の厳しい加工を施しても圧延直角方向の曲げ加工性が良好なCu−Ni−Si系合金条の提供を目的とする。
Here, the Corson alloy is generally characterized by having good bendability in the Bad way direction but low bendability in the Good way direction. Then, when the Corson alloy strip is press-processed, bendability in the Good way direction may be required.
Therefore, an object of the present invention is to provide a Cu—Ni—Si alloy strip having good bendability in the direction perpendicular to rolling even if severe processing such as notching is performed while maintaining bendability in the parallel direction of rolling. To do.

本発明者はCu−Ni−Si系銅合金の結晶方位と曲げ加工性との関係を鋭意調査した結果、{111}正極点図上において{123}<412>方位を含む2つの領域内のX線強度の極大値を特定の範囲内で制御しつつ、{200}正極点図上において{001}<100>方位を含む領域のX線ランダム強度比の極大値を制御することで、直角方向(Good way)曲げ加工性が改善すること、特にノッチング加工後の曲げ加工性が改善することを見出した。 As a result of diligently investigating the relationship between the crystal orientation and bending workability of the Cu—Ni—Si based copper alloy, the present inventor found that the {111} positive angle diagram was in two regions including the {123} <412> orientation. By controlling the maximum value of the X-ray intensity within a specific range and controlling the maximum value of the X-ray random intensity ratio in the region including the {001} <100> orientation on the {200} positive point diagram, the right angle It has been found that the directional (Good way) bending workability is improved, and in particular, the bending workability after notching processing is improved.

上記の目的を達成するために、本発明のCu−Ni−Si系銅合金条は、1.0〜4.5質量%のNiと、0.25〜1.5質量%のSiとを含有し、残部が銅および不可避的不純物からなり、{111}正極点図において、以下の(1)〜(2)の範囲のX線ランダム強度比の極大値が10.0以上20.0以下、{200}正極点図において、以下の(3)の範囲のX線ランダム強度比の極大値が0以上2以下である集合組織を有することを特徴とする、強度と曲げ加工性に優れたCu−Ni−Si系合金条である。
(1)α=65±10°、β=0±15°
(2)α=65±10°、β=180±15°
(3)α=80〜90°
(但し、α:シュルツ法に規定する回折用ゴニオメータの回転軸に垂直な軸、β:前記回転軸に平行な軸)
In order to achieve the above object, the Cu—Ni—Si based copper alloy strip of the present invention contains 1.0 to 4.5% by mass of Ni and 0.25 to 1.5% by mass of Si. However, the balance is composed of copper and unavoidable impurities, and in the {111} positive point diagram, the maximum value of the X-ray random intensity ratio in the range of (1) to (2) below is 10.0 or more and 20.0 or less. {200} In the positive point diagram, Cu having excellent strength and bendability, characterized by having an texture in which the maximum value of the X-ray random intensity ratio in the range of (3) below is 0 or more and 2 or less. -Ni-Si based alloy strip.
(1) α = 65 ± 10 °, β = 0 ± 15 °
(2) α = 65 ± 10 °, β = 180 ± 15 °
(3) α = 80 to 90 °
(However, α: the axis perpendicular to the rotation axis of the diffraction goniometer specified in the Schultz method, β: the axis parallel to the rotation axis)

0.2%耐力が600MPa以上であることが好ましい。
Zn、Sn、Mg、Fe、Ti、Zr、Cr、Al、P、Mn、Agのうち1種類以上を総量で0.005〜2.0質量%含有することが好ましい。
The 0.2% proof stress is preferably 600 MPa or more.
It is preferable that one or more of Zn, Sn, Mg, Fe, Ti, Zr, Cr, Al, P, Mn and Ag are contained in a total amount of 0.005 to 2.0% by mass.

本発明によれば、圧延平行方向の曲げ性を維持しつつ、ノッチング加工等の厳しい加工を施しても直角方向(Good way)の曲げ加工性に優れたCu−Ni−Si系銅合金条が得られる。 According to the present invention, a Cu—Ni—Si copper alloy strip having excellent bending workability in the right angle direction (Good way) even if severe processing such as notching is performed while maintaining bendability in the parallel rolling direction. can get.

{111}正極点図上に規定される(1)、(2)の2つの領域を示す図である。{111} It is a figure which shows the two regions (1) and (2) defined on the positive electrode point diagram. {200}正極点図上に規定される(3)の領域を示す図である。{200} It is a figure which shows the region (3) defined on the positive electrode point diagram. ノッチング加工を行う方法を示す図である。It is a figure which shows the method of performing the notching processing. W曲げ加工を行う方法を示す図である。It is a figure which shows the method of performing the W bending process.

以下、本発明の実施形態に係るCu−Ni−Si系銅合金条について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。 Hereinafter, Cu—Ni—Si based copper alloy strips according to the embodiment of the present invention will be described. In the present invention,% means mass% unless otherwise specified.

(組成)
[NiおよびSi濃度]
Ni及びSiは、時効処理を行うことにより、NiSi等の金属間化合物として析出する。この化合物は強度を向上させ、析出することによりCuマトリックス中に固溶したNi及びSiが減少するため導電率が向上する。しかし、Ni濃度が1.0%未満又はSi濃度が0.25%未満になると所望の強度が得られず、反対にNi濃度が4.5%を超えると又はSi濃度が1.5%を超えると熱間加工性が劣化する。
従って、Ni:1.0〜4.5%、Si:0.25〜1.5%とする。
(composition)
[Ni and Si concentration]
Ni and Si are precipitated as intermetallic compounds such as Ni 2 Si by performing an aging treatment. This compound improves the strength, and by precipitating, Ni and Si dissolved in the Cu matrix are reduced, so that the conductivity is improved. However, if the Ni concentration is less than 1.0% or the Si concentration is less than 0.25%, the desired strength cannot be obtained, and conversely, if the Ni concentration exceeds 4.5% or the Si concentration is 1.5%. If it exceeds, the hot workability deteriorates.
Therefore, Ni: 1.0 to 4.5% and Si: 0.25 to 1.5%.

[その他の添加元素]
Sn、Zn、Mg、Fe、Ti、Zr、Cr、Al、P、Mn及びAgは、合金の強度上昇に寄与する。さらにZnはSnめっきの耐熱剥離性の向上に、Mgは応力緩和特性の向上に、Zr、Cr、Mnは熱間加工性の向上に効果がある。
Sn、Zn、Mg、Fe、Ti、Zr、Cr、Al、P、Mn及びAgの含有量が総量で0.005%未満であると上記の効果は得られず、総量が2.5%を超えると導電率が低下する場合がある。
[Other additive elements]
Sn, Zn, Mg, Fe, Ti, Zr, Cr, Al, P, Mn and Ag contribute to the increase in the strength of the alloy. Further, Zn is effective in improving the heat-resistant peeling property of Sn plating, Mg is effective in improving stress relaxation characteristics, and Zr, Cr, and Mn are effective in improving hot workability.
If the total content of Sn, Zn, Mg, Fe, Ti, Zr, Cr, Al, P, Mn and Ag is less than 0.005%, the above effect cannot be obtained, and the total amount is 2.5%. If it exceeds, the conductivity may decrease.

[集合組織]
一般に集合組織とは加工、熱処理によって形成される結晶方位の統計的な偏りであり、加工条件、熱処理条件に大きく依存している。
本発明者らはX線ディフラクトメーター(株式会社リガク製RINT2500)により、製造工程の異なるCu−Ni−Si系合金の集合組織を測定し、Cu−Ni−Si系合金条の集合組織と直角方向(Good way)の曲げ加工性(耐曲げ割れ性および曲げしわ)の関係を調査した。
[Aggregate organization]
In general, the texture is a statistical bias of the crystal orientation formed by processing and heat treatment, and is largely dependent on the processing conditions and heat treatment conditions.
The present inventors measured the texture of Cu—Ni—Si alloys with different manufacturing processes using an X-ray diffractometer (RINT2500 manufactured by Rigaku Co., Ltd.) and perpendicular to the texture of Cu—Ni—Si alloy strips. The relationship between the bending workability (bending crack resistance and bending wrinkle) of the direction (Good way) was investigated.

その結果、両者には相関があり、集合組織の中でも{123}<412>方位を含む領域のX線ランダム強度比の極大値がある範囲内にあるときに、Bad wayの曲げ性が改善し、{001}<100>方位を含む領域のX線ランダム強度比の極大値がある範囲内にあるときに、Good wayの曲げ性が改善することを見出した。
なお、シュルツ法で規定される回折用ゴニオメータの回転軸に垂直な軸回りの角度α、及び同回転軸に平行な軸回りの角度βで表すと、{123}<412>方位は、{111}正極点図上で、α=68°、β=0°およびα=68°、β=180°に対応し、{001}<100>方位は、{200}正極点図上で、α=80〜90°、β=0〜360°に対応する。
As a result, there is a correlation between the two, and the bendability of the Bad way is improved when the maximum value of the X-ray random intensity ratio in the region including the {123} <412> orientation is within a certain range. , {001} <100> It was found that the bendability of Goodway is improved when the maximum value of the X-ray random intensity ratio in the region including the orientation is within a certain range.
The {123} <412> azimuth is {111 when expressed by the angle α around the axis perpendicular to the rotation axis of the diffraction goniometer defined by the Schultz method and the angle β around the axis parallel to the rotation axis. } On the positive point diagram, α = 68 °, β = 0 ° and α = 68 °, β = 180 °, and the {001} <100> orientation is α = on the {200} positive point diagram. It corresponds to 80 to 90 ° and β = 0 to 360 °.

上記の2方位の強度を制御することで、平行方向と直角方向の曲げ加工性にともに優れた合金を得ることができる。これは、{123}<412>方位がCu−Ni−Si系合金の圧延変形の安定方位であり、他の結晶方位を持つ場合に比べ、すべり変形を防ぐためである。又、{001}<100>方位は、塑性変形時のせん断帯の導入が他の方位より抑制するが、それぞれの結晶方位の曲げ加工性に対する最適な割合は異なるためである。
上記の2方位の一方が極端に多くても、平行方向と直角方向の曲げ加工性を両立することは困難であり、2方位のα、βの範囲を共に満たす必要がある。
α、βの範囲を特許請求の範囲の(1)〜(3)の様に幅を持たせた(つまり、例えば(1)につき、上記記載ではα=68°であるが、α=65±10°と幅を有する)理由は、加工、熱処理条件および測定誤差等から各方位に対応するX線強度比のピーク位置が変動することを考慮したからである。
By controlling the strength in the above two directions, it is possible to obtain an alloy having excellent bending workability in both the parallel direction and the perpendicular direction. This is because the {123} <412> orientation is the stable orientation of the rolling deformation of the Cu—Ni—Si based alloy, and the slip deformation is prevented as compared with the case of having other crystal orientations. Further, in the {001} <100> orientation, the introduction of the shear band at the time of plastic deformation is suppressed more than in other orientations, but the optimum ratio of each crystal orientation to the bending workability is different.
Even if one of the above two directions is extremely large, it is difficult to achieve both parallel and right-angle bending workability, and it is necessary to satisfy both the α and β ranges of the two directions.
The range of α and β is widened as in the claims (1) to (3) (that is, for example (1), α = 68 ° in the above description, but α = 65 ±. The reason (having a width of 10 °) is that the peak position of the X-ray intensity ratio corresponding to each direction fluctuates due to processing, heat treatment conditions, measurement error, and the like.

本発明のCu−Ni−Si系合金条の0.2%耐力は好ましくは600〜950MPa、より好ましくは700〜950MPaである。0.2%耐力が600MPa未満であると強度が低下し、950MPaを超えると曲げた際に割れが発生する可能性が高くなる。
本発明のCu−Ni−Si系合金条の導電率は、好ましくは30%IACS以上、より好ましくは35%IACS以上である。
The 0.2% proof stress of the Cu—Ni—Si based alloy strip of the present invention is preferably 600 to 950 MPa, more preferably 700 to 950 MPa. If the 0.2% proof stress is less than 600 MPa, the strength is lowered, and if it exceeds 950 MPa, there is a high possibility that cracks will occur when bent.
The conductivity of the Cu—Ni—Si based alloy strips of the present invention is preferably 30% IACS or higher, more preferably 35% IACS or higher.

本発明のCu−Ni−Si系合金条の製造工程の一例を説明する。まず大気溶解炉を用い、木炭被覆下で、電気銅、Ni、Si等の原料を溶解し、所望の組成の溶湯を得る。そしてこの溶湯をインゴットに鋳造する。その後、熱間圧延を行い、冷間圧延、溶体化処理(700〜1,000℃で10〜300秒)、時効処理(350〜550℃で2〜20時間)、最終冷間圧延(加工度5〜40%)を行う。 An example of the manufacturing process of the Cu—Ni—Si based alloy strip of the present invention will be described. First, using an atmospheric melting furnace, raw materials such as electrolytic copper, Ni, and Si are melted under charcoal coating to obtain a molten metal having a desired composition. Then, this molten metal is cast into an ingot. After that, hot rolling is performed, cold rolling, solution treatment (700 to 1,000 ° C for 10 to 300 seconds), aging treatment (350 to 550 ° C for 2 to 20 hours), and final cold rolling (workability). 5-40%).

最終冷間圧延後に歪取り焼鈍を行っても良い。歪取り焼鈍は、通常Ar等の不活性雰囲気中で250〜600℃で5〜300秒間行われる。さらに高強度化のために溶体化処理と時効処理との間に冷間圧延を行っても良い。また、溶体化処理後に最終冷間圧延、時効処理の順に行い、これら工程の順序を入れ替えても良い。 Strain removal annealing may be performed after the final cold rolling. The strain-removing annealing is usually carried out at 250 to 600 ° C. for 5 to 300 seconds in an inert atmosphere such as Ar. Cold rolling may be performed between the solution treatment and the aging treatment in order to further increase the strength. Further, after the solution heat treatment, the final cold rolling and the aging treatment may be performed in this order, and the order of these steps may be changed.

Cu−Ni−Si系合金条の製造工程において採用され、上記で例示されている通常の溶体化処理、時効処理及び最終冷間圧延の条件範囲内であれば、熱間圧延及びその後の冷間圧延を経た材料は溶体化処理で表層及び中央部共に目的方位の結晶粒が再結晶し、時効処理及び最終冷間圧延後も結晶方位の構造は本質的には変化しない。
以下に本発明の合金条の製造方法中、肝要となる工程の製造条件について詳述する。
If it is adopted in the manufacturing process of Cu-Ni-Si alloy strips and is within the conditions of the usual solution heat treatment, aging treatment and final cold rolling exemplified above, hot rolling and subsequent cold rolling are performed. In the material that has undergone rolling, the crystal grains in the target orientation are recrystallized in both the surface layer and the central portion by the solution treatment, and the structure of the crystal orientation does not essentially change even after the aging treatment and the final cold rolling.
The production conditions of the essential steps in the method for producing alloy strips of the present invention will be described in detail below.

溶体化処理:溶体化処理温度は700〜1,000℃で10〜300秒の間行う。溶体化処理の際の冷却速度を二段階で調整することで、発達する結晶方位を制御できる。すなわち、600℃を境として冷却速度を二段階に分けて行い、1段目の600℃以上では冷却速度を40〜60℃/秒の範囲で、2段目の600℃未満では80〜100℃/秒の範囲で冷却を行う。
1段目の冷却速度が60℃/秒を超えると、範囲(1)(2)内の(111)面のX線強度比の極大値が10よりも小さくなり、40℃/秒を下回ると、範囲(1)(2)内の(111)面のX線強度比の極大値が20を超えて増加する。
2段目の冷却速度が60℃/秒を超える、もしくは40℃/秒を下回ると、範囲(3)内の(200)面のX線強度比の極大値が3よりも大きくなる。
Solution treatment: The solution treatment temperature is 700 to 1,000 ° C. for 10 to 300 seconds. By adjusting the cooling rate during the solution treatment in two steps, the crystal orientation that develops can be controlled. That is, the cooling rate is divided into two stages with 600 ° C as a boundary, the cooling rate is in the range of 40 to 60 ° C / sec at 600 ° C or higher in the first stage, and 80 to 100 ° C at less than 600 ° C in the second stage. Cool in the range of / sec.
When the cooling rate of the first stage exceeds 60 ° C./sec, the maximum value of the X-ray intensity ratio of the (111) plane in the ranges (1) and (2) becomes smaller than 10, and when it falls below 40 ° C./sec. , The maximum value of the X-ray intensity ratio of the (111) plane in the ranges (1) and (2) increases by more than 20.
When the cooling rate of the second stage exceeds 60 ° C./sec or falls below 40 ° C./sec, the maximum value of the X-ray intensity ratio of the (200) plane in the range (3) becomes larger than 3.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。
高周波溶解炉にてアルゴン雰囲気下、内径110mm、深さ230mmのアルミナ又はマグネシア製るつぼ中で電気銅2.50Kgを溶解した。表1の組成に従い銅以外の元素を添加し、溶湯温度を1,300℃に調整した後、溶湯を鋳型(材質:鋳鉄)を使用して30×60×120mmのインゴットに鋳造し、以下の工程で、銅合金条を作製した。
Examples of the present invention are shown below together with comparative examples, but these examples are provided for a better understanding of the present invention and its advantages, and are not intended to limit the invention.
2.50 kg of electrolytic copper was dissolved in an alumina or magnesia crucible having an inner diameter of 110 mm and a depth of 230 mm in an argon atmosphere in a high-frequency melting furnace. After adding elements other than copper according to the composition in Table 1 and adjusting the molten metal temperature to 1,300 ° C., the molten metal was cast into a 30 × 60 × 120 mm ingot using a mold (material: cast iron), and the following In the process, copper alloy strips were made.

(工程1)950℃で3時間加熱した後、厚さ10mmまで熱間圧延した。
(工程2)熱間圧延後の板表面の酸化スケールをグラインダーで研削、除去した。
(工程3)板厚0.180mmまで圧下率70%で冷間圧延した。歪速度は、圧延速度/ロール接触弧長より決定した。
(工程4)溶体化処理として、800℃で10秒間、大気中で加熱し、材料温度が600℃へ低下するまでの1段目の冷却速度および600℃から300℃へ低下するまでの2段目の冷却速度を表1記載のとおり変化させた。
(工程5)時効処理として電気炉を用い450℃で5時間、Ar雰囲気中で加熱した。
(工程6)板厚0.18mmまで最終冷間圧延を行った。
(工程7)歪取り焼鈍として、400℃で10秒間、Ar雰囲気中で加熱した。
このようにして作製した試料について、以下の諸特性の評価を行った。
(Step 1) After heating at 950 ° C. for 3 hours, hot rolling was performed to a thickness of 10 mm.
(Step 2) The oxide scale on the plate surface after hot rolling was ground and removed with a grinder.
(Step 3) Cold rolling was performed to a plate thickness of 0.180 mm at a rolling reduction of 70%. The strain rate was determined from the rolling speed / roll contact arc length.
(Step 4) As the solution treatment, the first stage cooling rate until the material temperature drops to 600 ° C. and the second stage until the material temperature drops from 600 ° C. to 300 ° C. by heating in the air at 800 ° C. for 10 seconds. The cooling rate of the eyes was changed as shown in Table 1.
(Step 5) As an aging treatment, the mixture was heated at 450 ° C. for 5 hours in an Ar atmosphere using an electric furnace.
(Step 6) Final cold rolling was performed to a plate thickness of 0.18 mm.
(Step 7) For strain removing annealing, the mixture was heated at 400 ° C. for 10 seconds in an Ar atmosphere.
The following characteristics of the sample prepared in this manner were evaluated.

X線ランダム強度比の極大値
X線ディフラクトメーター(株式会社リガク製、RINT2500)により、Co管球を使用し、管電圧は30kV、管電流は100mAで各試料の{111}正極点測定を行い、{111}正極点図を作成した。前述した範囲(1)(2)内のX線強度を測定し、標準試料として同様に測定した銅粉末(関東化学株式会社製、商品名銅(粉末)2N5、325mesh(JIS Z8801、純度99.5%)のX線強度との比を算出し、その極大値を求めた。X線ランダム強度比の極大値は圧延面を測定した。なお、圧延面の測定は、圧延面表面をリン酸67%+硫酸10%+水の溶液に15V60秒の条件で電解研磨により組織を現出させ,水洗乾燥させた後に行った。
{200}正極点図についても、前述した範囲(3)内のX線強度を測定した。
Maximum value of X-ray random intensity ratio Using a Co tube with an X-ray differential meter (Rigaku Co., Ltd., RINT2500), measure the {111} positive electrode point of each sample with a tube voltage of 30 kV and a tube current of 100 mA. This was done to create a {111} positive electrode point diagram. Copper powder (manufactured by Kanto Chemical Co., Inc., trade name: copper (powder) 2N5, 325 mesh (JIS Z8801, purity 99.)) measured in the range (1) and (2) described above and similarly measured as a standard sample. The ratio with the X-ray intensity of 5%) was calculated and the maximum value was obtained. The maximum value of the X-ray random intensity ratio was measured on the rolled surface. In the measurement of the rolled surface, the surface of the rolled surface was phosphoric acid. The structure was exposed by electrolytic polishing in a solution of 67% + 10% copper + water at 15 V for 60 seconds, washed with water and dried.
The X-ray intensity within the above-mentioned range (3) was also measured for the {200} positive electrode point diagram.

0.2%耐力及び導電率
0.2%耐力は引張試験機を用いてJIS Z 2241に準拠して測定した。具体的には、試料につき、引張方向が圧延方向と平行になるように、プレス機を用いてJIS13B号試験片を作製した。JIS−Z2241に従ってこの試験片の引張試験を行なった。引張試験の条件は、試験片幅12.7mm、室温(15〜35℃)、引張速度5mm/min、ゲージ長さL=50mmで、銅箔の圧延方向に引張試験した。
導電率はJIS H 0505に準拠して4端子法により、25℃の導電率(%IACS)を測定した。
0.2% proof stress and conductivity 0.2% proof stress was measured according to JIS Z 2241 using a tensile tester. Specifically, a JIS13B test piece was prepared using a press machine so that the tensile direction of the sample was parallel to the rolling direction. A tensile test of this test piece was performed according to JIS-Z2241. The conditions of the tensile test were a test piece width of 12.7 mm, room temperature (15 to 35 ° C.), a tensile speed of 5 mm / min, and a gauge length of L = 50 mm, and a tensile test was performed in the rolling direction of the copper foil.
The conductivity was measured at 25 ° C. (% IACS) by the 4-terminal method in accordance with JIS H 0505.

曲げ性
曲げ性の評価として、図3に示すように、それぞれ深さ50、75、100μmのノッチング加工を実施した。ノッチの延びる方向は曲げ軸に沿う方向(圧延直角方向)とした。
その後、JIS H 3130に準拠して、曲げ半径0mm、GoodWay方向に90°W曲げ加工を行った(図4参照)。なお、図3でノッチを付けられた試料は、図4では上下裏返して用いられる。
曲げ加工された部分の圧延方向に平行で板厚方向に平行方向の断面を機械研磨及びバフ研磨で鏡面に仕上げ、光学顕微鏡(倍率50倍)で割れの有無を目視観察した。光学顕微鏡観察で割れが認められない場合を○、割れが認められた場合を×と評価した。
本発明で「曲げ加工性に優れた」とは、板厚0.18mmの試料に上記評価を行った場合、深さ75μmのノッチング加工でも割れが認められないことをいう。
Flexibility As an evaluation of bendability, as shown in FIG. 3, notching with depths of 50, 75, and 100 μm was performed, respectively. The extending direction of the notch was the direction along the bending axis (rolling perpendicular direction).
Then, according to JIS H 3130, 90 ° W bending was performed in the Good Way direction with a bending radius of 0 mm (see FIG. 4). The sample notched in FIG. 3 is used upside down in FIG.
The cross section of the bent portion parallel to the rolling direction and parallel to the plate thickness direction was finished to a mirror surface by mechanical polishing and buffing, and the presence or absence of cracks was visually observed with an optical microscope (magnification 50 times). The case where no crack was observed by the optical microscope observation was evaluated as ◯, and the case where crack was observed was evaluated as ×.
In the present invention, "excellent in bending workability" means that when the above evaluation is performed on a sample having a plate thickness of 0.18 mm, no cracks are observed even in a notching process having a depth of 75 μm.

表1に結果を示す。範囲(1)〜(3)のX線ランダム強度比が所定範囲内である各実施例の場合、Badwayの曲げ加工性を維持しつつノッチング加工後にGoodwayに曲げ加工を施しても割れは認められず、良好なGoodwayの曲げ加工性を示した。
Ni及びSi濃度がいずれも規定範囲未満の比較例1の場合、0.2%耐力が600MPa未満に低下した。Ni及びSi濃度がいずれも規定範囲を超えた比較例2の場合、熱間圧延時に割れが発生し、合金条の製造ができなかった。
The results are shown in Table 1. In each of the examples in which the X-ray random intensity ratios in the ranges (1) to (3) are within the predetermined range, cracks are observed even if the Goodway is bent after the notching while maintaining the bending workability of the Badway. However, it showed good Goodway bending workability.
In the case of Comparative Example 1 in which both the Ni and Si concentrations were less than the specified range, the 0.2% proof stress was reduced to less than 600 MPa. In the case of Comparative Example 2 in which both the Ni and Si concentrations exceeded the specified range, cracks occurred during hot rolling, and alloy strips could not be produced.

1段目の溶体化処理の冷却速度がそれぞれ遅すぎるか速過ぎる比較例3、4の場合、{111}面のX線ランダム強度比の極大値が10・0〜20.0の範囲を外れ、Bad Wayの曲げ加工性が劣った。
2段目の溶体化処理の冷却速度がそれぞれ遅すぎるか速過ぎる比較例5,6の場合、{200}面のX線ランダム強度比の極大値が2.0を超え、Goodwayの曲げ加工性が劣った。
1段目および2段目の溶体化処理の冷却速度を同一とした比較例7の場合も、1段目の冷却速度が速すぎたため、{111}面のX線ランダム強度比の極大値が10.0未満となり、Bad Wayの曲げ加工性が劣った。
In the cases of Comparative Examples 3 and 4, where the cooling rate of the first-stage solution treatment is too slow or too fast, the maximum value of the X-ray random intensity ratio of the {111} plane is out of the range of 10.0 to 20.0. , Bad Way was inferior in bending workability.
In the cases of Comparative Examples 5 and 6, where the cooling rate of the second-stage solution treatment is too slow or too fast, the maximum value of the X-ray random intensity ratio of the {200} plane exceeds 2.0, and the bending workability of Goodway Was inferior.
In the case of Comparative Example 7 in which the cooling rates of the first-stage and second-stage solution treatments were the same, the cooling rate of the first stage was too fast, so that the maximum value of the X-ray random intensity ratio on the {111} plane was the maximum. It was less than 10.0, and the bending workability of Bad Way was inferior.

RD 試料の圧延方向
TD 試料の横方向
α シュルツ法に規定する回折用ゴニオメータの回転軸に垂直な軸
β シュルツ法に規定する回折用ゴニオメータの回転軸に平行な軸
Rolling direction of RD sample Lateral direction of TD sample α Axis perpendicular to the rotation axis of the diffraction goniometer specified in the Schultz method β Axis parallel to the rotation axis of the diffraction goniometer specified in the Schultz method

Claims (3)

1.0〜4.5質量%のNiと、0.25〜1.5質量%のSiとを含有し、残部が銅および不可避的不純物からなり、
{111}正極点図において、以下の(1)〜(2)の範囲のX線ランダム強度比の極大値が10.0以上20.0以下、
{200}正極点図において、以下の(3)の範囲のX線ランダム強度比の極大値が0以上2以下である集合組織を有することを特徴とする、強度と曲げ加工性に優れたCu−Ni−Si系合金条。
(1)α=65±10°、β=0±15°
(2)α=65±10°、β=180±15°
(3)α=80〜90°
(但し、α:シュルツ法に規定する回折用ゴニオメータの回転軸に垂直な軸、β:前記回転軸に平行な軸)
It contains 1.0-4.5% by weight Ni and 0.25-1.5% by weight Si, with the balance consisting of copper and unavoidable impurities.
{111} In the positive electrode point diagram, the maximum value of the X-ray random intensity ratio in the range of (1) to (2) below is 10.0 or more and 20.0 or less.
{200} In the positive electrode point diagram, Cu having excellent strength and bendability, characterized by having an texture in which the maximum value of the X-ray random intensity ratio in the range of (3) below is 0 or more and 2 or less. -Ni-Si based alloy strip.
(1) α = 65 ± 10 °, β = 0 ± 15 °
(2) α = 65 ± 10 °, β = 180 ± 15 °
(3) α = 80 to 90 °
(However, α: the axis perpendicular to the rotation axis of the diffraction goniometer specified in the Schultz method, β: the axis parallel to the rotation axis)
0.2%耐力が600MPa以上である請求項1に記載のCu−Ni−Si系合金条。 The Cu—Ni—Si based alloy strip according to claim 1, wherein the 0.2% proof stress is 600 MPa or more. Zn、Sn、Mg、Fe、Ti、Zr、Cr、Al、P、Mn、Agのうち1種類以上を総量で0.005〜2.0質量%含有する請求項1又は2に記載のCu−Ni−Si系合金条。 The Cu- according to claim 1 or 2, which contains 0.005 to 2.0% by mass of one or more of Zn, Sn, Mg, Fe, Ti, Zr, Cr, Al, P, Mn, and Ag in a total amount. Ni—Si based alloy strip.
JP2019057779A 2019-03-26 2019-03-26 Cu-Ni-Si BASED ALLOY STRIP EXCELLENT IN STRENGTH AND BENDABILITY IN ROLLING PARALLEL DIRECTION AND ROLLING RECTANGULAR DIRECTION Pending JP2020158817A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019057779A JP2020158817A (en) 2019-03-26 2019-03-26 Cu-Ni-Si BASED ALLOY STRIP EXCELLENT IN STRENGTH AND BENDABILITY IN ROLLING PARALLEL DIRECTION AND ROLLING RECTANGULAR DIRECTION
KR1020200034833A KR102345805B1 (en) 2019-03-26 2020-03-23 Cu-Ni-Si-BASED ALLOY STRIP EXCELLENT IN STRENGTH AND BENDING WORKABILITY IN ROLLING PARALLEL DIRECTION AND ROLLING ORTHOGONAL DIRECTION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019057779A JP2020158817A (en) 2019-03-26 2019-03-26 Cu-Ni-Si BASED ALLOY STRIP EXCELLENT IN STRENGTH AND BENDABILITY IN ROLLING PARALLEL DIRECTION AND ROLLING RECTANGULAR DIRECTION

Publications (1)

Publication Number Publication Date
JP2020158817A true JP2020158817A (en) 2020-10-01

Family

ID=72642090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019057779A Pending JP2020158817A (en) 2019-03-26 2019-03-26 Cu-Ni-Si BASED ALLOY STRIP EXCELLENT IN STRENGTH AND BENDABILITY IN ROLLING PARALLEL DIRECTION AND ROLLING RECTANGULAR DIRECTION

Country Status (2)

Country Link
JP (1) JP2020158817A (en)
KR (1) KR102345805B1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080428A (en) 1998-08-31 2000-03-21 Kobe Steel Ltd Copper alloy sheet excellent in bendability
JP4408275B2 (en) 2005-09-29 2010-02-03 日鉱金属株式会社 Cu-Ni-Si alloy with excellent strength and bending workability
JP5281031B2 (en) * 2010-03-31 2013-09-04 Jx日鉱日石金属株式会社 Cu-Ni-Si alloy with excellent bending workability
JP5417366B2 (en) 2011-03-16 2014-02-12 Jx日鉱日石金属株式会社 Cu-Ni-Si alloy with excellent bending workability
JP5610643B2 (en) 2012-03-28 2014-10-22 Jx日鉱日石金属株式会社 Cu-Ni-Si-based copper alloy strip and method for producing the same
JP6366298B2 (en) * 2014-02-28 2018-08-01 Dowaメタルテック株式会社 High-strength copper alloy sheet material and manufacturing method thereof

Also Published As

Publication number Publication date
KR20200115224A (en) 2020-10-07
KR102345805B1 (en) 2022-01-03

Similar Documents

Publication Publication Date Title
JP5117604B1 (en) Cu-Ni-Si alloy and method for producing the same
JP4408275B2 (en) Cu-Ni-Si alloy with excellent strength and bending workability
JP5417366B2 (en) Cu-Ni-Si alloy with excellent bending workability
WO2012121109A1 (en) Cu-Ni-Si BASED ALLOY AND PROCESS FOR MANUFACTURING SAME
JP5619389B2 (en) Copper alloy material
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
KR101917416B1 (en) Copper-cobalt-silicon alloy for electrode material
JP2017179568A (en) Copper alloy sheet material and manufacturing method of copper alloy sheet material
WO2013161351A1 (en) Cu-Ni-Si TYPE COPPER ALLOY
JP5539932B2 (en) Cu-Co-Si alloy with excellent bending workability
WO2011122490A1 (en) Cu-co-si alloy material
JP6222885B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
JP6228725B2 (en) Cu-Co-Si alloy and method for producing the same
JP2016199808A (en) Cu-Co-Si-BASED ALLOY AND PRODUCTION METHOD THEREFOR
US10358697B2 (en) Cu—Co—Ni—Si alloy for electronic components
JP7430502B2 (en) Copper alloy wire and electronic equipment parts
JP4175920B2 (en) High strength copper alloy
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2020158817A (en) Cu-Ni-Si BASED ALLOY STRIP EXCELLENT IN STRENGTH AND BENDABILITY IN ROLLING PARALLEL DIRECTION AND ROLLING RECTANGULAR DIRECTION
JP7355569B2 (en) Copper alloys, copper alloy products and electronic equipment parts
JP6246454B2 (en) Cu-Ni-Si alloy and method for producing the same
JP2016183418A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2016211078A (en) Cu-Ni-Si-BASED ALLOY AND MANUFACTURING METHOD THEREFOR
JP2013147687A (en) Titanium copper excellent in bendability
JP2020158818A (en) Cu-Co-Si BASED COPPER ALLOY STRIP EXCELLENT IN BENDABILITY AND SMOOTH FLEXURE SKIN