JP2020158818A - Cu-Co-Si BASED COPPER ALLOY STRIP EXCELLENT IN BENDABILITY AND SMOOTH FLEXURE SKIN - Google Patents

Cu-Co-Si BASED COPPER ALLOY STRIP EXCELLENT IN BENDABILITY AND SMOOTH FLEXURE SKIN Download PDF

Info

Publication number
JP2020158818A
JP2020158818A JP2019057780A JP2019057780A JP2020158818A JP 2020158818 A JP2020158818 A JP 2020158818A JP 2019057780 A JP2019057780 A JP 2019057780A JP 2019057780 A JP2019057780 A JP 2019057780A JP 2020158818 A JP2020158818 A JP 2020158818A
Authority
JP
Japan
Prior art keywords
copper alloy
alloy strip
skin
bendability
based copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019057780A
Other languages
Japanese (ja)
Inventor
英嗣 外村
Hidetsugu Tonomura
英嗣 外村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2019057780A priority Critical patent/JP2020158818A/en
Publication of JP2020158818A publication Critical patent/JP2020158818A/en
Pending legal-status Critical Current

Links

Abstract

To provide a Cu-Co-Si based copper alloy strip capable of improving bendability and the rough surface (flexure skin) of a flexure portion.SOLUTION: The Cu-Co-Si based copper alloy strip excellent in bendability and flexure skin includes Co of 0.5-3.0 mass%, Si of 0.1-1.0 mass% and the remainder consisting of copper and inevitable impurities; and when setting an average grain size by a cutting method specified in JIS-H3130 to Gs (μm) and a plate thickness to t (μm), Gs/t is 0.30 or more.SELECTED DRAWING: Figure 1

Description

本発明は、例えばコネクタ、端子、リレ−、スイッチ等の材料に好適なCu−Co−Si系銅合金条に関する。 The present invention relates to Cu—Co—Si based copper alloy strips suitable for materials such as connectors, terminals, relays, switches and the like.

近年、電子機器の小型化に伴い、電気・電子部品の小型化が進んでいる。そして、これら部品に使用される銅合金には良好な強度、導電率が要求される。この要求に応じ、従来のりん青銅や黄銅といった固溶強化型銅合金に替わり、高い強度及び導電率を有するコルソン合金等の析出強化型銅合金が使用され、その需要は増加しつつある。
コルソン合金の中でもCu−Co−Si系銅合金は比較的高い強度と高い導電率を兼ね備えている合金系であり、その強化機構は、Cuマトリックス中にCo−Si系の金属間化合物粒子が析出することにより強度及び導電率を向上させたものである。
In recent years, along with the miniaturization of electronic devices, the miniaturization of electrical and electronic components has progressed. The copper alloy used for these parts is required to have good strength and conductivity. In response to this demand, precipitation-strengthened copper alloys such as Corson alloys having high strength and conductivity have been used in place of conventional solid-melt reinforced copper alloys such as phosphor bronze and brass, and the demand for them is increasing.
Among Corson alloys, Cu-Co-Si-based copper alloy is an alloy-based alloy that has relatively high strength and high conductivity, and its strengthening mechanism is that Co-Si-based intermetallic compound particles are precipitated in the Cu matrix. By doing so, the strength and conductivity are improved.

一般に、強度と曲げ加工性は相反する性質であり、Cu−Co−Si系銅合金においても高強度を維持しつつ曲げ加工性の改善が望まれている。
ここで、端子の製造工程において、接点の接触不良は主な不良の一つであり、曲げ性不足による端子の折れはもちろんのこと、端子の表面が粗いことによる接触抵抗の増大および導通不良が原因として挙げられる。従って、曲げ部は、クラックが入らないのみならず、できるだけ平滑な表面であることが望まれる。
In general, strength and bending workability are contradictory properties, and it is desired to improve bending workability while maintaining high strength even in Cu—Co—Si based copper alloys.
Here, in the terminal manufacturing process, poor contact contact is one of the main defects, and not only the terminal is broken due to insufficient bendability, but also the contact resistance is increased due to the rough surface of the terminal and the continuity is poor. It is mentioned as a cause. Therefore, it is desired that the bent portion not only has no cracks but also has a smooth surface as much as possible.

Cu−Co−Si系銅合金の曲げ加工性の改善方法として、特許文献1〜3に記載されているように結晶方位を制御する方法がある。特許文献1、2には{001}<100>の面積割合を50%以上とすることが記載されている。又、特許文献3には{110}<112>の面積割合を20%以下、{121}<111>の面積割合を20%以下、{001}<100>の面積割合を5〜60%とすることが記載されている。 As a method for improving the bending workability of the Cu—Co—Si based copper alloy, there is a method for controlling the crystal orientation as described in Patent Documents 1 to 3. Patent Documents 1 and 2 describe that the area ratio of {001} <100> is 50% or more. Further, in Patent Document 3, the area ratio of {110} <112> is 20% or less, the area ratio of {121} <111> is 20% or less, and the area ratio of {001} <100> is 5 to 60%. It is stated that it should be done.

また、曲げ肌の改善方法として、特許文献4には、板厚中央部に比べて表層のせん断帯の形成を抑え、材料表層における析出物の個数Nsと、板厚中央部における析出物の個数Ncの比Ns/Ncを1.0以下にすることが記載されている。 Further, as a method for improving the bending surface, Patent Document 4 states that the formation of a shear band on the surface layer is suppressed as compared with the central portion of the plate thickness, the number of precipitates on the surface layer of the material Ns, and the number of precipitates on the central portion of the plate thickness. It is described that the ratio Ns / Nc of Nc is 1.0 or less.

特開2006−283059号公報Japanese Unexamined Patent Publication No. 2006-283059 特開2006−152392号公報Japanese Unexamined Patent Publication No. 2006-152392 特開2011−017072号公報Japanese Unexamined Patent Publication No. 2011-017072 特開2012−207264号公報Japanese Unexamined Patent Publication No. 2012-207264

しかしながら、上述の技術では、曲げ加工性および曲げ肌の平滑性を両立させることは困難であった。
これらの事情を鑑みて、本発明は上記の課題を解決するためになされたものであり、曲げ加工性および曲げ部の肌荒れ(曲げ肌)を改善したCu−Co−Si系銅合金条の提供を目的とする。
However, with the above technique, it has been difficult to achieve both bending workability and smoothness of the bent skin.
In view of these circumstances, the present invention has been made to solve the above problems, and provides Cu—Co—Si copper alloy strips having improved bending workability and rough skin (bending surface) of bent portions. With the goal.

本発明者らは、曲げ部の肌荒れ(曲げ肌)を改善する方策として、曲げ肌のシワの個数を低減させることに着目した。
曲げ肌のシワは粒界に発生する為、シワの低減のためには結晶粒をできるだけ微細化することが考えられる。しかしながら、結晶粒を微細化しても、ミクロレベルでは粒界に細かなシワが発生してしまうのに加え、銅条製造時の板厚方向の冷却速度のバラつきに起因する不均一な結晶粒の並びや分布から、局所的にシワが発生する可能性がある。
The present inventors have focused on reducing the number of wrinkles on the bent skin as a measure for improving the rough skin (bent skin) on the bent portion.
Since wrinkles on the bent skin occur at the grain boundaries, it is conceivable to make the crystal grains as fine as possible in order to reduce the wrinkles. However, even if the crystal grains are made finer, fine wrinkles are generated at the grain boundaries at the micro level, and in addition, non-uniform crystal grains due to variations in the cooling rate in the plate thickness direction during copper strip production. Wrinkles may occur locally due to the arrangement and distribution.

そこで、本発明者らは、平均結晶粒径が板厚の1/3以上である場合にシワがほとんど発生しないことを見出した。このようにすると、材料表面の結晶粒が単結晶に近くなり、結晶粒界の個数が従来の銅条より大幅に少なくなることで、シワの発生する起点が少なくなると考えらえる。
さらに、このようにすると、従来の銅条においてシワが発生する最少の曲げ半径よりもさらに小さい半径でもシワ無く曲げられるので、曲げ性の向上にも寄与することが判明した。
Therefore, the present inventors have found that wrinkles hardly occur when the average crystal grain size is 1/3 or more of the plate thickness. By doing so, it is considered that the crystal grains on the surface of the material become close to a single crystal and the number of crystal grain boundaries is significantly smaller than that of the conventional copper strip, so that the starting point where wrinkles occur is reduced.
Further, it has been found that in this way, even a radius smaller than the minimum bending radius at which wrinkles occur in the conventional copper strip can be bent without wrinkles, which contributes to the improvement of bendability.

上記の目的を達成するために、本発明のCu−Co−Si系銅合金条は、0.5〜3.0質量%のCoと、0.1〜1.0質量%のSiを含有し、残部が銅及び不可避的不純物からなり、JIS−H3130に規定する切断法による平均結晶粒径をGs(μm)、板厚をt(μm)としたとき、Gs/tが0.30以上である、曲げ加工性および曲げ肌に優れたCu−Co−Si系銅合金条である。 In order to achieve the above object, the Cu—Co—Si based copper alloy strip of the present invention contains 0.5 to 3.0% by mass of Co and 0.1 to 1.0% by mass of Si. The balance is composed of copper and unavoidable impurities. When the average crystal grain size by the cutting method specified in JIS-H3130 is Gs (μm) and the plate thickness is t (μm), Gs / t is 0.30 or more. A Cu—Co—Si copper alloy strip having excellent bending workability and bending surface.

更にSn、Zn、Mg、Fe、Ti、Zr、Cr、Al、P、Mn、Ni及びAgの群から選ばれる1種以上を総量で0.005〜2.5質量%含有することが好ましい。 Further, it is preferable to contain 0.005 to 2.5% by mass in total of one or more selected from the group of Sn, Zn, Mg, Fe, Ti, Zr, Cr, Al, P, Mn, Ni and Ag.

本発明によれば、曲げ加工性および曲げ部の肌荒れ(曲げ肌)を改善したCu−Co−Si系銅合金条が得られる。 According to the present invention, a Cu—Co—Si based copper alloy strip having improved bending workability and rough skin (bending surface) of a bent portion can be obtained.

W曲げ及び曲げシワの個数を測定する方法を説明する図である。It is a figure explaining the method of measuring the number of W bending and bending wrinkles. 曲げシワを示す図である。It is a figure which shows the bending wrinkle.

以下、本発明の実施形態に係るCu−Co−Si系銅合金条について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。 Hereinafter, Cu—Co—Si based copper alloy strips according to the embodiment of the present invention will be described. In the present invention,% means mass% unless otherwise specified.

(組成)
[Co及びSi]
本発明の実施形態に係るCu−Co−Si系銅合金条は、0.5〜3.0質量%のCoと、0.1〜1.0質量%のSiを含有し、残部が銅及び不可避的不純物からなる。
Co及びSiは、時効処理を行うことにより、Co−Si系の金属間化合物として析出する。この化合物は強度を向上させ、析出することによりCuマトリックス中に固溶したCo及びSiが減少するため導電率が向上する。
しかし、Co濃度が0.5%未満又はSi濃度が0.1%未満になると、強度が低下する。一方、Co濃度が3.0%を超えるか又はSi濃度が1.0%を超えると、熱間加工性が劣化する。
(composition)
[Co and Si]
The Cu—Co—Si based copper alloy strip according to the embodiment of the present invention contains 0.5 to 3.0% by mass of Co and 0.1 to 1.0% by mass of Si, and the balance is copper and Consists of unavoidable impurities.
Co and Si are precipitated as Co—Si-based intermetallic compounds by aging treatment. This compound improves the strength, and by precipitating, Co and Si dissolved in the Cu matrix are reduced, so that the conductivity is improved.
However, when the Co concentration is less than 0.5% or the Si concentration is less than 0.1%, the strength decreases. On the other hand, if the Co concentration exceeds 3.0% or the Si concentration exceeds 1.0%, the hot workability deteriorates.

[添加元素]
合金中に、更にSn、Zn、Mg、Fe、Ti、Zr、Cr、Al、P、Mn、Ni及びAgの群から選ばれる少なくとも1種以上を総量で0.005〜2.5質量%含有してもよい。
これらの元素は、合金条の強度上昇に寄与する。さらに、Znは、合金条にSnめっきした際のめっき層の耐熱剥離性の向上に効果がある。Mgは応力緩和特性の向上に効果がある。Zr、Cr、Mnは熱間加工性の向上に効果がある。
上記元素の含有量が総量で0.005%未満であると上記の効果が得られず、2.5%を超えると導電率が低下して電気・電子部品材料として適さない場合がある。
[Additional elements]
The alloy further contains at least one selected from the group of Sn, Zn, Mg, Fe, Ti, Zr, Cr, Al, P, Mn, Ni and Ag in a total amount of 0.005 to 2.5% by mass. You may.
These elements contribute to increasing the strength of the alloy strips. Further, Zn is effective in improving the heat-resistant peeling property of the plating layer when the alloy strip is Sn-plated. Mg is effective in improving stress relaxation characteristics. Zr, Cr, and Mn are effective in improving hot workability.
If the total content of the elements is less than 0.005%, the above effects cannot be obtained, and if it exceeds 2.5%, the conductivity may decrease and the material may not be suitable as an electric / electronic component material.

[Gs/t]
JIS−H3130に規定する切断法による平均結晶粒径をGs(μm)、合金条の板厚をt(μm)としたとき、Gs/tが0.30以上である。
上記したように、平均結晶粒径Gsが板厚tの1/3以上であると、材料表面の結晶粒が単結晶に近くなり、結晶粒界の個数が従来の銅条より大幅に少なくなることで、シワの発生する起点が少なくなる。Gs/tが0.50以上であると好ましい。
[Gs / t]
When the average crystal grain size by the cutting method specified in JIS-H3130 is Gs (μm) and the plate thickness of the alloy strip is t (μm), Gs / t is 0.30 or more.
As described above, when the average crystal grain size Gs is 1/3 or more of the plate thickness t, the crystal grains on the surface of the material become close to a single crystal, and the number of crystal grain boundaries is significantly smaller than that of the conventional copper strip. As a result, the starting point where wrinkles occur is reduced. It is preferable that Gs / t is 0.50 or more.

Gsが3μm以上で、板厚t(μm)以下であることが好ましい。t(μm)が9〜1000(μm)であることが好ましい。
Gsが3μm未満であると、条を曲げた時に結晶粒界から割れが多く発生し、シワの個数が多くなる場合がある。
It is preferable that Gs is 3 μm or more and the plate thickness is t (μm) or less. It is preferable that t (μm) is 9 to 1000 (μm).
If Gs is less than 3 μm, many cracks may occur from the grain boundaries when the strips are bent, and the number of wrinkles may increase.

合金条の0.2%耐力は、圧延方向で500〜950MPaが好ましく、600〜950MPaがより好ましい。なお、0.2%耐力は、JIS−Z2241に従い引張試験して求める。引張試験の条件は、試験片幅12.7mm、室温(15〜35℃)、引張速度5mm/min、ゲージ長さ50mmとした。
銅合金条の導電率(%IACS)は、好ましくは50%IACS以上、より好ましくは60%IACS以上である。圧延平行方向の試料について、JISH0505に準拠し、ダブルブリッジ装置を用いた四端子法により求めた体積抵抗率から導電率(%IACS)を算出した。
The 0.2% proof stress of the alloy strip is preferably 500 to 950 MPa, more preferably 600 to 950 MPa in the rolling direction. The 0.2% proof stress is obtained by a tensile test according to JIS-Z2241. The conditions of the tensile test were a test piece width of 12.7 mm, room temperature (15 to 35 ° C.), a tensile speed of 5 mm / min, and a gauge length of 50 mm.
The conductivity (% IACS) of the copper alloy strip is preferably 50% IACS or higher, more preferably 60% IACS or higher. For the sample in the rolling parallel direction, the conductivity (% IACS) was calculated from the volume resistivity obtained by the four-terminal method using a double bridge device in accordance with JISH0505.

<製造方法>
本発明のCu−Co−Si系銅合金は、通常、インゴットを熱間圧延、冷間圧延、溶体化処理、時効処理、最終冷間圧延の順で行って製造することができる。最終冷間圧延後に歪取り焼鈍を行っても良い。
平均結晶粒径を制御するためには、溶体化の温度および加熱時間を調整することが効果的である。溶体化処理では添加元素を固溶させるとともに、Gs/tが0.30以上になるよう、熱量を与える。溶体化温度は特に規定されるものではなく、インゴットを融点以下の温度で、十分再結晶する時間の熱量を加えることが肝要である。状態図を参考にしても良い。
銅に添加元素を加えた場合(コルソン合金)は500〜600℃まで再結晶温度が増加することと、銅の融点が1350℃前後であることを考慮すると、溶体化温度が高温であるほど加熱時間も短時間で済むため、溶体化処理温度900〜1300℃で60〜300秒が好ましい。
<Manufacturing method>
The Cu—Co—Si based copper alloy of the present invention can usually be produced by performing an ingot in the order of hot rolling, cold rolling, solution heat treatment, aging treatment, and final cold rolling. Strain removal annealing may be performed after the final cold rolling.
In order to control the average crystal grain size, it is effective to adjust the temperature and heating time of the solution. In the solution treatment, the added element is dissolved and a calorific value is given so that Gs / t becomes 0.30 or more. The solution temperature is not particularly specified, and it is important to add enough heat to recrystallize the ingot at a temperature below the melting point. You may refer to the state diagram.
Considering that the recrystallization temperature increases from 500 to 600 ° C when an additive element is added to copper (Colson alloy) and that the melting point of copper is around 1350 ° C, the higher the solution temperature, the higher the heating. Since the time is short, it is preferable that the solution treatment temperature is 900 to 1300 ° C. for 60 to 300 seconds.

時効処理は、例えば400〜600℃で2〜20時間とすることができ、最終冷間圧延は例えば加工度5〜40%で行うことができる。
歪取り焼鈍は、通常Ar等の不活性雰囲気中で250〜600℃で5〜300秒間行うことができる。さらに高強度化のために溶体化処理と時効処理との間に冷間圧延を行っても良い。また、溶体化処理後に最終冷間圧延、時効処理の順に行い、これら工程の順序を入れ替えても良い。
The aging treatment can be carried out at 400 to 600 ° C. for 2 to 20 hours, and the final cold rolling can be carried out at a working degree of 5 to 40%, for example.
The strain-removing annealing can usually be carried out at 250 to 600 ° C. for 5 to 300 seconds in an inert atmosphere such as Ar. Cold rolling may be performed between the solution treatment and the aging treatment in order to further increase the strength. Further, after the solution heat treatment, the final cold rolling and the aging treatment may be performed in this order, and the order of these steps may be changed.

高周波溶解炉にてアルゴン雰囲気下、内径110mm、深さ230mmのアルミナ又はマグネシア製るつぼ中で電気銅2.50Kgを溶解した。表1の組成に従い銅以外の元素を添加し、溶湯温度を1300℃に調整した後、溶湯を鋳型(材質:鋳鉄)で30×60×120mmのインゴットに鋳造し、以下の工程で、銅合金条を作製した。 2.50 kg of electrolytic copper was dissolved in an alumina or magnesia crucible having an inner diameter of 110 mm and a depth of 230 mm in an argon atmosphere in a high-frequency melting furnace. Elements other than copper are added according to the composition shown in Table 1, and the molten metal temperature is adjusted to 1300 ° C. Then, the molten metal is cast into an ingot of 30 × 60 × 120 mm with a mold (material: cast iron), and a copper alloy is formed in the following steps. A strip was made.

(工程1)950℃で3時間加熱した後、厚さ10mmまで熱間圧延後、水冷した。
(工程2)熱間圧延後の板表面の酸化スケールをグラインダーで研削、除去した。
(工程3)板厚0.235mmまで圧下率70%で冷間圧延した。
(工程4)溶体化処理として、表1に示す温度で180秒間、大気中で加熱し、水中で急冷した。
(工程5)時効処理として電気炉を用い550℃で5時間、Ar雰囲気中で加熱した。
(工程6)板厚0.20mmまで最終冷間圧延を行った。
(工程7)歪取り焼鈍として、400℃で10秒間、Ar雰囲気中で加熱した。
(Step 1) After heating at 950 ° C. for 3 hours, hot rolling to a thickness of 10 mm was performed, and then water cooling was performed.
(Step 2) The oxide scale on the plate surface after hot rolling was ground and removed with a grinder.
(Step 3) Cold rolling was performed to a plate thickness of 0.235 mm at a rolling reduction of 70%.
(Step 4) As a solution treatment, the mixture was heated in the air at the temperature shown in Table 1 for 180 seconds and rapidly cooled in water.
(Step 5) As an aging treatment, an electric furnace was used and heated at 550 ° C. for 5 hours in an Ar atmosphere.
(Step 6) The final cold rolling was performed to a plate thickness of 0.20 mm.
(Step 7) For strain removing annealing, the mixture was heated at 400 ° C. for 10 seconds in an Ar atmosphere.

このようにして作製した試料について、以下の諸特性の評価を行った。
(1) 結晶組織
工程7で得られた条につき、圧延方向に平行で板厚方向に平行な断面の組織をエッチング(水-NH(40vol%)−H(0.6vol%))により現出させ、JIS−H3130に準拠した切断法で、光学顕微鏡を使用して結晶粒径を測定した。
The following characteristics of the sample prepared in this manner were evaluated.
(1) Crystal structure For the strips obtained in step 7, the structure of the cross section parallel to the rolling direction and parallel to the plate thickness direction is etched (water-NH 3 (40vol%) -H 2 O 2 (0.6vol%)). The crystal grain size was measured using an optical microscope by a cutting method based on JIS-H3130.

(2)0.2%耐力及び導電率
0.2%耐力は引張試験機を用いて上述のように測定した。
導電率は上述のように測定した。
(3)曲げ性
図1に示すように、曲げ性の評価として、JIS−H3130に準拠して、曲げ半径0.2mm、圧延平行方向(Bad Way方向)に90°W曲げ加工を行った。曲げ加工された部分の圧延方向Lに平行で板厚方向に平行方向の断面Sを機械研磨及びバフ研磨で鏡面に仕上げ、光学顕微鏡(倍率50倍)で観察し、0.32mmの視野中の曲げシワの個数を数えた。
図2に示すように、曲げシワは、圧延方向Lから曲がってゆく筋として見える。
曲げシワの個数が5以下であれば、曲げ加工性および曲げ部の肌荒れが改善される。
(2) 0.2% proof stress and conductivity 0.2% proof stress was measured as described above using a tensile tester.
The conductivity was measured as described above.
(3) Bendability As shown in FIG. 1, as an evaluation of bendability, 90 ° W bending was performed in a rolling parallel direction (Bad Way direction) with a bending radius of 0.2 mm in accordance with JIS-H3130. A cross section S parallel to the rolling direction L of the bent portion and parallel to the plate thickness direction was finished to a mirror surface by mechanical polishing and buffing, and observed with an optical microscope (magnification 50 times) in a field of view of 0.32 mm 2 . The number of bending wrinkles was counted.
As shown in FIG. 2, the bending wrinkles appear as streaks bending from the rolling direction L.
When the number of bending wrinkles is 5 or less, the bending workability and the rough skin of the bent portion are improved.

得られた結果を表1に示す。 The results obtained are shown in Table 1.

表1から明らかなように、各実施例の場合、Gs/tが0.30以上であり、曲げ部の肌荒れが改善された。
一方、Co及びSi濃度がいずれも規定範囲未満である比較例1の場合、0.2%耐力が500MPa未満に低下した。Co及びSi濃度がいずれも規定範囲を超えた比較例2の場合、熱間圧延時に割れが発生した。
添加元素の総量が規定範囲を超えた比較例3の場合、導電率が50%IACS未満に低下するとともに、Gs/tが0.30未満となって曲げ部の肌荒れが劣化した。添加元素量が規定値を超えると、析出物が粒径を抑制するピン止め効果が表れたと推察される。
溶体化処理の温度が高い比較例4の場合、溶体化時に高温で材料が変形し、評価不能であった。
溶体化処理の温度が低い比較例5の場合、Gs/tが0.30未満となって曲げ部の肌荒れが劣化した。これは、厚さに比べて結晶粒界の個数が増加し、粒界からの割れが多数発生したためと思われる。
As is clear from Table 1, in the case of each example, Gs / t was 0.30 or more, and the rough skin of the bent portion was improved.
On the other hand, in the case of Comparative Example 1 in which both the Co and Si concentrations were less than the specified range, the 0.2% proof stress was reduced to less than 500 MPa. In the case of Comparative Example 2 in which both the Co and Si concentrations exceeded the specified range, cracks occurred during hot rolling.
In the case of Comparative Example 3 in which the total amount of the added elements exceeded the specified range, the conductivity was reduced to less than 50% IACS, and Gs / t was less than 0.30, resulting in deterioration of rough skin at the bent portion. When the amount of added elements exceeds the specified value, it is presumed that the precipitate has a pinning effect of suppressing the particle size.
In the case of Comparative Example 4 in which the temperature of the solution treatment was high, the material was deformed at a high temperature during solution formation, and evaluation was not possible.
In the case of Comparative Example 5 in which the temperature of the solution treatment was low, Gs / t was less than 0.30, and the rough skin of the bent portion deteriorated. It is considered that this is because the number of crystal grain boundaries increased compared with the thickness and many cracks from the grain boundaries occurred.

Claims (2)

0.5〜3.0質量%のCoと、0.1〜1.0質量%のSiとを含有し、残部が銅及び不可避的不純物からなり、JIS−H3130に規定する切断法による平均結晶粒径をGs(μm)、板厚をt(μm)としたとき、Gs/tが0.30以上である、曲げ加工性および曲げ肌に優れたCu−Co−Si系銅合金条。 Containing 0.5 to 3.0% by mass of Co and 0.1 to 1.0% by mass of Si, the balance is composed of copper and unavoidable impurities, and average crystals by the cutting method specified in JIS-H3130. A Cu—Co—Si copper alloy strip having excellent bending workability and bending surface, having Gs / t of 0.30 or more when the particle size is Gs (μm) and the plate thickness is t (μm). 更にSn、Zn、Mg、Fe、Ti、Zr、Cr、Al、P、Mn、Ni及びAgの群から選ばれる1種以上を総量で0.005〜2.5質量%含有する請求項1に記載のCu−Co−Si系銅合金条。 Further, claim 1 contains 0.005 to 2.5% by mass in total of one or more selected from the group of Sn, Zn, Mg, Fe, Ti, Zr, Cr, Al, P, Mn, Ni and Ag. The Cu—Co—Si based copper alloy strip described.
JP2019057780A 2019-03-26 2019-03-26 Cu-Co-Si BASED COPPER ALLOY STRIP EXCELLENT IN BENDABILITY AND SMOOTH FLEXURE SKIN Pending JP2020158818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019057780A JP2020158818A (en) 2019-03-26 2019-03-26 Cu-Co-Si BASED COPPER ALLOY STRIP EXCELLENT IN BENDABILITY AND SMOOTH FLEXURE SKIN

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019057780A JP2020158818A (en) 2019-03-26 2019-03-26 Cu-Co-Si BASED COPPER ALLOY STRIP EXCELLENT IN BENDABILITY AND SMOOTH FLEXURE SKIN

Publications (1)

Publication Number Publication Date
JP2020158818A true JP2020158818A (en) 2020-10-01

Family

ID=72642019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019057780A Pending JP2020158818A (en) 2019-03-26 2019-03-26 Cu-Co-Si BASED COPPER ALLOY STRIP EXCELLENT IN BENDABILITY AND SMOOTH FLEXURE SKIN

Country Status (1)

Country Link
JP (1) JP2020158818A (en)

Similar Documents

Publication Publication Date Title
JP4937815B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5261500B2 (en) Cu-Ni-Si-Mg alloy with improved conductivity and bendability
JP4418028B2 (en) Cu-Ni-Si alloy for electronic materials
JP3699701B2 (en) Easy-to-process high-strength, high-conductivity copper alloy
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
JP5619389B2 (en) Copper alloy material
KR20110088595A (en) Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor
JP2013047360A (en) Cu-Ni-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
WO2009123137A1 (en) Cu-ni-si-co-cr alloy for electronic material
KR101917416B1 (en) Copper-cobalt-silicon alloy for electrode material
EP2623619A1 (en) Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING SAME
JP4620173B1 (en) Cu-Co-Si alloy material
WO2010067863A1 (en) Ni-Si-Co COPPER ALLOY AND MANUFACTURING METHOD THEREFOR
JP6222885B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
JP6214126B2 (en) Titanium copper and method for producing the same, as well as copper products and electronic device parts using titanium copper
JP4708497B1 (en) Cu-Co-Si alloy plate and method for producing the same
JP6228725B2 (en) Cu-Co-Si alloy and method for producing the same
JP4175920B2 (en) High strength copper alloy
JP7430502B2 (en) Copper alloy wire and electronic equipment parts
JP2020158818A (en) Cu-Co-Si BASED COPPER ALLOY STRIP EXCELLENT IN BENDABILITY AND SMOOTH FLEXURE SKIN
JP2011190469A (en) Copper alloy material, and method for producing the same
WO2013121620A1 (en) Corson alloy and method for manufacturing same
JP6246454B2 (en) Cu-Ni-Si alloy and method for producing the same
JP7355569B2 (en) Copper alloys, copper alloy products and electronic equipment parts
JP2016183418A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL