JP6719316B2 - Copper alloy plate material for heat dissipation member and manufacturing method thereof - Google Patents

Copper alloy plate material for heat dissipation member and manufacturing method thereof Download PDF

Info

Publication number
JP6719316B2
JP6719316B2 JP2016145296A JP2016145296A JP6719316B2 JP 6719316 B2 JP6719316 B2 JP 6719316B2 JP 2016145296 A JP2016145296 A JP 2016145296A JP 2016145296 A JP2016145296 A JP 2016145296A JP 6719316 B2 JP6719316 B2 JP 6719316B2
Authority
JP
Japan
Prior art keywords
rolling
copper alloy
heat dissipation
cooling
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016145296A
Other languages
Japanese (ja)
Other versions
JP2018016823A (en
Inventor
岳己 磯松
岳己 磯松
翔一 檀上
翔一 檀上
樋口 優
優 樋口
立彦 江口
立彦 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2016145296A priority Critical patent/JP6719316B2/en
Publication of JP2018016823A publication Critical patent/JP2018016823A/en
Application granted granted Critical
Publication of JP6719316B2 publication Critical patent/JP6719316B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、銅合金板材およびその製造方法に関し、特に、半導体、LEDの放熱部材に好適な銅合金板材およびその製造方法に関する。 The present invention relates to a copper alloy plate and a method for manufacturing the same, and more particularly to a copper alloy plate suitable for a semiconductor and a heat dissipation member of an LED and a method for manufacturing the same.

一般的に、半導体やLED(以下、半導体チップ)と放熱部材用銅合金板材の接合は、半導体チップと放熱部材用銅合金板材を250℃以上の高温で半田により接合している。この際、半導体チップと半田と放熱部材用銅合金板材の熱膨張係数が異なるため、室温に冷却した際に熱膨張係数の差により、モジュール全体で大きなひずみが生じる。ここで言う熱膨張は、温度の上昇によって物質の寸法が変化することを意味する。寸法の変化は各材質が有する熱膨張係数に比例する。半導体チップ、たとえばSiと銅合金板材では、Cuの熱膨張係数は16.6であるのに対しSiの熱膨張係数は2.6であるため、両者の熱膨張係数の差大きく、室温までの冷却時には半導体チップには圧縮応力が、銅合金板材には引張応力が加わる。このとき、最も熱膨張係数が高い半田は、銅板の板厚の10分の1以下と薄いため、半導体チップと銅合金板材の冷却時の収縮量を吸収できず、モジュール全体に大きな負荷がかかる。半導体モジュールに高いひずみが加わることで、変形による寸法変化だけでなく、寸法変化によって半導体の特性(バンド構造の変化)に影響を及ぼす。そのため、少しでも変化しにくい半導体モジュールが求められている。 Generally, a semiconductor or LED (hereinafter, semiconductor chip) and a copper alloy plate material for heat dissipation member are joined by soldering the semiconductor chip and the copper alloy plate material for heat dissipation member at a high temperature of 250° C. or higher. At this time, since the semiconductor chip, the solder, and the copper alloy plate material for the heat dissipation member have different thermal expansion coefficients, a large strain occurs in the entire module due to the difference in the thermal expansion coefficient when cooled to room temperature. Thermal expansion here means that the dimensions of a substance change with increasing temperature. The dimensional change is proportional to the coefficient of thermal expansion of each material. In semiconductor chips, for example, Si and copper alloy plate materials, the coefficient of thermal expansion of Cu is 16.6, whereas the coefficient of thermal expansion of Si is 2.6. During cooling, compressive stress is applied to the semiconductor chip and tensile stress is applied to the copper alloy plate material. At this time, since the solder having the highest thermal expansion coefficient is as thin as 1/10 or less of the thickness of the copper plate, the amount of shrinkage of the semiconductor chip and the copper alloy plate material during cooling cannot be absorbed, and a large load is applied to the entire module. .. When a high strain is applied to the semiconductor module, not only the dimensional change due to the deformation but also the semiconductor characteristic (change in band structure) is affected by the dimensional change. Therefore, there is a demand for a semiconductor module that does not easily change.

そこで、放熱部材用銅合金板材の縦弾性係数を低下させることで、熱膨張、収縮時の寸法変化による負荷応力の低減が期待されている。縦弾性係数が高い材料と低い材料を用意し、弾性変形域内で同じ寸法変化を加えると、弾性係数が低い材料の方が、負荷応力が低くなる。 Therefore, it is expected that the load stress due to the dimensional change at the time of thermal expansion and contraction will be reduced by lowering the longitudinal elastic modulus of the copper alloy plate material for the heat dissipation member. When a material having a high longitudinal elastic modulus and a material having a low longitudinal elastic modulus are prepared and the same dimensional change is applied in the elastic deformation region, the material having a lower elastic modulus has a lower load stress.

従来技術によれば、金属組織内の(122)面と(133)面の制御によって、曲げたわみ係数を高め、ばね特性を高めているが、半導体チップとの接合、冷却時の熱膨張係数差による負荷応力の解決はなされていない。 According to the prior art, by controlling the (122) plane and the (133) plane in the metallographic structure, the bending deflection coefficient is enhanced and the spring characteristics are enhanced. However, the difference in the coefficient of thermal expansion during joining with a semiconductor chip and during cooling. The load stress has not been solved by.

例えば、特許文献1では、(111)面の積分回折強度と、(220)面の積分回折強度を制御することで、圧延垂直方向の曲げたわみ係数を高め、放熱板材の熱収縮率を適正範囲に調整しているが、半導体チップとの接合、冷却時の熱膨張係数差による負荷応力の解決は行っていない。また、圧延垂直方向の1方向のみであり、半導体チップの等方的な熱膨張、収縮に対応できない。さらに、圧延垂直方向のたわみ係数を115GPa以上に高めており、ヤング率に換算すると、約130GPa以上に制御している。 For example, in Patent Document 1, by controlling the integrated diffraction intensity of the (111) plane and the integrated diffraction intensity of the (220) plane, the bending deflection coefficient in the vertical direction of rolling is increased, and the heat shrinkage rate of the heat dissipation plate material falls within an appropriate range. However, the load stress due to the difference in the coefficient of thermal expansion during bonding with the semiconductor chip and during cooling has not been solved. Further, since it is only one direction of the vertical direction of rolling, it cannot cope with isotropic thermal expansion and contraction of the semiconductor chip. Further, the deflection coefficient in the vertical direction of rolling is increased to 115 GPa or more, and when converted to Young's modulus, it is controlled to about 130 GPa or more.

また、特許文献2では、TD(122)となす角度10°以下の面積率、TD(133)となす角10°以下の結晶方位面積率10%以上で、たわみ係数を増加させているが、半導体チップとの接合、冷却時の熱膨張係数差による負荷応力の解決は行っていない。また、圧延垂直方向の1方向のみであり、半導体チップの等方的な熱膨張、収縮に対応できない。 Further, in Patent Document 2, the deflection coefficient is increased at an area ratio of 10° or less with TD (122) and a crystal orientation area ratio of 10% or more with an angle of 10° or less with TD (133). We have not solved the load stress due to the difference in the coefficient of thermal expansion during bonding with the semiconductor chip and during cooling. Further, since it is only one direction of the vertical direction of rolling, it cannot cope with isotropic thermal expansion and contraction of the semiconductor chip.

特許第5453565号Patent No. 5453565 特開2015−990号公報JP, 2005-990, A

本発明では、放熱部材用銅合金板材と半導体チップとの熱膨張係数の差によって生じる半導体モジュール全体の負荷応力を低減するために、圧延平行方向から垂直方向にかけて連続的に縦弾性係数が低く、さらに強度と導電率に優れた放熱部材用銅合金板材およびその製造方法を提供することを目的とする。 In the present invention, in order to reduce the load stress of the entire semiconductor module caused by the difference in thermal expansion coefficient between the copper alloy plate material for heat dissipation member and the semiconductor chip, the longitudinal elastic modulus is continuously low from the rolling parallel direction to the vertical direction, It is another object of the present invention to provide a copper alloy sheet material for a heat dissipation member, which is excellent in strength and conductivity, and a method for producing the same.

本発明の放熱部材用銅合金板材は、Snを0〜0.5wt%含有し、残部銅および不可避的不純物からなり、板材表面のEBSDを行った際に、結晶粒方位分布関数(ODF:Crystal Orientation Distribution Function)の、φ2=0°、Φ=0°、φ1=0から90°の範囲の方位密度が、平均で3.0以上40.0未満である。 The copper alloy plate material for heat dissipation members of the present invention contains 0 to 0.5 wt% of Sn, consists of the balance copper and unavoidable impurities, and has a crystal grain orientation distribution function (ODF: Crystal) when EBSD of the plate material surface is performed. Orientation Distribution Function), the azimuth density in the range of φ2=0°, φ=0°, φ1=0 to 90° is 3.0 or more and less than 40.0 on average.

本発明は、圧延平行方向から垂直方向にかけて連続的に縦弾性係数が低く、さらに強度導電率に優れた放熱部材用銅合金板材およびその製造方法を提供することができる。 INDUSTRIAL APPLICABILITY The present invention can provide a copper alloy sheet material for a heat dissipation member, which has a continuously low longitudinal elastic modulus from the rolling parallel direction to the vertical direction and is excellent in strength conductivity, and a manufacturing method thereof.

EBSDにより測定し、ODF(方位分布関数)解析から得られた、銅合金板材の代表的な結晶方位分布図である。It is a typical crystal orientation distribution diagram of the copper alloy plate material which was measured by EBSD and obtained from ODF (orientation distribution function) analysis.

以下、本発明の放熱部材用銅合金板材の実施の形態について詳細に説明する。
本発明の一実施形態は、Snを0〜0.5mass%含有し、残部がCuおよび不可避的不純物からなる合金組成を有し、圧延集合組織を有する電気電子機器用銅合金板材であって、前記圧延集合組織は、EBSD法による集合組織解析から得られた、結晶粒方位分布関数(ODF:crystal orientation distribution function)のオイラー角、φ2=0°、Φ=0から10°、φ1=0から90°の範囲の方位密度が、平均で3.0以上40未満である、放熱部材用銅合金板材である。
Hereinafter, embodiments of the copper alloy sheet material for heat dissipation members of the present invention will be described in detail.
One embodiment of the present invention is a copper alloy plate material for electric and electronic equipment, which contains Sn in an amount of 0 to 0.5 mass% and has a balance of Cu and inevitable impurities, and has a rolling texture. The rolling texture is obtained from the texture analysis by the EBSD method, and the Euler angle of a crystal grain orientation distribution function (ODF: crystal orientation distribution function), φ2=0°, φ=0 to 10°, φ1=0 to The copper alloy plate material for heat dissipation members has an average orientation density in the range of 90° of 3.0 or more and less than 40.

ここで、銅合金板材とは、加工前であって所定の合金組成を有する銅合金素材を板状に加工したものを意味する。特に、板材とは、特定の厚みを有し形状的に安定しており面方向に広がりをもつものを指し、広義には条材を含むものとする。本発明において、板材の厚さは、特に限定されるものではないが、好ましくは0.05〜2.0mm、さらに好ましくは0.1〜1.5 mmである。なお、本発明の銅合金板材は、その特性を圧延板の所定の方向における原子面の集積率で規定するものであるが、これは銅合金板材としてそのような特性を有しておれば良いのであって、銅合金板材の形状は板材や条材に限定されるものではない。本発明では、管材も板材として解釈して取り扱うものとする。 Here, the copper alloy plate material means a plate-shaped copper alloy material having a predetermined alloy composition before being processed. In particular, the plate material refers to a material having a specific thickness, stable in shape, and spreading in the surface direction, and broadly includes a strip material. In the present invention, the thickness of the plate material is not particularly limited, but is preferably 0.05 to 2.0 mm, more preferably 0.1 to 1.5 mm. The copper alloy sheet material of the present invention defines its characteristics by the atomic plane accumulation rate in a predetermined direction of the rolled sheet, but it is sufficient that the copper alloy sheet material has such characteristics. Therefore, the shape of the copper alloy plate is not limited to the plate or the strip. In the present invention, a pipe material is also interpreted and treated as a plate material.

本発明の銅合金板材の成分組成とその作用について示す。本発明の銅合金板材は、任意にSnを含有してもいい。Snを含有する場合は、0.05〜0.5mass%含有する。Snを添加することにより、Snの母相への固溶と析出の状態により、理想的な集合組織が得られる。Snの含有量が0.05%未満であると集合組織の形成があまり促進されず、0.5mass%を超えると導電率が低下する。 The composition of the copper alloy sheet of the present invention and its action will be described. The copper alloy sheet material of the present invention may optionally contain Sn. When Sn is contained, it is contained at 0.05 to 0.5 mass %. By adding Sn, an ideal texture can be obtained depending on the state of solid solution and precipitation of Sn in the parent phase. If the Sn content is less than 0.05%, the formation of a texture is not promoted so much, and if it exceeds 0.5 mass%, the electrical conductivity decreases.

本発明の銅合金板材は、上記Sn以外に、任意添加元素として、Ni、P、Oを合計で0.3%含有させることができる。Snとともに、Niおよび/またはPを含有させることにより、耐応力緩和特性の向上について相乗効果を奏することができる。ただし、NiおよびPの合計量が0.3%を超えると、導電率を低下させるため0.3%以下とする。 The copper alloy sheet material of the present invention may contain 0.3% in total of Ni, P, and O as optional additional elements in addition to the above Sn. By incorporating Ni and/or P together with Sn, it is possible to exert a synergistic effect in improving the stress relaxation resistance. However, if the total amount of Ni and P exceeds 0.3%, the conductivity is lowered, so the content is made 0.3% or less.

本発明の実施形態の銅合金板材は、圧延集合組織を有し、この圧延集合組織は、EBSD法による集合組織解析から得られた、結晶粒方位分布関数(ODF:crystal orientation distribution function)のオイラー角、φ2=0°、Φ=0から10°、φ1=0から90°の範囲の方位密度が、平均で3.0以上40未満である。 The copper alloy sheet material of the embodiment of the present invention has a rolling texture, and this rolling texture is an Euler of a crystal grain orientation distribution function (ODF: crystal orientation distribution function) obtained from a texture analysis by an EBSD method. The azimuth density in the range of angle, φ2=0°, Φ=0 to 10°, φ1=0 to 90° is 3.0 or more and less than 40 on average.

EBSD法とは、Electron BackScatter Diffractionの略で、走査電子顕微鏡(SEM)内で試料に電子線を照射したときに生じる反射電子菊池線回折を利用した結晶方位解析技術のことである。本発明におけるEBSD測定では、結晶粒を200個以上含む、800μm×1600μmの試料面積に対し、0.1μmステップでスキャンし、測定した。前記測定面積およびスキャンステップは、試料の結晶粒の大きさに応じて決定すればよい。 測定後の結晶粒の解析には、TSL社製の解析セビテOIM Analysis(商品名)を用いた。EBSDによる結晶粒の解析において得られる情報は、電子線が試料に侵入する数10nmの深さまでの情報を含んでいる。また、板厚方向の測定箇所は、試料表面から板厚tの1/8倍〜1/2倍の位置付近とすることが好ましい。 The EBSD method is an abbreviation for Electron BackScatter Diffraction, and is a crystal orientation analysis technique using backscattered electron Kikuchi line diffraction that occurs when a sample is irradiated with an electron beam in a scanning electron microscope (SEM). In the EBSD measurement in the present invention, a sample area of 800 μm×1600 μm containing 200 or more crystal grains was scanned and measured in 0.1 μm steps. The measurement area and the scan step may be determined according to the size of the crystal grain of the sample. For the analysis of the crystal grains after the measurement, an analysis Cevite OIM Analysis (trade name) manufactured by TSL was used. The information obtained in the analysis of crystal grains by EBSD includes information up to a depth of several tens nm where the electron beam penetrates the sample. Further, it is preferable that the measurement position in the plate thickness direction is near a position ⅛ to ½ times the plate thickness t from the sample surface.

結晶方位密度は、結晶粒方位分布関数(ODF: crystal orientation distribution function)とも表され、ランダムな結晶方位分布の状態を1とし、それに対して何倍の集積となっているかを示すものであり、集合組織の結晶方位の存在比率および分散状態を定量的に解析する際に用いる。方位密度は、EBSDおよびX線回折測定結果より、(100),(110),(112)正極点図等3種類以上の正極点図測定データに基づいて、級数展開法による結晶方位分布解析法により算出される。 The crystal orientation density is also represented by a crystal grain orientation distribution function (ODF: crystal orientation distribution function), which indicates a random crystal orientation distribution state of 1 and shows how many times the accumulation is performed. It is used when quantitatively analyzing the existing ratio of crystal orientations and the dispersed state of the texture. The azimuth density is a crystal orientation distribution analysis method by a series expansion method based on three or more kinds of positive electrode figure measurement data such as (100), (110), (112) positive point diagram from EBSD and X-ray diffraction measurement results. Is calculated by

図1は、EBSDにより測定し、ODF(方位分布関数)解析から得られた、銅合金板材の代表的な結晶方位分布図である。図1において圧延面内の2軸直交方向である、圧延方向と平行な方向RDおよび板幅方向TDと、圧延面の法線方向NDの3方向のオイラー角で示す。すなわち、RD軸の方位回転をΦ、ND軸の方位回転をφ1、TD軸の方位回転をφ2として示す。図1の各区分図は、ODFのTD軸の方位回転φ2を5°間隔で分割した図であり、太線枠は、φ2=0°の区分図において、Φ=0から10°、φ1=0から90°の範囲の結晶方位分布を示している。 FIG. 1 is a typical crystal orientation distribution diagram of a copper alloy sheet, which is measured by EBSD and obtained from ODF (orientation distribution function) analysis. In FIG. 1, it is shown by Euler angles in three directions of a direction RD parallel to the rolling direction and a plate width direction TD, which are directions orthogonal to the two axes in the rolling surface, and a normal direction ND of the rolling surface. That is, azimuth rotation of the RD axis is shown as Φ, azimuth rotation of the ND axis is shown as φ1, and azimuth rotation of the TD axis is shown as φ2. Each sectional view of FIG. 1 is a diagram in which the azimuth rotation φ2 of the TD axis of the ODF is divided at intervals of 5°, and the thick line frame indicates that in the sectional view of φ2=0°, φ=0 to 10°, φ1=0. The crystal orientation distribution is shown in the range from 90° to 90°.

φ2=0°において、Φ=0から10°、φ1=0から90°の範囲の方位密度が、平均で3.0以上40未満に制御することにより、銅合金板材の圧延方向から圧延方向の垂直方向にかけて、連続的に100面が配向し、ランダム配向の材料に比べて縦弾性率が低下する。これによって、放熱基板と半導体のはんだ付け後の冷却時に熱膨張率の差によって発生する負荷応力を低減することができ、半導体の特性を安定させることができる。上記方位密度が3.0未満の場合、縦弾性係数を低く制御することができなくなり、銅合金板材を放熱板材として使用した場合、半導体チップとの熱膨張率の差による負荷を抑えることが困難となる。また、上記方位密度が40以上となると板材の強度が低下し、放熱基板として使用した際に変形が生じやすくなる。 At φ2=0°, the azimuth density in the range of φ=0 to 10° and φ1=0 to 90° is controlled to be 3.0 or more and less than 40 on average, so that 100 planes are continuously oriented in the vertical direction, and the longitudinal elastic modulus is lower than that of a randomly oriented material. As a result, the load stress generated due to the difference in the coefficient of thermal expansion during cooling of the heat dissipation board and the semiconductor after soldering can be reduced, and the characteristics of the semiconductor can be stabilized. When the azimuth density is less than 3.0, the longitudinal elastic modulus cannot be controlled to be low, and when a copper alloy plate material is used as a heat dissipation plate material, it is difficult to suppress the load due to the difference in coefficient of thermal expansion from the semiconductor chip. Becomes Further, when the orientation density is 40 or more, the strength of the plate material is lowered, and deformation is likely to occur when it is used as a heat dissipation substrate.

本発明の他の実施形態の放熱部材用銅合金板材は、Snを0〜0.5mass%含有し、板材表面のEBSDを行った際に、結晶粒方位分布関数(ODF:crystal orientation distribution function)の、φ2=0°、Φ=0から10°、φ1=0から90°の範囲の方位密度が、平均で5.0以上40未満であり、圧延方向0°から90°の縦弾性係数の平均値が130GPa以下である、放熱部材用銅合金板材である。ここで、放熱部材用銅合金板材は、圧延平行方向(RD)から圧延垂直方向(TD)にかけて10°おきに回転させた方向にとった縦弾性係数を130GPa以下に制御することで、いずれの方向の熱膨張係数差による負荷応力を低減する。 The copper alloy plate material for heat dissipation members of another embodiment of the present invention contains 0 to 0.5 mass% of Sn, and when EBSD of the plate material surface is performed, a crystal grain orientation distribution function (ODF: crystal orientation distribution function). The azimuth density in the range of φ2=0°, Φ=0 to 10°, φ1=0 to 90° is 5.0 or more and less than 40 on average, and the longitudinal elastic modulus of the rolling direction from 0° to 90° is It is a copper alloy plate material for heat dissipation members having an average value of 130 GPa or less. Here, the copper alloy plate material for heat dissipation members is controlled by controlling the longitudinal elastic modulus in the direction rotated at every 10° from the rolling parallel direction (RD) to the rolling vertical direction (TD) to 130 GPa or less. The load stress due to the difference in the coefficient of thermal expansion in the direction is reduced.

上記方位密度が5.0未満の場合、縦弾性係数を低く制御することがやや困難になる傾向にある。上記方位密度を5.0〜40未満に制御することにより、圧延方向0°から90°の縦弾性係数の平均値を130GPa以下により制御しやすくなる。本発明の実施形態の銅合金板材の縦弾性係数は、120GPa以下であってもよく、または115GPa以下であってもよい。縦弾性係数が130GPaを超えると、熱膨張、収縮時の寸法変化による不可応力が高くなる傾向にある。 When the orientation density is less than 5.0, it tends to be somewhat difficult to control the longitudinal elastic modulus to be low. By controlling the orientation density to be less than 5.0 to 40, it becomes easy to control the average value of the longitudinal elastic modulus from 0° to 90° in the rolling direction to 130 GPa or less. The longitudinal elastic modulus of the copper alloy sheet according to the embodiment of the present invention may be 120 GPa or less, or 115 GPa or less. If the longitudinal elastic modulus exceeds 130 GPa, the non-stress tends to increase due to dimensional changes during thermal expansion and contraction.

縦弾性係数の測定は、各供試材から、圧延方向と平行な方向RDと、板幅方向TD(圧延方向RDに対して直交する方向)、さらに、RDからTDにかけて10°おきに回転させた方向に、それぞれ、JIS Z2201−13B号の試験片に加工し、JIS Z2241に準じて測定する。引張試験には、島津製作所製のオートグラフ万能試験機AG−10KTD型を使用した。試験片の長さ方向に引張試験機により応力を付与し、歪と応力の比例定数を求めることができる。降伏するときの歪量の80%の歪量を最大変位量とし、その変位量までを10分割した変位を与え、その10点での測定値から歪と応力の比例定数を縦弾性係数として求めることができる。 The longitudinal elastic modulus was measured by rotating each test material in a direction RD parallel to the rolling direction, a plate width direction TD (a direction orthogonal to the rolling direction RD), and every 10° from RD to TD. In the same direction, test pieces of JIS Z2201-13B are processed, and measurement is performed according to JIS Z2241. For the tensile test, an autograph universal testing machine AG-10KTD manufactured by Shimadzu Corporation was used. Stress can be applied in the length direction of the test piece by a tensile tester to determine the proportional constant of strain and stress. The strain amount of 80% of the strain amount at yield is taken as the maximum displacement amount, the displacement amount is given by dividing the displacement amount into ten, and the proportional constant of strain and stress is obtained as the longitudinal elastic modulus from the measured values at the ten points. be able to.

本発明の一実施形態の銅合金板材の平均結晶粒径は1μm〜100μmであってもよい。平均結晶粒径が1μm未満であると、結晶方位制御ができず、130GPa以下の弾性係数が得られない。結晶粒径が100μmを超えると引張強度が低下する。 The average crystal grain size of the copper alloy sheet according to the embodiment of the present invention may be 1 μm to 100 μm. If the average crystal grain size is less than 1 μm, the crystal orientation cannot be controlled and an elastic modulus of 130 GPa or less cannot be obtained. When the crystal grain size exceeds 100 μm, the tensile strength decreases.

本発明の一実施形態の銅合金板材の引張強度が300MPa以上である放熱部材用銅合金板材である。引張強度が300MPa未満であると、放熱部材として使用した場合に熱膨張率の差により負荷応力がかかった場合に部材が変形する可能性が生じる。引張強度は、以下に述べる銅合金基板の製造条件において、圧延時の加工率や焼鈍温度条件の調整で制御される。 It is a copper alloy plate material for heat dissipation members in which the tensile strength of the copper alloy plate material of one embodiment of the present invention is 300 MPa or more. When the tensile strength is less than 300 MPa, the member may be deformed when a load stress is applied due to a difference in coefficient of thermal expansion when used as a heat dissipation member. The tensile strength is controlled by adjusting the processing rate during rolling and the annealing temperature condition under the copper alloy substrate manufacturing conditions described below.

本発明の実施形態の銅合金板材は、前記合金組成を有する銅合金を鋳造、圧延して得られた被圧延材に対して均質化熱処理を行う均質化熱処理を行うこと、前記均質化熱処理後に、前記被圧延材に対して熱間圧延を行うこと、前記熱間圧延後に冷却を行うこと、該冷却後に、前記被圧延材の両面を面削すること、前記面削後に合計加工率が75%以上となるように冷間圧延すること、昇温速度10〜100℃/秒、到達温度100〜400℃、保持時間1〜900秒で熱処理し冷却速度10〜100℃/秒で冷却する第1の焼鈍を行うこと、前記第1の焼鈍後、冷間圧延を行うこと、昇温速度10〜200℃/秒、到達温度300〜800℃、保持時間10〜3600秒で熱処理を行い、冷却速度10〜200℃/秒で冷却する第2の焼鈍を行こうこと、次いで、仕上げ圧延、低温焼鈍、酸洗、研磨を行うこと、によって製造することができる。 The copper alloy sheet material of the embodiment of the present invention is a copper alloy having the above alloy composition, is subjected to homogenizing heat treatment for performing homogenizing heat treatment on a material to be rolled obtained by rolling, and after the homogenizing heat treatment. Hot rolling the rolled material, cooling after the hot rolling, chamfering both sides of the rolled material after the cooling, and a total working rate of 75 after the chamfering. %, cold-rolling is performed so that the temperature rise rate is 10 to 100° C./second, the ultimate temperature is 100 to 400° C., the holding time is 1 to 900 seconds, and the cooling rate is 10 to 100° C./second. 1, annealing after the first annealing, cold rolling, heat treatment at a temperature rising rate of 10 to 200° C./second, an ultimate temperature of 300 to 800° C., a holding time of 10 to 3600 seconds, and cooling. It can be manufactured by performing a second annealing that cools at a rate of 10 to 200° C./second, and then performing finish rolling, low temperature annealing, pickling, and polishing.

ここで、合計加工率とは複数回の圧延による圧延加工率の合計を意味し、圧延加工率は、圧延前の断面積から圧延後の断面積を引いた値を圧延前の断面積で除して100を乗じ、パーセントで表した値である。すなわち、下記式で表される。
[圧延加工率]={([圧延前の断面積]−[圧延後の断面積])/[圧延前の断面積]}×100(%)
Here, the total processing rate means the total of the rolling processing rates by multiple rollings, and the rolling processing rate is the value obtained by subtracting the sectional area after rolling from the sectional area before rolling by the sectional area before rolling. And multiplied by 100 and expressed as a percentage. That is, it is represented by the following formula.
[Rolling rate]={([cross-sectional area before rolling]-[cross-sectional area after rolling])/[cross-sectional area before rolling]}×100(%)

また、均質化熱処理は、800〜1100℃で10分〜20時間保持してもよい。熱間圧延は、合計加工率10〜90%であってもよく、熱間圧延終了後は10℃/sec以上の冷却速度にて急冷してもよい、熱間圧延材の表面の酸化膜は、面削によって、片面で1.0mm程度除去してもよい。面削後の冷間圧延は、合計加工率が75%以上となるよう、複数の圧延パス数によって圧延してもよい。第1の焼鈍は、連続焼鈍炉にて昇温速度10〜100℃/秒、到達温度100〜400℃、保持時間1秒〜900秒で熱処理後、冷却速度10〜100℃/秒で冷却してもよい。第1の焼鈍後の冷間圧延は、合計加工率5〜60%となるように圧延してもよい。第2の焼鈍は、昇温速度10〜200℃/秒、到達温度300〜800℃、保持時間10秒〜3600秒で熱処理し、冷却速度10〜200℃/秒で冷却してもよい。仕上げ圧延は合計加工率が10〜60%となるように圧延加工し、到達温度200〜500℃となるように低温焼鈍してもよい。さらに、板材表面の酸化膜除去と洗浄を目的に、酸洗・研磨を行う。 Moreover, you may hold|maintain homogenization heat processing at 800-1100 degreeC for 10 minutes-20 hours. The hot rolling may be performed at a total working rate of 10 to 90%, and after the hot rolling is finished, it may be rapidly cooled at a cooling rate of 10° C./sec or more. The oxide film on the surface of the hot rolled material is Alternatively, the surface may be removed by about 1.0 mm on one side. The cold rolling after chamfering may be performed by a plurality of rolling passes so that the total working rate becomes 75% or more. The first annealing is heat treatment in a continuous annealing furnace at a temperature rising rate of 10 to 100° C./second, an ultimate temperature of 100 to 400° C., a holding time of 1 second to 900 seconds, and then a cooling rate of 10 to 100° C./second. May be. The cold rolling after the first annealing may be performed so that the total working rate is 5 to 60%. In the second annealing, heat treatment may be performed at a temperature rising rate of 10 to 200° C./second, an ultimate temperature of 300 to 800° C., a holding time of 10 seconds to 3600 seconds, and cooling at a cooling rate of 10 to 200° C./second. The finish rolling may be performed by rolling so that the total working rate becomes 10 to 60%, and low-temperature annealing so that the ultimate temperature becomes 200 to 500°C. Furthermore, pickling and polishing are performed for the purpose of removing and cleaning the oxide film on the surface of the plate material.

上記製造条件において、特に、面削後の冷間圧延と第1および第2の焼鈍工程とを制御することが重要である。すなわち、冷間圧延の合計加工率が75%以上とすることにより圧延集合組織を十分に発達させ、第1および第2の焼鈍により結晶粒方位分布関数(ODF:crystal orientation distribution function)のオイラー角、φ2=0°、Φ=0から10°、φ1=0から90°の範囲の方位密度を適切に制御することができる。合計加工率が75%未満であると第1および第2の焼鈍による集合組織制御で方位がランダム化し、上記方位密度の平均が3.0未満となりやすい。また、第1および第2の焼鈍における昇温速度、到達温度、保持時間および冷却速度のいずれか1つ以上が規定の範囲外である場合にも、集合組織制御において方位がランダム化し、上記方位密度の平均が3.0未満となりやすい。 Under the above manufacturing conditions, it is important to control the cold rolling and the first and second annealing steps after the surface cutting. That is, the rolling texture is sufficiently developed by setting the total working ratio of cold rolling to 75% or more, and the Euler angle of the crystal grain orientation distribution function (ODF) is increased by the first and second annealings. , Φ2=0°, Φ=0 to 10°, and φ1=0 to 90°, the azimuth density can be appropriately controlled. If the total processing rate is less than 75%, the orientation is randomized by the texture control by the first and second annealing, and the average orientation density tends to be less than 3.0. Further, when any one or more of the temperature rising rate, the reached temperature, the holding time and the cooling rate in the first and second annealing is out of the specified range, the orientation is randomized in the texture control, and the orientation The average density tends to be less than 3.0.

このように、上記製造方法における各工程の条件を適切に制御することによって、銅合金板材の圧延集合組織の、EBSD法による集合組織解析から得られた、結晶粒方位分布関数(ODF:crystal orientation distribution function)のオイラー角、φ2=0°、Φ=0から10°、φ1=0から90°の範囲の方位密度が、平均で3.0以上40未満に制御することができる。また、これによって縦弾性率を低下させることができる。 As described above, by appropriately controlling the conditions of each step in the above manufacturing method, the crystal grain orientation distribution function (ODF) obtained from the texture analysis of the rolled texture of the copper alloy sheet by the EBSD method. It is possible to control the Euler angle of the distribution function, the azimuth density in the range of φ2=0°, φ=0 to 10°, φ1=0 to 90°, to 3.0 or more and less than 40 on average. Further, this can reduce the longitudinal elastic modulus.

本発明を実施例に基づいて詳細に説明する。本発明はそれらの実施例に限定されるものではない。
(実施例1〜10および比較例1〜9)
表1に示される組成となるようにSnを添加した残部銅と不可避的不純物からなる銅合金素材を高周波溶解炉により溶解し、これを鋳造して鋳塊を圧延しすることにより銅合金板材を得た。被圧延材に対して均質化熱処理を行う均質化熱処理工程と、該均質化熱処理工程後に、前記被圧延材に対して熱間圧延を行う熱間圧延工程と、該熱間圧延工程後に冷却を行う冷却工程と、該冷却工程後に、前記被圧延材の両面を面削する面削工程と、該面削工程後に表1に示される加工率および圧延パス数で冷間圧延し、表1に示される昇温速度、到達温度、保持時間、冷却速度により熱処理する第1の焼鈍のあと、冷間圧延を行い、表1に示される昇温速度、到達温度、保持時間、冷却速度による熱処理する第2の焼鈍を行ったのち、仕上げ圧延と低温焼鈍、酸洗・研磨工程を行うことによって、実施例1〜10および比較例1〜9の供試材を得た。
The present invention will be described in detail based on examples. The invention is not limited to these examples.
(Examples 1 to 10 and Comparative Examples 1 to 9)
A copper alloy material consisting of the balance copper and unavoidable impurities to which Sn is added so as to have the composition shown in Table 1 is melted in a high-frequency melting furnace, and this is cast and the ingot is rolled to form a copper alloy sheet material. Obtained. A homogenizing heat treatment step of performing a homogenizing heat treatment on the material to be rolled, a hot rolling step of performing a hot rolling on the material to be rolled after the homogenizing heat treatment step, and a cooling after the hot rolling step. A cooling step to be performed, a chamfering step of chamfering both surfaces of the material to be rolled after the cooling step, and a cold rolling at a working rate and a rolling pass number shown in Table 1 after the chamfering step, After the first annealing in which heat treatment is performed at the temperature increase rate, the ultimate temperature, the holding time, and the cooling rate shown, cold rolling is performed, and heat treatment is performed at the temperature increase rate, the ultimate temperature, the holding time, and the cooling rate shown in Table 1. After performing the second annealing, finish rolling, low temperature annealing, and pickling/polishing steps were performed to obtain test materials of Examples 1 to 10 and Comparative Examples 1 to 9.

Figure 0006719316
Figure 0006719316

得られた供試材について、方位密度の平均値、平均結晶粒径、縦弾性係数の平均値、導電率および引張強度を以下の方法により測定した。測定した結果を表2に示した。 With respect to the obtained test material, the average value of orientation density, average crystal grain size, average value of longitudinal elastic modulus, conductivity and tensile strength were measured by the following methods. The measured results are shown in Table 2.

Figure 0006719316
Figure 0006719316

(結晶方位密度)
結晶方位密度により集合組織の結晶方位の存在比率および分散状態を定量的に解析する。EBSDおよびX線回折測定結果より、(100),(110),(112)正極点図等3種類以上の正極点図測定データを基にして、級数展開法による結晶方位分布解析法により算出した。
(Crystal orientation density)
The abundance ratio of crystallographic orientations of the texture and the dispersion state are quantitatively analyzed by the crystal orientation density. From the EBSD and X-ray diffraction measurement results, it was calculated by the crystal orientation distribution analysis method by the series expansion method based on the measurement data of three or more types of positive electrode dot diagrams such as (100), (110), (112) positive electrode dot diagrams. ..

(平均結晶粒径)
各供試材の圧延面におけるEBSD測定において、800μm×1600μmの範囲で、スキャンステップ0.1μmの条件で測定を行った。測定結果の解析において、測定範囲中の全結晶粒から、平均結晶粒径を算出した。結晶粒径の解析には、TSL社製の解析ソフトOIM Analysis(商品名)を用いた。EBSDによる結晶粒の解析において得られる情報は、電子線が試料に侵入する数10nmの深さまでの情報を含んでいる。また、板厚方向の測定箇所は、試料表面から板厚tの1/8倍〜1/2倍の位置付近とすることが好ましい。
(Average grain size)
In the EBSD measurement on the rolled surface of each test material, the measurement was performed in the range of 800 μm×1600 μm under the condition of scan step 0.1 μm. In the analysis of the measurement results, the average crystal grain size was calculated from all the crystal grains in the measurement range. The analysis software OIM Analysis (trade name) manufactured by TSL was used for the analysis of the crystal grain size. The information obtained in the analysis of crystal grains by EBSD includes information up to a depth of several tens nm where the electron beam penetrates the sample. Further, it is preferable that the measurement position in the plate thickness direction is near a position ⅛ to ½ times the plate thickness t from the sample surface.

(縦弾性係数)
各供試材から、圧延方向と平行な方向RDと、板幅方向TD(圧延方向RDに対して直交する方向)、さらに、RDからTDにかけて10°おきに回転させた方向に、それぞれ、JIS Z2201−13B号の試験片に加工し、JIS Z2241に準じて測定する。引張試験には、島津製作所製のオートグラフ万能試験機AG−10KTD型を使用した。試験片の長さ方向に引張試験機により応力を付与し、歪と応力の比例定数を求めた。降伏するときの歪量の80%の歪量を最大変位量とし、その変位量までを10分割した変位を与え、その10点での測定値から歪と応力の比例定数をヤング率として求めた。
(Longitudinal elastic modulus)
From each test material, a direction RD parallel to the rolling direction, a plate width direction TD (direction orthogonal to the rolling direction RD), and a direction rotated at every 10° from RD to TD, respectively, JIS It is processed into a test piece of Z2201-13B and measured according to JIS Z2241. For the tensile test, an autograph universal testing machine AG-10KTD manufactured by Shimadzu Corporation was used. Stress was applied in the length direction of the test piece by a tensile tester, and the proportional constant of strain and stress was obtained. The strain amount of 80% of the strain amount at yield was taken as the maximum displacement amount, the displacement amount was divided into 10 parts, and the proportional constant of strain and stress was obtained as Young's modulus from the measured values at the 10 points. ..

(導電率)
各供試材の導電率(EC)は、JIS H0505に準拠し四端子法により、20℃(±0.5℃)に保たれた恒温槽中で計測した比抵抗の数値から算出した。なお、端子間距離は100mmとした。板材の導電率が80%IACS以上である場合を良好、80%IACS未満の場合を不良と判断した。
(conductivity)
The electrical conductivity (EC) of each test material was calculated from the numerical value of the specific resistance measured in a constant temperature bath maintained at 20° C. (±0.5° C.) by the four-terminal method based on JIS H0505. The distance between the terminals was 100 mm. When the electrical conductivity of the plate material was 80% IACS or more, it was judged as good, and when it was less than 80% IACS, it was judged as poor.

(引張強度)
圧延平行方向から切り出したJIS Z2201−13B号の試験片をJIS Z2241に準じて3本測定しその平均値を示した。引張試験には、島津製作所製のオートグラフ万能試験機AG−10KTD型を使用した。板材の引張強度が300MPa以上である場合を良好、300GPa未満の場合を不良と判断した。
(Tensile strength)
Three test pieces of JIS Z2201-13B cut out from the rolling parallel direction were measured according to JIS Z2241 and the average value was shown. For the tensile test, an autograph universal testing machine AG-10KTD manufactured by Shimadzu Corporation was used. When the tensile strength of the plate material was 300 MPa or more, it was judged as good, and when it was less than 300 GPa, it was judged as bad.

表1および2に示すように、本発明例1〜10はいずれも、合金組成範囲、製造条件、結晶粒方位分布関数(ODF:crystal orientation distribution function)の、φ2=0°、Φ=0〜10°、φ1=0から90°の範囲の方位密度、平均結晶粒径のいずれも適正範囲内にあるため、圧延平行方向(RD)から圧延垂直方向(TD)にかけて10°おきに回転させた方向にとった縦弾性係数の平均値、導電率、引張強度が優れている。 As shown in Tables 1 and 2, Examples 1 to 10 of the present invention each have an alloy composition range, a manufacturing condition, a crystal grain orientation distribution function (ODF) of φ2=0°, and Φ=0 to 0. Since the orientation density in the range of 10°, φ1=0 to 90°, and the average crystal grain size are all within the proper ranges, they were rotated every 10° from the rolling parallel direction (RD) to the rolling vertical direction (TD). The average longitudinal elastic modulus, conductivity, and tensile strength are excellent.

一方、比較例1〜9は、合金組成範囲、製造条件、結晶粒方位分布関数(ODF:crystal orientation distribution function)の、φ2=0°、Φ=0〜10°、φ1=0から90°の圧延平行方向(RD)から圧延垂直方向(TD)にかけて10°おきに回転させた方向にとった縦弾性係数の平均値が高く、適正範囲外であり、導電率、引張強度のいずれか、もしくは両方が適正範囲外である。 On the other hand, Comparative Examples 1 to 9 have alloy composition ranges, manufacturing conditions, and crystal grain orientation distribution functions (ODF) of φ2=0°, φ=0 to 10°, and φ1=0 to 90°. The average value of the longitudinal elastic modulus taken in the direction rotated at every 10° from the rolling parallel direction (RD) to the rolling vertical direction (TD) is high and out of the appropriate range, and either the conductivity or the tensile strength, or Both are outside the proper range.

Claims (5)

Snを0〜0.5mass%含有し、残部銅および不可避的不純物からなり、板材表面のEBSDを行った際に、結晶粒方位分布関数(ODF:crystal orientation distribution function)のオイラー角、φ2=0°、Φ=0から10°、φ1=0から90°の範囲の方位密度が、平均で3.0以上40未満であり、
圧延平行方向(RD)から圧延垂直方向(TD)にかけて10°おきに回転させた方向にとった縦弾性係数の平均値が130GPa以下である、放熱部材用銅合金板材。
The content of Sn is 0 to 0.5 mass %, the balance is copper and unavoidable impurities, and the Eulerian angle of the crystal grain orientation distribution function (ODF: crystal orientation distribution function) is φ2=0 when the plate surface is subjected to EBSD. °, [Phi = 0 from 10 °, the orientation density in the range of .phi.1 = 0 of 90 ° is less than 40 der 3.0 or more on average is,
A copper alloy sheet material for heat dissipation member, having an average longitudinal elastic modulus of 130 GPa or less taken in a direction rotated at every 10° from a rolling parallel direction (RD) to a rolling vertical direction (TD) .
Snを0〜0.5mass%含有し、残部銅および不可避的不純物からなり、板材表面のEBSDを行った際に、結晶粒方位分布関数(ODF:crystal orientation distribution function)のオイラー角、φ2=0°、Φ=0から10°、φ1=0から90°の範囲の方位密度が、平均で5.0以上40未満であり、圧延平行方向(RD)から圧延垂直方向(TD)にかけて10°おきに回転させた方向にとった縦弾性係数の平均値が130GPa以下である、請求項1に記載の放熱部材用銅合金板材。 The content of Sn is 0 to 0.5 mass %, the balance is copper and unavoidable impurities, and the Eulerian angle of the crystal grain orientation distribution function (ODF: crystal orientation distribution function) is φ2=0 when the plate surface is subjected to EBSD. °, [Phi = 0 from 10 °, towards position density in the range of .phi.1 = 0 of 90 ° is less than the average of 5.0 or more 40, 10 ° over a rolling vertically (TD) from the direction parallel to the rolling direction (RD) The copper alloy plate material for a heat dissipation member according to claim 1 , wherein the average value of the longitudinal elastic modulus taken in the direction of every rotation is 130 GPa or less. 平均結晶粒径が1μm〜100μmであることを特徴とする請求項1または2に記載の銅合金板材。 The copper alloy plate material according to claim 1 or 2, wherein the average crystal grain size is 1 µm to 100 µm. 引張強度が300MPa以上であることを特徴とする、請求項1〜3のいずれか一項に記載の銅合金板材。 The copper alloy sheet material according to any one of claims 1 to 3, which has a tensile strength of 300 MPa or more. 請求項1〜4のいずれか一項に記載の放熱部材用銅合金板材の製造方法であって、
前記合金組成を有する銅合金を鋳造、圧延して得られた被圧延材に対して均質化熱処理を行う均質化熱処理を行うこと、
前記均質化熱処理後に、前記被圧延材に対して熱間圧延を行うこと、
前記熱間圧延後に冷却を行うこと、
該冷却後に、前記被圧延材の両面を面削すること、
前記面削後に合計加工率が75%以上となるように冷間圧延すること、
第1の焼鈍として、
昇温速度10〜100℃/秒、到達温度100〜400℃、保持時間1〜900秒で熱処理し冷却速度10〜100℃/秒で冷却すること、
前記第1の焼鈍後、冷間圧延を行うこと、
第2の焼鈍として、
昇温速度10〜200℃/秒、到達温度300〜800℃、保持時間10〜3600秒で熱処理し、冷却速度10〜200℃/秒で冷却すること、
次いで、仕上げ圧延、低温焼鈍、酸洗、研磨を行うこと、を特徴とする放熱部材用銅合金板材の製造方法。
It is a manufacturing method of the copper alloy plate material for heat dissipation members according to any one of claims 1 to 4,
Casting a copper alloy having the alloy composition, performing a homogenizing heat treatment for the material to be rolled obtained by rolling,
After the homogenizing heat treatment, hot rolling the material to be rolled,
Cooling after the hot rolling,
After the cooling, chamfering both sides of the rolled material,
Cold rolling so that the total working rate becomes 75% or more after the surface cutting,
As the first annealing,
Heat treatment at a temperature rising rate of 10 to 100° C./sec, an ultimate temperature of 100 to 400° C., a holding time of 1 to 900 sec, and cooling at a cooling rate of 10 to 100° C./sec ;
Performing cold rolling after the first annealing,
As the second annealing,
Heat treatment at a temperature rising rate of 10 to 200° C./second, an ultimate temperature of 300 to 800° C., a holding time of 10 to 3600 seconds, and cooling at a cooling rate of 10 to 200° C./second ;
Then, finish rolling, low-temperature annealing, pickling, and polishing are performed, and a method for producing a copper alloy sheet for a heat dissipation member.
JP2016145296A 2016-07-25 2016-07-25 Copper alloy plate material for heat dissipation member and manufacturing method thereof Active JP6719316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016145296A JP6719316B2 (en) 2016-07-25 2016-07-25 Copper alloy plate material for heat dissipation member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016145296A JP6719316B2 (en) 2016-07-25 2016-07-25 Copper alloy plate material for heat dissipation member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2018016823A JP2018016823A (en) 2018-02-01
JP6719316B2 true JP6719316B2 (en) 2020-07-08

Family

ID=61075878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016145296A Active JP6719316B2 (en) 2016-07-25 2016-07-25 Copper alloy plate material for heat dissipation member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6719316B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181593A1 (en) * 2017-03-31 2018-10-04 古河電気工業株式会社 Copper sheet material for copper sheet-provided insulating substrate and production method therefor
JP6582159B1 (en) * 2018-03-29 2019-09-25 古河電気工業株式会社 Insulating substrate and manufacturing method thereof
WO2019187767A1 (en) * 2018-03-29 2019-10-03 古河電気工業株式会社 Insulating substrate and method for manufacturing same
CN109323830B (en) * 2018-10-26 2020-05-15 珠海罗西尼表业有限公司 Method for confirming rigidity of balance spring
JP7342924B2 (en) * 2020-10-23 2023-09-12 三菱マテリアル株式会社 Slit copper materials, parts for electronic and electrical equipment, bus bars, heat dissipation boards
WO2022085718A1 (en) * 2020-10-23 2022-04-28 三菱マテリアル株式会社 Slit copper material, component for electronic/electric devices, bus bar, and heat dissipation substrate
JP2023005017A (en) * 2021-06-28 2023-01-18 Dowaメタルテック株式会社 Copper alloy sheet material and method for producing copper alloy sheet material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5892974B2 (en) * 2012-07-06 2016-03-23 Jx金属株式会社 Copper alloy sheet with excellent conductivity and stress relaxation properties
JP2014058705A (en) * 2012-09-14 2014-04-03 Jx Nippon Mining & Metals Corp Rolled copper foil and copper-clad laminate
JP6128976B2 (en) * 2012-09-20 2017-05-17 Jx金属株式会社 Copper alloy and high current connector terminal material
JP6222971B2 (en) * 2013-03-25 2017-11-01 Jx金属株式会社 Copper alloy sheet with excellent conductivity and stress relaxation properties
JP5453565B1 (en) * 2013-06-13 2014-03-26 Jx日鉱日石金属株式会社 Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP6246502B2 (en) * 2013-06-13 2017-12-13 Jx金属株式会社 Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP6182372B2 (en) * 2013-07-10 2017-08-16 古河電気工業株式会社 Copper alloy rolled foil for secondary battery current collector and method for producing the same

Also Published As

Publication number Publication date
JP2018016823A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
JP6719316B2 (en) Copper alloy plate material for heat dissipation member and manufacturing method thereof
JP6678757B2 (en) Copper plate material for insulating substrate with copper plate and method of manufacturing the same
JP5972484B2 (en) Copper alloy sheet, connector made of copper alloy sheet, and method for producing copper alloy sheet
JP6155405B2 (en) Copper alloy material and method for producing the same
TWI705148B (en) Copper alloy plate and its manufacturing method
JP6162908B2 (en) Copper alloy sheet and manufacturing method thereof
TWI582249B (en) Copper alloy sheet and method of manufacturing the same
JP5610643B2 (en) Cu-Ni-Si-based copper alloy strip and method for producing the same
JP6640435B1 (en) Copper alloy sheet material, method for producing the same, heat dissipating component and shield case for electric and electronic equipment
JP2014189817A (en) Pure copper plate and heat radiation substrate
JP6472477B2 (en) Cu-Ni-Si copper alloy strip
KR102349545B1 (en) Copper alloy wire rod and manufacturing method thereof
KR101943191B1 (en) Cu-ni-si-based copper alloy strip and method of manufacturing the same
WO2019187767A1 (en) Insulating substrate and method for manufacturing same
TWI639163B (en) Cu-Co-Ni-Si alloy for electronic parts, and electronic parts
JP2016176106A (en) ELECTRONIC COMPONENT Cu-Ni-Co-Si ALLOY
KR102499442B1 (en) Copper alloy sheet and its manufacturing method
JP6339361B2 (en) Copper alloy sheet and manufacturing method thereof
JP4987155B1 (en) Cu-Ni-Si alloy and method for producing the same
JP6582159B1 (en) Insulating substrate and manufacturing method thereof
JP2019157256A (en) Copper alloy plate excellent in strength and conductivity, electronic component for electrification, electronic component for heat release
JP5755892B2 (en) Method for producing copper alloy sheet
WO2012018079A1 (en) Interconnector material for solar cell, method of manufacturing same, and interconnector for solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200616

R151 Written notification of patent or utility model registration

Ref document number: 6719316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350