JP2001152303A - Copper or copper-base alloy, excellent in press workability, and its manufacturing method - Google Patents

Copper or copper-base alloy, excellent in press workability, and its manufacturing method

Info

Publication number
JP2001152303A
JP2001152303A JP33806999A JP33806999A JP2001152303A JP 2001152303 A JP2001152303 A JP 2001152303A JP 33806999 A JP33806999 A JP 33806999A JP 33806999 A JP33806999 A JP 33806999A JP 2001152303 A JP2001152303 A JP 2001152303A
Authority
JP
Japan
Prior art keywords
diffraction intensity
copper
cross
ray diffraction
processing direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33806999A
Other languages
Japanese (ja)
Other versions
JP4009981B2 (en
Inventor
Koichi Hatakeyama
浩一 畠山
Akira Sugawara
章 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP33806999A priority Critical patent/JP4009981B2/en
Publication of JP2001152303A publication Critical patent/JP2001152303A/en
Application granted granted Critical
Publication of JP4009981B2 publication Critical patent/JP4009981B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a copper-base alloy excellent in press workability, which is blanked into prescribed shape by high speed press forming and used for small-sized connector, switch, relay, etc., and its manufacturing method. SOLUTION: The copper-base alloy excellent in press workability, in which, as to the X-ray diffraction intensity of the cross section of the material, the sum of the diffraction intensity of 111} and that of 222} becomes two or more times that of 200}, and its manufacturing method are provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プレス加工性に優
れた銅または銅基合金およびその製造方法に関し、詳し
くは民生用製品,例えば半導体用リードフレームの原
板、情報・通信用の狭ピッチコネクタの原板および小型
リレーの原板等を構成するプレス加工性に優れた銅基合
金およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to copper or a copper-based alloy excellent in press workability and a method for producing the same, and more particularly to a product for consumer use, for example, a base plate of a lead frame for semiconductors, a narrow pitch connector for information and communication. The present invention relates to a copper-based alloy having excellent press workability, which constitutes an original plate of a small relay and a small relay, and a method for producing the same.

【0002】[0002]

【従来の技術】家電製品、情報通信機器や自動車用部品
の高密度実装化に伴い、コネクタ、スイッチ、リレー等
の小型化が進み、これらを構成する材料も薄肉化、細線
化する傾向にある。これらの部品は、金型を用いた高速
のプレスにより打抜き加工されることが常であり、プレ
ス加工の際、材料は金型のパンチによりせん断変形を生
じた後に、刃先からのクラック発生によって、破断変形
を生じて所定の形状に打抜かれる。
2. Description of the Related Art Along with high-density mounting of home electric appliances, information communication equipment, and automobile parts, connectors, switches, relays, and the like have been miniaturized, and the materials constituting these tend to be thinner and thinner. . These parts are usually punched by a high-speed press using a mold.In the press working, after the material undergoes shear deformation by the punch of the mold, cracks are generated from the cutting edge, The sheet is punched into a predetermined shape by breaking deformation.

【0003】しかし、プレスのショット数が増すにつれ
て、金型のパンチの刃先の磨耗が進み、その結果とし
て、刃先からのクラック発生が不均一になり、破断形状
が乱れて、具体的にはせん断帯と破断帯の段差が大きく
なったり、大きなバリが発生したり、破断により生じた
材料の大きなカスが発生して、所定の製品形状を保てな
くなる。
[0003] However, as the number of press shots increases, the wear of the cutting edge of the die punch increases, and as a result, cracks are unevenly generated from the cutting edge, and the fracture shape is disturbed. The step between the band and the rupture band becomes large, large burrs are generated, or large scum of the material generated by the rupture is generated, so that a predetermined product shape cannot be maintained.

【0004】従来、金型寿命を向上させる対策として、
パンチの材質の向上、プレス潤滑油による潤滑性の改善
や、各々の銅基合金に適したクリアランスの設定等によ
り対応してきたが、画期的な改善は実現できなかった。
[0004] Conventionally, as a measure to improve the life of the mold,
This has been addressed by improving the material of the punch, improving the lubricity of the press lubricating oil, and setting a clearance suitable for each copper-based alloy. However, no epoch-making improvement was realized.

【0005】[0005]

【発明が解決しようとする課題】上記のような従来技術
の問題点を解決すべく鋭意検討を行なったところ、金型
を用いた高速プレス成形加工によって、所定の形状に打
抜かれる小型のコネクタ,スイッチ,リレー用等の材料で
は、特にプレス加工性が優れていることが問題点を解決
すべき特性上の重要な課題であるとの知見を得た。すな
わち、材料の結晶方位を制御することで、プレス加工性
に優れた銅基合金が得られることがわかったので、本発
明はその合金とその製造方法を提案するものである。
The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems of the prior art. As a result, a small-sized connector punched into a predetermined shape by high-speed press molding using a mold. In the materials for switches, relays, etc., it was found that the excellent press workability is an important problem in terms of properties to solve the problems. That is, it has been found that by controlling the crystal orientation of the material, a copper-based alloy excellent in press workability can be obtained, and the present invention proposes the alloy and a method for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】本発明は、銅または銅基
合金材料について、特に材料のRD面(板材の圧延方向
に垂直な断面。以下、RD面という。)とTD面(板材
の圧延方向に平行な断面。以下、TD面という。)に着
目してX線回折を行ない、得られる結晶方位のうち特定
の方向の強度を制御することで、プレス加工性を向上さ
せた銅基合金材料およびその製造方法を提供するもので
ある。なおここで、X線回折強度とは、例えばX線回折
法で測定される材料の結晶方位の積分強度を示すもので
ある。
SUMMARY OF THE INVENTION The present invention relates to a copper or copper-based alloy material, particularly to an RD surface (a cross section perpendicular to the rolling direction of a sheet material; hereinafter, referred to as an RD surface) and a TD surface (rolling of a sheet material). X-ray diffraction focusing on a cross section parallel to the direction (hereinafter referred to as a TD plane), and controlling the strength of a specific direction among the obtained crystal orientations, thereby improving the press-workability of the copper-based alloy. A material and a method for manufacturing the same are provided. Here, the X-ray diffraction intensity indicates, for example, the integrated intensity of the crystal orientation of the material measured by the X-ray diffraction method.

【0007】すなわち、本発明は 1. 材料の断面のX線回折強度においてS≧2であるこ
とを特徴とするプレス加工性に優れた銅または銅基合
金。ただし、
That is, the present invention provides: 1. A copper or copper-based alloy excellent in press workability, characterized in that the X-ray diffraction intensity of the cross section of the material is S ≧ 2. However,

【数5】 I{111}は{111}の回折強度、I{222}は
{222}の回折強度、I{200}は{200}の回
折強度である。
(Equation 5) I {111} is the diffraction intensity of {111}, I {222} is the diffraction intensity of {222}, and I {200} is the diffraction intensity of {200}.

【0008】2. 材料の加工方向に垂直な断面のX線回
折強度においてSRD≧2 かつ 材料の加工方向に平行
な断面のX線回折強度でSTD≧4であり、SRD×S
TD≧16であることを特徴とするプレス加工性に優れ
た銅または銅基合金。ただし
2. SRD ≧ 2 in the X-ray diffraction intensity of the cross section perpendicular to the processing direction of the material and S TD ≧ 4 in the X-ray diffraction intensity of the cross section parallel to the processing direction of the material, and S RD × S
Copper or copper-based alloy excellent in press workability, wherein TD ≧ 16. However

【数6】 ここで、SRDは材料の加工方向に垂直な断面のX線回
折強度について、STDは材料の加工方向に平行な断面
のX線回折強度について測定した値で、I{111}は
{111}の回折強度、I{222}は{222}の回
折強度、I{200}は{200}の回折強度である。
(Equation 6) Here, S RD is a value measured for an X-ray diffraction intensity of a cross section perpendicular to the processing direction of the material, S TD is a value measured for an X-ray diffraction intensity of a cross section parallel to the processing direction of the material, and I {111} is {111}.回 折, I {222} is the diffraction intensity of {222}, and I {200} is the diffraction intensity of {200}.

【0009】3. Sn、Ni、P、Si、Zn、Fe、
Mg、Alのうちから選ばれる1種または2種以上を総
量で0.01〜35wt%含み、残部Cuおよび不可避的不
純物からなる銅基合金で、かつ材料の加工方向に垂直な
断面のX線回折強度においてSRD≧2 かつ 材料の加
工方向に平行な断面のX線回折強度でSTD≧4であ
り、SRD×STD≧16であることを特徴とするプレ
ス加工性に優れた銅または銅基合金。ただし、
3. Sn, Ni, P, Si, Zn, Fe,
X-ray diffraction intensity of a cross-section perpendicular to the processing direction of the material, which is a copper-based alloy containing 0.01 to 35 wt% in total of one or more selected from Mg and Al, the balance being Cu and unavoidable impurities. Copper or copper excellent in press workability, wherein S RD ≧ 2 and X TD diffraction intensity of a cross section parallel to the processing direction of the material is S TD ≧ 4 and S RD × S TD ≧ 16 Base alloy. However,

【数7】 ここで、SRDは材料の加工方向に垂直な断面のX線回
折強度について、STDは材料の加工方向に平行な断面
のX線回折強度について測定した値で、I{111}は
{111}の回折強度、I{222}は{222}の回
折強度、I{200}は{200}の回折強度である。
(Equation 7) Here, S RD is a value measured for an X-ray diffraction intensity of a cross section perpendicular to the processing direction of the material, S TD is a value measured for an X-ray diffraction intensity of a cross section parallel to the processing direction of the material, and I {111} is {111}.回 折, I {222} is the diffraction intensity of {222}, and I {200} is the diffraction intensity of {200}.

【0010】4.Sn、Ni、P、Si、Zn、Fe、
Mg、Alのうちから選ばれる1種または2種以上を総
量で0.01〜35wt%含み、残部Cuおよび不可避的不
純物からなる銅基合金のインゴットを圧延、または熱間
圧延と熱処理を繰り返すことで所定の板厚にした材料を
350〜750℃の温度で熱処理を施して、材料の加工
方向に垂直な断面のX線回折強度において1≦SRD
3かつ材料の加工方向に平行な断面のX線回折強度で1
≦STD≦3として、しかる後に圧延加工率30%以
上、または50%以上、の冷間圧延と、再結晶温度未満
の低温焼鈍を組み合わせることで、材料の加工方向に垂
直な断面のX線回折強度においてSRD≧2 かつ 材料
の加工方向に平行な断面のX線回折強度でSTD≧4で
あり、S ×STD≧16であることを特徴とするプ
レス加工性に優れた銅または銅基合金。ただし、
4. Sn, Ni, P, Si, Zn, Fe,
Predetermined by rolling one or two or more kinds selected from Mg and Al in a total amount of 0.01 to 35 wt%, and rolling an ingot of a copper-based alloy comprising the balance of Cu and unavoidable impurities, or repeating hot rolling and heat treatment. Is subjected to a heat treatment at a temperature of 350 to 750 ° C., and the X-ray diffraction intensity of the cross section perpendicular to the processing direction of the material is 1 ≦ S RD
3 and X-ray diffraction intensity of a cross section parallel to the material processing direction is 1
By setting ≦ S TD ≦ 3, a combination of cold rolling at a rolling reduction ratio of 30% or more or 50% or more and low-temperature annealing at a temperature lower than the recrystallization temperature is performed, whereby an X-ray of a cross section perpendicular to the processing direction of the material is obtained. a S TD ≧ 4 in X-ray diffraction intensity of the cross section parallel to the working direction of the S RD ≧ 2 and material in the diffraction intensity, excellent press formability, characterized in that the S R D × S TD ≧ 16 Copper or copper-based alloy. However,

【数8】 ここで、SRDは材料の加工方向に垂直な断面のX線回
折強度について、STDは材料の加工方向に平行な断面
のX線回折強度について測定した値で、I{111}は
{111}の回折強度、I{222}は{222}の回
折強度、I{200}は{200}の回折強度である。
(Equation 8) Here, S RD is a value measured for an X-ray diffraction intensity of a cross section perpendicular to the processing direction of the material, S TD is a value measured for an X-ray diffraction intensity of a cross section parallel to the processing direction of the material, and I {111} is {111}.回 折, I {222} is the diffraction intensity of {222}, and I {200} is the diffraction intensity of {200}.

【0011】[0011]

【作用】以下に、本発明の内容を具体的に説明する。本
発明は、銅または銅基合金について、特に材料の加工方
向に垂直な断面と平行な断面に着目してX線回折を行
い、得られる結晶方位のうち特定の方位の強度を制御す
ることでプレス加工性を向上させるものである。
The contents of the present invention will be specifically described below. The present invention focuses on a cross section parallel to a cross section perpendicular to a processing direction of a material, particularly for copper or a copper-based alloy, and performs X-ray diffraction to control the intensity of a specific direction among the obtained crystal directions. This is to improve press workability.

【0012】まず、プレス加工に際して、材料のせん断
変形を生じた時に、刃先からのクラック発生を均一にす
るためには、結晶方位をある一定の方位にそろえること
が大切であり、特に、断面の結晶方位は{111}にそ
ろっている方がプレス断面の形状が良好である。一方、
断面に他の面、特に{200}面が多く存在すると、せ
ん断変形を生じた時に発生したクラックの伸展方向がプ
レスの方向に対して20°以上の角度になってしまい、
その結果として刃先の磨耗を促進してしまうこと、ま
た、破断により発生した材料の大きなカスが刃先に付着
して刃先の磨耗を促進してしまう。従って、{200}
面が少ない方が、プレス断面の形状が良好であり、刃先
の磨耗を抑制することができる。
First, in press working, it is important to align the crystal orientation in a certain direction in order to make cracks from the cutting edge uniform when shear deformation of the material occurs. If the crystal orientation is aligned with {111}, the shape of the pressed section is better. on the other hand,
If there are many other planes in the cross section, especially the {200} plane, the extension direction of the cracks generated when the shear deformation occurs becomes an angle of 20 ° or more to the direction of the press,
As a result, abrasion of the cutting edge is promoted, and large scum of the material generated by the breakage adheres to the cutting edge, thereby promoting the wear of the cutting edge. Therefore, {200}
The smaller the surface, the better the shape of the cross section of the press, and the wear of the cutting edge can be suppressed.

【0013】材料の加工方向に垂直な断面をRD面、平
行な断面をTD面と表現する。RD面およびTD面のX
線回折を行い、{111}の回折強度 I{111}、
{222}の回折強度 I{222}、{200}の回
折強度 I{200}を測定し、
A cross section perpendicular to the material processing direction is referred to as an RD plane, and a cross section parallel to the processing direction is referred to as a TD plane. X of RD plane and TD plane
Line diffraction, diffraction intensity of {111} I {111},
Measure the diffraction intensity of {222} I {222}, the diffraction intensity of {200} I {200},

【数9】 なるパラメーターSを導入し、RD面について測定した
SをSRD、TD面について測定したSをSTDとする
と、SRD≧2 かつ STD≧4で、かつ S ×S
TD≧16のときは、プレスで打抜いた端子の形状が良
好であった。
(Equation 9) In becomes the parameter S was introduced, the S measured for RD surface S RD, when the S was measured TD surface and S TD, S RD ≧ 2 and S TD ≧ 4, and S R D × S
When TD ≧ 16, the shape of the terminal punched by the press was good.

【0014】一方、SRD≧2 かつ STD≧4 かつ
RD×STD<16のとき、SRD≧2 かつ S
TD<4 かつ SRD×STD<16のとき、SRD
≧2 かつ STD<4 かつ SRD×STD≧16の
とき、SRD<2 かつ STD≧4 かつ SRD×S
TD<16のとき、SRD<2 かつ STD≧4 かつ
RD×STD≧16のとき、SRD<2 かつ S
TD<4 かつ SRD×STD<16のときは、プレ
スのショット数が増すと、刃先の磨耗が進み、打抜いた
端子の形状が悪くなった。
On the other hand, when S RD ≧ 2 and S TD ≧ 4 and S RD × S TD <16, S RD ≧ 2 and S
When TD <4 and S RD × S TD <16, S RD
≧ 2 and S TD <4 and S RD × S TD ≧ 16, S RD <2 and S TD ≧ 4 and S RD × S
When TD <16, when S RD <2 and S TD ≧ 4 and when S RD × S TD ≧ 16, S RD <2 and S
When TD <4 and SRD × STD <16, as the number of shots of the press increased, the wear of the cutting edge progressed, and the shape of the punched terminal deteriorated.

【0015】本発明の材料は、次のような工程を経て製
造することができる。即ち、第1の工程は、各成分を所
定量配合して溶解し、得られた液体から所定の組成のイ
ンゴットを鋳造する工程である。この工程は、大気中の
溶解法でも還元雰囲気中の溶解法でも真空中の溶解法で
も適用できる。
The material of the present invention can be produced through the following steps. That is, the first step is a step of mixing and dissolving each component in a predetermined amount and casting an ingot of a predetermined composition from the obtained liquid. This step can be applied to a dissolution method in the air, a dissolution method in a reducing atmosphere, or a dissolution method in a vacuum.

【0016】第2の工程は、得られたインゴットに熱処
理を施す工程で、この工程は、700℃以上の温度で熱
処理することで鋳造時に生じた偏析を少なくする工程
で、材料の結晶方位を均一にするためには重要な工程で
ある。
The second step is a step of subjecting the obtained ingot to a heat treatment. This step is a step of reducing the segregation generated at the time of casting by heat treatment at a temperature of 700 ° C. or more. This is an important step for achieving uniformity.

【0017】第3の工程は、粗圧延工程であり、圧延加
工率が50%以上であることが望ましい。この工程は、
次の第5の工程で再結晶処理をするために重要な工程
で、圧延加工率が50%未満の場合、再結晶粒が不均一
になり、その結果、結晶方位が不均一になり、その後の
工程で、材料断面の結晶方位を{111}に配向せしめ
ることが困難になる。なお、この工程は、冷間圧延でも
温間圧延でも適用できる。
The third step is a rough rolling step, and it is desirable that the rolling rate is 50% or more. This step is
In the next important step for performing the recrystallization treatment in the fifth step, when the rolling reduction ratio is less than 50%, the recrystallized grains become non-uniform, and as a result, the crystal orientation becomes non-uniform, In this step, it is difficult to orient the crystal orientation of the material cross section to {111}. This step can be applied to both cold rolling and warm rolling.

【0018】第4の工程は、熱処理工程で、材料の結晶
粒径を均一微細にする工程であり、第5の工程以降で材
料の断面の結晶方位を{111}に配向せしめるため
に、一度無方位状態にせしめるための工程である。熱処
理温度は、350〜750℃である。温度が350℃未
満の場合には、上記の熱処理効果が充分に発現できず、
また750℃を超えた場合は、結晶粒径が粗大になり、
その後の工程をいかに工夫しても所望のプレス加工性が
得られない。特に1≦SRD<3、1≦STD<3であ
ることが必要である。
The fourth step is a heat treatment step in which the crystal grain size of the material is made uniform and fine. In the fifth and subsequent steps, once the crystal orientation of the cross section of the material is oriented to {111}. This is a process for making the omnidirectional state. The heat treatment temperature is 350 to 750 ° C. When the temperature is lower than 350 ° C., the above heat treatment effect cannot be sufficiently exhibited,
If the temperature exceeds 750 ° C., the crystal grain size becomes coarse,
No matter how the subsequent steps are devised, the desired press workability cannot be obtained. In particular, it is necessary that 1 ≦ S RD <3 and 1 ≦ S TD <3.

【0019】第5の工程は、冷間圧延工程、第6の工程
は、低温焼鈍工程である。第5の工程で重要なことは、
この工程が最終圧延工程の場合、圧延加工率を30%以
上にするということである。この工程で材料断面の結晶
方位{111}の集合度合いを高め、材料断面の結晶方
位{200}の集合度合いを抑えている。圧延加工率が
30%未満の場合には、投入される加工歪が小さいため
に、材料断面の結晶方位を{111}に配向せしめるこ
とが困難である。好ましくは50%以上、さらに好まし
くは80%以上である。
The fifth step is a cold rolling step, and the sixth step is a low-temperature annealing step. The important thing in the fifth step is
In the case where this step is the final rolling step, it means that the rolling rate is 30% or more. In this step, the degree of aggregation of the crystal orientation {111} of the material cross section is increased, and the degree of aggregation of the crystal orientation {200} of the material cross section is suppressed. If the rolling ratio is less than 30%, it is difficult to orient the crystal orientation of the material cross section to {111} because the applied processing strain is small. It is preferably at least 50%, more preferably at least 80%.

【0020】第6の工程は、熱処理により第5の工程で
生じた過剰な加工歪を除去してやる工程で、材料の曲げ
加工性等を向上することができる。この工程での熱処理
温度は、各材料の再結晶温度未満、好ましくは熱処理温
度が200〜400℃である。本発明に関わる銅基合金
としては、例えばCu−Ni−Sn−P系合金、Cu−
Sn−P系合金、Cu−Ni−Si系合金、Cu−Mg
−P系合金、Cu−Zn−Sn−Fe系合金等の銅基合
金が挙げられる。
The sixth step is a step of removing excessive processing strain generated in the fifth step by the heat treatment, and can improve bending workability of the material. The heat treatment temperature in this step is lower than the recrystallization temperature of each material, and preferably the heat treatment temperature is 200 to 400 ° C. As the copper-based alloy according to the present invention, for example, a Cu-Ni-Sn-P-based alloy, Cu-
Sn-P alloy, Cu-Ni-Si alloy, Cu-Mg
And copper-based alloys such as a -P-based alloy and a Cu-Zn-Sn-Fe-based alloy.

【0021】本発明に係る銅基合金の成分範囲を、S
n、Ni、P、Si、Zn、Fe、Mg、Alのうちか
ら選ばれた1種または2種以上を総量で0.01〜35wt
%含み、残部Cuおよび不可避的不純物からなると規定
したのは、材料の導電率、引張強さ、ばね限界値および
曲げ加工性のバランスを維持し、さらにまたプレス加工
性を向上させるためである。
The component range of the copper-based alloy according to the present invention is represented by S
One or more selected from n, Ni, P, Si, Zn, Fe, Mg, and Al in a total amount of 0.01 to 35 wt.
%, And the balance is defined to be composed of Cu and unavoidable impurities in order to maintain the balance of conductivity, tensile strength, spring limit value, and bending workability of the material, and also to improve press workability.

【0022】Sn、Ni、P、Si、Zn、Fe、M
g、Alのうちから選ばれた1種または2種以上の総量
が0.01 wt%未満のときは、導電率が高くなるが、引
張強さとばね限界値およびプレス加工性、耐熱性等の特
性が得られにくい。また、圧延加工率を上げて引張強さ
とばね限界値およびプレス加工性を向上させると、曲げ
加工性が劣化する。一方、Sn、Ni、P、Si、Z
n、Fe、Mg、Alのうちから選ばれた1種または2
種以上の総量が35wt%を越えたときは、引張強さと
ばね限界値は高くなるが、導電率が低くなり、さらにま
た曲げ加工性が劣化する。
Sn, Ni, P, Si, Zn, Fe, M
When the total amount of one or more selected from g and Al is less than 0.01 wt%, the electrical conductivity increases, but the properties such as tensile strength, spring limit value, press workability, heat resistance and the like increase. It is difficult to obtain. Further, when the rolling ratio is increased to improve the tensile strength, the spring limit value, and the press workability, the bending workability deteriorates. On the other hand, Sn, Ni, P, Si, Z
one or two selected from n, Fe, Mg, and Al
When the total amount of the species exceeds 35 wt%, the tensile strength and the spring limit value increase, but the electrical conductivity decreases and the bending workability further deteriorates.

【0023】したがって、本発明に係る銅基合金の成分
範囲について、Sn、Ni、P、Si、Zn、Fe、M
g、Alのうちから選ばれた1種または2種以上を総量
で0.01〜35wt%含み、残部Cuおよび不可避的不純
物からなる銅基合金と規定した。なお、本発明で規定し
た添加元素以外の元素、例えば、Ag、Au、Bi、C
o、Cr、In、Mn、La、Pd、Pb、Sb、S
e、Te、Ti、Y、Zrの元素のうちから選ばれた1
種または2種以上を総量で5wt%以下であれば、本発
明で規定した添加元素に加えても得られる効果を阻害し
ない。
Therefore, regarding the component range of the copper-based alloy according to the present invention, Sn, Ni, P, Si, Zn, Fe, M
One or two or more selected from g and Al are contained in a total amount of 0.01 to 35 wt%, and the balance is defined as a copper-based alloy including Cu and unavoidable impurities. Note that elements other than the additional elements specified in the present invention, for example, Ag, Au, Bi, C
o, Cr, In, Mn, La, Pd, Pb, Sb, S
1 selected from elements e, Te, Ti, Y, and Zr
If the total amount of the species or two or more species is 5 wt% or less, the effect obtained even when added to the additive element specified in the present invention is not impaired.

【0024】次に本発明の実施の形態を実施例により説
明する。
Next, embodiments of the present invention will be described with reference to examples.

【発明の実施の形態】実施例1 表1にその化学成分値(wt%)を示す銅基合金No.
1〜16を高周波溶解炉を用いてAr雰囲気で溶解し、
40×40×150(mm)のインゴットに鋳造した。
得られたNo.1〜16のインゴットから10×40
×40(mm)の試験片を切り出し、850℃で1h
均質化熱処理を実施(第2の工程)した後、No.1〜
3,No.9,10は冷間圧延により、板厚10mmか
ら2.0mmまで圧延し、No.4〜8,No.11〜16は
熱間圧延により板厚10mmから5mmまで圧延した後
に、冷間圧延により板厚5mmから2.0mmまで圧延し
た(第3の工程)。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Example 1 Table 1 shows a copper-based alloy No.
1 to 16 were melted in an Ar atmosphere using a high-frequency melting furnace,
It was cast into an ingot of 40 × 40 × 150 (mm).
From the obtained ingots Nos. 1 to 16, 10 t × 40 w
A test piece of × 40 l (mm) was cut out and heated at 850 ° C. for 1 hour.
After performing the homogenization heat treatment (second step),
Nos. 3, 9 and 10 were rolled from 10 mm to 2.0 mm in thickness by cold rolling, and Nos. 4 to 8 and 11 to 16 were rolled from 10 mm to 5 mm in thickness by hot rolling. Rolling was performed from a thickness of 5 mm to 2.0 mm by cold rolling (third step).

【0025】[0025]

【表1】 [Table 1]

【0026】次に、得られたNo.1〜16の試験片のう
ち、No.1〜11,No.13については500℃×1
hの熱処理を実施し、No.12,No.14〜16につ
いては、600℃×1hの熱処理を実施した(第4の工
程)。得られた試験片のRD面,TD面についてX線回
折を行い、SRDとSTDを測定した。X線回折強度の
測定条件は、以下の通りである。 管球:Cu、管電圧:40KV、管電流:30mA、サ
ンプリング幅:0.002°をクロメーター使用、試料
ホルダー:AL その結果、No.1〜11,No.13は、1≦SRD
3、1≦STD<3を満足したが、No.12,No.1
4〜16は、1≦SRD<3、1≦STD<3を満足し
なかった。なお、X線回折測定条件は、上記条件に限定
されるものではなく、試料の種類に応じて適宜変更され
る。
Next, of the test pieces Nos. 1 to 16 obtained, Nos. 1 to 11 and No. 13 were 500 ° C. × 1.
h, a heat treatment of No. 12, No. 14 to 16 was performed at 600 ° C. × 1 h (fourth step). X-ray diffraction was performed on the RD plane and TD plane of the obtained test piece, and S RD and S TD were measured. The measurement conditions of the X-ray diffraction intensity are as follows. Tube: Cu, tube voltage: 40 KV, tube current: 30 mA, sampling width: 0.002 ° using a chromometer, sample holder: AL As a result, for Nos. 1 to 11 and No. 13, 1 ≦ S RD <
3, 1 ≦ S TD <3, but No. 12, No. 1
Nos. 4 to 16 did not satisfy 1 ≦ S RD <3 and 1 ≦ S TD <3. Note that the X-ray diffraction measurement conditions are not limited to the above conditions, but are appropriately changed according to the type of the sample.

【0027】このようにして得られたNo.1〜16に
ついて冷間圧延(第5の工程)と場合によっては熱処理
(第4の工程)を実施し、No.1〜8、No.12につ
いては、熱処理(第4の工程)後の圧延加工率が30%
以上になるように、No.9〜11、No.13〜16に
ついては熱処理(第4の工程)後の圧延加工率が30%
未満になるように圧延加工を実施して、0.20mmの板厚
に仕上げた。
Cold rolling (fifth step) and, if necessary, heat treatment (fourth step) were performed on Nos. 1 to 16 thus obtained. Means that the rolling rate after the heat treatment (the fourth step) is 30%
As described above, for Nos. 9 to 11 and Nos. 13 to 16, the rolling reduction rate after the heat treatment (the fourth step) was 30%.
Rolling was carried out so that the thickness was less than 0.20 mm.

【0028】最後に、300℃×1hの熱処理(第6の
工程)を実施して、評価用のサンプルとした。このよう
にして得られたサンプルについて、SRD,STD,S
RD×STDを測定した。さらに、これらのサンプルに
ついて端子形状の連続プレス加工を実施し、材料のバリ
高さが25μmを越えた段階でプレス加工を止めて、こ
こまでのショット数を最大ショット数とした。
Finally, a heat treatment (sixth step) of 300 ° C. × 1 h was performed to obtain a sample for evaluation. For the sample obtained in this way, S RD , S TD , S
RD × STD was measured. Furthermore, continuous press working of the terminal shape was performed on these samples, and the press working was stopped when the burr height of the material exceeded 25 μm, and the number of shots up to this point was taken as the maximum number of shots.

【0029】表1の結果から、次のことが明らかであ
る。本発明によるNo.1〜8の合金は、SRD≧2か
つSTD≧4かつSRD×STD≧16を満足してお
り、最大プレスショット数で200万ショットを越えて
おり、プレス加工性に優れた銅基合金材料である。
From the results in Table 1, the following is clear. The alloys of Nos. 1 to 8 according to the present invention satisfy S RD ≧ 2 and S TD ≧ 4 and S RD × S TD ≧ 16, and exceed 2,000,000 shots in the maximum number of press shots. It is a copper-based alloy material with excellent properties.

【0030】一方、第4の工程で、1≦SRD<3、1
≦STD<3を満足しないNo.12は、STD≧2と
RD×STD≧16を満足しておらず、150万ショ
ットを越えるとRD面のバリが30μmになった。第5
の工程で圧延加工率が30%未満であるNo.9〜1
1,No.13のうち、No.9,10はSTD≧4とS
RD×S ≧16を満足しておらず、各最大ショット
数を越えるとTD面のバリが25μmを越え、No.1
1,13は、SRD≧2,STD≧4,SRD×STD
≧16のすべてを満足しておらず、100万ショットに
満たないうちにRD面,TD面のバリが25μmを越え
た。
On the other hand, in the fourth step, 1 ≦ S RD <3,1
No. 12 which did not satisfy ≦ S TD <3 did not satisfy S TD ≧ 2 and S RD × S TD ≧ 16, and when 1.5 million shots were exceeded, burr on the RD surface became 30 μm. Fifth
No. 9-1 whose rolling reduction rate is less than 30% in the step of
Among Nos. 1 and 13, Nos. 9 and 10 have S TD ≧ 4 and S
RD × S T D ≧ 16 does not satisfy the burr of TD surface exceeds the maximum number of shots over a 25 [mu] m, No.1
1,13 is, S RD ≧ 2, S TD ≧ 4, S RD × S TD
All of ≧ 16 were not satisfied, and burrs on the RD and TD surfaces exceeded 25 μm before the number of shots reached 1,000,000.

【0031】第4の工程で、1≦SRD<3かつ1≦S
RD<3を満足せず、なおかつ第5の工程で圧延加工率
が30%未満であるNo.14〜16のうち、No.14
と15は、STD≧2とSRD×STD≧16を満足し
ておらず、100万ショットに達したところで、RD面
のバリが25μmを越えた。また、No.16は、S
TD≧4を満足しておらず、100万ショット程度でT
D面のバリが25μmを越えて、材料のカスがパンチと
ダイの間に付着して、プレスの継続ができなくなった。
In the fourth step, 1 ≦ S RD <3 and 1 ≦ S
No. 14 out of Nos. 14 to 16 which did not satisfy RD <3 and had a rolling reduction ratio of less than 30% in the fifth step,
And No. 15 did not satisfy S TD ≧ 2 and S RD × S TD ≧ 16, and when 1 million shots were reached, the burr on the RD surface exceeded 25 μm. No. 16 is S
TD ≧ 4 is not satisfied, and T
The burrs on the D side exceeded 25 μm, and material residue adhered between the punch and the die, making it impossible to continue pressing.

【0032】実施例2 実施例1の表1中に示す本発明合金No.4と市販のり
ん青銅合金(C5191 質別H:6.5wt%Sn、0.2
wt%P、残部Cu)及び銅基合金(C7025 質別
H:3.2wt%NI、0.70wt%SI、0.15wt%Mg、残
部Cu)について、ビッカース硬さ、引張強さ、ばね限
界値、導電率、プレス加工性及び曲げ加工性を評価し
た。
Example 2 The alloy No. 4 of the present invention shown in Table 1 of Example 1 and a commercially available phosphor bronze alloy (C5191 temper H: 6.5 wt% Sn, 0.2
wt% P, balance Cu) and copper base alloy (C7025 temper H: 3.2wt% NI, 0.70wt% SI, 0.15wt% Mg, balance Cu), Vickers hardness, tensile strength, spring limit, conductivity The rate, press workability and bending workability were evaluated.

【0033】ビッカース硬さ、引張強さ、ばね限界値、
導電率の測定は、各々、JIS Z2244、JIS
Z 2241、JIS H 3130、JIS H 0
505に準拠して行った。プレス加工性は、実施例1と
同じ方法で、最大プレスショット数を測定し、評価し
た。曲げ加工性は、90°W曲げ試験(JIS H31
10に準拠)にて、内曲げ半径Rを0.08mm、曲げ半径
Rと板厚tの比R/tを0.4として中央部の凸部表面が
良好なものに○印、シワの発生したものには△印、割れ
が発生したものには×印として評価した。結果を表2に
示す。
Vickers hardness, tensile strength, spring limit,
Conductivity was measured according to JIS Z2244, JIS
Z 2241, JIS H 3130, JIS H 0
505. The press workability was evaluated by measuring the maximum number of press shots in the same manner as in Example 1. The bending workability was measured by a 90 ° W bending test (JIS H31).
10), the inner bending radius R was 0.08 mm, and the ratio R / t of the bending radius R to the plate thickness t was 0.4. Is evaluated as △, and those with cracks are evaluated as x. Table 2 shows the results.

【0034】[0034]

【表2】 [Table 2]

【0035】表2に示す結果から、本発明の銅基合金
は、従来の代表的なコネクタ、スイッチ、リレー用の銅
基合金C5191、C7025と比較して、ビカース硬
さ、引張強さ、ばね限界値、導電率、プレス加工性、曲
げ加工性のバランスに優れていることが分かる。以上の
ように、本発明はプレス加工性に優れたコネクタ、スイ
ッチ、リレー用の銅または銅基合金を得たものであり、
近年の家電製品、情報通信機器や自動車用部品の高密度
実装化に伴った材料の薄肉化、細線化と、プレスの金型
寿命向上により、コストダウンを大幅に実現できる銅ま
たは銅基合金を提供するものである。
From the results shown in Table 2, the copper-based alloy of the present invention shows a higher Vickers hardness, a higher tensile strength, and a lower spring strength than those of the conventional copper-based alloys C5191 and C7025 for connectors, switches and relays. It can be seen that the balance between the limit value, conductivity, press workability, and bending workability is excellent. As described above, the present invention has obtained a copper or copper-based alloy for connectors, switches, and relays excellent in press workability,
Copper or copper-based alloys that can significantly reduce costs by reducing the thickness and thickness of materials and increasing the life of press dies accompanying the high-density packaging of home appliances, information and communication equipment, and automotive parts in recent years To provide.

【0036】[0036]

【発明の効果】上記のように、本発明によれば、プレス
加工性に優れたコネクタやスイッチ、リレー用等の銅基
合金を得ることができ、近年の家電製品、情報通信機器
や自動車用部品の高密度実装化に伴った材料の薄肉化、
細線化と、プレスの金型寿命向上により、コストダウン
を大幅に実現できるのである。
As described above, according to the present invention, it is possible to obtain a copper-based alloy excellent in press workability for connectors, switches, relays, etc., and has recently been used for home electric appliances, information communication equipment and automobiles. Thinner materials due to high-density mounting of components,
By reducing the thickness of the wire and improving the service life of the press, the cost can be significantly reduced.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 694 C22F 1/00 694B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 694 C22F 1/00 694B

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 材料の断面のX線回折強度においてS≧
2であることを特徴とするプレス加工性に優れた銅また
は銅基合金。ただし、 【数1】 I{111}は{111}の回折強度,I{222}は
{222}の回折強度,I{200}は{200}の回
折強度である。
1. An X-ray diffraction intensity of a cross section of a material, S ≧
2. A copper or copper-based alloy excellent in press workability, characterized in that: Where: I {111} is the diffraction intensity of {111}, I {222} is the diffraction intensity of {222}, and I {200} is the diffraction intensity of {200}.
【請求項2】 材料の加工方向に垂直な断面のX線回折
強度においてSRD≧2 かつ 材料の加工方向に平行な
断面のX線回折強度でSTD≧4であり、S RD×S
TD≧16であることを特徴とするプレス加工性に優れ
た銅または銅基合金。ただし、 【数2】 ここで、SRDは材料の加工方向に垂直な断面のX線回
折強度について、STDは材料の加工方向に平行な断面
のX線回折強度について測定した値で、I{111}は
{111}の回折強度、I{222}は{222}の回
折強度、I{200}は{200}の回折強度である。
2. X-ray diffraction of a cross section perpendicular to the processing direction of the material
S in strengthRD≧ 2 and parallel to the material processing direction
X-ray diffraction intensity of cross sectionTD≧ 4 and S RD× S
TDExcellent press formability characterized by ≧ 16
Copper or copper-based alloy. Where:Where SRDIs an X-ray beam with a cross section perpendicular to the material processing direction.
Regarding the folding strength, STDIs a cross section parallel to the material processing direction
I {111} is a value measured for the X-ray diffraction intensity of
{111} diffraction intensity, I {222} is {222} times
The folding intensity, I {200}, is the diffraction intensity of {200}.
【請求項3】 Sn、Ni、P、Si、Zn、Fe、M
g、Alのうちから選ばれる1種または2種以上を総量
で0.01〜35wt%含み、残部Cuおよび不可避的不純
物からなる銅基合金で、かつ材料の加工方向に垂直な断
面のX線回折強度においてSRD≧2 かつ 材料の加工
方向に平行な断面のX線回折強度でS TD≧4であり、
RD×STD≧16であることを特徴とするプレス加
工性に優れた銅または銅基合金。ただし、 【数3】 ここで、SRDは材料の加工方向に垂直な断面のX線回
折強度について、STDは材料の加工方向に平行な断面
のX線回折強度について測定した値で、I{111}は
{111}の回折強度、I{222}は{222}の回
折強度、I{200}は{200}の回折強度である。
3. Sn, Ni, P, Si, Zn, Fe, M
g, total amount of one or more selected from Al
0.01 to 35 wt%, with the balance being Cu and inevitable impurities
Copper-based alloy consisting of
X-ray diffraction intensity of the surfaceRD≧ 2 and material processing
X-ray diffraction intensity of a cross section parallel to the TD≧ 4,
SRD× STDPress processing characterized by ≧ 16
Copper or copper-based alloy with excellent workability. However,Where SRDIs an X-ray beam with a cross section perpendicular to the material processing direction.
Regarding the folding strength, STDIs a cross section parallel to the material processing direction
I {111} is a value measured for the X-ray diffraction intensity of
{111} diffraction intensity, I {222} is {222} times
The folding intensity, I {200}, is the diffraction intensity of {200}.
【請求項4】 Sn、Ni、P、Si、Zn、Fe、M
g、Alのうちから選ばれる1種または2種以上を総量
で0.01〜35wt%含み、残部Cuおよび不可避的不純
物からなる銅基合金のインゴットを圧延、または熱間圧
延と熱処理を繰り返すことで所定の板厚にした材料を3
50〜750℃の温度で熱処理を施して、材料の加工方
向に垂直な断面のX線回折強度において1≦SRD≦3
かつ材料の加工方向に平行な断面のX線回折強度で1≦
TD≦3として、しかる後に圧延加工率30%以上ま
たは50%以上の冷間圧延と、再結晶温度未満の低温焼
鈍を組み合わせることで、材料の加工方向に垂直な断面
のX線回折強度においてSRD≧2 かつ 材料の加工方
向に平行な断面のX線回折強度でSTD≧4であり、S
RD×STD≧16であることを特徴とするプレス加工
性に優れた銅または銅基合金。ただし、 【数4】 ここで、SRDは材料の加工方向に垂直な断面のX線回
折強度について、STDは材料の加工方向に平行な断面
のX線回折強度について測定した値で、I{111}は
{111}の回折強度、I{222}は{222}の回
折強度、I{200}は{200}の回折強度である。
4. Sn, Ni, P, Si, Zn, Fe, M
g or Al, one or more selected from the group consisting of 0.01 to 35 wt% in total, and a predetermined amount obtained by rolling an ingot of a copper-based alloy comprising the balance of Cu and unavoidable impurities, or repeating hot rolling and heat treatment. Material with thickness of 3
A heat treatment is performed at a temperature of 50 to 750 ° C., and the X-ray diffraction intensity of the cross section perpendicular to the processing direction of the material is 1 ≦ S RD ≦ 3.
And the X-ray diffraction intensity of the cross section parallel to the processing direction of the material is 1 ≦
Assuming that S TD ≦ 3, by combining cold rolling with a rolling reduction ratio of 30% or more or 50% or more and low-temperature annealing below the recrystallization temperature, the X-ray diffraction intensity of the cross section perpendicular to the processing direction of the material is obtained. S RD ≧ 2 and the X-ray diffraction intensity of the cross section parallel to the processing direction of the material is S TD ≧ 4,
Copper or copper-based alloy excellent in press workability, wherein RD × S TD ≧ 16. However, Here, S RD is a value measured for an X-ray diffraction intensity of a cross section perpendicular to the processing direction of the material, S TD is a value measured for an X-ray diffraction intensity of a cross section parallel to the processing direction of the material, and I {111} is {111}.回 折, I {222} is the diffraction intensity of {222}, and I {200} is the diffraction intensity of {200}.
JP33806999A 1999-11-29 1999-11-29 Copper-based alloy plate with excellent press workability Expired - Lifetime JP4009981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33806999A JP4009981B2 (en) 1999-11-29 1999-11-29 Copper-based alloy plate with excellent press workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33806999A JP4009981B2 (en) 1999-11-29 1999-11-29 Copper-based alloy plate with excellent press workability

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007073983A Division JP5017719B2 (en) 2007-03-22 2007-03-22 Copper-based alloy plate excellent in press workability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001152303A true JP2001152303A (en) 2001-06-05
JP4009981B2 JP4009981B2 (en) 2007-11-21

Family

ID=18314627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33806999A Expired - Lifetime JP4009981B2 (en) 1999-11-29 1999-11-29 Copper-based alloy plate with excellent press workability

Country Status (1)

Country Link
JP (1) JP4009981B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6699337B2 (en) * 2000-12-18 2004-03-02 Dowa Mining Co., Ltd. Copper-base alloys having improved punching properties on press and a process for producing them
JP2006016667A (en) * 2004-07-01 2006-01-19 Dowa Mining Co Ltd Copper-based alloy and manufacturing method therefor
WO2007148712A1 (en) * 2006-06-23 2007-12-27 Ngk Insulators, Ltd. Copper-based rolled alloy and method for producing the same
JP2012211350A (en) * 2011-03-30 2012-11-01 Jx Nippon Mining & Metals Corp Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD OF MANUFACTURING THE SAME
WO2013062091A1 (en) * 2011-10-28 2013-05-02 三菱マテリアル株式会社 Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, rolled copper alloy material for electronic equipment, and part for electronic equipment
JP2015113487A (en) * 2013-12-11 2015-06-22 三菱伸銅株式会社 Phosphorus deoxidized copper plate excellent in brazability and press workability, and method for manufacturing the same
US10032536B2 (en) 2010-05-14 2018-07-24 Mitsubishi Materials Corporation Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device
WO2018186230A1 (en) 2017-04-04 2018-10-11 Dowaメタルテック株式会社 Cu-co-si system copper alloy sheet material and method for producing same, and part using the sheet material
US10153063B2 (en) 2011-11-07 2018-12-11 Mitsubishi Materials Corporation Copper alloy for electronic devices, method of manufacturing copper alloy for electronic devices, copper alloy plastic working material for electronic devices, and component for electronic devices
US10458003B2 (en) 2011-11-14 2019-10-29 Mitsubishi Materials Corporation Copper alloy and copper alloy forming material

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6699337B2 (en) * 2000-12-18 2004-03-02 Dowa Mining Co., Ltd. Copper-base alloys having improved punching properties on press and a process for producing them
JP2006016667A (en) * 2004-07-01 2006-01-19 Dowa Mining Co Ltd Copper-based alloy and manufacturing method therefor
JP4660735B2 (en) * 2004-07-01 2011-03-30 Dowaメタルテック株式会社 Method for producing copper-based alloy sheet
JP5263525B2 (en) * 2006-06-23 2013-08-14 日本碍子株式会社 Method for producing copper-based rolled alloy
WO2007148712A1 (en) * 2006-06-23 2007-12-27 Ngk Insulators, Ltd. Copper-based rolled alloy and method for producing the same
EP2042613A1 (en) * 2006-06-23 2009-04-01 NGK Insulators, Ltd. Copper-based rolled alloy and method for producing the same
US8211249B2 (en) 2006-06-23 2012-07-03 Ngk Insulators, Ltd. Copper base rolled alloy and manufacturing method therefor
EP2042613A4 (en) * 2006-06-23 2013-03-13 Ngk Insulators Ltd Copper-based rolled alloy and method for producing the same
US10032536B2 (en) 2010-05-14 2018-07-24 Mitsubishi Materials Corporation Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device
US10056165B2 (en) 2010-05-14 2018-08-21 Mitsubishi Materials Corporation Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device
JP2012211350A (en) * 2011-03-30 2012-11-01 Jx Nippon Mining & Metals Corp Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD OF MANUFACTURING THE SAME
WO2013062091A1 (en) * 2011-10-28 2013-05-02 三菱マテリアル株式会社 Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, rolled copper alloy material for electronic equipment, and part for electronic equipment
US9587299B2 (en) 2011-10-28 2017-03-07 Mitsubishi Materials Corporation Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, rolled copper alloy material for electronic equipment, and part for electronic equipment
US10153063B2 (en) 2011-11-07 2018-12-11 Mitsubishi Materials Corporation Copper alloy for electronic devices, method of manufacturing copper alloy for electronic devices, copper alloy plastic working material for electronic devices, and component for electronic devices
US10458003B2 (en) 2011-11-14 2019-10-29 Mitsubishi Materials Corporation Copper alloy and copper alloy forming material
JP2015113487A (en) * 2013-12-11 2015-06-22 三菱伸銅株式会社 Phosphorus deoxidized copper plate excellent in brazability and press workability, and method for manufacturing the same
WO2018186230A1 (en) 2017-04-04 2018-10-11 Dowaメタルテック株式会社 Cu-co-si system copper alloy sheet material and method for producing same, and part using the sheet material
KR20190137129A (en) 2017-04-04 2019-12-10 도와 메탈테크 가부시키가이샤 Cu-Co-Si-based copper alloy sheet and manufacturing method and parts using the sheet
US11332815B2 (en) 2017-04-04 2022-05-17 Dowa Metaltech Co., Ltd. Cu—Co—Si-based copper alloy sheet material and method for producing the same, and component using the sheet material

Also Published As

Publication number Publication date
JP4009981B2 (en) 2007-11-21

Similar Documents

Publication Publication Date Title
JP4729680B2 (en) Copper-based alloy with excellent press punchability
JP4984108B2 (en) Cu-Ni-Sn-P based copper alloy with good press punchability and method for producing the same
KR101161597B1 (en) Cu-ni-si-co-base copper alloy for electronic material and process for producing the copper alloy
JP4177104B2 (en) High-strength copper alloy excellent in bending workability, manufacturing method thereof, and terminal / connector using the same
EP3037561B1 (en) Copper alloy for electric and electronic devices, copper alloy sheet for electric and electronic devices, component for electric and electronic devices, terminal, and bus bar
JP3977376B2 (en) Copper alloy
JP2006265731A (en) Copper alloy
JPH11222641A (en) Copper alloy for elctrically conductive spring and its production
EP2221391A1 (en) Copper alloy sheet material
TWI502084B (en) Copper alloy for electronic/electric device, component for electronic/electric device, and terminal
JP5261691B2 (en) Copper-base alloy with excellent press punchability and method for producing the same
JPH10219374A (en) High strength copper alloy excellent in shearing property
JP2001152303A (en) Copper or copper-base alloy, excellent in press workability, and its manufacturing method
JP3957391B2 (en) High strength, high conductivity copper alloy with excellent shear processability
JP6311299B2 (en) Copper alloy for electronic / electric equipment, copper alloy plastic working material for electronic / electric equipment, manufacturing method of copper alloy plastic working material for electronic / electric equipment, electronic / electric equipment parts and terminals
JPH10195562A (en) Copper alloy for electrical and electronic equipment, excellent in blanking workability, and its production
JPH10130755A (en) High strength and high conductivity copper alloy excellent in shearing workability
JP6355672B2 (en) Cu-Ni-Si based copper alloy and method for producing the same
JP4177221B2 (en) Copper alloy for electronic equipment
JP5017719B2 (en) Copper-based alloy plate excellent in press workability and method for producing the same
JP5748945B2 (en) Copper alloy material manufacturing method and copper alloy material obtained thereby
JP2001181757A (en) Copper alloy excellent in punching workability and producing method therefor
JP2503793B2 (en) Cu alloy plate material for electric and electronic parts, which has the effect of suppressing the wear of punching dies
JP6154996B2 (en) High-strength copper alloy material and manufacturing method thereof
JP4348444B2 (en) Zinc alloy for fuse, fuse and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4009981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term