JPH10219374A - High strength copper alloy excellent in shearing property - Google Patents

High strength copper alloy excellent in shearing property

Info

Publication number
JPH10219374A
JPH10219374A JP4161597A JP4161597A JPH10219374A JP H10219374 A JPH10219374 A JP H10219374A JP 4161597 A JP4161597 A JP 4161597A JP 4161597 A JP4161597 A JP 4161597A JP H10219374 A JPH10219374 A JP H10219374A
Authority
JP
Japan
Prior art keywords
copper alloy
particles
less
strength copper
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4161597A
Other languages
Japanese (ja)
Other versions
JP3797736B2 (en
Inventor
Yosuke Miwa
洋介 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP04161597A priority Critical patent/JP3797736B2/en
Publication of JPH10219374A publication Critical patent/JPH10219374A/en
Application granted granted Critical
Publication of JP3797736B2 publication Critical patent/JP3797736B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a copper alloy or electrical and electronic parts, excellent in shearing property as well as in characteristics of strength, electric conductivity, solderability, plating suitability, etc. SOLUTION: This copper alloy has a composition consisting of, by weight, 1.0-8.0% Ni, >0.1-2.0% Si, 0.05-5.0% Zn, <=300ppm O, and the balance essentially Cu with inevitable impurities and containing, if necessary, 0.0001-1.0%, in total, of one or >=2 elements among Mn, Mg, and Ca and also has a structure in which Ni-Si compounds are precipitated. In this case, grains of <0.03μm grain size (small grains) and grains of 0.03-100μm grain size (large grains) are present, and the ratio between the number of the small grains and that of the large grains is regulated to >=1 and also the ratio between the grain size (median) of the small grains and that of the large grains is regulated to <=0.5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、例えばリードフ
レーム、端子、コネクター、ばねなど電気電子部品に用
いられる銅合金において、特に、打抜き加工を含む複数
の剪断加工により製造された電気電子部品の「ばり」、
「だれ」及び残留応力が少なく、打抜き金型の摩耗が少
ないなど、剪断加工性に優れる高強度銅合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy used for electric and electronic parts such as lead frames, terminals, connectors and springs, and more particularly to an electric and electronic part manufactured by a plurality of shearing processes including punching. Bari "
The present invention relates to a high-strength copper alloy excellent in shearing workability, such as having a small "drool" and a residual stress, and a small wear of a punching die.

【0002】[0002]

【従来の技術】従来、一般に、上記の各種電気電子部品
には、強度、伸び、ばね性、導電性、耐熱性、Agめっ
き性及びはんだの耐熱剥離性などの特徴を具備すること
が要求されていることから、これらの特性をもった、例
えばC64710(Cu−3.2Ni−0.7Si−
0.3Zn)やC70250(Cu−3.0Ni−0.
65Si−0.15Mg)をはじめ、その他多くの銅合
金が製造に用いられている。
2. Description of the Related Art Conventionally, the above-mentioned various electric and electronic parts are generally required to have characteristics such as strength, elongation, spring property, conductivity, heat resistance, Ag plating property and heat peeling resistance of solder. Therefore, for example, C64710 (Cu-3.2Ni-0.7Si-
0.3Zn) and C70250 (Cu-3.0Ni-0.
Many other copper alloys, including 65Si-0.15Mg), are used in the manufacture.

【0003】[0003]

【発明が解決しようとする課題】最近の各種電気電子機
器の軽薄短小化及び実装密度の向上要求に対して、使用
部品の小形化、リード間距離の縮小などが加速してい
る。そのため、リードフレーム、端子などに対しても、
寸法精度の要求が非常に厳しくなり、たとえば、回路の
短絡防止のために「ばり」及び「だれ」のないこと、打
抜き後の平坦性を確保し例えばICチップとリードフレ
ームのワイヤボンディング精度の向上を図るために、打
ち抜き後の残留応力も小さいことが切望されている。ま
た、打抜き加工の生産性向上のために打抜き加工に用い
られる金型の摩耗が小さく金型寿命が長いことが求めら
れている。
In response to recent demands for reductions in the size, weight, and size of various electric and electronic devices and improvement in packaging density, the size of components used and the distance between leads have been accelerated. Therefore, lead frames, terminals, etc.
The requirements for dimensional accuracy have become very strict. For example, there are no "burrs" and "blunts" to prevent short circuits, and the flatness after punching is ensured to improve, for example, the accuracy of wire bonding between IC chips and lead frames. Therefore, it is desired that the residual stress after punching be small. Further, in order to improve the productivity of the punching process, it is required that the die used for the punching process has a small wear and a long mold life.

【0004】しかし、上記の従来の銅合金を打抜き加工
して各種電気電子部品を製造した場合、「ばり」及び
「だれ」の量が大きく、残留応力も比較的大きいため寸
法精度に関する厳しい要求を満足することが難しくなっ
ている。また、金型寿命についても、打抜き金型の摩耗
が比較的大きく、したがって使用寿命が短くなる。
However, when various electric and electronic parts are manufactured by punching the above-mentioned conventional copper alloy, burrs and drools are large and residual stress is relatively large. It's hard to be satisfied. In addition, the die life is relatively large, and the working life is shortened.

【0005】本発明はリードフレーム、端子、コネクタ
ーなど電気・電子部品用銅合金として要求される強度、
導電率、はんだ付け性、めっき性などの特性を通常の銅
合金以上に維持しながら、打抜き加工によって発生する
「ばり」、「だれ」及び残留応力を小さくし、金型の摩
耗を少なくして寿命を伸ばすなど、銅合金の剪断加工性
を向上させることを目的とする。
[0005] The present invention relates to the strength required as a copper alloy for electric and electronic parts such as lead frames, terminals and connectors.
While maintaining properties such as conductivity, solderability, and plating properties more than ordinary copper alloys, it reduces burrs, drooling and residual stress generated by punching, and reduces mold wear. An object of the present invention is to improve the shearability of a copper alloy, such as extending the life.

【0006】[0006]

【課題を解決するための手段】本発明に関わる剪断加工
性に優れる高強度銅合金は、Ni:1.0〜8.0wt
%、Si:0.1超〜2.0wt%、Zn:0.05〜
5.0wt%を含有し、Oが300ppm以下であり、
残部が実質的にCuと不可避不純物からなる組成を有
し、Ni−Si化合物が析出している銅合金において、
その粒径が0.03μm未満のもの(小粒子)及び0.
03μm〜100μmのもの(大粒子)が存在し、かつ
小粒子/大粒子の数の比率が1以上であることを特徴と
する。なお、本発明において上記の析出は、いわゆる晶
出(溶湯からの析出)を含むものとする。つまり、本発
明の組成では、Ni及びSi含有量が多くなるとNi−
Si化合物が晶出し、その場合、析出粒子と晶出粒子の
双方が含まれることになるからである。この銅合金で
は、小粒子/大粒子の粒径(いずれも中央値)の比率が
0.5以下であることが好ましい。
The high-strength copper alloy according to the present invention, which is excellent in shearability, has a Ni content of 1.0 to 8.0 wt.
%, Si: more than 0.1 to 2.0 wt%, Zn: 0.05 to
5.0 wt%, O is 300 ppm or less,
In the copper alloy in which the remainder substantially has a composition of Cu and unavoidable impurities, and in which a Ni-Si compound is precipitated,
Those having a particle size of less than 0.03 μm (small particles) and 0.
It is characterized in that particles having a size of 03 μm to 100 μm (large particles) are present, and the ratio of the number of small particles / large particles is 1 or more. In the present invention, the above-mentioned precipitation includes so-called crystallization (precipitation from molten metal). That is, in the composition of the present invention, when the content of Ni and Si is increased, Ni-
This is because the Si compound is crystallized, and in that case, both precipitated particles and crystallized particles are included. In this copper alloy, it is preferable that the ratio of the particle size of the small particles / large particles (the median value in each case) is 0.5 or less.

【0007】また、上記銅合金は、上記成分に加えてM
n、Mg、Caの群(A群)とFe、Zr、Ag、C
r、Cd、Be、Sn、Ti、Co、Au、Ptの群
(B群)を合わせたうちから1種又は2種以上を選択
し、A群から選択した場合は合計で0.0001〜1.
0wt%、B群から選択した場合は合計で0.001〜
5.0wt%、A群及びB群の双方から選択した場合は
合計で5.0wt%以下を含有することができる。
[0007] The above-mentioned copper alloy contains M
n, Mg, Ca group (Group A) and Fe, Zr, Ag, C
One or more kinds are selected from the group of r, Cd, Be, Sn, Ti, Co, Au, and Pt (Group B), and when they are selected from Group A, a total of 0.0001 to 1 is selected. .
0 wt%, 0.001 in total when selected from group B
When 5.0 wt% is selected from both the group A and the group B, a total of 5.0 wt% or less can be contained.

【0008】[0008]

【発明の実施の形態】本発明において、成分及び析出粒
子の状態(小粒子と大粒子の粒径、数の比率、粒径の比
率)を上記のように限定した理由を以下に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the reasons for limiting the state of the components and precipitated particles (particle size of small particles and large particles, ratio of numbers, ratio of particle sizes) as described above will be described below.

【0009】[Ni量]Niには、合金の強度及び耐熱
性を確保する作用があると共に、化合物を後述する状態
に析出及び晶出させることにより剪断加工性を向上させ
る。しかし、その含有量が1.0wt%未満であると所
望の強度及び耐熱性及び剪断加工性が得られず、一方、
8.0wt%を越える割合でNiを含有させると熱間圧
延時の加工性が低下すると共に、製品の曲げ加工性及び
導電率の低下が著しくなり、好ましくない。従って、N
iの含有量は1.0〜8.0wt%と定めた。その中で
も特に好ましい範囲は1.0〜3.2wt%である。
[Ni amount] Ni has an effect of securing the strength and heat resistance of the alloy, and also improves the shearing workability by precipitating and crystallizing the compound in a state described later. However, if the content is less than 1.0 wt%, desired strength, heat resistance and shearability cannot be obtained, while
If Ni is contained in a proportion exceeding 8.0 wt%, the workability during hot rolling is reduced, and the bending workability and electrical conductivity of the product are significantly reduced, which is not preferable. Therefore, N
The content of i was determined to be 1.0 to 8.0 wt%. Among them, a particularly preferred range is 1.0 to 3.2 wt%.

【0010】[Si量]Siは、Niとの化合物を析出
して強度及び耐熱性を向上させると共に、化合物を後述
する状態に析出及び晶出させることにより剪断加工性を
向上させる。Siの含有量が0.1wt%以下の場合
は、化合物の析出及び晶出が不十分であるため、所望の
強度及び耐熱性並びに剪断加工性が得られない。一方、
Siの含有量が2.0wt%を越える場合には、熱間加
工時の加工性が低下すると共に導電率の低下が生じるた
め、好ましくない。従って、Siの含有量は0.1超〜
2.0wt%と定めた。その中でも特に好ましい範囲は
0.2〜0.7wt%である。
[Amount of Si] Si improves the strength and heat resistance by precipitating a compound with Ni, and also improves the shearing workability by precipitating and crystallizing the compound in a state described later. When the content of Si is 0.1 wt% or less, precipitation and crystallization of the compound are insufficient, so that desired strength, heat resistance, and shearability cannot be obtained. on the other hand,
If the Si content exceeds 2.0% by weight, the workability during hot working is lowered and the conductivity is lowered, which is not preferable. Therefore, the content of Si is more than 0.1 to
2.0 wt% was determined. Among them, a particularly preferred range is 0.2 to 0.7 wt%.

【0011】[Zn量]Znは銅合金のはんだ及びSn
めっきの耐熱剥離性を改善する。この効果は含有量が
0.05wt%未満の場合、所望の効果が得られない。
一方、その含有量が5.0wt%を越えるとはんだ濡れ
性が低下する。また、導電率の低下も激しくなる。従っ
て、Znの含有量は0.05〜5.0wt%と定めた。
その中でも特に好ましい範囲は0.3〜2.0%であ
る。
[Zn content] Zn is a copper alloy solder and Sn
Improves heat-resistant peeling of plating. If this content is less than 0.05 wt%, the desired effect cannot be obtained.
On the other hand, if the content exceeds 5.0% by weight, the solder wettability decreases. In addition, the decrease in conductivity also becomes severe. Therefore, the content of Zn is determined to be 0.05 to 5.0 wt%.
Among them, a particularly preferable range is 0.3 to 2.0%.

【0012】[O量]Oは、Siと合金中で反応しやす
くSiが合金中に酸化した状態で捕らえられていると後
述する化合物の析出を阻害し、そのため剪断加工性の向
上効果が低下する。また、はんだ付け性、めっき性など
が低下する。従って、Oの含有量は300ppm以下と
定めた。好ましくは、100ppm以下、より好ましく
は50ppm以下である。
[O content] O easily reacts with Si in the alloy, and if Si is captured in the alloy in an oxidized state, it inhibits the precipitation of the compound described later, and therefore the effect of improving the shearing workability is reduced. I do. In addition, the solderability, the plating property, etc., decrease. Therefore, the content of O is determined to be 300 ppm or less. Preferably, it is 100 ppm or less, more preferably 50 ppm or less.

【0013】[小粒子/大粒子の状態]粒径が0.03
μm未満の小粒子は、主に合金の強度及び耐熱性を向上
させるが剪断加工性にはあまり寄与しない。一方、粒径
が0.03μm以上の大粒子は合金の強度及び耐熱性の
向上にはあまり寄与しないが、剪断加工時に応力を集中
的に受け、ミクロクラックの発生源となり剪断加工性を
著しく向上させる。また、剪断面に露出したものは、工
具と切屑間の潤滑作用をもたらし剪断抵抗を減少させ、
ひいては金型摩耗を減少させる。しかし、粒径が100
μmを越えるような粒子が存在すると、材料にAgめっ
きなどを行った場合に、局所的にめっき厚が厚くなる
(突起)などの不具合が発生するため、好ましくない。
粒子の上限は、好ましくは50μm以下、さらに好まし
くは10μm以下である。なお、5μmを越す粒子はほ
ぼ全てが晶出粒子である。また、小粒子/大粒子の数の
比率が1未満の場合、強度及び耐熱性の向上効果が少な
い。一方、この比率が余り大きいと理論上剪断加工性の
向上効果が少なくなるが、大粒子を析出させるための具
体的加工熱処理条件(後述)では、この比率は大きくて
も100〜10000程度までの値であり、その比率で
も優れた剪断加工性が得られているので、現実には上限
値は問題にならない。強いていえば、108以下の比率
であれば剪断加工性の向上効果があるといえる。従っ
て、析出粒子の粒径を100μm以下に限定し、その中
に粒径が0.03μm未満の小粒子と0.03μm〜1
00μmの大粒子が存在することとし、かつ、小粒子/
大粒子の数の比率を1以上と定めた。さらに、小粒子/
大粒子の粒径(いずれも中央値)の比率が0.5より大
きい場合、同様に所望の剪断加工性の向上効果が少な
い。従って、小粒子/大粒子の粒径の比率を0.5以下
と定めた。
[Small particle / large particle state] The particle size is 0.03.
Small particles of less than μm mainly improve the strength and heat resistance of the alloy but do not contribute much to the shearability. On the other hand, large particles having a particle size of 0.03 μm or more do not contribute much to the improvement of the strength and heat resistance of the alloy, but are intensively subjected to stress during shearing, become a source of microcracks, and significantly improve shearing workability. Let it. In addition, those exposed to the shear surface provide a lubricating effect between the tool and the chip, reducing the shear resistance,
In turn, it reduces mold wear. However, when the particle size is 100
The presence of particles having a size exceeding μm is not preferable because when the material is subjected to Ag plating or the like, problems such as locally increasing plating thickness (projections) occur.
The upper limit of the particles is preferably 50 μm or less, more preferably 10 μm or less. Almost all particles exceeding 5 μm are crystallized particles. When the ratio of the number of small particles / large particles is less than 1, the effect of improving strength and heat resistance is small. On the other hand, if this ratio is too large, the effect of improving the shear workability is reduced theoretically. However, under specific working heat treatment conditions (described later) for precipitating large particles, this ratio is at most about 100 to 10,000. In fact, the upper limit does not matter, since excellent shear workability is obtained even in the above ratio. Speaking by force, it can be said that there is a shearing effect of improvement if the ratio of 10 8 or less. Therefore, the particle size of the precipitated particles is limited to 100 μm or less, and small particles having a particle size of less than 0.03 μm and 0.03 μm to 1 μm are included therein.
It is assumed that large particles of 00 μm exist, and small particles /
The ratio of the number of large particles was determined to be 1 or more. In addition, small particles /
When the ratio of the particle diameters of the large particles (all the median values) is larger than 0.5, the effect of improving the desired shearing workability is similarly small. Therefore, the ratio of the particle size of the small particles / large particles is set to 0.5 or less.

【0014】なお、上記の析出の状態を得る方法として
は、たとえば以下の方法による。 1)Niの含有量が4wt%、Siの含有量が1wt%
以上になると、晶出粒子の粗大化が特に発生しやすくな
るので、晶出粒子の寸法を目的の範囲内とするには、N
i及びSi添加後溶湯を1300℃以上の温度に5分以
上保持し、両者を完全に溶解させ、鋳造温度〜凝固温度
まで鋳型内での冷却速度を0.3℃/秒以上とする。 2)熱間圧延後の熱延材を水中急冷し、さらに冷間圧延
した材料を500〜700℃で1分〜2時間の加熱を行
って大粒子を析出させる。その後、さらに冷間圧延を加
え、今度は300〜600℃で30分以上の加熱を行い
小粒子を析出させる。 3)熱間圧延終了時に冷却する際に急冷せず、500〜
700℃で1分〜2時間保持して大粒子を析出させた後
急冷する。さらに冷間圧延を加えた後、今度は300〜
600℃で30分以上の加熱を行って小粒子を析出させ
る。
The method for obtaining the above-mentioned state of precipitation is, for example, as follows. 1) Ni content 4 wt%, Si content 1 wt%
Above, coarsening of the crystallized particles is particularly likely to occur. Therefore, in order to keep the size of the crystallized particles within the desired range, N
After the addition of i and Si, the molten metal is kept at a temperature of 1300 ° C. or more for 5 minutes or more, and both are completely melted, and the cooling rate in the mold from the casting temperature to the solidification temperature is 0.3 ° C./sec or more. 2) The hot-rolled material after hot rolling is rapidly cooled in water, and the cold-rolled material is heated at 500 to 700 ° C. for 1 minute to 2 hours to precipitate large particles. Thereafter, cold rolling is further added, and heating is performed at 300 to 600 ° C. for 30 minutes or more to precipitate small particles. 3) 500-500
The mixture is held at 700 ° C. for 1 minute to 2 hours to precipitate large particles, and then rapidly cooled. After further cold rolling, this time
Heating is performed at 600 ° C. for 30 minutes or more to precipitate small particles.

【0015】また、上記の析出及び晶出の状態を観察
し、小粒子と大粒子の数及び粒径を測定する方法として
は、例えば以下の方法が挙げられる。透過電子線顕微鏡
(TEM)、走査電子顕微鏡(SEM)及び光学顕微鏡
によりそれぞれ30視野程度の観察を行い、画像解析装
置を用いて観察写真中の粒子サイズに対する粒子の数の
分布を測定する。透過電子線顕微鏡は0.1μm未満の
粒子の観察に、走査電子顕微鏡は0.1〜5μmの粒子
の観察に、光学顕微鏡は5μm以上の大粒子の観察に用
いる。
Further, as a method of observing the state of the above precipitation and crystallization and measuring the number and the particle size of the small particles and the large particles, for example, the following methods can be mentioned. Observation is performed in about 30 visual fields using a transmission electron microscope (TEM), a scanning electron microscope (SEM), and an optical microscope, and the distribution of the number of particles with respect to the particle size in the observation photograph is measured using an image analyzer. A transmission electron microscope is used for observing particles of less than 0.1 μm, a scanning electron microscope is used for observing particles of 0.1 to 5 μm, and an optical microscope is used for observing large particles of 5 μm or more.

【0016】「Mn、Mg、Ca量]Mn、Mg、Ca
は、銅合金の熱間加工性の向上に寄与する。しかし、M
n、Mg、Caの1種又は2種以上の含有量が合計で
0.0001wt%未満の場合、所望の効果が得られな
い。一方、その含有量が合計で1.0wt%を越えてく
ると上述した化合物の析出及び晶出を阻害し、ひいては
剪断加工性の向上を妨げる。また、導電率の低下も激し
くなる。従って、これらの元素の含有量は総量で0.0
001〜1.0wt%と定めた。
"Amount of Mn, Mg, Ca" Mn, Mg, Ca
Contributes to the improvement of the hot workability of the copper alloy. But M
If the total content of one or more of n, Mg, and Ca is less than 0.0001 wt%, the desired effect cannot be obtained. On the other hand, when the content exceeds 1.0 wt% in total, the precipitation and crystallization of the above-mentioned compound are inhibited, and the improvement of the shearing property is hindered. In addition, the decrease in conductivity also becomes severe. Therefore, the content of these elements is 0.0% in total.
001 to 1.0 wt%.

【0017】[Fe、Zr、Ag、Cr、Cd、Be、
Sn、Ti、Co、Au、Pt量]これらの成分は銅合
金の強度を向上させる効果がある。しかし、これらの成
分の1種又は2種以上の含有量が合計で0.001wt
%未満の場合、所望の効果が得られない。一方、その含
有量が合計で5.0wt%を越えてくると上述した化合
物の析出及び晶出を阻害し、ひいては剪断加工性の向上
効果を妨げる。また、導電率の低下も激しく、好ましく
ない。従って、これらの元素の含有量は合計で0.00
1〜5.0wt%と定めた。なお、これらの成分を上記
Mn、Mg、Caと共に含有する場合、合計含有量は
5.0wt%以下とする。
[Fe, Zr, Ag, Cr, Cd, Be,
Sn, Ti, Co, Au, Pt amounts] These components have the effect of improving the strength of the copper alloy. However, the content of one or more of these components is 0.001 wt.
%, The desired effect cannot be obtained. On the other hand, when the content exceeds 5.0 wt% in total, the precipitation and crystallization of the above-mentioned compound are inhibited, and the effect of improving the shearability is hindered. Further, the electric conductivity is drastically reduced, which is not preferable. Therefore, the content of these elements is 0.00
It was determined as 1 to 5.0 wt%. When these components are contained together with the above-mentioned Mn, Mg, and Ca, the total content is 5.0 wt% or less.

【0018】[Hf、Th、Li、Na、K、Sr、P
d、W、S、P、C、Nb、Al、V、Y、Mo、P
b、In、Ga、Ge、As、Sb、Bi、Te、B、
ミッシュメタル量]これらの成分は、その1種又は2種
以上の含有量が合計で0.1wt%を越えた場合、上述
した化合物の析出を阻害し、ひいては剪断加工性の向上
効果を妨げる。従って、これらの元素の含有量は合計で
0.1wt%以下と定めた。
[Hf, Th, Li, Na, K, Sr, P
d, W, S, P, C, Nb, Al, V, Y, Mo, P
b, In, Ga, Ge, As, Sb, Bi, Te, B,
Amount of misch metal] When the content of one or more of these components exceeds 0.1 wt% in total, precipitation of the above-mentioned compound is inhibited, and the effect of improving the shearing processability is hindered. Therefore, the content of these elements is determined to be 0.1 wt% or less in total.

【0019】[0019]

【実施例】本発明に係わる剪断加工性に優れる高強度銅
合金の実施例について、その比較例及び従来例と共に説
明する。表1〜2に示す成分組成の銅合金を、クリプト
ル炉にて木炭被覆下で大気溶解し、ブックモールドに鋳
造し、50mm×80mm×200mmの鋳塊を作製し
た。
EXAMPLES Examples of the high-strength copper alloy excellent in shearing workability according to the present invention will be described together with comparative examples and conventional examples. A copper alloy having a component composition shown in Tables 1 and 2 was melted in the air under a charcoal coating in a kryptor furnace and cast into a book mold to produce an ingot of 50 mm × 80 mm × 200 mm.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】この鋳塊を約850℃にて熱間圧延し、直
ちに水中急冷し、厚さ15mmの熱延材を作製した。こ
の熱延材の表面の酸化スケールを除去するため、軽く表
面切削した後、実施例については、冷間圧延−大粒子析
出処理:500〜600℃×30分−冷延−小粒子析出
処理:400〜500℃×2〜4時間−冷延によって、
厚さ0.25mm、幅20mmの条を作製した。また、
大粒子析出処理及び小粒子析出処理条件を変えることに
より比較例の条を準備した。
The ingot was hot-rolled at about 850 ° C. and immediately quenched in water to produce a hot-rolled material having a thickness of 15 mm. In order to remove the oxide scale on the surface of the hot-rolled material, the surface was lightly cut, and then, in the examples, cold rolling-large particle precipitation treatment: 500 to 600 ° C. × 30 minutes-cold rolling-small particle precipitation treatment: 400-500 ° C. × 2-4 hours—by cold rolling,
A strip having a thickness of 0.25 mm and a width of 20 mm was prepared. Also,
By changing the conditions for the large particle precipitation treatment and the small particle precipitation treatment, the strip of the comparative example was prepared.

【0023】得られた条について、強度、導電率、耐熱
温度、Agめっき性、はんだ耐熱剥離性、剪断加工性、
小粒子及び大粒子の状態(透過電子顕微鏡、走査電子顕
微鏡及び光学顕微鏡で観察)について測定した。結果は
表3〜4に示す通りである。
With respect to the obtained strip, strength, electrical conductivity, heat resistance temperature, Ag plating property, solder heat resistance peeling property, shearing property,
The state of small particles and large particles (observed with a transmission electron microscope, a scanning electron microscope and an optical microscope) was measured. The results are as shown in Tables 3 and 4.

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【表4】 [Table 4]

【0026】なお、Agめっき性は、シアン系Agめっ
きを厚さ1μm行った時に、局所的に厚さが厚くなる現
象(突起)の有無を実態顕微鏡で観察した。はんだ耐熱
剥離性は、6Sn/4Pbはんだを245±5℃×5秒
にてはんだ付けした後、150℃のオーブンで1000
Hrまで加熱した。この試験片を180゜曲げ戻しにて
加工を加え加工部のはんだが剥離するか観察した。耐熱
温度は、5分間加熱してHvの低下量が加熱前のHvの
10%となる時の温度である。剪断加工性は、プレスに
より長さ30mm、幅0.5mmのリードを打抜き、リ
ード幅、「ばり」及び「だれ」量を測定して表した。
The Ag plating property was evaluated by observing the presence or absence of a phenomenon (projection) of locally increasing the thickness when cyan-based Ag plating was performed at a thickness of 1 μm. Solder heat-peelability is as follows: 6Sn / 4Pb solder was soldered at 245 ± 5 ° C. × 5 seconds, and then 1000 ° C. in a 150 ° C. oven.
Heated to Hr. This test piece was processed by bending it back by 180 °, and it was observed whether the solder in the processed portion was peeled off. The heat-resistant temperature is a temperature at which the amount of decrease in Hv after heating for 5 minutes becomes 10% of Hv before heating. The shearing workability was expressed by punching a lead having a length of 30 mm and a width of 0.5 mm with a press, and measuring the lead width, the amount of “burr” and the amount of “sag”.

【0027】析出及び晶出粒子は、透過電子線顕微鏡、
走査電子顕微鏡及び光学顕微鏡によりそれぞれ30視野
の観察を行い、画像解析装置(株式会社ニレコ製、商品
名ルーゼックス)を用いて観察写真中の粒子サイズ(粒
径)に対する粒子の数の分布を測定した。具体的には、
透過電子線顕微鏡は、観察倍率60000倍(観察面積
2μm2)で0.03μmより大きい粒子の粒径と数を
求め、0.03μm以下の粒子については同一視野をさ
らに150000倍で観察し、最小粒径0.003μm
までの粒子を測定した。走査電子顕微鏡では5000倍
で0.1〜5μmの粒子を、光学顕微鏡では400倍で
5μm以上の粒子を観察した。なお、小粒子及び大粒子
のサイズはそれぞれ最も数の多い粒子の値(中央値)を
用いた。また、小粒子と大粒子のサイズの比は中央値の
比とした。
The precipitated and crystallized particles are obtained by a transmission electron microscope,
Observation was performed in 30 fields of view with a scanning electron microscope and an optical microscope, respectively, and the distribution of the number of particles with respect to the particle size (particle diameter) in the observation photograph was measured using an image analyzer (manufactured by Nireco Corporation, trade name: Luzex). . In particular,
The transmission electron microscope determines the particle size and the number of particles larger than 0.03 μm at an observation magnification of 60,000 times (observation area: 2 μm 2). 0.003μm diameter
Up to the particles were measured. The scanning electron microscope observed particles of 0.1 to 5 μm at 5000 times, and the optical microscope observed particles of 5 μm or more at 400 times. In addition, the value of the largest number of particles (median value) was used for the sizes of the small particles and the large particles. The ratio between the size of the small particles and the size of the large particles was the ratio of the median.

【0028】表3〜4より、本発明合金No.1〜12
は、強度、導電率、耐熱温度、Agめっき性など電気電
子部品が要求する特性を具備した上で、剪断加工性が共
に優れている。なお、剪断加工性の向上は、「ばり」及
び「だれ」が小さい、リード幅寸法の高い精度という効
果となって表れ、また、「ばり」及び「だれ」が小さい
ことから、打ち抜き加工後の残留応力が小さくなってい
ることが推定できる。一方、比較例No.13〜23は
いずれかの性能が低いことがわかる。
From Tables 3 and 4, it can be seen that the alloy No. 1-12
Has excellent properties such as strength, electrical conductivity, heat resistance temperature, and Ag plating properties required for electric and electronic parts, and also has excellent shearing workability. In addition, the improvement of the shearing processability is manifested as an effect of small burrs and "sags" and a high precision of lead width dimensions.Moreover, since "burrs" and "sags" are small, It can be presumed that the residual stress is small. On the other hand, in Comparative Example No. 13 to 23 show that any of the performances is low.

【0029】[0029]

【発明の効果】本発明の銅合金は電気電子部品用銅合金
として要求される特性を具備し、しかも、例えば半導体
装置のリード材や、端子及びコネクタなどの各種の電気
電子部品を剪断加工(打抜き加工など)により製造した
とき、「ばり」、「だれ」並びに残留応力が小さく、そ
の寸法精度が良い。また、剪断加工性に優れるため、打
抜き金型の摩耗を抑制し、打抜き金型の使用寿命を長く
する。したがって、各種電気電子機器の微細化による寸
法精度に対する厳しい要求に対応が可能となる。また、
打抜き金型の使用寿命が長くなるので、スタンピングの
生産性も向上する。
The copper alloy of the present invention has the characteristics required as a copper alloy for electric and electronic parts, and further, for example, shears various electric and electronic parts such as lead materials of semiconductor devices and terminals and connectors. When manufactured by stamping or the like, "burrs", "blunts" and residual stress are small, and the dimensional accuracy is good. Further, since the shearing workability is excellent, the wear of the punching die is suppressed, and the service life of the punching die is prolonged. Therefore, it is possible to meet strict requirements for dimensional accuracy due to miniaturization of various electric and electronic devices. Also,
Since the service life of the punching mold is extended, the productivity of stamping is also improved.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Ni:1.0〜8.0wt%、Si:
0.1超〜2.0wt%、Zn:0.05〜5.0wt
%を含有し、Oが300ppm以下であり、残部が実質
的にCuと不可避不純物からなる組成を有し、Ni−S
i化合物が析出している銅合金において、その粒径が
0.03μm未満のもの(以後、小粒子という)及び
0.03μm〜100μmのもの(以後、大粒子とい
う)が存在し、かつ小粒子/大粒子の数の比率が1以上
であることを特徴とする剪断加工性に優れる高強度銅合
金。
1. Ni: 1.0 to 8.0 wt%, Si:
More than 0.1-2.0 wt%, Zn: 0.05-5.0 wt%
%, O is 300 ppm or less, the balance is substantially composed of Cu and unavoidable impurities, and Ni-S
Among copper alloys in which i-compounds are precipitated, there are those having a particle size of less than 0.03 μm (hereinafter, referred to as small particles) and those having a particle size of 0.03 μm to 100 μm (hereinafter, referred to as large particles), and small particles. / A high-strength copper alloy excellent in shearability, characterized in that the ratio of the number of large particles is 1 or more.
【請求項2】 小粒子/大粒子の粒径(いずれも中央
値)の比率が0.5以下であることを特徴とする請求項
1に記載された剪断加工性に優れる高強度銅合金。
2. The high-strength copper alloy according to claim 1, wherein the ratio of the particle size of the small particles / large particles (the median value thereof) is 0.5 or less.
【請求項3】 さらに、Mn、Mg、Caのうち1種又
は2種以上を合計で0.0001〜1.0wt%含有す
ることを特徴とする請求項1又は2に記載された剪断加
工性に優れる高強度銅合金。
3. The shearing processability according to claim 1, further comprising one or more of Mn, Mg, and Ca in a total amount of 0.0001 to 1.0 wt%. Excellent high strength copper alloy.
【請求項4】 さらに、Fe、Zr、Ag、Cr、C
d、Be、Sn、Ti、Co、Au、Ptのうち1種又
は2種以上を合計で0.001〜5.0wt%含有する
ことを特徴とする請求項1又は2に記載された剪断加工
性に優れる高強度銅合金。
4. Further, Fe, Zr, Ag, Cr, C
The shearing process according to claim 1, wherein one or more of d, Be, Sn, Ti, Co, Au, and Pt are contained in a total of 0.001 to 5.0 wt%. High-strength copper alloy with excellent properties.
【請求項5】 さらに、Mn、Mg、Caのうち1種又
は2種以上を合計で0.0001〜1.0wt%と、F
e、Zr、Ag、Cr、Cd、Be、Sn、Ti、C
o、Au、Ptのうち1種又は2種以上を合計で0.0
01〜5.0wt%を、全体の合計で5.0wt%以下
含有することを特徴とする請求項1又は2に記載された
剪断加工性に優れる高強度銅合金。
5. The method according to claim 1, wherein one or more of Mn, Mg and Ca is 0.0001 to 1.0 wt% in total, and
e, Zr, Ag, Cr, Cd, Be, Sn, Ti, C
One, two or more of o, Au, and Pt are used in a total of 0.0
3. The high-strength copper alloy according to claim 1, wherein the high-strength copper alloy has an amount of from 0.01 to 5.0% by weight in a total amount of 5.0% by weight or less.
【請求項6】 Hf、Th、Li、Na、K、Sr、P
d、W、S、P、C、Nb、Al、V、Y、Mo、P
b、In、Ga、Ge、As、Sb、Bi、Te、B、
ミッシュメタルのうち1種又は2種以上が合計で0.1
wt%以下であることを特徴とする請求項1〜5のいず
れかに記載された剪断加工性に優れる高強度銅合金。
6. Hf, Th, Li, Na, K, Sr, P
d, W, S, P, C, Nb, Al, V, Y, Mo, P
b, In, Ga, Ge, As, Sb, Bi, Te, B,
One or more of the misch metals total 0.1
The high-strength copper alloy according to any one of claims 1 to 5, which is not more than wt%.
JP04161597A 1997-02-10 1997-02-10 High strength copper alloy with excellent shear processability Expired - Lifetime JP3797736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04161597A JP3797736B2 (en) 1997-02-10 1997-02-10 High strength copper alloy with excellent shear processability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04161597A JP3797736B2 (en) 1997-02-10 1997-02-10 High strength copper alloy with excellent shear processability

Publications (2)

Publication Number Publication Date
JPH10219374A true JPH10219374A (en) 1998-08-18
JP3797736B2 JP3797736B2 (en) 2006-07-19

Family

ID=12613254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04161597A Expired - Lifetime JP3797736B2 (en) 1997-02-10 1997-02-10 High strength copper alloy with excellent shear processability

Country Status (1)

Country Link
JP (1) JP3797736B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005083137A1 (en) * 2004-02-27 2005-09-09 The Furukawa Electric Co., Ltd. Copper alloy
JP2007100136A (en) * 2005-09-30 2007-04-19 Nikko Kinzoku Kk Copper alloy for lead frame excellent in uniform plating property
JP2007119845A (en) * 2005-10-27 2007-05-17 Hitachi Cable Ltd High strength copper alloy material having excellent shear workability and its production method
WO2008032738A1 (en) * 2006-09-12 2008-03-20 The Furukawa Electric Co., Ltd. Copper alloy plate material for electrical/electronic equipment and process for producing the same
CN100408708C (en) * 2003-07-31 2008-08-06 日矿金属株式会社 Cu-Ni-Si alloy having good performance against fatigure
JP2008182171A (en) * 2006-12-28 2008-08-07 Hitachi Cable Ltd Solder-plated wire for solar cell and manufacturing method thereof, and solar cell
JP2008182170A (en) * 2006-12-28 2008-08-07 Hitachi Cable Ltd Solder-plated wire for solar cell and manufacturing method thereof, and solar cell
WO2009041197A1 (en) 2007-09-28 2009-04-02 Nippon Mining & Metals Co., Ltd. Cu-ni-si-co-base copper alloy for electronic material and process for producing the copper alloy
WO2009123136A1 (en) * 2008-03-31 2009-10-08 日鉱金属株式会社 Cu-ni-si alloy for electronic materials
WO2010064547A1 (en) * 2008-12-01 2010-06-10 日鉱金属株式会社 Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor
JP2011036919A (en) * 2002-05-17 2011-02-24 Metglas Inc Copper-nickel-silicon two phase quench substrate
WO2011125153A1 (en) * 2010-04-02 2011-10-13 Jx日鉱日石金属株式会社 Cu-ni-si alloy for electronic material
JP5189708B1 (en) * 2011-12-22 2013-04-24 三菱伸銅株式会社 Cu-Ni-Si-based copper alloy sheet having good mold wear resistance and shearing workability and method for producing the same
WO2016059707A1 (en) * 2014-10-16 2016-04-21 三菱電機株式会社 Cu-Ni-Si ALLOY AND MANUFACTURING METHOD THEREFOR
US9460825B2 (en) 2010-05-31 2016-10-04 Jx Nippon Mining & Metals Corporation Cu-Co-Si-based copper alloy for electronic materials, and method of manufacturing same
US10056166B2 (en) 2010-08-24 2018-08-21 Jx Nippon Mining & Metals Corporation Copper-cobalt-silicon alloy for electrode material

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011036919A (en) * 2002-05-17 2011-02-24 Metglas Inc Copper-nickel-silicon two phase quench substrate
CN100408708C (en) * 2003-07-31 2008-08-06 日矿金属株式会社 Cu-Ni-Si alloy having good performance against fatigure
US8951371B2 (en) 2004-02-27 2015-02-10 The Furukawa Electric Co., Ltd. Copper alloy
WO2005083137A1 (en) * 2004-02-27 2005-09-09 The Furukawa Electric Co., Ltd. Copper alloy
KR100861152B1 (en) * 2004-02-27 2008-09-30 후루카와 덴키 고교 가부시키가이샤 Copper alloy
JP2007100136A (en) * 2005-09-30 2007-04-19 Nikko Kinzoku Kk Copper alloy for lead frame excellent in uniform plating property
JP4556842B2 (en) * 2005-10-27 2010-10-06 日立電線株式会社 High strength copper alloy material excellent in shear workability and method for producing the same
JP2007119845A (en) * 2005-10-27 2007-05-17 Hitachi Cable Ltd High strength copper alloy material having excellent shear workability and its production method
WO2008032738A1 (en) * 2006-09-12 2008-03-20 The Furukawa Electric Co., Ltd. Copper alloy plate material for electrical/electronic equipment and process for producing the same
JP2008095185A (en) * 2006-09-12 2008-04-24 Furukawa Electric Co Ltd:The Copper alloy plate material for electrical/electronic equipment and process for producing the same
US7947133B2 (en) 2006-09-12 2011-05-24 Furukawa Electric Co., Ltd. Copper alloy strip material for electrical/electronic equipment and process for producing the same
KR101027840B1 (en) 2006-09-12 2011-04-07 후루카와 덴키 고교 가부시키가이샤 Copper alloy plate material for electrical/electronic equipment and process for producing the same
JP2008182170A (en) * 2006-12-28 2008-08-07 Hitachi Cable Ltd Solder-plated wire for solar cell and manufacturing method thereof, and solar cell
JP2008182171A (en) * 2006-12-28 2008-08-07 Hitachi Cable Ltd Solder-plated wire for solar cell and manufacturing method thereof, and solar cell
WO2009041197A1 (en) 2007-09-28 2009-04-02 Nippon Mining & Metals Co., Ltd. Cu-ni-si-co-base copper alloy for electronic material and process for producing the copper alloy
JP2009242926A (en) * 2008-03-31 2009-10-22 Nippon Mining & Metals Co Ltd Copper-nickel-silicon based alloy for electronic material
WO2009123136A1 (en) * 2008-03-31 2009-10-08 日鉱金属株式会社 Cu-ni-si alloy for electronic materials
JP5319700B2 (en) * 2008-12-01 2013-10-16 Jx日鉱日石金属株式会社 Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
WO2010064547A1 (en) * 2008-12-01 2010-06-10 日鉱金属株式会社 Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor
WO2011125153A1 (en) * 2010-04-02 2011-10-13 Jx日鉱日石金属株式会社 Cu-ni-si alloy for electronic material
JP5654571B2 (en) * 2010-04-02 2015-01-14 Jx日鉱日石金属株式会社 Cu-Ni-Si alloy for electronic materials
CN102822364A (en) * 2010-04-02 2012-12-12 Jx日矿日石金属株式会社 Cu-Ni-Si alloy for electronic material
US9005521B2 (en) 2010-04-02 2015-04-14 Jx Nippon Mining & Metals Corporation Cu—Ni—Si alloy for electronic material
US9460825B2 (en) 2010-05-31 2016-10-04 Jx Nippon Mining & Metals Corporation Cu-Co-Si-based copper alloy for electronic materials, and method of manufacturing same
US10056166B2 (en) 2010-08-24 2018-08-21 Jx Nippon Mining & Metals Corporation Copper-cobalt-silicon alloy for electrode material
WO2013094061A1 (en) * 2011-12-22 2013-06-27 三菱伸銅株式会社 Cu-Ni-Si BASED COPPER ALLOY SHEET HAVING HIGH DIE ABRASION RESISTANCE AND GOOD SHEAR PROCESSABILITY AND METHOD FOR PRODUCING SAME
JP5189708B1 (en) * 2011-12-22 2013-04-24 三菱伸銅株式会社 Cu-Ni-Si-based copper alloy sheet having good mold wear resistance and shearing workability and method for producing the same
US10253405B2 (en) 2011-12-22 2019-04-09 Mitsubishi Shindoh Co., Ltd. Cu—Ni—Si-based copper alloy sheet having excellent mold abrasion resistance and shear workability and method for manufacturing same
WO2016059707A1 (en) * 2014-10-16 2016-04-21 三菱電機株式会社 Cu-Ni-Si ALLOY AND MANUFACTURING METHOD THEREFOR

Also Published As

Publication number Publication date
JP3797736B2 (en) 2006-07-19

Similar Documents

Publication Publication Date Title
KR101161597B1 (en) Cu-ni-si-co-base copper alloy for electronic material and process for producing the copper alloy
JP4729680B2 (en) Copper-based alloy with excellent press punchability
JP4937815B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP3465108B2 (en) Copper alloy for electric and electronic parts
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
EP0114338B1 (en) Lead frame and method for manufacturing the same
JP2004225093A (en) Copper-base alloy and manufacturing method therefor
JPH10219374A (en) High strength copper alloy excellent in shearing property
JP2000087158A (en) Copper alloy for semiconductor lead frame
TWI429764B (en) Cu-Co-Si alloy for electronic materials
JPH10130755A (en) High strength and high conductivity copper alloy excellent in shearing workability
JP3797786B2 (en) Copper alloy for electrical and electronic parts
JP3957391B2 (en) High strength, high conductivity copper alloy with excellent shear processability
JP5261691B2 (en) Copper-base alloy with excellent press punchability and method for producing the same
JP4459067B2 (en) High strength and high conductivity copper alloy
JP3418301B2 (en) Copper alloy for electrical and electronic equipment with excellent punching workability
JPH06184680A (en) Copper alloy excellent in bendability
JP4009981B2 (en) Copper-based alloy plate with excellent press workability
JP4043118B2 (en) High strength and high conductivity Cu-Fe alloy plate for electric and electronic parts with excellent heat resistance
JP3344700B2 (en) High-strength, high-conductivity copper alloy sheet for leadframes with excellent heat treatment during press punching
JP3296709B2 (en) Thin copper alloy for electronic equipment and method for producing the same
JP5748945B2 (en) Copper alloy material manufacturing method and copper alloy material obtained thereby
JP2011017073A (en) Copper alloy material
JP2015034332A (en) Copper alloy for electronic/electric equipment, copper alloy thin sheet for electronic/electric equipment and conductive part and terminal for electronic/electric equipment
JP3779830B2 (en) Copper alloy for semiconductor lead frames

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

EXPY Cancellation because of completion of term