JP2001131657A - Copper alloy for electrical and electronic parts - Google Patents

Copper alloy for electrical and electronic parts

Info

Publication number
JP2001131657A
JP2001131657A JP2000207566A JP2000207566A JP2001131657A JP 2001131657 A JP2001131657 A JP 2001131657A JP 2000207566 A JP2000207566 A JP 2000207566A JP 2000207566 A JP2000207566 A JP 2000207566A JP 2001131657 A JP2001131657 A JP 2001131657A
Authority
JP
Japan
Prior art keywords
copper alloy
less
stress relaxation
electronic parts
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000207566A
Other languages
Japanese (ja)
Other versions
JP3470889B2 (en
Inventor
Yukiya Nomura
幸矢 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000207566A priority Critical patent/JP3470889B2/en
Publication of JP2001131657A publication Critical patent/JP2001131657A/en
Application granted granted Critical
Publication of JP3470889B2 publication Critical patent/JP3470889B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a copper alloy for electrical and electronic parts excellent in proof stress, electroconductivity, spring critical value, stress relaxation resistance and bending workability and moreover excellent in Sn plating properties. SOLUTION: This copper alloy for electrical and electronic parts contains, by mass, 0.5 to 2.4% Fe, 0.02 to 0.1 % Si, 0.01 to 0.2% Mg, 0.01 to 0.7% Sn and 0.01 to 0.2% Zn, and also contains <0.03% P, <=0.03% Ni and <=0.03% Mn, and the balance Cu with inevitable impurities. If required, the alloy contains 0.0005 to 0.015% Pb and/or one or two or more kinds among Be, Al, Ti, V, Cr, Co, Zr, Nb, Mo, Ag, In, Hf, Ta and B by <=1% in total.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、端子・コネクタ、
リレー、バスバー等の電気・電子部品用銅合金、特に強
度(耐力)、導電率、ばね限界値、耐応力緩和特性、曲
げ加工性に優れ、さらにSnめっき性にも優れた電気・
電子部品用銅合金に関する。
TECHNICAL FIELD The present invention relates to a terminal / connector,
Copper alloys for electrical and electronic parts such as relays and busbars, especially excellent in strength (proof stress), electrical conductivity, spring limit, stress relaxation resistance, bending workability, and excellent Sn plating.
The present invention relates to copper alloys for electronic components.

【0002】[0002]

【従来の技術】自動車の電装化が進むなかで、バッテリ
ーや制御装置と各種電装品、アクチュエータ、センサ類
等の配線のワイヤハーネスにおいてコネクタの極数が増
加し、その小型化が求められている。また、エンジン部
付近に搭載されるコネクタは常にエンジン部の高温・高
振動環境下にあり、特にパワー系統用(電力供給用)コ
ネクタは大きい電流が流れることで自己発熱しさらに高
温となる。従って、このようなコネクタ(特にメス端
子)には、前記の環境下で高い信頼性を有する(へたり
がこない)ことが求められている。
2. Description of the Related Art With the progress of electrification of automobiles, the number of poles of connectors in a wiring harness for wiring of batteries and control devices and various electric components, actuators, sensors and the like is increasing, and miniaturization thereof is required. . Further, the connector mounted near the engine unit is always under the high temperature and high vibration environment of the engine unit. Particularly, the power system (power supply) connector is heated by a large current and self-heats to a higher temperature. Therefore, such a connector (especially a female terminal) is required to have high reliability (no settling) under the above-mentioned environment.

【0003】一方、従来の自動車用等の銅合金コネクタ
材として、Cu−Fe−P系合金(CDA19400)
やCu−Mg−P系合金が知られている。前者はFe及
びPを共添してFe−P化合物を析出させ、強度を向上
させたものであり、さらにZnを添加して耐マイグレー
ション性を向上させた合金(特開平1−168830号
公報参照)、Mgを添加して耐応力緩和特性を向上させ
た合金(特開平4−358033号公報参照)なども知
られている。後者は、Mg及びPを共添することで強度
と熱クリープ特性を向上させ、引張強さ、導電率及び耐
応力緩和特性を向上させたものである(特公平1−54
420号公報参照)。
On the other hand, as a conventional copper alloy connector material for automobiles and the like, a Cu—Fe—P alloy (CDA19400)
And Cu-Mg-P-based alloys are known. The former is an alloy in which Fe and P are co-added to precipitate an Fe-P compound to improve the strength, and an alloy in which Zn is added to improve the migration resistance (see JP-A-1-168830). ), Alloys having improved stress relaxation resistance by adding Mg (see JP-A-4-358033) are also known. In the latter, the strength and thermal creep properties are improved by co-adding Mg and P, and the tensile strength, electrical conductivity and stress relaxation resistance are improved (Japanese Patent Publication No. 1-54).
No. 420).

【0004】[0004]

【発明が解決しようとする課題】自動車電装品の配線用
コネクタ(特にメス端子)を小型化し、なおかつその信
頼性を確保(接圧力を維持)するためには、素材の強度
(耐力)及びばね特性(ばね限界値)を一層向上させる
必要がある。また、長時間高温に保持されてもへたり
(経時的な嵌合力の低下)がこないようにするためには
耐応力緩和特性の向上が必要であり、同時に導電率を向
上させて自己発熱を抑制することが必要となる。そのほ
か、小型コネクタの成形のため優れた成形加工性(特に
曲げ加工性)を有すること、及びオス・メス端子の接触
抵抗を減らし、耐食性を向上させるため優れたSnめっ
き密着性を有することも求められる。
In order to reduce the size of a wiring connector (especially a female terminal) of an automobile electrical component and to ensure its reliability (maintaining a contact pressure), the strength (proof strength) of the material and the spring are required. It is necessary to further improve the characteristics (spring limit value). In addition, in order to prevent sagging (reduction in fitting force over time) even when the device is kept at a high temperature for a long period of time, it is necessary to improve stress relaxation resistance. It is necessary to control. In addition, it is required to have excellent formability (particularly bending workability) for forming small connectors, and to have excellent Sn plating adhesion to reduce the contact resistance of male and female terminals and improve corrosion resistance. Can be

【0005】しかし、従来のコネクタ材であるCu−F
e−P系銅合金は成形加工性に優れるが、ばね限界値が
低く、耐応力緩和特性に劣るという問題がある。なお、
この系にMgを添加した合金はばね限界値が向上する
が、成形加工性、導電率が低下する。また、Cu−Mg
−P系銅合金は耐応力緩和特性に優れるが、成形加工性
が劣り、Snめっき密着性にも劣るという問題がある。
本発明は、このような従来技術の問題点に鑑みてなされ
たもので、耐力、導電率、ばね限界値、耐応力緩和特
性、曲げ加工性に優れ、さらにSnめっき性にも優れた
電気・電子部品用銅合金を得ることを目的とする。
However, the conventional connector material Cu-F
The e-P-based copper alloy is excellent in formability, but has a problem that the spring limit value is low and the stress relaxation resistance is poor. In addition,
An alloy in which Mg is added to this system improves the spring limit value, but decreases the formability and conductivity. In addition, Cu-Mg
-P-based copper alloys are excellent in stress relaxation resistance, but have a problem that molding workability is inferior and Sn plating adhesion is inferior.
The present invention has been made in view of such problems of the prior art, and is excellent in proof stress, electrical conductivity, spring limit value, stress relaxation resistance, bending workability, and excellent in Sn plating property. The purpose is to obtain a copper alloy for electronic components.

【0006】[0006]

【課題を解決するための手段】本発明に係る電気・電子
部品用銅合金は、Fe:0.5〜2.4%、Si:0.
02〜0.1%、Mg:0.01〜0.2%、Sn:
0.01〜0.7%、Zn:0.01〜0.2%を含有
し、P:0.03%未満、Ni:0.03%以下、M
n:0.03%以下であり、さらに残部がCu及び不可
避不純物からなる。本発明に係る電気・電子部品用銅合
金は、必要に応じて、さらにPb:0.0005〜0.
015%、又は/及びBe、Al、Ti、V、Cr、C
o、Zr、Nb、Mo、Ag、In、Hf、Ta、Bの
1種又は2種以上を総量で1%以下含有することができ
る。上記銅合金の不可避不純物として、製造上の観点か
ら、Bi、As、Sb及びSはそれぞれ個別に0.00
3%以下、かつこれらの合計は0.005%以下に制限
し、さらに、O含有量を10ppm以下、かつH含有量
を20ppm以下に制限することが望ましい。
The copper alloy for electric / electronic parts according to the present invention has an Fe content of 0.5 to 2.4% and a Si content of 0.5%.
02-0.1%, Mg: 0.01-0.2%, Sn:
0.01 to 0.7%, Zn: 0.01 to 0.2%, P: less than 0.03%, Ni: 0.03% or less, M
n: 0.03% or less, and the balance is made up of Cu and unavoidable impurities. The copper alloy for electric / electronic parts according to the present invention may further contain Pb: 0.0005 to 0.5 if necessary.
015% or / and Be, Al, Ti, V, Cr, C
One or more of o, Zr, Nb, Mo, Ag, In, Hf, Ta, and B can be contained in a total amount of 1% or less. As inevitable impurities of the copper alloy, Bi, As, Sb and S are each individually 0.00 from the viewpoint of manufacturing.
It is desirable to limit the content of O to 3% or less and the total thereof to 0.005% or less, and further to limit the O content to 10 ppm or less and the H content to 20 ppm or less.

【0007】[0007]

【発明の実施の形態】以下、本発明に係る電気・電子部
品用銅合金の成分組成について説明する。 Fe;Feは析出してこの銅合金の強度を向上させる。
しかし、2.4%を超えて含有すると粗大なFe粒子が
晶出又は析出し、曲げ加工性が低下し、一方、0.5%
未満であるとFeの析出が起こりにくく、強度と導電率
が低下し、また再結晶粒が成長して曲げ加工時に割れが
発生しやすくなる。従って、Feの含有量は0.5〜
2.4%とする。望ましくは1.0〜2.1%であり、
この範囲内で耐応力緩和特性とばね限界値がより向上す
る。さらに望ましくは1.8〜2.0%であり、この範
囲内で熱間圧延時の割れの発生を抑える効果が高くな
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The component composition of the copper alloy for electric / electronic parts according to the present invention will be described below. Fe; Fe precipitates and improves the strength of the copper alloy.
However, when the content exceeds 2.4%, coarse Fe particles are crystallized or precipitated, and the bending workability is reduced.
If it is less than 1, Fe precipitation hardly occurs, strength and electrical conductivity are reduced, and recrystallized grains grow to easily generate cracks during bending. Therefore, the content of Fe is 0.5 to
2.4%. Desirably, it is 1.0 to 2.1%,
Within this range, the stress relaxation resistance and the spring limit value are further improved. More desirably, it is 1.8 to 2.0%, and within this range, the effect of suppressing the occurrence of cracks during hot rolling increases.

【0008】Si;Siは従来のPに代わって銅合金を
脱酸し(FeもSiとともに脱酸に寄与する)、Pの含
有量が0.03%未満であれば、Pによる再結晶の阻害
作用を抑制して、均一微細な再結晶を促進する作用があ
る。また導電率を余り低下させずにMg及びSnととも
に耐応力緩和特性及びばね限界値を向上させる作用があ
る。これらの作用は0.02%未満の添加量では十分発
揮されず、一方、0.1%を超えて含有すると曲げ加工
性が劣化する。従って、Siの含有量は0.02〜0.
1%とする。望ましくは0.03〜0.07%であり、
この範囲で耐応力緩和特性がより向上する。
Si: Si deoxidizes a copper alloy in place of conventional P (Fe also contributes to deoxidation together with Si). If the P content is less than 0.03%, recrystallization by P There is an action of suppressing the inhibitory action and promoting uniform and fine recrystallization. Further, it has an effect of improving the stress relaxation resistance and the spring limit value together with Mg and Sn without significantly lowering the conductivity. These effects are not sufficiently exerted when the addition amount is less than 0.02%, while the bending workability is deteriorated when the addition amount exceeds 0.1%. Therefore, the content of Si is 0.02-0.
1%. Desirably, it is 0.03-0.07%,
Within this range, the stress relaxation resistance is further improved.

【0009】Mg;Mgは固溶Snと共添することで耐
応力緩和特性及びばね限界値を大きく向上させる作用が
ある。しかし、Mgは酸化しやすく、添加量が多くなる
と大気溶解が難しくなり、導電率も低下するので、上記
銅合金では、Mg及びSnの作用の一部をSiで補って
いる。上記銅合金(Cu−Fe系)においてMgの添加
量が0.2%を超えると均一な再結晶が阻害されて曲げ
加工性が劣化し、一方、0.01%未満であると特に耐
応力緩和特性が向上しない。従って、Mgの含有量は
0.01〜0.2%とする。望ましくは0.05〜0.
15%であり、この範囲で固溶Snとの共添により耐応
力緩和特性及びばね限界値がより向上する。なお、Mg
とSnを共添しない場合は耐応力緩和特性等の向上はみ
られない。
Mg: Mg has an effect of greatly improving the stress relaxation resistance and the spring limit value when co-added with solid solution Sn. However, Mg is easily oxidized, and when added in a large amount, it becomes difficult to dissolve in the air and the electrical conductivity is lowered. Therefore, in the copper alloy, a part of the action of Mg and Sn is supplemented by Si. When the addition amount of Mg in the copper alloy (Cu-Fe system) exceeds 0.2%, uniform recrystallization is hindered and bending workability deteriorates. On the other hand, when the addition amount is less than 0.01%, stress resistance is particularly high. The relaxation characteristics do not improve. Therefore, the content of Mg is set to 0.01 to 0.2%. Desirably, 0.05-0.
It is 15%, and within this range, the stress relaxation resistance and the spring limit value are further improved by co-addition with solid solution Sn. Note that Mg
When Sn and Sn are not added, no improvement in the stress relaxation resistance and the like is observed.

【0010】Sn;Snは固溶Mgと共添することでば
ね限界値及び耐応力緩和特性を大きく向上させ、さらに
曲げ加工性を向上させる作用がある。しかし、Snの添
加量が0.7%を超えると導電率が低下し、一方、0.
01%未満であると特にばね限界値及び曲げ加工性が向
上しない。従って、Snの含有量は0.01〜0.7%
とする。望ましくは0.05〜0.15%であり、この
範囲で固溶Mgとの共添によりばね限界値、耐応力緩和
特性及び曲げ加工性がより向上する。Zn;ZnはSn
及びはんだめっきの剥離防止に大きい効果がある。しか
し、0.2%を超えて含有されると脱Znを起こし、曲
げ加工性も劣化し、一方、0.01%未満であるとSn
及びはんだめっきの剥離が防止できない。従って、Zn
の含有量は0.01〜0.2%とする。望ましくは0.
1〜0.2%であり、この範囲で特に上記効果が大き
い。
Sn: When Sn is added together with solid solution Mg, it has a function of greatly improving the spring limit value and stress relaxation resistance, and further improving the bending workability. However, when the added amount of Sn exceeds 0.7%, the electrical conductivity is reduced, while the amount of added Sn is less than 0.7%.
If it is less than 01%, in particular, the spring limit value and bending workability do not improve. Therefore, the content of Sn is 0.01 to 0.7%.
And Desirably, the content is 0.05 to 0.15%. In this range, the co-addition with solid solution Mg further improves the spring limit value, stress relaxation resistance and bending workability. Zn; Zn is Sn
Also, it has a great effect on preventing peeling of solder plating. However, if the content exceeds 0.2%, Zn is removed and the bending workability is deteriorated. On the other hand, if the content is less than 0.01%, Sn is removed.
Also, peeling of solder plating cannot be prevented. Therefore, Zn
Is 0.01 to 0.2%. Preferably, 0.
The effect is particularly large in this range.

【0011】P;Pは不可避不純物として混入し、ある
いは脱酸補助及び湯流れ性の改善のため必要に応じて添
加される。しかし、含有量が多くなると均一な再結晶を
阻害するため、含有量は0.03%未満(0%を含む)
とする。Pの含有量が0.03%以上となると、Siが
0.02%以上添加されても、中間焼鈍で均一微細な再
結晶組織が得られない。この場合、中間焼鈍の温度を上
げても未再結晶部分が残り、銅合金板に硬度のばらつき
がでて曲げ加工性が低下する。なお、この未再結晶部分
は、量産工程で通常行われている焼鈍条件範囲内では、
単に焼鈍回数を2回以上に増やしても消失させることが
できない。P含有量は望ましくは0.005%以下とす
る。これは、Fe、Si、Mg、Snを上記範囲内で含
有する銅合金では、Pをこの範囲内に制限することによ
り、中間焼鈍時のFe析出による導電率の向上ピーク
と、再結晶の完了をほぼ一致させる(導電率がピークを
迎えたとき、再結晶がほぼ完了する)ことができるから
である。これにより高導電率と優れた曲げ加工性を両立
させることができる。
P: P is mixed as an unavoidable impurity, or added as necessary for assisting deoxidation and improving the flowability of molten metal. However, when the content increases, uniform recrystallization is inhibited, so the content is less than 0.03% (including 0%).
And If the P content is 0.03% or more, even if Si is added at 0.02% or more, a uniform and fine recrystallized structure cannot be obtained by intermediate annealing. In this case, even if the temperature of the intermediate annealing is increased, a non-recrystallized portion remains, and the copper alloy sheet has a variation in hardness, thereby deteriorating the bending workability. In addition, this unrecrystallized portion is within the range of annealing conditions usually performed in a mass production process.
It cannot be eliminated simply by increasing the number of times of annealing to two or more. The P content is desirably 0.005% or less. This is because, in a copper alloy containing Fe, Si, Mg, and Sn in the above range, by limiting P to this range, the peak of the improvement in conductivity due to the precipitation of Fe during the intermediate annealing and the completion of recrystallization. (The recrystallization is almost completed when the conductivity reaches a peak). Thereby, both high conductivity and excellent bending workability can be achieved.

【0012】Ni;Niは不可避不純物として混入し、
あるいは上記銅合金において粒界を強化し熱間圧延時の
割れを防止する作用があるため、必要に応じて添加され
る。しかし、0.03%を超えるとNi−Si金属間化
合物を形成し、耐応力緩和特性を低下させる。従って、
含有量は0.03%以下(0%を含む)とする。 Mn;Mnは不可避不純物として混入し、あるいは上記
銅合金において粒界を強化し熱間圧延時の割れを防止す
る作用があるため、必要に応じて添加される。しかし、
0.03%を超えるとMn−Si金属間化合物を形成
し、耐応力緩和特性を低下させる。従って、含有量は
0.03%以下(0%を含む)とする。望ましくは0.
01%以下である。 Pb;Pbは不可避不純物として混入し、あるいは切削
性及びプレス打ち抜き性を向上させるため必要に応じて
添加される。Pbは最終製品板の各特性に影響を与えな
いが、0.015%を超えて含有されると、粒界に偏析
して熱間圧延時に割れが発生し、一方、0.0005%
未満では上記作用が得られない。従って、Pbの含有量
は0.015%以下(0%を含む)とし、上記作用を必
要とする場合は0.0005%以上含有させる。
Ni; Ni is mixed as an unavoidable impurity,
Alternatively, since the copper alloy has an effect of strengthening grain boundaries and preventing cracking during hot rolling, it is added as necessary. However, if it exceeds 0.03%, a Ni—Si intermetallic compound is formed, and the stress relaxation resistance is reduced. Therefore,
The content is 0.03% or less (including 0%). Mn: Mn is mixed in as an unavoidable impurity, or is added as necessary because it has an effect of strengthening grain boundaries in the copper alloy and preventing cracking during hot rolling. But,
If it exceeds 0.03%, a Mn-Si intermetallic compound is formed, and the stress relaxation resistance is reduced. Therefore, the content is set to 0.03% or less (including 0%). Preferably, 0.
01% or less. Pb; Pb is mixed as an unavoidable impurity, or added as necessary to improve the cutting property and the press punching property. Pb does not affect the properties of the final product sheet, but if it exceeds 0.015%, it segregates at the grain boundaries and cracks during hot rolling, while 0.0005%
If less than the above, the above effect cannot be obtained. Therefore, the content of Pb is set to 0.015% or less (including 0%), and when the above action is required, the content of Pb is set to 0.0005% or more.

【0013】Be〜B;これらの元素は、不可避不純物
として混入し、あるいは再結晶温度を上昇させ耐応力緩
和特性を向上させる作用があるため、必要に応じて添加
される。しかし、これらの元素が析出又は晶出すると導
電率を低下させるので、総量で1%以下に規制される。
望ましくは0.5%以下である。 Bi〜H;これらの元素は不可避不純物として混入す
る。Bi、As、Sb及びSは粒界に偏析し熱間圧延時
に割れを発生させるため、それぞれ個別に0.003%
以下、合計で0.005%以下に制限することが望まし
い。O、Hが多いと鋳塊にブローホールが発生し、また
Oが多いと溶湯中に酸化物が大量に発生して湯流れを阻
害するため、O含有量は10ppm以下、H含有量は2
0ppm以下に制限することが望ましい。
Be-B: These elements are added as necessary because they are mixed as unavoidable impurities or have the effect of increasing the recrystallization temperature and improving the stress relaxation resistance. However, the precipitation or crystallization of these elements lowers the electrical conductivity, so that the total amount is restricted to 1% or less.
Desirably, it is 0.5% or less. Bi to H; these elements are mixed as unavoidable impurities. Bi, As, Sb and S segregate at the grain boundaries and generate cracks during hot rolling, so that each is individually 0.003%.
Hereinafter, it is desirable to limit the total to 0.005% or less. If the amount of O and H is large, blowholes are generated in the ingot, and if the amount of O is large, a large amount of oxides are generated in the molten metal and hinders the flow of the molten metal, so that the O content is 10 ppm or less and the H content is 2 ppm.
It is desirable to limit it to 0 ppm or less.

【0014】上記電気・電子部品用銅合金は、下記実施
例に示すように、鋳造後均質化処理を行った後、熱間圧
延を行い、続いて冷間圧延及び中間焼鈍を行い、さらに
最終冷間圧延後、仕上げ焼鈍を行うという一般的な製造
方法で製造できる。冷間圧延及び中間焼鈍は必要に応じ
て2回以上繰り返すことができる。また、冷間圧延と中
間焼鈍の間に650℃〜750℃で5〜20秒の短時間
焼鈍を行うと、この焼鈍処理中に再結晶が先行して起こ
り、再結晶を阻害するFe粒子が析出してこない。この
再結晶状態の板材を、続く中間焼鈍で焼鈍するとFeの
析出が起こり、導電率、強度が向上するとともに未再結
晶部分が残存していない再結晶組織を得ることができ、
曲げ加工性をさらに向上させることができる。
The copper alloy for electric / electronic parts is subjected to a homogenization treatment after casting, followed by hot rolling, followed by cold rolling and intermediate annealing as shown in the following Examples, It can be manufactured by a general manufacturing method of performing finish annealing after cold rolling. Cold rolling and intermediate annealing can be repeated twice or more as necessary. Further, when annealing is performed for a short time at 650 ° C. to 750 ° C. for 5 to 20 seconds between cold rolling and intermediate annealing, recrystallization occurs earlier during this annealing treatment, and Fe particles that inhibit recrystallization are formed. Does not precipitate. When the sheet material in this recrystallized state is annealed by the subsequent intermediate annealing, precipitation of Fe occurs, conductivity and strength can be improved, and a recrystallized structure in which an unrecrystallized portion does not remain can be obtained.
Bending workability can be further improved.

【0015】[0015]

【実施例】次に本発明に係る電気・電子部品用銅合金の
実施例について、比較例と比較して説明する。表1、2
(本発明例)及び表3、4(比較例)に示す組成の銅合
金をクリプトル炉において、大気中で木炭被覆下に溶
解、鋳造した。ここで鋳造可否を判断した。次いで、鋳
塊を800℃〜1000℃で30分保持後、加工率50
%〜80%の熱間圧延を施し、厚さ18mmの板材を作
製した。ここで熱延時に割れが発生していないか目視及
び蛍光探傷法で判定した。なお、蛍光探傷法は、これら
の試験材全面にマークテック株式会社製浸透探傷用蛍光
染料スーパーグローDN-2800IIを塗布、水洗・乾燥し、
同じく現像剤のスーパーグローDN-600Sをスプレーして
現像後、この試験材に紫外線光を照射することによって
行った。
Next, examples of the copper alloy for electric / electronic parts according to the present invention will be described in comparison with comparative examples. Tables 1 and 2
Copper alloys having the compositions shown in (Examples of the present invention) and Tables 3 and 4 (Comparative Examples) were melted and cast under a charcoal coating in the air in a crypt furnace. Here, the castability was determined. Then, after holding the ingot at 800 ° C. to 1000 ° C. for 30 minutes, the working ratio was 50%.
% To 80% hot rolling was performed to produce a plate material having a thickness of 18 mm. Here, whether or not cracks occurred during hot rolling was determined visually and by fluorescent flaw detection. In addition, the fluorescent flaw detection method, apply the fluorescent dye Super Glow DN-2800II for penetrant flaw detection made by Mark Tech Co., Ltd. on the entire surface of these test materials, wash and dry,
Similarly, after developing by spraying Super Glow DN-600S as a developer, the test material was irradiated with ultraviolet light.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【表3】 [Table 3]

【0019】[0019]

【表4】 [Table 4]

【0020】次いで、この熱延材を次工程の面削機に導
入し、面削機のフライス刃の焼き付きの有無を判断し
た。このときのフライス刃は台金をクロモリ系鋼とし、
フライス刃の部分はタングステンカーバイドの超硬チッ
プを銀ろうにて台金にろう付けしてあり、刃の周速は6
m/秒、切削量は1.5mm/1面である。切削油など
は用いていない。幅200mm×厚さ18mm×長さ1
80mmの寸法の熱延材を各合金毎に20個準備し、そ
れらが全て厚さ15mmになるまで両面全面面削後、フ
ライス刃の表面をSEM観察し、表面の焼き付き状況を
調査した。刃表面に切り屑の溶着の痕跡があれば、焼き
付きがあったものと判断した。
Next, this hot-rolled material was introduced into a facing machine in the next step, and it was determined whether or not the milling blade of the facing machine had seizure. The milling blade at this time uses chromoly-based steel as the base metal,
The milling blade part is a tungsten carbide carbide tip brazed to a base metal with silver brazing, and the peripheral speed of the blade is 6
m / sec, and the cutting amount is 1.5 mm / 1 surface. No cutting oil is used. 200mm width x 18mm thickness x 1 length
Twenty hot-rolled materials having a size of 80 mm were prepared for each alloy, and the entire surface of both surfaces was ground until all of them became a thickness of 15 mm. Then, the surface of the milling blade was observed by SEM to investigate the state of seizure on the surface. If there was any trace of chip welding on the blade surface, it was determined that there was seizure.

【0021】以上の判定基準から、まず本発明に係る合
金板材の作成可否を確認した。その結果を表5に示す。
表5に示すように、No.44は鋳造可能であったが、
Pb添加量が過剰であり、熱間圧延で割れが生じた。N
o.50は大気から溶湯を遮蔽するシールが十分でなか
ったため、H及びOが多く、これによって添加元素S
i、Mg、Snの酸化物が溶湯中に発生し、湯流れ性が
極端に劣化したため、鋳造を断念した。No.43は鋳
造及び熱間圧延が可能であったが、Pb添加量が少な
く、フライス刃の焼き付きが発生した。
Based on the above criteria, it was first confirmed whether or not the alloy sheet according to the present invention could be prepared. Table 5 shows the results.
As shown in Table 5, no. 44 was castable,
The amount of added Pb was excessive, and cracks occurred during hot rolling. N
o. 50 has a large amount of H and O because the seal for shielding the molten metal from the atmosphere is not sufficient.
Casting was abandoned because oxides of i, Mg, and Sn were generated in the molten metal and the flowability of the molten metal was extremely deteriorated. No. No. 43 could be cast and hot rolled, but the amount of Pb added was small and seizure of the milling blade occurred.

【0022】No.45〜49は鋳造可能であったが、
No.45〜48はBi、As、Pb、Sがそれぞれ個
別に過剰であり、No.49はBi、As、Pb、Sの
総量が過剰であり、いずれも熱延時に割れを生じた。N
o.42は鋳造可能であったが、脱酸剤Siが少なく、
かつPの添加もないため、脱酸不足から鋳塊鋳肌がザラ
メ状、つまり、脆弱な多孔質状になった。このため、そ
れ以後の工程は断念した。これに対し、本発明の規定範
囲内の組成を有するNo.1〜23(及び一部元素の含
有量が規定範囲外のNo.24〜41、51)は、鋳塊
品質、熱延性が良好で容易に熱間圧延材が得られ、また
フライス刃の焼付が発生せず、その寿命の延長が可能で
ある。
No. 45-49 could be cast,
No. In Nos. 45 to 48, Bi, As, Pb, and S were individually excessive. In No. 49, the total amount of Bi, As, Pb, and S was excessive, and all of them generated cracks during hot rolling. N
o. 42 was castable, but the deoxidizing agent Si was small,
In addition, since there was no addition of P, the ingot casting surface became rough, that is, brittle porous due to insufficient deoxidation. Therefore, the subsequent steps were abandoned. On the other hand, No. 1 having a composition within the specified range of the present invention. In the case of Nos. 1 to 23 (and Nos. 24 to 41 and 51 in which the content of some elements is out of the specified range), the ingot quality and hot ductility are good, and a hot-rolled material can be easily obtained. Does not occur, and the life can be extended.

【0023】[0023]

【表5】 [Table 5]

【0024】続いて、No.1〜41、51の銅合金の
熱延板を板厚2.5〜0.50mmまで冷間圧延し、中
間焼鈍を電気炉中で370〜600℃の温度で1〜20
時間実施した。次いで、この板材の酸化スケールを除去
後、再結晶率及び板材の硬さ分布を測定した(詳しくは
後述)。さらにこの焼鈍材を厚さ0.25mmまで冷間
圧延し、仕上げ焼鈍を250℃〜490℃の範囲内で5
秒〜2時間行った。各銅合金の製造条件を表6に示す。
最後にこの板材を酸洗して酸化スケールを除去し、最終
製品の板材とした。なお、いずれの合金も最終製品の形
状、板厚まで容易に製作できた。
Subsequently, No. Hot-rolled sheets of copper alloys of Nos. 1-41 and 51 are cold-rolled to a thickness of 2.5 to 0.50 mm, and intermediate annealing is performed in an electric furnace at a temperature of 370 to 600 ° C. for 1 to 20 minutes.
Conducted for hours. Next, after removing the oxide scale of the plate, the recrystallization ratio and the hardness distribution of the plate were measured (details will be described later). Further, this annealed material is cold-rolled to a thickness of 0.25 mm, and finish annealing is performed within a range of 250 ° C to 490 ° C.
Seconds to 2 hours. Table 6 shows the manufacturing conditions of each copper alloy.
Finally, the plate was pickled to remove oxidized scale, thereby obtaining a plate of a final product. In addition, all alloys could be easily manufactured to the shape and thickness of the final product.

【0025】[0025]

【表6】 [Table 6]

【0026】上記製造工程で得られた中間焼鈍後の途中
工程材及び最終製品について、下記〜の特性を下記
要領にて測定した。その結果を表7及び表8に示す。 中間焼鈍後の再結晶率 板材断面が観察できるように研磨用樹脂に埋め込み、鏡
面研磨仕上げしたあと、倍率200倍以上の光学顕微鏡
で観察し、観察視野全面を100%とした場合に対し、
再結晶が完了している面積がその何%を占めるかで評価
した。なお、再結晶率が90%以上であれば、曲げ加工
性など最終製品の機械的性質に影響を及ぼさない。
The following properties (1) to (4) were measured for the in-process material after the intermediate annealing and the final product obtained in the above-described manufacturing process in the following manner. The results are shown in Tables 7 and 8. Recrystallization rate after intermediate annealing Embedding in a polishing resin so that the cross section of the sheet material can be observed, mirror-polished, and then observed with an optical microscope with a magnification of 200 or more.
The percentage of the area where recrystallization was completed was evaluated. When the recrystallization ratio is 90% or more, the mechanical properties of the final product such as bending workability are not affected.

【0027】中間焼鈍後の板材の硬さ測定値の標準偏
差 板材表面をバフ研磨したあと10〜100グラム荷重の
マイクロビッカース硬度計を用い、圧延とは直角の方向
に50μm間で30点の硬さを計り、その30個の計測
値の分布に対する標準偏差を計算することで評価した。
なお、標準偏差が5未満であれば、再結晶は一様に完了
し、曲げ加工性など最終製品の機械的性質に影響を及ぼ
さない。 最終製品の耐力 自動車用端子材として特に重要視される機械的性質であ
る耐力は、JIS5号引張試験片を機械加工にて作成
し、島津製作所製万能試験機UH-10Bで引張試験を実施し
て測定した。ここで、耐力とはJISZ2241で規定
されている永久伸び0.2%に相当する引張強さであ
る。耐力450N/mm以上であれば、自動車用の電
力供給用小型コネクタで必要とする接点嵌合力を維持
し、オス端子挿入時のコジリにも耐えられる。
Standard deviation of measured hardness of sheet material after intermediate annealing After buffing the surface of the sheet material, use a micro Vickers hardness tester with a load of 10 to 100 g, and use 30 points of hardness between 50 μm in a direction perpendicular to rolling. It was evaluated by calculating the standard deviation of the distribution of the 30 measured values.
If the standard deviation is less than 5, recrystallization is completed uniformly and does not affect the mechanical properties of the final product such as bending workability. Strength of final product Strength, which is a mechanical property that is particularly important as a terminal material for automobiles, is measured by preparing a JIS No. 5 tensile test piece by machining and performing a tensile test with a universal testing machine UH-10B manufactured by Shimadzu Corporation. Measured. Here, the proof stress is a tensile strength corresponding to a permanent elongation of 0.2% specified in JISZ2241. When the proof strength is 450 N / mm 2 or more, the contact fitting force required for a small power supply connector for an automobile is maintained, and the connector can withstand squeezing when a male terminal is inserted.

【0028】最終製品の導電率 導電率測定はJISH0505に規定されている非鉄金
属材料導電率測定法に準拠して、横川電気製ダブルブリ
ッジ5752を用いた四端子法で行った。導電率50%
IACS以上であれば、自動車用の電力供給用小型コネ
クタで自己発熱を抑制できる。 最終製品のばね限界値 ばね限界測定値はJISH3130に規定されているば
ね限界値のモーメント式試験に準拠して測定した。ばね
限界値300N/mm以上であれば、自動車用の電力
供給用小型コネクタで必要とする接点嵌合力を維持でき
る。
The conductivity of the final product was measured by a four-terminal method using a double bridge 5752 manufactured by Yokogawa Electric Corporation in accordance with the conductivity measurement method for non-ferrous metal materials specified in JIS H505. Conductivity 50%
If it is IACS or more, self-heating can be suppressed by a small power supply connector for an automobile. Spring Limit Value of Final Product The spring limit measurement value was measured in accordance with the spring limit value moment test specified in JIS H3130. If the spring limit is 300 N / mm 2 or more, the contact fitting force required for a small power supply connector for an automobile can be maintained.

【0029】最終製品の耐応力緩和特性上限温度 耐応力緩和特性は、片持ち梁方式を用いて測定した。具
体的には、材料の圧延方向に対し直角な方向から幅10
mmの短冊状試験片を切り出し、その一端を剛体試験台
に固定し、試験開始時に試験片を10mmそらせ、材料
耐力の80%に相当する表面応力が材料に負荷されるよ
うにする。これを120〜160℃まで5℃きざみに設
定した各オーブン中にそれぞれの材料を1000時間保
持し、除荷後のそりLが初期の弾性範囲内の10mmの
そりにどれだけ近づいたのか、その割合Rを測定するこ
とによって評価した。すなわち、R=(10−L)/1
0×100(%)を算出して比較した。この評価でR:
70%以上を維持できる最高温度が150℃以上であれ
ば、自動車用の電力供給用小型コネクタで必要とする接
点嵌合力を維持できる。
The upper limit temperature of the stress relaxation property of the final product The stress relaxation property was measured by using a cantilever method. Specifically, a width of 10 mm from a direction perpendicular to the rolling direction of the material.
The test piece was cut out at a distance of 10 mm at the start of the test so that a surface stress equivalent to 80% of the material strength was applied to the material. Each material was held for 1000 hours in each oven set to 120 to 160 ° C. in increments of 5 ° C., and how close the sled L after unloading was to the 10 mm sled within the initial elasticity range. It was evaluated by measuring the ratio R. That is, R = (10−L) / 1
0x100 (%) was calculated and compared. In this evaluation R:
When the maximum temperature at which 70% or more can be maintained is 150 ° C. or higher, the contact fitting force required for a small power supply connector for an automobile can be maintained.

【0030】最終製品の圧延長手方向の180°曲げ
の限界曲げ半径 180°曲げ試験は曲げ加工性はJISZ2248に規
定されているVブロック法曲げ試験で各曲げ半径を備え
たVブロック曲げ治具で幅10mm、長さ35mmに加
工した供試材を挟み、島津製作所製万能試験機RH-30を
使って1tonの荷重で予備曲げ加工を行い、さらに平ら
な金属テーブル上に予備曲げされた試験片を置き、島津
製作所製万能試験機RH-30を使って1tonの荷重で密着さ
せた。曲げ加工性は上記曲げ治具の各曲げ半径に対し、
供試材の曲げ部が割れ等を呈していないかどうかルーペ
で検鏡して判別した。この評価で最小曲げ半径が材料板
厚0.25mmに対し0mmであれば、自動車用の電力
供給用小型コネクタが成形できる。
The critical bending radius of 180 ° bending in the longitudinal direction of rolling of the final product The bending workability of the 180 ° bending test is a V-block bending jig having each bending radius in a V-block method bending test specified in JISZ2248. Pre-bending with a load of 1 ton using Shimadzu Universal Testing Machine RH-30, sandwiching the test material processed to a width of 10 mm and a length of 35 mm, and further pre-bending on a flat metal table The pieces were placed and adhered with a load of 1 ton using a universal testing machine RH-30 manufactured by Shimadzu Corporation. The bending workability is determined for each bending radius of the bending jig.
A microscope was used to determine whether or not the bent portion of the test material exhibited cracks or the like. In this evaluation, if the minimum bending radius is 0 mm with respect to the material plate thickness of 0.25 mm, a small power supply connector for an automobile can be formed.

【0031】最終製品の圧延直角方向のW曲げの限界
曲げ半径 W字形状の曲げ加工性はCESM0002金属材料W曲
げ試験方法に規定され、各曲げ半径を備えたB型曲げ治
具で幅10mm、長さ35mmに加工した供試材を挟み
島津製作所製万能試験機RH-30を使って1tonの荷重で曲
げ加工を行って測定した。曲げ加工性は上記曲げ治具の
各曲げ半径に対し、供試材の曲げ部が割れ等を呈してい
ないかどうかルーペで検鏡して判別した。この評価で最
小曲げ半径が材料板厚0.25mmに対し0.125m
m以下であれば、自動車用の電力供給用小型コネクタが
成形できる。
The critical bending radius of W bending in the direction perpendicular to the rolling direction of the final product The bending workability of the W-shape is specified in the CESM0002 metal material W bending test method, and is 10 mm in width using a B-type bending jig having each bending radius. A test material processed to a length of 35 mm was sandwiched and subjected to bending with a load of 1 ton using a universal testing machine RH-30 manufactured by Shimadzu Corporation. The bending workability was determined by examining the bending radius of the bending jig with a magnifying glass to determine whether or not the bent portion of the test material exhibited cracks or the like. In this evaluation, the minimum bending radius is 0.125 m for a material thickness of 0.25 mm.
m or less, a compact power supply connector for an automobile can be formed.

【0032】最終製品のSnめっき剥離の有無 Snめっき密着性は、硫酸第一錫40g/lit、硫酸
100g/lit、クレゾールスルフォン酸30g/l
it、ホルマリン5mlit/lit、分散剤20g/
lit、光沢剤10mlit/litからなるSnめっ
き浴中(20℃)で電流密度2.5A/dmにてめっ
き厚さ1.5μmのSnめっきを施した後、105℃オ
ーブン中で500時間加熱し、その後2mmRで180
℃曲げた後平板に曲げ戻し、その際の材料からのSnめ
っきの剥離の有無を目視で評価した。この評価でSnめ
っきの剥離が生じなければ、自動車の電力供給用小型コ
ネクタに使用できる。
Presence / absence of Sn plating peeling of the final product Sn plating adhesion was as follows: stannous sulfate 40 g / lit, sulfuric acid 100 g / lit, cresolsulfonic acid 30 g / l.
it, formalin 5 mlit / lit, dispersant 20 g /
lit, a Sn plating bath having a plating thickness of 1.5 μm at a current density of 2.5 A / dm 2 in a Sn plating bath (20 ° C.) composed of 10 mlit / lit and then heated in an oven at 105 ° C. for 500 hours And then 2mmR 180
After bending at ℃, the plate was bent back and the presence or absence of peeling of Sn plating from the material at that time was visually evaluated. If the Sn plating does not peel off in this evaluation, it can be used for a small power supply connector for an automobile.

【0033】なお、最終製品板について、酸化物、粗大
析出物、粗大晶出物、粒界反応型析出等、板材の品質低
下を引き起こすような異物の有無の判定を断面観察によ
って行った。具体的には製品板材断面が観察できるよう
に研磨用樹脂に埋め込み鏡面研磨仕上げしたあと、倍率
200倍以上の光学顕微鏡で観察し、前記異物の有無を
確認した。さらに、光学顕微鏡観察以外にも、製品板材
断面について、代表部位としてその中央及び両端から1
0mm×10mm×0.25mmの板材を切り出し、断
面が観察できるように研磨用樹脂に埋め込み、鏡面研磨
したあと、EDX-SEMで断面観察を行い、異物の検出・寸
法測定及び組成同定を行った。30μm×50μmの範
囲で径1μm以上の酸化物又は晶出物が1個以上ある場
合は、酸化物又は晶出物有りと判断した。
The final product sheet was examined by cross-sectional observation to determine the presence or absence of foreign matter that would cause deterioration of the sheet material, such as oxides, coarse precipitates, coarse crystallization, and grain boundary reaction type precipitation. Specifically, after embedding in a polishing resin so as to allow the cross section of the product plate material to be observed and mirror-finished, the product was observed with an optical microscope having a magnification of 200 or more to confirm the presence or absence of the foreign matter. Further, in addition to the observation with an optical microscope, the cross section of the product plate material may be represented as a representative portion by 1 mm from the center and both ends.
A plate material of 0 mm x 10 mm x 0.25 mm was cut out, embedded in a polishing resin so that the cross section could be observed, and after mirror polishing, the cross section was observed with EDX-SEM to detect foreign substances, measure dimensions, and identify the composition. . When there is one or more oxides or crystallized substances having a diameter of 1 μm or more in a range of 30 μm × 50 μm, it is determined that there is an oxide or crystallized substances.

【0034】[0034]

【表7】 [Table 7]

【0035】[0035]

【表8】 [Table 8]

【0036】表7に示すように、本発明の規定範囲内の
組成を有するNo.1〜23は、全ての特性が良好で、
自動車用コネクタ材などに好適な電気・電子部品用銅合
金である。一方、表8に示すように、No.24(CD
A19400)は、高耐力、高導電率であるが、コネク
タあるいはリレーなどの高ばね限界値を要求される用途
には不十分な231N/mmという低いばね限界値し
か得られない。また、耐応力緩和特性上限温度もりん青
銅なみの120℃しか有しない。No.25(特公平1
−54420号公報で開示されたCu−Mg−P合金)
は、高耐力、高導電率、高ばね限界値、高耐応力緩和特
性を兼備するが、曲げ加工性及びSnめっき性が劣る。
As shown in Table 7, No. 1 having a composition within the specified range of the present invention. 1 to 23 all have good properties,
It is a copper alloy for electric / electronic parts suitable for connector materials for automobiles and the like. On the other hand, as shown in Table 8, 24 (CD
A19400) has a high yield strength and a high electrical conductivity, but can obtain only a low spring limit value of 231 N / mm 2 which is insufficient for an application requiring a high spring limit value such as a connector or a relay. Also, the stress relaxation resistance upper limit temperature is only 120 ° C., which is comparable to that of phosphor bronze. No. 25 (Tokuhei 1
-Cu-Mg-P alloy disclosed in -54420)
Has both high yield strength, high electrical conductivity, high spring limit value, and high stress relaxation property, but is inferior in bending workability and Sn plating property.

【0037】No.26、27(CDA19400合金
に類似するP脱酸Cu−Fe合金にMg、Sn、Znを
添加した合金)は、高耐力、高導電率、高ばね限界値、
高耐応力緩和特性を兼備するが、Siが添加されていな
いため、実用的範囲内での中間焼鈍で再結晶が容易では
なく、それゆえ、中間焼鈍後の硬さも一様ではなく、曲
げ加工性が劣化する。No.28はFe添加量が過少
で、導電率60%IACS以上は確保できるが、耐力、
ばね限界値、耐応力緩和特性、曲げ加工性等の機械的性
質が劣る。No.29はSi添加量が過剰で、高耐力、
高ばね限界値、高耐応力緩和特性が得られるが、導電率
が50%IACSを下回り、曲げ加工性も劣る。No.
30はSiの添加量は適性であるがP添加量が過剰で、
実用的範囲内での中間焼鈍で再結晶が容易ではなく、製
品品質が一様ではなくなる。それゆえ、中間焼鈍後の硬
さも一様でなく、曲げ加工性が劣化する。
No. 26, 27 (an alloy obtained by adding Mg, Sn, and Zn to a P-deoxidized Cu-Fe alloy similar to the CDA19400 alloy) have high yield strength, high electrical conductivity, high spring limit value,
Although it has high stress relaxation resistance, recrystallization is not easy by intermediate annealing within a practical range because Si is not added. Therefore, the hardness after intermediate annealing is not uniform, and bending is performed. The property is deteriorated. No. No. 28 has an excessively small amount of Fe and can secure a conductivity of 60% IACS or more.
Poor mechanical properties such as spring limit value, stress relaxation resistance and bending workability. No. No. 29 has an excessive amount of added Si, high yield strength,
Although a high spring limit value and high stress relaxation resistance can be obtained, the conductivity is lower than 50% IACS, and the bending workability is also poor. No.
30 shows that the amount of added Si is appropriate but the amount of added P is excessive,
Recrystallization is not easy by the intermediate annealing within the practical range, and the product quality is not uniform. Therefore, the hardness after the intermediate annealing is not uniform, and the bending workability is deteriorated.

【0038】No.31はMg添加量が過剰で、熱間圧
延後の冷間圧延工程で導入された圧延組織が中間焼鈍で
消失せず、均一微細な再結晶組織が得られず、曲げ加工
性が劣る。No.32、33、35はMg、Snの両方
を適正量で含有せず、ばね限界値(No.32、33、
35)、曲げ加工性(No.32、33、35)及び耐
応力緩和特性(No.35)が劣る。No.34はSn
を適正量含有するがMgが共添されてなく、耐応力緩和
特性が劣る。No.36はMgを適正量含有するがSn
が共添されてなく、耐応力緩和特性及び曲げ加工性が劣
る。No.37はZn添加量が過少で、Snめっき性が
劣る。No.38はZn添加量が過剰で、Sn、Mgに
加えて固溶強化作用をもつ元素がさらに1つ加わること
になり、それゆえ曲げ加工性が劣化する。No.39は
Ni添加量が過剰で、耐応力緩和特性を向上させるSi
がNi−Si金属間化合物形成に奪われ、ゆえに耐応力
緩和特性が劣化し、さらにその金属間化合物発生によっ
て曲げ加工性が劣化する。No.40はMn添加量が過
剰で、耐応力緩和特性を向上させるSiがMn−Si金
属間化合物形成に奪われ、ゆえに耐応力緩和特性が劣化
し、さらにその金属間化合物発生によって曲げ加工性が
劣化する。
No. No. 31 has an excessive amount of added Mg, the rolled structure introduced in the cold rolling step after hot rolling does not disappear by the intermediate annealing, a uniform fine recrystallized structure cannot be obtained, and bending workability is poor. No. Nos. 32, 33, and 35 do not contain both Mg and Sn in appropriate amounts, and have spring limit values (No. 32, 33,
35), bending workability (No. 32, 33, 35) and stress relaxation resistance (No. 35) are inferior. No. 34 is Sn
, But Mg is not added, and the stress relaxation resistance is poor. No. No. 36 contains an appropriate amount of Mg, but Sn
Is not added, and the stress relaxation resistance and bending workability are poor. No. No. 37 has too little Zn addition and is inferior in Sn plating property. No. No. 38 has an excessive addition amount of Zn, so that one element having a solid solution strengthening action is added in addition to Sn and Mg, so that bending workability is deteriorated. No. Reference numeral 39 denotes Si which has an excessive amount of added Ni and improves stress relaxation resistance.
Is deprived of the formation of the Ni-Si intermetallic compound, thereby deteriorating the stress relaxation resistance, and further deteriorating the bending workability due to the generation of the intermetallic compound. No. In No. 40, an excessive amount of Mn is added, and Si for improving the stress relaxation resistance is deprived of the formation of the Mn-Si intermetallic compound, thereby deteriorating the stress relaxation resistance and further deteriorating the bending workability due to the generation of the intermetallic compound. I do.

【0039】No.41はFe添加量が過剰で、前記光
学顕微鏡及びEDX-SEMによる断面組織観察で粗大なFe
粒子の発生が確認された。そのため、曲げ加工性が極端
に劣化していた。No.51はTi等の元素が過剰で、
前記光学顕微鏡及びEDX-SEMによる断面組織観察でT
i、Cr、Zrの粗大な粒子の発生が確認された。その
ため、曲げ加工性が極端に劣化していた。
No. 41 is excessive in the amount of Fe added, and coarse Fe was observed in the cross-sectional structure observation by the optical microscope and EDX-SEM.
Generation of particles was confirmed. Therefore, bending workability was extremely deteriorated. No. 51 has an excess of elements such as Ti,
Observation of the cross-sectional structure by the optical microscope and EDX-SEM
Generation of coarse particles of i, Cr, and Zr was confirmed. Therefore, bending workability was extremely deteriorated.

【0040】次に、Pbが最終製品板の各特性に影響を
与えないことを確認するため、Pb含有量を0.000
1%に抑えた表9(a)、(b)に示す組成の銅合金か
ら最終製品板を作製した。この場合、熱間圧延で発生す
る酸化スケールを除去する際にフライス刃に溶着・焼き
付きが発生するため、これを避ける熱延工程を適用し
た。具体的には、鋳塊板厚が36mmとなるように組ん
だモールドで鋳込み、酸化スケールがほとんど発生しな
い800℃の加熱温度で30分間保持し、1パスのみで
加工率50%を加えて厚さ18mmの熱延板とし、先の
実施例と同様にフライス刃による面削を行った。このと
き、わずかに発生した一次スケールは完全に粉砕され、
しかも酸化スケールの押し込みも発生しないため、特に
Pbを0.0005%以上含有していなくてもフライス
刃に溶着・焼き付きは発生しない。なお、効率を重視す
る実操業では大型鋳塊を使用するため、熱延パス回数の
増加とそれに伴う二次スケールの発生と押し込みは避け
ることができない。これらの酸化スケールがフライス刃
の凝着核となり、フライス刃に溶着・焼き付きが発生す
る恐れがある。先のNo.1〜51では、この状況を再
現するために、5〜8パスの熱延を実施していた。
Next, in order to confirm that Pb does not affect each property of the final product sheet, the Pb content was set to 0.000.
A final product plate was produced from a copper alloy having the composition shown in Tables 9 (a) and 9 (b) suppressed to 1%. In this case, when removing the oxide scale generated by hot rolling, welding and seizure occur on the milling blade, so a hot rolling step was applied to avoid this. Specifically, the ingot is cast in a mold assembled so that the thickness of the ingot becomes 36 mm, and is maintained at a heating temperature of 800 ° C. where almost no oxide scale is generated, for 30 minutes, and a processing rate of 50% is added by only one pass. A hot-rolled sheet having a thickness of 18 mm was subjected to face milling using a milling blade in the same manner as in the previous example. At this time, the slightly generated primary scale is completely crushed,
In addition, since no intrusion of the oxide scale occurs, welding and seizure do not occur on the milling blade even if Pb is not particularly contained at 0.0005% or more. In the actual operation where importance is placed on efficiency, since a large ingot is used, it is inevitable that the number of hot rolling passes is increased and the secondary scale is generated and pushed. These oxide scales serve as adhesion nuclei for the milling blade, which may cause welding and seizure on the milling blade. The previous No. In Nos. 1 to 51, in order to reproduce this situation, hot rolling was performed in 5 to 8 passes.

【0041】[0041]

【表9】 [Table 9]

【0042】以降は、表9(c)に示す条件で冷間圧
延、中間焼鈍及び仕上げ焼鈍を行い、最終製品の板材と
した。この製造工程で得られた中間焼鈍後の途中工程材
及び最終製品について、先の実施例と同じ要領にて各特
性を測定した。表9(d)、(e)に示すように、Pb
を0.0001%に抑えたNo.52でも、優れた特性
の最終製品板が得られている。
Thereafter, cold rolling, intermediate annealing and finish annealing were performed under the conditions shown in Table 9 (c) to obtain a sheet material of a final product. The properties of the in-process material and the final product after the intermediate annealing obtained in this manufacturing process were measured in the same manner as in the previous examples. As shown in Tables 9 (d) and (e), Pb
No. which was suppressed to 0.0001%. 52 also gives a finished product plate with excellent properties.

【0043】[0043]

【発明の効果】本発明に係る電気・電子部品用銅合金
は、強度(耐力)、導電率、ばね限界値、耐応力緩和特
性、曲げ加工性、Snめっき性など、端子・コネクタ、
リレー、バスバー等の電気・電子部品用材料として必要
とされる特性の全てを兼ね備え、特に自動車用配線材
料、なかでも電力供給用小型コネクタ用材料として好適
である。また、本発明に係る電気・電子部品用銅合金
は、脱酸作用を有するSiを添加して、均一な再結晶を
阻害するP添加量を最小限にとどめ、低コストで生産性
よく製造できる利点がある。
The copper alloy for electric / electronic parts according to the present invention has strength (proof strength), electrical conductivity, spring limit value, stress relaxation resistance, bending workability, Sn plating property, etc.
It has all of the characteristics required for materials for electric and electronic parts such as relays and bus bars, and is particularly suitable as a wiring material for automobiles, especially a material for small connectors for power supply. In addition, the copper alloy for electric / electronic parts according to the present invention can be manufactured at low cost and with high productivity by adding Si having a deoxidizing action to minimize the amount of P that inhibits uniform recrystallization. There are advantages.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Fe:0.5〜2.4%(質量%、以下
同じ)、Si:0.02〜0.1%、Mg:0.01〜
0.2%、Sn:0.01〜0.7%、Zn:0.01
〜0.2%を含有し、P:0.03%未満、Ni:0.
03%以下、Mn:0.03%以下であり、さらに残部
がCu及び不可避不純物からなる電気・電子部品用銅合
金。
1. Fe: 0.5 to 2.4% (mass%, the same applies hereinafter), Si: 0.02 to 0.1%, Mg: 0.01 to
0.2%, Sn: 0.01 to 0.7%, Zn: 0.01
~ 0.2%, P: less than 0.03%, Ni: 0.
A copper alloy for electric / electronic parts comprising not more than 03% and not more than 0.03% of Mn, and the balance being Cu and unavoidable impurities.
【請求項2】 さらに、Pb:0.0005〜0.01
5%を含有することを特徴とする請求項1に記載された
電気・電子部品用銅合金。
2. Pb: 0.0005 to 0.01
The copper alloy for electric / electronic parts according to claim 1, which contains 5%.
【請求項3】 Be、Al、Ti、V、Cr、Co、Z
r、Nb、Mo、Ag、In、Hf、Ta、Bの1種又
は2種以上を総量で1%以下含有することを特徴とする
請求項1又は2に記載された電気・電子部品用銅合金。
3. Be, Al, Ti, V, Cr, Co, Z
The copper for electric / electronic parts according to claim 1 or 2, wherein one or more of r, Nb, Mo, Ag, In, Hf, Ta, and B are contained in a total amount of 1% or less. alloy.
【請求項4】 Bi、As、Sb及びSをそれぞれ個別
に0.003%以下、かつこれらの合計を0.005%
以下とし、さらに、O含有量を10ppm以下、かつH
含有量を20ppm以下としたことを特徴とする請求項
1〜3のいずれかに記載された電気・電子部品用銅合
金。
4. Bi, As, Sb and S are each individually 0.003% or less, and the total thereof is 0.005%.
And the O content is 10 ppm or less, and H
The copper alloy for electric / electronic parts according to any one of claims 1 to 3, wherein the content is 20 ppm or less.
JP2000207566A 1999-08-25 2000-07-07 Copper alloy for electric and electronic parts Expired - Lifetime JP3470889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000207566A JP3470889B2 (en) 1999-08-25 2000-07-07 Copper alloy for electric and electronic parts

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP23856899 1999-08-25
JP11-238568 1999-08-25
JP2000207566A JP3470889B2 (en) 1999-08-25 2000-07-07 Copper alloy for electric and electronic parts

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003276461A Division JP4798942B2 (en) 1999-08-25 2003-07-18 Copper alloy for electrical and electronic parts

Publications (2)

Publication Number Publication Date
JP2001131657A true JP2001131657A (en) 2001-05-15
JP3470889B2 JP3470889B2 (en) 2003-11-25

Family

ID=26533774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000207566A Expired - Lifetime JP3470889B2 (en) 1999-08-25 2000-07-07 Copper alloy for electric and electronic parts

Country Status (1)

Country Link
JP (1) JP3470889B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011252726A (en) * 2010-05-31 2011-12-15 Central Res Inst Of Electric Power Ind Hardness detection method and hardness detection system
JP2012133249A (en) * 2010-12-24 2012-07-12 Fuji Xerox Co Ltd Earth plate and image forming apparatus
CN104032184A (en) * 2014-05-12 2014-09-10 蚌埠市宏威滤清器有限公司 Free-cutting copper alloy material and preparation method thereof
WO2015029986A1 (en) * 2013-08-30 2015-03-05 Dowaメタルテック株式会社 Copper alloy sheet material and method for producing same, and current-carrying component
CN113621849A (en) * 2021-07-27 2021-11-09 中国兵器科学研究院宁波分院 Preparation method of high-strength high-conductivity Cu-Nb alloy material
CN113817932A (en) * 2021-07-27 2021-12-21 中国兵器科学研究院宁波分院 High-strength heat-resistant stress relaxation-resistant copper alloy material and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011252726A (en) * 2010-05-31 2011-12-15 Central Res Inst Of Electric Power Ind Hardness detection method and hardness detection system
JP2012133249A (en) * 2010-12-24 2012-07-12 Fuji Xerox Co Ltd Earth plate and image forming apparatus
WO2015029986A1 (en) * 2013-08-30 2015-03-05 Dowaメタルテック株式会社 Copper alloy sheet material and method for producing same, and current-carrying component
JP2015048503A (en) * 2013-08-30 2015-03-16 Dowaメタルテック株式会社 Copper alloy sheet material and production method thereof, and current-carrying component
US10844468B2 (en) 2013-08-30 2020-11-24 Dowa Metaltech Co., Ltd. Copper alloy sheet material and current-carrying component
CN104032184A (en) * 2014-05-12 2014-09-10 蚌埠市宏威滤清器有限公司 Free-cutting copper alloy material and preparation method thereof
CN113621849A (en) * 2021-07-27 2021-11-09 中国兵器科学研究院宁波分院 Preparation method of high-strength high-conductivity Cu-Nb alloy material
CN113817932A (en) * 2021-07-27 2021-12-21 中国兵器科学研究院宁波分院 High-strength heat-resistant stress relaxation-resistant copper alloy material and preparation method thereof
CN113621849B (en) * 2021-07-27 2022-05-06 中国兵器科学研究院宁波分院 Preparation method of high-strength high-conductivity Cu-Nb alloy material

Also Published As

Publication number Publication date
JP3470889B2 (en) 2003-11-25

Similar Documents

Publication Publication Date Title
JP6052829B2 (en) Copper alloy material for electrical and electronic parts
JP4439447B2 (en) Manufacturing method of irregular cross-section copper alloy sheet
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
JP4787986B2 (en) Copper alloy and manufacturing method thereof
JPWO2010126046A1 (en) Cu-Ni-Si-Mg alloy with improved conductivity and bendability
JP4887851B2 (en) Ni-Sn-P copper alloy
KR101338710B1 (en) Ni-si-co copper alloy and manufacturing method therefor
JP3717321B2 (en) Copper alloy for semiconductor lead frames
WO2018079507A1 (en) Copper alloy sheet and method for manufacturing same
JP2004307905A (en) Cu ALLOY, AND ITS PRODUCTION METHOD
JP3904118B2 (en) Copper alloy for electric and electronic parts and manufacturing method thereof
JP7195054B2 (en) Copper alloy sheet material and manufacturing method thereof
JP6927844B2 (en) Copper alloy plate material and its manufacturing method
JP5897084B1 (en) Conductive material for connecting parts with excellent resistance to fine sliding wear
JP2005133185A (en) Deposition type copper alloy heat treatment method, deposition type copper alloy, and raw material thereof
JP5098096B2 (en) Copper alloy, terminal or bus bar, and method for producing copper alloy
JP6858532B2 (en) Copper alloy plate material and its manufacturing method
JP2012153938A (en) Cu-Ni-Si-BASED COPPER ALLOY EXCELLENT IN BENDABILITY AND STRESS RELAXATION RESISTANCE
EP1078995B1 (en) Copper alloy for electrical or electronic parts
JP3470889B2 (en) Copper alloy for electric and electronic parts
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JP4798942B2 (en) Copper alloy for electrical and electronic parts
JPH11323463A (en) Copper alloy for electrical and electronic parts
JP2006316320A (en) Copper alloy sheet with deformed cross-section, and method for producing the same
JP3729749B2 (en) Copper alloy sheet or strip with excellent arc resistance

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3470889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 10

EXPY Cancellation because of completion of term