JP4798942B2 - Copper alloy for electrical and electronic parts - Google Patents

Copper alloy for electrical and electronic parts Download PDF

Info

Publication number
JP4798942B2
JP4798942B2 JP2003276461A JP2003276461A JP4798942B2 JP 4798942 B2 JP4798942 B2 JP 4798942B2 JP 2003276461 A JP2003276461 A JP 2003276461A JP 2003276461 A JP2003276461 A JP 2003276461A JP 4798942 B2 JP4798942 B2 JP 4798942B2
Authority
JP
Japan
Prior art keywords
less
copper alloy
stress relaxation
added
electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003276461A
Other languages
Japanese (ja)
Other versions
JP2004003036A (en
Inventor
幸矢 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003276461A priority Critical patent/JP4798942B2/en
Publication of JP2004003036A publication Critical patent/JP2004003036A/en
Application granted granted Critical
Publication of JP4798942B2 publication Critical patent/JP4798942B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、端子・コネクタ、リレー、バスバー等の電気・電子部品用銅合金、特に強度(耐力)、導電率、ばね限界値、耐応力緩和特性、曲げ加工性に優れ、さらにSnめっき性にも優れた電気・電子部品用銅合金に関する。   The present invention is a copper alloy for electrical and electronic parts such as terminals / connectors, relays, bus bars, etc., particularly excellent in strength (strength), conductivity, spring limit value, stress relaxation resistance, bending workability, and Sn plating ability. Also relates to an excellent copper alloy for electrical and electronic parts.

自動車の電装化が進むなかで、バッテリーや制御装置と各種電装品、アクチュエータ、センサ類等の配線のワイヤハーネスにおいてコネクタの極数が増加し、その小型化が求められている。また、エンジン部付近に搭載されるコネクタは常にエンジン部の高温・高振動環境下にあり、特にパワー系統用(電力供給用)コネクタは大きい電流が流れることで自己発熱しさらに高温となる。従って、このようなコネクタ(特にメス端子)には、前記の環境下で高い信頼性を有する(へたりがこない)ことが求められている。   As automobiles become more and more electrical, the number of connectors in wiring harnesses for batteries, control devices, various electrical components, actuators, sensors, and the like has increased, and miniaturization thereof has been demanded. Further, the connector mounted in the vicinity of the engine unit is always in a high temperature and high vibration environment of the engine unit. Particularly, the power system (power supply) connector is self-heated by a large current flowing and becomes further hot. Therefore, such a connector (particularly a female terminal) is required to have high reliability (no sag) in the above environment.

一方、従来の自動車用等の銅合金コネクタ材として、Cu−Fe−P系合金(CDA19400)やCu−Mg−P系合金が知られている。前者はFe及びPを共添してFe−P化合物を析出させ、強度を向上させたものであり、さらにZnを添加して耐マイグレーション性を向上させた合金(特開平1−168830号公報参照)、Mgを添加して耐応力緩和特性を向上させた合金(特開平4−358033号公報参照)なども知られている。後者は、Mg及びPを共添することで強度と熱クリープ特性を向上させ、引張強さ、導電率及び耐応力緩和特性を向上させたものである(特公平1−54420号公報参照)。   On the other hand, Cu-Fe-P alloys (CDA19400) and Cu-Mg-P alloys are known as conventional copper alloy connector materials for automobiles and the like. The former is an alloy in which Fe and P are co-added to precipitate an Fe-P compound to improve the strength, and Zn is further added to improve migration resistance (see JP-A-1-168830). ), Alloys in which Mg is added to improve the stress relaxation resistance (see JP-A-4-358033) are also known. The latter improves the strength and thermal creep characteristics by co-adding Mg and P, and improves the tensile strength, conductivity, and stress relaxation resistance (see Japanese Patent Publication No. 1-54420).

自動車電装品の配線用コネクタ(特にメス端子)を小型化し、なおかつその信頼性を確保(接圧力を維持)するためには、素材の強度(耐力)及びばね特性(ばね限界値)を一層向上させる必要がある。また、長時間高温に保持されてもへたり(経時的な嵌合力の低下)がこないようにするためには耐応力緩和特性の向上が必要であり、同時に導電率を向上させて自己発熱を抑制することが必要となる。そのほか、小型コネクタの成形のため優れた成形加工性(特に曲げ加工性)を有すること、及びオス・メス端子の接触抵抗を減らし、耐食性を向上させるため優れたSnめっき密着性を有することも求められる。   In order to reduce the size of wiring connectors (especially female terminals) for automotive electrical components and to ensure their reliability (maintain contact pressure), the material strength (proof strength) and spring characteristics (spring limit value) are further improved. It is necessary to let In addition, in order to prevent sag (decrease in mating force over time) even if kept at a high temperature for a long time, it is necessary to improve the stress relaxation resistance. It is necessary to suppress it. In addition, it is required to have excellent formability (particularly bending workability) for forming small connectors, and to have excellent Sn plating adhesion to reduce contact resistance of male and female terminals and improve corrosion resistance. It is done.

しかし、従来のコネクタ材であるCu−Fe−P系銅合金は成形加工性に優れるが、ばね限界値が低く、耐応力緩和特性に劣るという問題がある。なお、この系にMgを添加した合金はばね限界値が向上するが、成形加工性、導電率が低下する。また、Cu−Mg−P系銅合金は耐応力緩和特性に優れるが、成形加工性が劣り、Snめっき密着性にも劣るという問題がある。
本発明は、このような従来技術の問題点に鑑みてなされたもので、耐力、導電率、ばね限界値、耐応力緩和特性、曲げ加工性に優れ、さらにSnめっき性にも優れた電気・電子部品用銅合金を得ることを目的とする。
However, the Cu—Fe—P copper alloy, which is a conventional connector material, is excellent in moldability, but has a problem that the spring limit value is low and the stress relaxation resistance is inferior. In addition, although an alloy in which Mg is added to this system has an improved spring limit value, the moldability and conductivity are lowered. Further, the Cu—Mg—P based copper alloy is excellent in stress relaxation resistance, but has a problem that molding processability is inferior and Sn plating adhesion is also inferior.
The present invention has been made in view of such problems of the prior art, and has excellent proof stress, electrical conductivity, spring limit value, stress relaxation resistance, bending workability, and excellent Sn plating properties. It aims at obtaining the copper alloy for electronic components.

本発明に係る電気・電子部品用銅合金は、Fe:0.5〜2.4%、Si:0.02〜0.1%、Mg:0.01〜0.2%、Sn:0.01〜0.7%、Zn:0.01〜0.2%を含有し、P:0.03%未満、Ni:0.03%以下、Mn:0.03%以下であり、さらに残部がCu及び不可避不純物からなる。
本発明に係る電気・電子部品用銅合金は、必要に応じて、さらにPb:0.0005〜0.015%、又は/及びBe、Al、Ti、V、Cr、Co、Zr、Nb、Mo、Ag、In、Hf、Ta、Bの1種又は2種以上を総量で1%以下含有することができる。
上記銅合金の不可避不純物として、製造上の観点から、Bi、As、Sb及びSはそれぞれ個別に0.003%以下、かつこれらの合計は0.005%以下に制限し、さらに、O含有量を10ppm以下、かつH含有量を20ppm以下に制限することが望ましい。
The copper alloy for electrical / electronic parts according to the present invention is Fe: 0.5-2.4%, Si: 0.02-0.1%, Mg: 0.01-0.2%, Sn: 0.00. 01 to 0.7%, Zn: 0.01 to 0.2%, P: less than 0.03%, Ni: 0.03% or less, Mn: 0.03% or less, and the balance It consists of Cu and inevitable impurities.
The copper alloy for electrical / electronic parts according to the present invention may further include Pb: 0.0005 to 0.015%, or / and Be, Al, Ti, V, Cr, Co, Zr, Nb, and Mo as required. , Ag, In, Hf, Ta, or B may be contained in a total amount of 1% or less.
As an inevitable impurity of the copper alloy, Bi, As, Sb and S are individually 0.003% or less, and the total of these is limited to 0.005% or less from the viewpoint of production. It is desirable to limit the H content to 10 ppm or less and the H content to 20 ppm or less.

本発明に係る電気・電子部品用銅合金は、強度(耐力)、導電率、ばね限界値、耐応力緩和特性、曲げ加工性、Snめっき性など、端子・コネクタ、リレー、バスバー等の電気・電子部品用材料として必要とされる特性の全てを兼ね備え、特に自動車用配線材料、なかでも電力供給用小型コネクタ用材料として好適である。
また、本発明に係る電気・電子部品用銅合金は、脱酸作用を有するSiを添加して、均一な再結晶を阻害するP添加量を最小限にとどめ、低コストで生産性よく製造できる利点がある。
The copper alloy for electric / electronic parts according to the present invention has strength (yield strength), electrical conductivity, spring limit value, stress relaxation resistance, bending workability, Sn plating property, etc. It has all of the characteristics required as a material for electronic parts, and is particularly suitable as a wiring material for automobiles, especially as a material for small connectors for power supply.
In addition, the copper alloy for electrical and electronic parts according to the present invention can be manufactured at low cost and with high productivity by adding Si having deoxidizing action to minimize the amount of P added to inhibit uniform recrystallization. There are advantages.

以下、本発明に係る電気・電子部品用銅合金の成分組成について説明する。
Fe;
Feは析出してこの銅合金の強度を向上させる。しかし、2.4%を超えて含有すると粗大なFe粒子が晶出又は析出し、曲げ加工性が低下し、一方、0.5%未満であるとFeの析出が起こりにくく、強度と導電率が低下し、また再結晶粒が成長して曲げ加工時に割れが発生しやすくなる。従って、Feの含有量は0.5〜2.4%とする。望ましくは1.0〜2.1%であり、この範囲内で耐応力緩和特性とばね限界値がより向上する。さらに望ましくは1.8〜2.0%であり、この範囲内で熱間圧延時の割れの発生を抑える効果が高くなる。
Hereinafter, the component composition of the copper alloy for electric / electronic parts according to the present invention will be described.
Fe;
Fe precipitates to improve the strength of the copper alloy. However, if the content exceeds 2.4%, coarse Fe particles are crystallized or precipitated, and bending workability is deteriorated. On the other hand, if it is less than 0.5%, precipitation of Fe hardly occurs, strength and conductivity. , And recrystallized grains grow and cracks tend to occur during bending. Therefore, the content of Fe is set to 0.5 to 2.4%. Desirably, it is 1.0 to 2.1%, and within this range, the stress relaxation resistance and the spring limit value are further improved. More desirably, it is 1.8 to 2.0%, and within this range, the effect of suppressing the occurrence of cracks during hot rolling becomes high.

Si;
Siは従来のPに代わって銅合金を脱酸し(FeもSiとともに脱酸に寄与する)、Pの含有量が0.03%未満であれば、Pによる再結晶の阻害作用を抑制して、均一微細な再結晶を促進する作用がある。また導電率を余り低下させずにMg及びSnとともに耐応力緩和特性及びばね限界値を向上させる作用がある。これらの作用は0.02%未満の添加量では十分発揮されず、一方、0.1%を超えて含有すると曲げ加工性が劣化する。従って、Siの含有量は0.02〜0.1%とする。望ましくは0.03〜0.07%であり、この範囲で耐応力緩和特性がより向上する。
Si;
Si deoxidizes the copper alloy in place of conventional P (Fe also contributes to deoxidation together with Si), and if the P content is less than 0.03%, the inhibitory action of recrystallization by P is suppressed. And has the effect of promoting uniform fine recrystallization. Moreover, it has the effect | action which improves a stress relaxation resistance and a spring limit value with Mg and Sn, without reducing an electrical conductivity too much. These effects are not sufficiently exerted with an addition amount of less than 0.02%. On the other hand, when the content exceeds 0.1%, bending workability deteriorates. Therefore, the Si content is 0.02 to 0.1%. Desirably, it is 0.03 to 0.07%, and the stress relaxation resistance is further improved in this range.

Mg;
Mgは固溶Snと共添することで耐応力緩和特性及びばね限界値を大きく向上させる作用がある。しかし、Mgは酸化しやすく、添加量が多くなると大気溶解が難しくなり、導電率も低下するので、上記銅合金では、Mg及びSnの作用の一部をSiで補っている。上記銅合金(Cu−Fe系)においてMgの添加量が0.2%を超えると均一な再結晶が阻害されて曲げ加工性が劣化し、一方、0.01%未満であると特に耐応力緩和特性が向上しない。従って、Mgの含有量は0.01〜0.2%とする。望ましくは0.05〜0.15%であり、この範囲で固溶Snとの共添により耐応力緩和特性及びばね限界値がより向上する。なお、MgとSnを共添しない場合は耐応力緩和特性等の向上はみられない。
Mg;
Mg has the effect of greatly improving the stress relaxation resistance and the spring limit value by co-adding with solute Sn. However, Mg is easy to oxidize, and if the amount added is increased, it becomes difficult to dissolve in the atmosphere and the conductivity is also lowered. Therefore, in the copper alloy, part of the action of Mg and Sn is supplemented with Si. In the above copper alloy (Cu-Fe system), if the added amount of Mg exceeds 0.2%, uniform recrystallization is hindered and bending workability deteriorates. Relaxation properties are not improved. Therefore, the content of Mg is set to 0.01 to 0.2%. Desirably, it is 0.05 to 0.15%, and the stress relaxation resistance and the spring limit value are further improved by co-addition with solute Sn in this range. In the case where Mg and Sn are not co-added, the stress relaxation resistance and the like are not improved.

Sn;
Snは固溶Mgと共添することでばね限界値及び耐応力緩和特性を大きく向上させ、さらに曲げ加工性を向上させる作用がある。しかし、Snの添加量が0.7%を超えると導電率が低下し、一方、0.01%未満であると特にばね限界値及び曲げ加工性が向上しない。従って、Snの含有量は0.01〜0.7%とする。望ましくは0.05〜0.15%であり、この範囲で固溶Mgとの共添によりばね限界値、耐応力緩和特性及び曲げ加工性がより向上する。
Zn;
ZnはSn及びはんだめっきの剥離防止に大きい効果がある。しかし、0.2%を超えて含有されると脱Znを起こし、曲げ加工性も劣化し、一方、0.01%未満であるとSn及びはんだめっきの剥離が防止できない。従って、Znの含有量は0.01〜0.2%とする。望ましくは0.1〜0.2%であり、この範囲で特に上記効果が大きい。
Sn;
Sn co-added with solute Mg has the effect of greatly improving the spring limit value and the stress relaxation resistance and further improving the bending workability. However, if the added amount of Sn exceeds 0.7%, the electrical conductivity decreases, while if it is less than 0.01%, the spring limit value and bending workability are not particularly improved. Therefore, the Sn content is set to 0.01 to 0.7%. Desirably, it is 0.05 to 0.15%, and in this range, the spring limit value, stress relaxation resistance and bending workability are further improved by co-addition with solute Mg.
Zn;
Zn has a great effect in preventing peeling of Sn and solder plating. However, if the content exceeds 0.2%, Zn removal occurs and bending workability also deteriorates. On the other hand, if it is less than 0.01%, Sn and solder plating cannot be prevented from peeling off. Therefore, the Zn content is set to 0.01 to 0.2%. Desirably, it is 0.1 to 0.2%, and the above effect is particularly great within this range.

P;
Pは不可避不純物として混入し、あるいは脱酸補助及び湯流れ性の改善のため必要に応じて添加される。しかし、含有量が多くなると均一な再結晶を阻害するため、含有量は0.03%未満(0%を含む)とする。Pの含有量が0.03%以上となると、Siが0.02%以上添加されても、中間焼鈍で均一微細な再結晶組織が得られない。この場合、中間焼鈍の温度を上げても未再結晶部分が残り、銅合金板に硬度のばらつきがでて曲げ加工性が低下する。なお、この未再結晶部分は、量産工程で通常行われている焼鈍条件範囲内では、単に焼鈍回数を2回以上に増やしても消失させることができない。
なお、P含有量を0.005%以下としたとき、Fe、Si、Mg、Snを上記範囲内で含有する銅合金では、中間焼鈍時のFe析出による導電率の向上ピークと、再結晶の完了をほぼ一致させる(導電率がピークを迎えたとき、再結晶がほぼ完了する)ことができる。後述する実施例の欄には、P含有量を0.005%以下とした例が参考例として開示されている。
P;
P is mixed as an unavoidable impurity, or added as necessary to aid deoxidation and improve hot water flow. However, if the content increases, uniform recrystallization is inhibited, so the content is made less than 0.03% (including 0%). When the P content is 0.03% or more, even if Si is added in an amount of 0.02% or more, a uniform and fine recrystallized structure cannot be obtained by intermediate annealing. In this case, even if the temperature of the intermediate annealing is raised, the non-recrystallized portion remains, the hardness of the copper alloy plate varies, and the bending workability decreases. In addition, this non-recrystallized part cannot be eliminated even if the number of annealing times is simply increased to 2 or more within the annealing condition range normally performed in the mass production process.
Incidentally, when the P content is set to 0.005% or less, Fe, Si, Mg, in a copper alloy containing Sn in the above range, the improvement peak conductivity by Fe precipitation during intermediate annealing, recrystallization Completion can be nearly matched (recrystallization is almost complete when conductivity peaks) . An example in which the P content is 0.005% or less is disclosed as a reference example in the column of Examples described later.

Ni;
Niは不可避不純物として混入し、あるいは上記銅合金において粒界を強化し熱間圧延時の割れを防止する作用があるため、必要に応じて添加される。しかし、0.03%を超えるとNi−Si金属間化合物を形成し、耐応力緩和特性を低下させる。従って、含有量は0.03%以下(0%を含む)とする。
Mn;
Mnは不可避不純物として混入し、あるいは上記銅合金において粒界を強化し熱間圧延時の割れを防止する作用があるため、必要に応じて添加される。しかし、0.03%を超えるとMn−Si金属間化合物を形成し、耐応力緩和特性を低下させる。従って、含有量は0.03%以下(0%を含む)とする。望ましくは0.01%以下である。
Pb;
Pbは不可避不純物として混入し、あるいは切削性及びプレス打ち抜き性を向上させるため必要に応じて添加される。Pbは最終製品板の各特性に影響を与えないが、0.015%を超えて含有されると、粒界に偏析して熱間圧延時に割れが発生し、一方、0.0005%未満では上記作用が得られない。従って、Pbの含有量は0.015%以下(0%を含む)とし、上記作用を必要とする場合は0.0005%以上含有させる。
Ni;
Ni is mixed as an inevitable impurity, or has the effect of strengthening the grain boundaries and preventing cracking during hot rolling in the copper alloy, and is added as necessary. However, if it exceeds 0.03%, a Ni—Si intermetallic compound is formed and the stress relaxation resistance is lowered. Therefore, the content is 0.03% or less (including 0%).
Mn;
Mn is mixed as an unavoidable impurity, or has an effect of strengthening grain boundaries and preventing cracking during hot rolling in the copper alloy, and is added as necessary. However, if it exceeds 0.03%, a Mn—Si intermetallic compound is formed and the stress relaxation resistance is lowered. Therefore, the content is 0.03% or less (including 0%). Desirably, it is 0.01% or less.
Pb;
Pb is mixed as an inevitable impurity, or is added as necessary in order to improve machinability and press punchability. Pb does not affect the properties of the final product plate, but if it exceeds 0.015%, it segregates at the grain boundaries and cracks occur during hot rolling, whereas if it is less than 0.0005% The above action cannot be obtained. Therefore, the Pb content is 0.015% or less (including 0%), and 0.0005% or more is contained when the above action is required.

Be〜B;
これらの元素は、不可避不純物として混入し、あるいは再結晶温度を上昇させ耐応力緩和特性を向上させる作用があるため、必要に応じて添加される。しかし、これらの元素が析出又は晶出すると導電率を低下させるので、総量で1%以下に規制される。望ましくは0.5%以下である。
Bi〜H;
これらの元素は不可避不純物として混入する。Bi、As、Sb及びSは粒界に偏析し熱間圧延時に割れを発生させるため、それぞれ個別に0.003%以下、合計で0.005%以下に制限することが望ましい。O、Hが多いと鋳塊にブローホールが発生し、またOが多いと溶湯中に酸化物が大量に発生して湯流れを阻害するため、O含有量は10ppm以下、H含有量は20ppm以下に制限することが望ましい。
Be-B;
These elements are added as necessary because they are mixed as inevitable impurities or have the effect of increasing the recrystallization temperature and improving the stress relaxation resistance. However, if these elements are precipitated or crystallized, the conductivity is lowered, so the total amount is restricted to 1% or less. Desirably, it is 0.5% or less.
Bi to H;
These elements are mixed as inevitable impurities. Bi, As, Sb, and S segregate at the grain boundaries and generate cracks during hot rolling, so it is desirable to limit each individually to 0.003% or less, and to a total of 0.005% or less. If there is a lot of O and H, blowholes are generated in the ingot, and if there is a lot of O, a large amount of oxide is generated in the molten metal and hinders the flow of the molten metal. It is desirable to limit to:

上記電気・電子部品用銅合金は、下記実施例に示すように、鋳造後均質化処理を行った後、熱間圧延を行い、続いて冷間圧延及び中間焼鈍を行い、さらに最終冷間圧延後、仕上げ焼鈍を行うという一般的な製造方法で製造できる。冷間圧延及び中間焼鈍は必要に応じて2回以上繰り返すことができる。また、冷間圧延と中間焼鈍の間に650℃〜750℃で5〜20秒の短時間焼鈍を行うと、この焼鈍処理中に再結晶が先行して起こり、再結晶を阻害するFe粒子が析出してこない。この再結晶状態の板材を、続く中間焼鈍で焼鈍するとFeの析出が起こり、導電率、強度が向上するとともに未再結晶部分が残存していない再結晶組織を得ることができ、曲げ加工性をさらに向上させることができる。   As shown in the following examples, the copper alloy for electric / electronic parts is subjected to homogenization after casting, then hot rolled, followed by cold rolling and intermediate annealing, and further, final cold rolling. Then, it can manufacture with the general manufacturing method of performing finish annealing. Cold rolling and intermediate annealing can be repeated two or more times as necessary. In addition, when short-time annealing is performed at 650 ° C. to 750 ° C. for 5 to 20 seconds between cold rolling and intermediate annealing, recrystallization occurs in advance during this annealing treatment, and Fe particles that inhibit recrystallization are generated. It does not precipitate. When this recrystallized sheet material is annealed by the subsequent intermediate annealing, Fe precipitation occurs, the conductivity and strength are improved, and a recrystallized structure with no unrecrystallized portion remaining can be obtained, and bending workability is improved. Further improvement can be achieved.

次に本発明に係る電気・電子部品用銅合金の実施例について、比較例と比較して説明する。
表1、2(本発明例と参考例)及び表3、4(比較例)に示す組成の銅合金をクリプトル炉において、大気中で木炭被覆下に溶解、鋳造した。ここで鋳造可否を判断した。
次いで、鋳塊を800℃〜1000℃で30分保持後、加工率50%〜80%の熱間圧延を施し、厚さ18mmの板材を作製した。ここで熱延時に割れが発生していないか目視及び蛍光探傷法で判定した。なお、蛍光探傷法は、これらの試験材全面にマークテック株式会社製浸透探傷用蛍光染料スーパーグローDN-2800IIを塗布、水洗・乾燥し、同じく現像剤のスーパーグローDN-600Sをスプレーして現像後、この試験材に紫外線光を照射することによって行った。
Next, examples of the copper alloy for electric / electronic parts according to the present invention will be described in comparison with comparative examples.
Copper alloys having compositions shown in Tables 1 and 2 (examples of the present invention and reference examples ) and Tables 3 and 4 (comparative examples) were melted and cast in the kryptor furnace under the charcoal coating. Here, it was judged whether casting was possible.
Next, the ingot was held at 800 ° C. to 1000 ° C. for 30 minutes, and then subjected to hot rolling at a processing rate of 50% to 80% to produce a plate material having a thickness of 18 mm. Here, whether or not cracking occurred during hot rolling was determined by visual inspection and a fluorescent flaw detection method. In addition, the fluorescent flaw detection method is applied to the entire surface of these test materials with a fluorescent dye Super Glow DN-2800II made by Marktec Co., Ltd., washed and dried, and sprayed with the same Super Glow DN-600S developer. Thereafter, this test material was irradiated with ultraviolet light.

Figure 0004798942
Figure 0004798942

Figure 0004798942
Figure 0004798942

Figure 0004798942
Figure 0004798942

Figure 0004798942
Figure 0004798942

次いで、この熱延材を次工程の面削機に導入し、面削機のフライス刃の焼き付きの有無を判断した。このときのフライス刃は台金をクロモリ系鋼とし、フライス刃の部分はタングステンカーバイドの超硬チップを銀ろうにて台金にろう付けしてあり、刃の周速は6m/秒、切削量は1.5mm/1面である。切削油などは用いていない。幅200mm×厚さ18mm×長さ180mmの寸法の熱延材を各合金毎に20個準備し、それらが全て厚さ15mmになるまで両面全面面削後、フライス刃の表面をSEM観察し、表面の焼き付き状況を調査した。刃表面に切り屑の溶着の痕跡があれば、焼き付きがあったものと判断した。   Next, this hot-rolled material was introduced into the next-step chamfering machine to determine whether or not the milling blade of the chamfering machine was seized. At this time, the milling blade was made of chromoly steel, and the milling blade was brazed with a tungsten carbide carbide tip to the base with silver brazing, the peripheral speed of the blade was 6 m / sec, and the cutting amount Is 1.5 mm / 1 surface. No cutting oil is used. Prepare 20 hot rolled materials with dimensions of 200mm width x 18mm thickness x 180mm length for each alloy, and after chamfering both sides until they all have a thickness of 15mm, observe the surface of the milling blade with SEM, The surface burn-in situation was investigated. If there was any trace of chip welding on the blade surface, it was judged that there was seizure.

以上の判定基準から、まずNo.1〜51の銅合金板材の作成可否を確認した。その結果を表5に示す。
表5に示すように、No.44は鋳造可能であったが、Pb添加量が過剰であり、熱間圧延で割れが生じた。
No.50は大気から溶湯を遮蔽するシールが十分でなかったため、H及びOが多く、これによって添加元素Si、Mg、Snの酸化物が溶湯中に発生し、湯流れ性が極端に劣化したため、鋳造を断念した。
No.43は鋳造及び熱間圧延が可能であったが、Pb添加量が少なく、フライス刃の焼き付きが発生した。
From the above criteria, First No. It was confirmed whether 1 to 51 copper alloy sheet materials could be created. The results are shown in Table 5.
As shown in Table 5, no. No. 44 was castable, but the Pb addition amount was excessive, and cracking occurred during hot rolling.
No. 50 was not enough to shield the molten metal from the atmosphere, so there was a lot of H and O, which caused oxides of the additive elements Si, Mg, Sn to be generated in the molten metal, and the flowability of the molten metal was extremely deteriorated. Abandoned.
No. No. 43 could be cast and hot-rolled, but the amount of Pb added was small, and seizure of the milling blade occurred.

No.45〜49は鋳造可能であったが、No.45〜48はBi、As、Pb、Sがそれぞれ個別に過剰であり、No.49はBi、As、Pb、Sの総量が過剰であり、いずれも熱延時に割れを生じた。
No.42は鋳造可能であったが、脱酸剤Siが少なく、かつPの添加もないため、脱酸不足から鋳塊鋳肌がザラメ状、つまり、脆弱な多孔質状になった。このため、それ以後の工程は断念した。
これに対し、本発明例及び参考例のNo.1〜23(及び比較例のNo.24〜41、51)は、鋳塊品質、熱延性が良好で容易に熱間圧延材が得られ、またフライス刃の焼付が発生せず、その寿命の延長が可能である。
No. Nos. 45 to 49 were able to be cast. In Nos. 45 to 48, Bi, As, Pb, and S are individually excessive. In No. 49, the total amount of Bi, As, Pb, and S was excessive, and all cracked during hot rolling.
No. Although No. 42 was castable, the amount of the deoxidizing agent Si was small and P was not added, so that the ingot casting surface became rough, that is, fragile porous due to insufficient deoxidation. For this reason, the subsequent steps were abandoned.
In contrast, No. of the present invention example and reference example . Nos. 1 to 23 (and Nos. 24 to 41 and 51 of Comparative Examples ) have good ingot quality and hot ductility, and can easily obtain a hot-rolled material. Extension is possible.

Figure 0004798942
Figure 0004798942

続いて、No.1〜41、51の銅合金の熱延板を板厚2.5〜0.50mmまで冷間圧延し、中間焼鈍を電気炉中で370〜600℃の温度で1〜20時間実施した。次いで、この板材の酸化スケールを除去後、再結晶率及び板材の硬さ分布を測定した(詳しくは後述)。さらにこの焼鈍材を厚さ0.25mmまで冷間圧延し、仕上げ焼鈍を250℃〜490℃の範囲内で5秒〜2時間行った。各銅合金の製造条件を表6に示す。最後にこの板材を酸洗して酸化スケールを除去し、最終製品の板材とした。なお、いずれの合金も最終製品の形状、板厚まで容易に製作できた。   Subsequently, no. Hot rolled sheets of copper alloys 1 to 41 and 51 were cold-rolled to a thickness of 2.5 to 0.50 mm, and intermediate annealing was performed in an electric furnace at a temperature of 370 to 600 ° C. for 1 to 20 hours. Subsequently, after removing the oxide scale of the plate, the recrystallization rate and the hardness distribution of the plate were measured (details will be described later). Further, this annealed material was cold-rolled to a thickness of 0.25 mm, and finish annealing was performed within a range of 250 ° C. to 490 ° C. for 5 seconds to 2 hours. Table 6 shows the production conditions of each copper alloy. Finally, the plate material was pickled to remove the oxide scale, and a final product plate was obtained. In addition, all alloys could be easily manufactured to the shape and thickness of the final product.

Figure 0004798942
Figure 0004798942

上記製造工程で得られた中間焼鈍後の途中工程材及び最終製品について、下記(1)〜(9)の特性を下記要領にて測定した。その結果を表7及び表8に示す。
(1)中間焼鈍後の再結晶率
板材断面が観察できるように研磨用樹脂に埋め込み、鏡面研磨仕上げしたあと、倍率200倍以上の光学顕微鏡で観察し、観察視野全面を100%とした場合に対し、再結晶が完了している面積がその何%を占めるかで評価した。なお、再結晶率が90%以上であれば、曲げ加工性など最終製品の機械的性質に影響を及ぼさない。
About the intermediate process material and final product after the intermediate annealing obtained by the said manufacturing process, the characteristic of following (1)-(9) was measured in the following way. The results are shown in Tables 7 and 8.
(1) Recrystallization rate after intermediate annealing Embedded in polishing resin so that the cross-section of the plate material can be observed, mirror-polished and then observed with an optical microscope with a magnification of 200 times or more. On the other hand, the percentage of the area where recrystallization was completed was evaluated. If the recrystallization rate is 90% or more, it does not affect the mechanical properties of the final product such as bending workability.

(2)中間焼鈍後の板材の硬さ測定値の標準偏差
板材表面をバフ研磨したあと10〜100グラム荷重のマイクロビッカース硬度計を用い、圧延とは直角の方向に50μm間で30点の硬さを計り、その30個の計測値の分布に対する標準偏差を計算することで評価した。なお、標準偏差が5未満であれば、再結晶は一様に完了し、曲げ加工性など最終製品の機械的性質に影響を及ぼさない。
(3)最終製品の耐力
自動車用端子材として特に重要視される機械的性質である耐力は、JIS5号引張試験片を機械加工にて作成し、島津製作所製万能試験機UH-10Bで引張試験を実施して測定した。ここで、耐力とはJISZ2241で規定されている永久伸び0.2%に相当する引張強さである。耐力450N/mm以上であれば、自動車用の電力供給用小型コネクタで必要とする接点嵌合力を維持し、オス端子挿入時のコジリにも耐えられる。
(2) Standard deviation of the measured hardness of the plate after intermediate annealing After buffing the surface of the plate, a micro Vickers hardness tester with a load of 10 to 100 grams was used, and the hardness of 30 points between 50 μm in the direction perpendicular to rolling. Evaluation was performed by measuring the thickness and calculating the standard deviation for the distribution of the 30 measured values. If the standard deviation is less than 5, recrystallization is uniformly completed and does not affect the mechanical properties of the final product such as bending workability.
(3) Yield strength of the final product Yield strength, which is a mechanical property that is especially important as an automobile terminal material, is made by machining a JIS No. 5 tensile test piece and tensile tested with a universal testing machine UH-10B manufactured by Shimadzu Corporation. And measured. Here, the proof stress is a tensile strength corresponding to a permanent elongation of 0.2% defined by JISZ2241. If the proof stress is 450 N / mm 2 or more, the contact fitting force required for a small power supply connector for automobiles is maintained, and it can withstand galling when a male terminal is inserted.

(4)最終製品の導電率
導電率測定はJISH0505に規定されている非鉄金属材料導電率測定法に準拠して、横川電気製ダブルブリッジ5752を用いた四端子法で行った。導電率50%IACS以上であれば、自動車用の電力供給用小型コネクタで自己発熱を抑制できる。
(5)最終製品のばね限界値
ばね限界測定値はJISH3130に規定されているばね限界値のモーメント式試験に準拠して測定した。ばね限界値300N/mm以上であれば、自動車用の電力供給用小型コネクタで必要とする接点嵌合力を維持できる。
(4) Conductivity conductivity measurement of the final product was performed by a four-terminal method using a double bridge 5752 manufactured by Yokogawa Electric in accordance with the nonferrous metal material conductivity measurement method defined in JISH0505. If the electrical conductivity is 50% IACS or more, self-heating can be suppressed with a small connector for power supply for automobiles.
(5) Spring limit value of final product The spring limit measurement value was measured in accordance with the moment type test of the spring limit value defined in JISH3130. When the spring limit value is 300 N / mm 2 or more, it is possible to maintain the contact fitting force required for a small power supply connector for automobiles.

(6)最終製品の耐応力緩和特性上限温度
耐応力緩和特性は、片持ち梁方式を用いて測定した。具体的には、材料の圧延方向に対し直角な方向から幅10mmの短冊状試験片を切り出し、その一端を剛体試験台に固定し、試験開始時に試験片を10mmそらせ、材料耐力の80%に相当する表面応力が材料に負荷されるようにする。これを120〜160℃まで5℃きざみに設定した各オーブン中にそれぞれの材料を1000時間保持し、除荷後のそりLが初期の弾性範囲内の10mmのそりにどれだけ近づいたのか、その割合Rを測定することによって評価した。すなわち、R=(10−L)/10×100(%)を算出して比較した。この評価でR:70%以上を維持できる最高温度が150℃以上であれば、自動車用の電力供給用小型コネクタで必要とする接点嵌合力を維持できる。
(6) Stress relaxation resistance upper limit temperature stress relaxation characteristics of the final product were measured using a cantilever method. Specifically, a strip-shaped test piece having a width of 10 mm is cut out from a direction perpendicular to the rolling direction of the material, one end thereof is fixed to a rigid test table, and the test piece is deflected by 10 mm at the start of the test, so that the material yield strength is 80%. A corresponding surface stress is applied to the material. Each material is held in each oven set at 120 ° C to 160 ° C in increments of 5 ° C for 1000 hours, and how much the warped L after unloading approaches a 10 mm sled within the initial elastic range. The ratio R was evaluated by measuring. That is, R = (10−L) / 10 × 100 (%) was calculated and compared. If the maximum temperature that can maintain R: 70% or higher in this evaluation is 150 ° C. or higher, the contact fitting force required for a small connector for power supply for automobiles can be maintained.

(7)最終製品の圧延長手方向の180℃曲げの限界曲げ半径
180°曲げ試験は曲げ加工性はJISZ2248に規定されているVブロック法曲げ試験で各曲げ半径を備えたVブロック曲げ治具で幅10mm、長さ35mmに加工した供試材を挟み、島津製作所製万能試験機RH-30を使って1tonの荷重で予備曲げ加工を行い、さらに平らな金属テーブル上に予備曲げされた試験片を置き、島津製作所製万能試験機RH-30を使って1tonの荷重で密着させた。曲げ加工性は上記曲げ治具の各曲げ半径に対し、供試材の曲げ部が割れ等を呈していないかどうかルーペで検鏡して判別した。この評価で最小曲げ半径が材料板厚0.25mmに対し0mmであれば、自動車用の電力供給用小型コネクタが成形できる。
(7) Limit bending radius of 180 ° C. bending in the rolling longitudinal direction of the final product 180 ° bending test is a V block bending jig provided with each bending radius in the V block method bending test defined in JISZ2248 The test material was processed with a width of 10 mm and a length of 35 mm, and pre-bending was performed with a load of 1 ton using a universal testing machine RH-30 manufactured by Shimadzu Corporation, and further pre-bending on a flat metal table A piece was placed and brought into close contact with a universal tester RH-30 manufactured by Shimadzu Corporation under a load of 1 ton. Bending workability was determined by examining with a loupe whether or not the bent portion of the specimen had cracks or the like with respect to each bending radius of the bending jig. If the minimum bending radius is 0 mm with respect to the material plate thickness of 0.25 mm in this evaluation, a small connector for power supply for automobiles can be formed.

(8)最終製品の圧延直角方向のW曲げの限界曲げ半径
W字形状の曲げ加工性はCESM0002金属材料W曲げ試験方法に規定され、各曲げ半径を備えたB型曲げ治具で幅10mm、長さ35mmに加工した供試材を挟み島津製作所製万能試験機RH-30を使って1tonの荷重で曲げ加工を行って測定した。曲げ加工性は上記曲げ治具の各曲げ半径に対し、供試材の曲げ部が割れ等を呈していないかどうかルーペで検鏡して判別した。この評価で最小曲げ半径が材料板厚0.25mmに対し0.125mm以下であれば、自動車用の電力供給用小型コネクタが成形できる。
(8) Limit bending radius of the W-bending in the direction perpendicular to the rolling of the final product The bending workability of the W-shape is defined in the CESM0002 metal material W bending test method, with a B-type bending jig having each bending radius, a width of 10 mm, The sample material processed to a length of 35 mm was sandwiched and measured using a universal testing machine RH-30 manufactured by Shimadzu Corporation with a load of 1 ton. Bending workability was determined by examining with a loupe whether or not the bent portion of the specimen had cracks or the like with respect to each bending radius of the bending jig. If the minimum bending radius is 0.125 mm or less with respect to the material plate thickness of 0.25 mm in this evaluation, an automobile power supply small connector can be formed.

(9)最終製品のSnめっき剥離の有無
Snめっき密着性は、硫酸第一錫40g/lit、硫酸100g/lit、クレゾールスルフォン酸30g/lit、ホルマリン5mlit/lit、分散剤20g/lit、光沢剤10mlit/litからなるSnめっき浴中(20℃)で電流密度2.5A/dmにてめっき厚さ1.5μmのSnめっきを施した後、105℃オーブン中で500時間加熱し、その後2mmRで180℃曲げた後平板に曲げ戻し、その際の材料からのSnめっきの剥離の有無を目視で評価した。この評価でSnめっきの剥離が生じなければ、自動車の電力供給用小型コネクタに使用できる。
(9) Presence / absence of Sn plating peeling of final product Sn plating adhesion is: stannous sulfate 40 g / lit, sulfuric acid 100 g / lit, cresol sulfonic acid 30 g / lit, formalin 5 mlit / lit, dispersant 20 g / lit, brightener After Sn plating with a plating thickness of 1.5 μm was applied at a current density of 2.5 A / dm 2 in an Sn plating bath (20 ° C.) consisting of 10 ml / lit, it was heated in an oven at 105 ° C. for 500 hours, and then 2 mmR After bending at 180 ° C., the plate was bent back and the presence or absence of peeling of the Sn plating from the material at that time was visually evaluated. If peeling of Sn plating does not occur in this evaluation, it can be used for a small power supply connector for automobiles.

なお、最終製品板について、酸化物、粗大析出物、粗大晶出物、粒界反応型析出等、板材の品質低下を引き起こすような異物の有無の判定を断面観察によって行った。具体的には製品板材断面が観察できるように研磨用樹脂に埋め込み鏡面研磨仕上げしたあと、倍率200倍以上の光学顕微鏡で観察し、前記異物の有無を確認した。
さらに、光学顕微鏡観察以外にも、製品板材断面について、代表部位としてその中央及び両端から10mm×10mm×0.25mmの板材を切り出し、断面が観察できるように研磨用樹脂に埋め込み、鏡面研磨したあと、EDX-SEMで断面観察を行い、異物の検出・寸法測定及び組成同定を行った。30μm×50μmの範囲で径1μm以上の酸化物又は晶出物が1個以上ある場合は、酸化物又は晶出物有りと判断した。
In addition, about the final product board, the presence or absence of the foreign material which causes the quality fall of board | plate materials, such as an oxide, a coarse precipitate, a coarse crystallization thing, and a grain boundary reaction type precipitation, was determined by cross-sectional observation. Specifically, it was embedded in a polishing resin so that a cross section of the product plate material could be observed, followed by mirror polishing, and then observed with an optical microscope having a magnification of 200 times or more to confirm the presence or absence of the foreign matter.
In addition to observation with an optical microscope, after cutting a 10 mm × 10 mm × 0.25 mm plate from the center and both ends as a representative part of the product plate cross section, embedding in a polishing resin so that the cross section can be observed, and mirror polishing Then, cross-sectional observation was performed with EDX-SEM, and foreign object detection / dimension measurement and composition identification were performed. When there was one or more oxides or crystallized substances having a diameter of 1 μm or more in a range of 30 μm × 50 μm, it was judged that there was an oxide or crystallized substance.

Figure 0004798942
Figure 0004798942

Figure 0004798942
Figure 0004798942

表7に示すように、No.1〜23は、全ての特性が良好で、自動車用コネクタ材などに好適な電気・電子部品用銅合金である。
一方、表8に示すように、No.24(CDA19400)は、高耐力、高導電率であるが、コネクタあるいはリレーなどの高ばね限界値を要求される用途には不十分な231N/mmという低いばね限界値しか得られない。また、耐応力緩和特性上限温度もりん青銅なみの120℃しか有しない。
No.25(特公平1−54420号公報で開示されたCu−Mg−P合金)は、高耐力、高導電率、高ばね限界値、高耐応力緩和特性を兼備するが、曲げ加工性及びSnめっき性が劣る。
As shown in Table 7, No. Nos. 1 to 23 are copper alloys for electric / electronic parts, which have good characteristics and are suitable for automobile connector materials.
On the other hand, as shown in Table 8, no. 24 (CDA19400) has a high yield strength and high conductivity, but can only provide a spring limit value of 231 N / mm 2 which is insufficient for applications requiring a high spring limit value such as a connector or a relay. Also, the stress relaxation resistance upper limit temperature is only 120 ° C., similar to phosphor bronze.
No. 25 (Cu-Mg-P alloy disclosed in Japanese Examined Patent Publication No. 1-54420) has high yield strength, high conductivity, high spring limit value, and high stress relaxation characteristics, but has bending workability and Sn plating. Inferior.

No.26、27(CDA19400合金に類似するP脱酸Cu−Fe合金にMg、Sn、Znを添加した合金)は、高耐力、高導電率、高ばね限界値、高耐応力緩和特性を兼備するが、Siが添加されていないため、実用的範囲内での中間焼鈍で再結晶が容易ではなく、それゆえ、中間焼鈍後の硬さも一様ではなく、曲げ加工性が劣化する。
No.28はFe添加量が過少で、導電率60%IACS以上は確保できるが、耐力、ばね限界値、耐応力緩和特性、曲げ加工性等の機械的性質が劣る。
No.29はSi添加量が過剰で、高耐力、高ばね限界値、高耐応力緩和特性が得られるが、導電率が50%IACSを下回り、曲げ加工性も劣る。
No.30はSiの添加量は適性であるがP添加量が過剰で、実用的範囲内での中間焼鈍で再結晶が容易ではなく、製品品質が一様ではなくなる。それゆえ、中間焼鈍後の硬さも一様でなく、曲げ加工性が劣化する。
No. 26, 27 (P-deoxidized Cu-Fe alloy similar to CDA19400 alloy with addition of Mg, Sn, Zn) has high strength, high conductivity, high spring limit, and high stress relaxation properties Since Si is not added, recrystallization is not easy by intermediate annealing within a practical range. Therefore, the hardness after intermediate annealing is not uniform, and bending workability deteriorates.
No. No. 28 has a small Fe addition amount and can secure an electrical conductivity of 60% IACS or more, but is inferior in mechanical properties such as proof stress, spring limit value, stress relaxation resistance and bending workability.
No. No. 29 has an excessive amount of Si added, and high yield strength, high spring limit value, and high stress relaxation characteristics can be obtained, but the electrical conductivity is less than 50% IACS and the bending workability is also inferior.
No. In No. 30, the amount of Si added is appropriate, but the amount of P added is excessive, and recrystallization is not easy by intermediate annealing within a practical range, and the product quality is not uniform. Therefore, the hardness after the intermediate annealing is not uniform, and the bending workability is deteriorated.

No.31はMg添加量が過剰で、熱間圧延後の冷間圧延工程で導入された圧延組織が中間焼鈍で消失せず、均一微細な再結晶組織が得られず、曲げ加工性が劣る。No.32、33、35はMg、Snの両方を適正量で含有せず、ばね限界値(No.32、33、35)、曲げ加工性(No.32、33、35)及び耐応力緩和特性(No.35)が劣る。No.34はSnを適正量含有するがMgが共添されてなく、耐応力緩和特性が劣る。No.36はMgを適正量含有するがSnが共添されてなく、耐応力緩和特性及び曲げ加工性が劣る。
No.37はZn添加量が過少で、Snめっき性が劣る。
No.38はZn添加量が過剰で、Sn、Mgに加えて固溶強化作用をもつ元素がさらに1つ加わることになり、それゆえ曲げ加工性が劣化する。
No.39はNi添加量が過剰で、耐応力緩和特性を向上させるSiがNi−Si金属間化合物形成に奪われ、ゆえに耐応力緩和特性が劣化し、さらにその金属間化合物発生によって曲げ加工性が劣化する。
No.40はMn添加量が過剰で、耐応力緩和特性を向上させるSiがMn−Si金属間化合物形成に奪われ、ゆえに耐応力緩和特性が劣化し、さらにその金属間化合物発生によって曲げ加工性が劣化する。
No. No. 31 has an excessive amount of added Mg, and the rolling structure introduced in the cold rolling step after hot rolling does not disappear by intermediate annealing, and a uniform fine recrystallized structure cannot be obtained, resulting in poor bending workability. No. 32, 33, and 35 do not contain both Mg and Sn in appropriate amounts, and include spring limit values (No. 32, 33, 35), bending workability (No. 32, 33, 35), and stress relaxation resistance ( No. 35) is inferior. No. No. 34 contains an appropriate amount of Sn, but Mg is not co-added, and the stress relaxation resistance is inferior. No. No. 36 contains an appropriate amount of Mg, but Sn is not co-added, and the stress relaxation resistance and bending workability are poor.
No. No. 37 has a small amount of Zn added and has poor Sn plating properties.
No. No. 38 has an excessive amount of added Zn, and in addition to Sn and Mg, one more element having a solid solution strengthening action is added, and hence the bending workability is deteriorated.
No. In No. 39, the amount of Ni added is excessive, and Si that improves the stress relaxation resistance is deprived of the formation of the Ni-Si intermetallic compound. Therefore, the stress relaxation resistance is deteriorated, and the bending workability is deteriorated due to the generation of the intermetallic compound. To do.
No. No. 40 has an excessive amount of Mn added, and Si that improves the stress relaxation resistance is deprived of the formation of the Mn-Si intermetallic compound. Therefore, the stress relaxation resistance deteriorates, and further, bending workability deteriorates due to the generation of the intermetallic compound. To do.

No.41はFe添加量が過剰で、前記光学顕微鏡及びEDX-SEMによる断面組織観察で粗大なFe粒子の発生が確認された。そのため、曲げ加工性が極端に劣化していた。
No.51はTi等の元素が過剰で、前記光学顕微鏡及びEDX-SEMによる断面組織観察でTi、Cr、Zrの粗大な粒子の発生が確認された。そのため、曲げ加工性が極端に劣化していた。
No. No. 41 had an excessive amount of Fe added, and the generation of coarse Fe particles was confirmed by observation of the cross-sectional structure with the optical microscope and EDX-SEM. Therefore, bending workability has been extremely deteriorated.
No. No. 51 contained an excessive amount of elements such as Ti, and the generation of coarse particles of Ti, Cr, and Zr was confirmed by observation of the cross-sectional structure with the optical microscope and EDX-SEM. Therefore, bending workability has been extremely deteriorated.

次に、Pbが最終製品板の各特性に影響を与えないことを確認するため、Pb含有量を0.0001%に抑えた表9(a)、(b)に示す組成の銅合金(参考例)から最終製品板を作製した。この場合、熱間圧延で発生する酸化スケールを除去する際にフライス刃に溶着・焼き付きが発生するため、これを避ける熱延工程を適用した。具体的には、鋳塊板厚が36mmとなるように組んだモールドで鋳込み、酸化スケールがほとんど発生しない800℃の加熱温度で30分間保持し、1パスのみで加工率50%を加えて厚さ18mmの熱延板とし、先の実施例と同様にフライス刃による面削を行った。このとき、わずかに発生した一次スケールは完全に粉砕され、しかも酸化スケールの押し込みも発生しないため、特にPbを0.0005%以上含有していなくてもフライス刃に溶着・焼き付きは発生しない。
なお、効率を重視する実操業では大型鋳塊を使用するため、熱延パス回数の増加とそれに伴う二次スケールの発生と押し込みは避けることができない。これらの酸化スケールがフライス刃の凝着核となり、フライス刃に溶着・焼き付きが発生する恐れがある。先のNo.1〜51では、この状況を再現するために、5〜8パスの熱延を実施していた。
Next, in order to confirm that Pb does not affect each characteristic of the final product plate, copper alloys having compositions shown in Tables 9 (a) and 9 (b) with the Pb content suppressed to 0.0001% (reference) A final product plate was prepared from Example) . In this case, when removing the oxide scale generated by hot rolling, welding and seizure occurs on the milling blade, and thus a hot rolling process is applied to avoid this. Specifically, casting is performed with a mold assembled so that the thickness of the ingot plate is 36 mm, and it is maintained for 30 minutes at a heating temperature of 800 ° C. at which almost no oxide scale is generated. A 18 mm thick hot-rolled sheet was used, and face milling with a milling blade was performed in the same manner as in the previous example. At this time, the slightly generated primary scale is completely pulverized, and the oxide scale is not pushed in. Therefore, even when Pb is not contained in an amount of 0.0005% or more, no welding or seizure occurs on the milling blade.
In addition, since large ingots are used in actual operations where importance is placed on efficiency, an increase in the number of hot rolling passes and the accompanying generation and pushing of secondary scales cannot be avoided. These oxide scales become adhesion nuclei of the milling blade, which may cause welding and seizing on the milling blade. Previous No. In 1 to 51, in order to reproduce this situation, hot rolling of 5 to 8 passes was performed.

Figure 0004798942
Figure 0004798942

以降は、表9(c)に示す条件で冷間圧延、中間焼鈍及び仕上げ焼鈍を行い、最終製品の板材とした。この製造工程で得られた中間焼鈍後の途中工程材及び最終製品について、先の実施例と同じ要領にて各特性を測定した。表9(d)、(e)に示すように、Pbを0.0001%に抑えたNo.52でも、優れた特性の最終製品板が得られている。   Thereafter, cold rolling, intermediate annealing and finish annealing were performed under the conditions shown in Table 9 (c) to obtain a plate material of the final product. About the intermediate process material and final product after the intermediate annealing obtained by this manufacturing process, each characteristic was measured in the same way as the previous Example. As shown in Tables 9 (d) and (e), No. 1 with Pb suppressed to 0.0001%. In 52, a finished product plate having excellent characteristics is obtained.

Claims (3)

Fe:1.0〜2.1%(質量%、以下同じ)、Si:0.02〜0.07%、Mg:0.01〜0.2%、Sn:0.05〜0.15%、Zn:0.01〜0.2%を含有し、P:0.005%を超え0.03%未満、Ni:0.03%以下、Mn:0.03%以下であり、さらに残部がCu及び不可避不純物からなり、不可避不純物のうちBi、As、Sb及びSがそれぞれ個別に0.003%以下、かつこれらの合計が0.005%以下であり、O含有量が10ppm以下、かつH含有量が20ppm以下である電気・電子部品用銅合金。 Fe: 1.0 to 2.1% (mass%, the same applies hereinafter), Si: 0.02 to 0.07% , Mg: 0.01 to 0.2%, Sn: 0.05 to 0.15 % Zn: 0.01-0.2%, P: more than 0.005% and less than 0.03%, Ni: 0.03% or less, Mn: 0.03% or less, and the balance Ri Do Cu and inevitable impurities, Bi of the unavoidable impurities, as, Sb and S is 0.003% or less individually, and it is the sum of these is less 0.005%, O content of 10ppm or less, and A copper alloy for electrical and electronic parts having an H content of 20 ppm or less . さらに、Pb:0.0005〜0.015%を含有することを特徴とする請求項1に記載された電気・電子部品用銅合金。 Furthermore, Pb: 0.0005 to 0.015% is contained, The copper alloy for electrical / electronic components described in Claim 1 characterized by the above-mentioned. Be、Al、Ti、V、Cr、Co、Zr、Nb、Mo、Ag、In、Hf、Ta、Bの1種又は2種以上を総量で1%以下含有することを特徴とする請求項1又は2に記載された電気・電子部品用銅合金。 The total content of one or more of Be, Al, Ti, V, Cr, Co, Zr, Nb, Mo, Ag, In, Hf, Ta, and B is 1% or less. Or a copper alloy for electrical and electronic parts described in 2.
JP2003276461A 1999-08-25 2003-07-18 Copper alloy for electrical and electronic parts Expired - Lifetime JP4798942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003276461A JP4798942B2 (en) 1999-08-25 2003-07-18 Copper alloy for electrical and electronic parts

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1999238568 1999-08-25
JP23856899 1999-08-25
JP2003276461A JP4798942B2 (en) 1999-08-25 2003-07-18 Copper alloy for electrical and electronic parts

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000207566A Division JP3470889B2 (en) 1999-08-25 2000-07-07 Copper alloy for electric and electronic parts

Publications (2)

Publication Number Publication Date
JP2004003036A JP2004003036A (en) 2004-01-08
JP4798942B2 true JP4798942B2 (en) 2011-10-19

Family

ID=30445467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003276461A Expired - Lifetime JP4798942B2 (en) 1999-08-25 2003-07-18 Copper alloy for electrical and electronic parts

Country Status (1)

Country Link
JP (1) JP4798942B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5001050B2 (en) * 2006-08-23 2012-08-15 公立大学法人大阪府立大学 Copper-titanium-hydrogen alloy and method for producing the same
JP6354275B2 (en) 2014-04-14 2018-07-11 株式会社オートネットワーク技術研究所 Copper alloy wire, copper alloy stranded wire and automotive electric wire
JP7168331B2 (en) * 2018-03-09 2022-11-09 トヨタ自動車株式会社 copper base alloy
CN113186421A (en) * 2021-05-04 2021-07-30 宁波华成阀门有限公司 Corrosion-resistant copper alloy and valve preparation method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6365038A (en) * 1986-09-08 1988-03-23 Furukawa Electric Co Ltd:The Copper alloy for electronic and electrical equipment
JPS644445A (en) * 1987-06-26 1989-01-09 Mitsubishi Electric Corp Copper alloy for terminal-connector
JPH0559467A (en) * 1991-05-22 1993-03-09 Nikko Kyodo Co Ltd Copper alloy improved in stress relaxation property
JPH04358033A (en) * 1991-06-03 1992-12-11 Nikko Kyodo Co Ltd Copper alloy for conductive spring
JPH05311288A (en) * 1991-11-06 1993-11-22 Nikko Kinzoku Kk Copper alloy improved in stress relaxation property
JPH10265874A (en) * 1997-03-25 1998-10-06 Kobe Steel Ltd Copper alloy for electrical/electronic parts and its production
JP2000017354A (en) * 1998-06-25 2000-01-18 Hitachi Cable Ltd High-tensile copper alloy excellent in hot workability

Also Published As

Publication number Publication date
JP2004003036A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
JP6052829B2 (en) Copper alloy material for electrical and electronic parts
JP4441467B2 (en) Copper alloy with bending workability and stress relaxation resistance
JP5261500B2 (en) Cu-Ni-Si-Mg alloy with improved conductivity and bendability
JP4439447B2 (en) Manufacturing method of irregular cross-section copper alloy sheet
WO2016031654A1 (en) Conductive material for connection parts which has excellent minute slide wear resistance
EP2143810A1 (en) Copper alloy for electrical/electronic device and method for producing the same
JP4887851B2 (en) Ni-Sn-P copper alloy
JP4129807B2 (en) Copper alloy for connector and manufacturing method thereof
JP5132467B2 (en) Copper alloy and Sn-plated copper alloy material for electrical and electronic parts with excellent electrical conductivity and strength
KR20190077011A (en) Copper alloy sheet and manufacturing method thereof
JP5950499B2 (en) Copper alloy for electrical and electronic parts and copper alloy material with Sn plating
JP2004307905A (en) Cu ALLOY, AND ITS PRODUCTION METHOD
JP2000178670A (en) Copper alloy for semiconductor lead frame
JP3904118B2 (en) Copper alloy for electric and electronic parts and manufacturing method thereof
JP3748709B2 (en) Copper alloy sheet excellent in stress relaxation resistance and method for producing the same
JP7195054B2 (en) Copper alloy sheet material and manufacturing method thereof
JP5897084B1 (en) Conductive material for connecting parts with excellent resistance to fine sliding wear
JP6927844B2 (en) Copper alloy plate material and its manufacturing method
JP5098096B2 (en) Copper alloy, terminal or bus bar, and method for producing copper alloy
JP3470889B2 (en) Copper alloy for electric and electronic parts
JP4798942B2 (en) Copper alloy for electrical and electronic parts
KR100374192B1 (en) Copper alloy for electrical or electronic parts
JP4391382B2 (en) Copper alloy for coaxial connector excellent in machinability and method for producing the same
JP3729749B2 (en) Copper alloy sheet or strip with excellent arc resistance
JP6713074B1 (en) Copper alloy sheet and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4798942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term