JPH10265874A - Copper alloy for electrical/electronic parts and its production - Google Patents

Copper alloy for electrical/electronic parts and its production

Info

Publication number
JPH10265874A
JPH10265874A JP9143497A JP9143497A JPH10265874A JP H10265874 A JPH10265874 A JP H10265874A JP 9143497 A JP9143497 A JP 9143497A JP 9143497 A JP9143497 A JP 9143497A JP H10265874 A JPH10265874 A JP H10265874A
Authority
JP
Japan
Prior art keywords
weight
copper alloy
solder
plating
electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9143497A
Other languages
Japanese (ja)
Inventor
Motohisa Miyato
元久 宮藤
Yukiya Nomura
幸矢 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP9143497A priority Critical patent/JPH10265874A/en
Publication of JPH10265874A publication Critical patent/JPH10265874A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a copper alloy for the electrical/electronic parts which is excellent in elongation.bending workability, solder wettability, adhesibility with solder, etc., is easy for pickling, supresses generation of a Sn plating whisker and is excellent in a wear quantity reducing effect of an opponent material of a press die, etc. SOLUTION: The copper alloy contains, by weight, 0.2-12% Sn, 0.1-12% Zn, 0.001-0.4% P, 0.0005-0.015% Pb, satisfying a Zn/Sn ratio of <=1, further 0.0001-0.4 a total quantity of one component or more among 0.0001-0.1% Cr, 0.0001-0.1% Mn, 0.0001-0.1% Al, 0.0001-0.1% Si, further <=0.005% in total and <=0.003 in individual among Bi, As, Sb, S and the balance Cu with inevitable impurities.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気・電子部品用
銅合金に関する。なお、ここでいう電気・電子部品に
は、ダイオード、トランジスター、光電変換素子、サイ
リスタ、トライアック等の半導体素子用リードフレー
ム、端子・コネクタなどの接続部品、スイッチなどの電
気接点・摺動部品や、モーター、コピードラムなどのブ
ラシ・アース端子などの摺動部品等も含まれる。
TECHNICAL FIELD The present invention relates to a copper alloy for electric / electronic parts. In addition, the electric / electronic parts mentioned here include diodes, transistors, photoelectric conversion elements, thyristors, lead frames for semiconductor elements such as triacs, connection parts such as terminals and connectors, electric contacts and sliding parts such as switches, Also included are sliding parts such as brushes and ground terminals such as motors and copy drums.

【0002】[0002]

【従来の技術】上記のような電気・電子部品用銅合金と
しては、導電率はやや低いものの、高強度を得やすく成
形加工性に優れているりん青銅(JIS規格C511
1、C5102、C5191、C5212、C521
0)が従来から多用されてきた。りん青銅はSnの固溶
強化型合金であり、Sn添加量及び加工率のコントロー
ルによって、必要とする強度−伸びのバランスや成形加
工性、ばね特性を得ていた。しかしながら、圧延加工に
よって生じる材料長手方向(圧延方向)及びその直角方
向での機械的性質の異方性や延性低下による曲げ加工限
界の低下は、電気・電子部品用銅合金に要求されている
機械的性質を満足するものではなくなってきた。
2. Description of the Related Art Phosphor bronze (JIS C511) which has a relatively low conductivity but has high moldability and excellent moldability is used as the copper alloy for electric / electronic parts.
1, C5102, C5191, C5212, C521
0) has been frequently used. Phosphor bronze is a solid solution strengthened alloy of Sn, and the required strength-elongation balance, formability, and spring characteristics have been obtained by controlling the amount of Sn added and the processing rate. However, the lowering of the bending limit due to the anisotropy of the mechanical properties in the material longitudinal direction (rolling direction) and the direction perpendicular to the rolling direction caused by the rolling process and the reduction in ductility are required for copper alloys for electric and electronic parts. Are no longer satisfying the objective properties.

【0003】また、最近の電子機器の小型化に伴う端子
・コネクタなどのはんだ接合部面積の減少に対して、り
ん青銅は溶融はんだ、はんだ及びSnめっき等の密着性
が劣り、経時劣化によってこれらの表面層が剥離すると
いう問題があり、剥離防止のためのCu、Ni等の下地
めっき処理を行わなければ実装時の信頼性が低いという
問題があった。
[0003] In addition, with the decrease in the area of solder joints for terminals and connectors accompanying the recent miniaturization of electronic equipment, phosphor bronze has inferior adhesion to molten solder, solder and Sn plating. However, there is a problem that the reliability at the time of mounting is low unless a base plating treatment of Cu, Ni or the like for preventing peeling is performed.

【0004】さらに、Snを含有するりん青銅はその焼
鈍工程において表面にSn酸化物が形成されやすい。こ
のSn酸化物が存在するとはんだ濡れ性やめっき性が劣
化する。また、Sn酸化物はモース硬さでは工具鋼以上
の硬さを有しており、プレス打抜やプレス成形時のプレ
ス金型寿命を低下させたり、摺動機構部品として使用し
たとき相手材を激しく摩耗させるという問題があった。
Sn酸化膜の除去のためには、特公平6−33473号
公報に示されるような二段階の酸洗(過酸化水素水を添
加した硫酸による第一次酸洗、続いて酸性フッ化アンモ
ンを含む硫酸による第二次酸洗)が行われているが、他
の銅合金(Snを含まない銅合金)に比べて酸洗工程が
多くなり、さらにフッ化物等を含む有害な酸洗廃液の処
理設備及び工程を必要とするためコストアップの要因と
もなりやすかった。
[0004] Further, in phosphor bronze containing Sn, Sn oxide is easily formed on the surface in the annealing step. The presence of this Sn oxide deteriorates the solder wettability and the plating property. In addition, Sn oxide has a Mohs hardness higher than that of tool steel, and reduces the life of a press die during press punching and press molding, and when used as a sliding mechanism component, the mating material There was a problem of severe wear.
In order to remove the Sn oxide film, a two-stage pickling as shown in JP-B-6-33473 (first pickling with sulfuric acid to which a hydrogen peroxide solution is added, followed by acid ammonium fluoride) (Secondary pickling with sulfuric acid containing), but the number of pickling steps is increased compared to other copper alloys (copper alloys not containing Sn), and furthermore, harmful pickling waste liquid containing fluoride and the like is removed. Since it requires processing equipment and processes, it tends to be a factor of cost increase.

【0005】また、りん青銅はSnめっきを行った場合
にウィスカが発生する。このウィスカ防止のために、母
材の影響を打ち消すCu、Ni等の下地めっき処理を行
うか、又は通常リフローSnめっき法と呼ばれる方法に
よって表面処理したSnめっき材を使うなどの方法を取
ってきた。そして、電気・電子部品のはんだ濡れ性確
保、耐食性向上、それに電気接点の実効面積増大などの
目的で行われるSnの後めっきでは、より確実な方法と
してSnめっきのめっき組成を90%Sn−10%Pb
などのはんだめっきに変更し、Snめっきウィスカ発生
を抑制してきた。しかし、近年、環境保護の立場から雨
などで容易に溶出するはんだ中のPbなどの元素は厳し
く規制され始めたため、Snめっきウィスカが再び問題
になってきた。
[0005] Phosphor bronze generates whiskers when Sn plating is performed. In order to prevent this whisker, a method has been adopted in which an undercoating treatment of Cu, Ni, etc., which cancels the influence of the base material, is performed, or an Sn plating material whose surface is treated by a method generally called a reflow Sn plating method is used. . In Sn post-plating performed for the purpose of ensuring solder wettability of electric / electronic parts, improving corrosion resistance, and increasing the effective area of electric contacts, the plating composition of Sn plating is set to 90% Sn-10 as a more reliable method. % Pb
And the like, and the generation of Sn plating whiskers has been suppressed. However, in recent years, elements such as Pb in the solder that is easily eluted by rain or the like from the standpoint of environmental protection have begun to be strictly regulated, and thus Sn plating whiskers have become a problem again.

【0006】[0006]

【発明が解決しようとする課題】本発明は、従来のりん
青銅のもつ上記問題点に鑑みてなされたもので、伸び特
性及び曲げ加工性、はんだ濡れ性、はんだ、はんだめっ
き及びSnめっきの密着性に優れ、酸洗が容易であり、
Snめっきウィスカ発生が抑制され、さらにプレス金型
などの相手材の摩耗量低減効果に優れた電気・電子部品
用銅合金を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the conventional phosphor bronze, and has been made in view of elongation characteristics, bending workability, solder wettability, adhesion of solder, solder plating and Sn plating. Excellent in acidity, easy to pickle,
An object of the present invention is to obtain a copper alloy for electric / electronic parts in which the generation of Sn plating whiskers is suppressed, and which is excellent in the effect of reducing the amount of wear of a counterpart material such as a press die.

【0007】[0007]

【課題を解決するための手段】本発明に係る電気・電子
部品用銅合金は、Sn:0.2〜12重量%、Zn:
0.1〜12重量%、P:0.001〜0.4重量%、
Pb:0.0005〜0.015重量%をZn/Sn比
が1以下となるように含有し、さらにCr:0.000
1〜0.1重量%、Mn:0.0001〜0.1重量
%、Al:0.0001〜0.1重量%、Si:0.0
001〜0.1重量%からなる群から選択された一種以
上の成分を総量で0.0001〜0.4重量%含有し、
Bi、As、Sb、Sが個別には0.003重量%以
下、総量で0.005重量%以下とされ、残部がCu及
び不可避不純物からなる。
The copper alloy for electric / electronic parts according to the present invention comprises: Sn: 0.2 to 12% by weight, Zn:
0.1 to 12% by weight, P: 0.001 to 0.4% by weight,
Pb: 0.0005 to 0.015% by weight is contained so that the Zn / Sn ratio becomes 1 or less.
1 to 0.1% by weight, Mn: 0.0001 to 0.1% by weight, Al: 0.0001 to 0.1% by weight, Si: 0.0
0.0001 to 0.4% by weight in total of one or more components selected from the group consisting of 001 to 0.1% by weight;
The contents of Bi, As, Sb, and S are individually 0.003% by weight or less, and the total amount is 0.005% by weight or less, with the balance being Cu and unavoidable impurities.

【0008】この電気・電子部品用銅合金は、必要に応
じて、さらにFeとNiのいずれか一方を0.0005
〜1.0重量%、又はその両方を合計で0.0005〜
2.0重量%含有し得る。この電気・電子部品用銅合金
は、製造上あるいは実用上の観点から、O含有量を50
ppm以下、かつH含有量を20ppm以下に規制し、
また、圧延方向に平行又は直角方向の断面における板厚
方向の結晶粒径をともに20μmより小さくすることが
望ましい。
The copper alloy for electric / electronic parts may further contain one of Fe and Ni if necessary.
~ 1.0 wt%, or both in a total of 0.0005-
2.0% by weight. This copper alloy for electric / electronic parts has an O content of 50 from the viewpoint of production or practical use.
ppm or less, and the H content is regulated to 20 ppm or less,
In addition, it is desirable that both the crystal grain size in the sheet thickness direction in the cross section parallel or perpendicular to the rolling direction be smaller than 20 μm.

【0009】以下、各添加元素の含有量限定理由等につ
いて説明する。 (1)Snの含有量限定について Snは強度、ばね限界値などの機械的性質を向上させる
効果を有する。特にSn添加量が多いほど強度−伸びの
バランスは優れており、同じ強度に対してより大きい伸
びが得られる。しかしながら、Sn含有量が0.2%未
満の場合は上記の効果を得ることができず、加工硬化し
にくいため最終圧延加工率を調節しても伸びは3%以下
しか得られず、電気・電子部品用としては適当ではな
い。一方、12重量%を越えて添加するとγ相が生じて
冷間加工性が劣化し、板材の製造が難しくなる。したが
って、Snの含有量は0.2〜12重量%とする。な
お、Sn含有量の望ましい範囲は0.5〜12重量%で
ある。
The reasons for limiting the content of each additive element will be described below. (1) Limiting Sn Content Sn has an effect of improving mechanical properties such as strength and a spring limit value. In particular, the greater the amount of Sn added, the better the balance between strength and elongation, and a larger elongation can be obtained for the same strength. However, if the Sn content is less than 0.2%, the above effects cannot be obtained, and work hardening is difficult, so that even if the final rolling reduction ratio is adjusted, elongation can be obtained only 3% or less. It is not suitable for electronic components. On the other hand, if it is added in excess of 12% by weight, a γ phase is generated, and the cold workability is degraded, making the production of a sheet material difficult. Therefore, the content of Sn is set to 0.2 to 12% by weight. Note that a desirable range of the Sn content is 0.5 to 12% by weight.

【0010】(2)Pの含有量限定について Pは溶湯の脱酸を完全に行い、健全な鋳塊を得るための
脱酸材であり、0.001%未満の含有量ではZnを
0.1重量%以上添加しても脱酸不足となり、一方、
0.4重量%を越えるとはんだ濡れ性が低下する。した
がって、Pの含有量は0.001〜0.4重量%とす
る。なお、P含有量の望ましい範囲は0.01〜0.3
重量%である。
(2) Restriction of P content P is a deoxidizing material for completely deoxidizing the molten metal and obtaining a sound ingot, and when the content is less than 0.001%, Zn is contained in 0.1%. Addition of 1% by weight or more results in insufficient deoxidation.
If it exceeds 0.4% by weight, the solder wettability will decrease. Therefore, the content of P is set to 0.001 to 0.4% by weight. A desirable range of the P content is 0.01 to 0.3.
% By weight.

【0011】(3)Znの含有量限定について りん青銅にZnを添加することによって、伸び特性及び
曲げ加工性を向上させ、りん青銅の持つ長所を劣化させ
ることなく、はんだ、はんだめっき、Snめっきの密着
性を向上させ、酸洗を容易にし、Snめっきウィスカ発
生を抑制し、プレス金型などの相手材摩耗量を低減でき
る。なお、ここでいう伸び特性の向上とは、Zn含有量
が本発明の範囲内にある合金は、Zn添加量が本発明の
範囲を下回る合金と比較して、最終板厚で圧延方向と平
行な方向あるいは直角な方向に関して同じ引張強さを得
るために必要とする仕上げ圧延加工率(最終製品の再結
晶粒径を調整する仕上げ焼鈍後の各質別調整用の圧延の
加工率)が小さくて済み、そのために圧延方向に対して
平行及び直角それぞれの方向の伸びが上回ることを意味
する。
(3) Restriction of Zn content By adding Zn to phosphor bronze, elongation characteristics and bending workability are improved, and solder, solder plating, and Sn plating are performed without deteriorating the advantages of phosphor bronze. This improves the adhesion of the steel sheet, facilitates pickling, suppresses the occurrence of Sn plating whiskers, and reduces the amount of wear of a counterpart material such as a press die. The improvement of the elongation characteristics here means that the alloy whose Zn content is within the range of the present invention is parallel to the rolling direction at the final thickness in comparison with the alloy whose Zn content is below the range of the present invention. Finish rolling rate required to obtain the same tensile strength in different directions or perpendicular directions (rolling rate for each tempering adjustment after finish annealing to adjust the recrystallized grain size of the final product) is small Means that the elongation in each of the directions parallel and perpendicular to the rolling direction is greater.

【0012】しかし、Znが0.1重量%未満では、上
記の効果を得ることができない。一方、12重量%を越
えるとはんだ濡れ性が低下するとともに脱亜鉛腐食を生
じる。従って、Znの含有量は0.1〜12重量%とす
る。なお、Zn含有量の望ましい範囲は0.5〜10重
量%である。また、合金の化学成分中の重量%の比でZ
n/Sn比が1を超えると、はんだ濡れ性が劣化し、あ
るいははんだ及びはんだめっきと母材界面に形成される
合金層の成長速度が早く、はんだ及びはんだめっきの白
化(はんだ及びはんだめっき層が母材界面から表面まで
脆くて電気伝導度が低く、はんだ濡れ性に劣る合金層に
変化してしまう現象)が生じる。また、酸洗時に合金構
成元素のうちZnが優先的に溶出し、そのあとにSn、
Pなどを含有するCu相が残る脱亜鉛腐食現象が発生す
る。従って、Zn/Sn比は1以下とする。
However, if Zn is less than 0.1% by weight, the above effects cannot be obtained. On the other hand, when the content exceeds 12% by weight, the solder wettability decreases and dezincification corrosion occurs. Therefore, the content of Zn is set to 0.1 to 12% by weight. Note that a desirable range of the Zn content is 0.5 to 10% by weight. In addition, Z is expressed as a ratio of weight% in the chemical composition of the alloy.
If the n / Sn ratio exceeds 1, the solder wettability deteriorates, or the growth rate of the alloy layer formed at the interface between the solder and the solder plating and the base material is high, and the whitening of the solder and the solder plating (solder and solder plating layer) Is a phenomenon in which it is brittle from the interface of the base material to the surface, has low electrical conductivity, and changes into an alloy layer having poor solder wettability). In addition, Zn is preferentially eluted out of the alloy constituent elements during pickling, followed by Sn,
A dezincification corrosion phenomenon in which a Cu phase containing P or the like remains. Therefore, the Zn / Sn ratio is set to 1 or less.

【0013】(4)Pbの含有量限定について Pbの添加にはプレス打抜時及びプレス成形加工時の金
型摩耗低減、摺動機構部品として用いられた場合の相手
材の摩耗減量低減、さらには被削性向上に効果がある。
ただし、0.0005重量%以上添加しなければその効
果はない。一方、PbはCuには固溶しないため、0.
015重量%を超えて添加されると結晶粒界に薄膜状に
局部析出しやすく、低融点であるため特に熱間加工性を
阻害する。従って、Pbの含有量は0.0005〜0.
015重量%とする。なお、Pb含有量の望ましい範囲
は0.0005〜0.001重量%である。
(4) Restriction of Pb Content The addition of Pb reduces the abrasion of the die during press punching and press forming, reduces the reduction in wear of the mating material when used as a sliding mechanism part, and Is effective in improving machinability.
However, there is no effect unless 0.0005% by weight or more is added. On the other hand, Pb does not form a solid solution in Cu,
If it is added in excess of 015% by weight, local precipitation is likely to occur in the form of a thin film at the crystal grain boundaries, and since it has a low melting point, it particularly hinders hot workability. Therefore, the content of Pb is 0.0005 to 0.5.
015% by weight. Note that a desirable range of the Pb content is 0.0005 to 0.001% by weight.

【0014】(5)選択元素の含有量限定理由について Cr、Mn、Al、Siはいづれも溶解鋳造時に添加す
ると脱酸材としての効果がある。これらの元素は0.0
001重量%以上残留すると脱酸材として有効であり、
かつ母材である本発明合金には悪影響を与えない。その
ほかの作用として、Cr、Mnは0.0001重量%以
上添加すると粒界強化をはかることができる。さらに、
Crはその析出物を均一微細に分散させるような適当な
加工、熱処理を通せばクリープ性や耐熱性の向上をはか
ることができる。しかし、これらの元素が0.1重量%
を越えて含有されると、Crの場合は溶湯の粘性を上げ
鋳造性が悪くなり、さらに粗大な晶出物が発生しやすく
なり、また、Mnは導電率の低下が大きくなるため、と
もに0.1重量%を上限とする。
(5) Reasons for limiting the content of the selected element When Cr, Mn, Al, and Si are added at the time of melting and casting, there is an effect as a deoxidizer. These elements are 0.0
When 001% by weight or more remains, it is effective as a deoxidizing material,
In addition, it does not adversely affect the alloy of the present invention as a base material. As another effect, when Cr and Mn are added in an amount of 0.0001% by weight or more, grain boundary strengthening can be achieved. further,
Cr can be improved in creep properties and heat resistance by subjecting it to appropriate processing and heat treatment to uniformly and finely disperse the precipitates. However, these elements are 0.1% by weight
When Cr is contained in excess of Cr, the viscosity of the molten metal is increased and castability is deteriorated, and coarse crystals are more likely to be generated. The upper limit is 1% by weight.

【0015】また、Alの添加は銅合金溶湯の脱硫及び
固溶強化に効果がある。溶湯中にAlを添加して銅溶湯
よりも比重の軽いAl−S化合物を形成させ、ノロとし
て除去する。この際Alが0.0001重量%以上残留
するが、これも特性的には悪影響を及ぼさず、これ以上
の添加はAlが固溶強化元素であるために強度向上をも
たらす。一方、0.1重量%をこえて添加されると、板
材表面にりん青銅の製造工程で用いられている酸洗液及
び研磨では除去できないような強固な酸化膜が形成さ
れ、板材の冷間加工性と製品としての価値を著しく損な
う。さらに、Siの添加は、選択的に添加するNiやF
eと化合物を形成し、本合金の強度を向上させるが、
0.1重量%をこえて添加されると、焼鈍時の板材表面
で選択的に酸化され、はんだ付け性やめっき性を低下さ
せる。従って、これらの選択元素は、Cr:0.000
1〜0.1重量%、Mn:0.0001〜0.1重量
%、Al:0.0001〜0.1重量%、Si:0.0
001〜0.1重量%からなる群から選択された一種以
上の成分を、総量で0.0001〜0.4重量%の範囲
で含有するように規制しなければならない。
The addition of Al is effective for desulfurization and solid solution strengthening of the molten copper alloy. Al is added to the molten metal to form an Al-S compound having a lower specific gravity than the copper molten metal, and is removed as slag. At this time, 0.0001% by weight or more of Al remains, but this also has no adverse effect on the characteristics, and further addition of Al results in an improvement in strength because Al is a solid solution strengthening element. On the other hand, if added in excess of 0.1% by weight, a strong oxide film which cannot be removed by the pickling solution and polishing used in the production process of phosphor bronze is formed on the surface of the plate material, and the cold Significantly impairs processability and product value. Further, the addition of Si is performed by selectively adding Ni or F.
e and a compound to improve the strength of the alloy,
When added in excess of 0.1% by weight, it is selectively oxidized on the surface of the sheet material during annealing, and reduces solderability and plating property. Therefore, these selected elements are Cr: 0.000
1 to 0.1% by weight, Mn: 0.0001 to 0.1% by weight, Al: 0.0001 to 0.1% by weight, Si: 0.0
One or more components selected from the group consisting of 001 to 0.1% by weight must be regulated so as to contain 0.0001 to 0.4% by weight in total.

【0016】(6)Bi、As、Sb、Sの含有量限定
について これらの元素は熱間加工性を劣化させる有害な不純物で
ある。本発明の範囲を超えてこれらの元素が含有されて
いると、熱間圧延中に鋳塊の割れなどが発生し板材の製
作が困難になる。従って、個別にはBi:0.003重
量%以下、As:0.003重量%以下、Sb:0.0
03重量%以下、S:0.003重量%以下に規制し、
かつ総量で0.005重量%以下しか含有しないように
規制する。
(6) Limitation of Bi, As, Sb, and S Content These elements are harmful impurities that degrade hot workability. If these elements are contained outside the range of the present invention, cracks of the ingot occur during hot rolling, and it becomes difficult to produce a sheet material. Therefore, individually, Bi: 0.003 wt% or less, As: 0.003 wt% or less, Sb: 0.0
03% by weight or less, S: regulated to 0.003% by weight or less,
In addition, it is regulated so that the total content is not more than 0.005% by weight.

【0017】(7)Fe、Niの含有量限定について 本発明合金は従来から多用されてきたりん青銅と同一の
工程で作製した場合にもすぐれた特性を発揮できるとい
う特徴を有するが、これはもちろんFe又はNiを適正
量添加した場合も同様で、既存の生産工程、製造設備を
そのまま活用できる。Fe、Niのいずれか一方又は両
方を添加すると、固溶強化と、特に脱酸材として残留す
るPと金属間化合物を形成してFe−PあるいはNi−
P化合物を析出することにより強度、導電率及び耐熱性
の向上をもたらすが、強度、導電率及び耐熱性の有効な
向上効果を得るにはそれぞれの元素単独又は合計で0.
0005重量%以上の添加が必要である。
(7) Restriction of Fe and Ni Content The alloy of the present invention has a feature that it can exhibit excellent characteristics even when it is manufactured in the same process as phosphor bronze which has been frequently used. Of course, the same applies when an appropriate amount of Fe or Ni is added, and the existing production process and production equipment can be used as they are. When one or both of Fe and Ni are added, solid solution strengthening and, in particular, forming an intermetallic compound with P remaining as a deoxidizing agent to form Fe-P or Ni-
Precipitation of the P compound improves strength, conductivity, and heat resistance. However, in order to obtain an effective effect of improving strength, conductivity, and heat resistance, each element alone or in a total of 0.1% is used.
It is necessary to add 0005% by weight or more.

【0018】一方、Fe及びNiの添加量の上限値は合
金の比透磁率によって決定される。すなわち、電気信号
を高い忠実度で入出力あるいは増幅などを行う電気・電
子部品にとっては、その構成部品の比透磁率が大きくな
ると信号波形のみだれやゆがみをもたらす可能性があ
る。Fe及びNiは銅合金に添加されるとその比透磁率
を上昇させるため、これらの添加量の上限を規制する必
要がある。電気・電子部品用銅合金では、好ましい比透
磁率は1.0002以下であるが、Fe、Niがそれぞ
れ単体で1.0重量%以下であれば、十分析出させるこ
とで透磁率は1.0001以下に抑制でき、Fe及びN
iが2.0重量%以下で共添されている場合でも透磁率
は1.0002以下に抑制できる。なお、Fe及びNi
含有量の望ましい範囲は単独添加の場合0.0005〜
0.5重量%、両方を添加した場合はその合計で0.0
005〜0.8重量%である。
On the other hand, the upper limit of the amount of addition of Fe and Ni is determined by the relative magnetic permeability of the alloy. That is, for an electric / electronic component that inputs / outputs or amplifies an electric signal with high fidelity, if the relative magnetic permeability of the component becomes large, the signal waveform may be distorted or distorted. Since Fe and Ni increase the relative magnetic permeability when added to a copper alloy, it is necessary to regulate the upper limits of the amounts of these added. In a copper alloy for electric / electronic parts, the preferable relative magnetic permeability is 1.0002 or less. However, if Fe and Ni alone are 1.0% by weight or less, the magnetic permeability is 1. 0001 or less, Fe and N
Even when i is co-added at 2.0% by weight or less, the magnetic permeability can be suppressed to 1.0002 or less. Note that Fe and Ni
The desirable range of the content is 0.0005 to
0.5% by weight, and when both are added, the total is 0.0
005 to 0.8% by weight.

【0019】(8)H、Oの含有量限定について 本発明合金も溶湯の段階では気体元素であるH及びOを
吸収している。これらのH及びOは凝固時にその溶解度
が減少するため、O含有量を50ppm以下でかつH含
有量を20ppm以下に規制しておかなければ、鋳塊内
で気泡を形成しやすくなる。これらの気泡が残存してい
ると熱間加工時に鋳塊割れ、途中の焼鈍行程でのふくれ
が発生し易くなる。従って、O含有量を50ppm以
下、かつH含有量を20ppm以下に規制する。
(8) Restriction of H and O Content The alloy of the present invention also absorbs gas elements H and O at the stage of melting. Since the solubility of these H and O during solidification decreases, if the O content is not regulated to 50 ppm or less and the H content is regulated to 20 ppm or less, air bubbles are easily formed in the ingot. If these air bubbles remain, the ingot cracks during hot working and blisters during the annealing process are liable to occur. Therefore, the O content is regulated to 50 ppm or less and the H content is regulated to 20 ppm or less.

【0020】(9)結晶粒径の限定について 銅合金においては結晶粒径を適正な大きさに制御するこ
とは機械的性質の向上、耐食性などの化学的性質の向上
をもたらす効果がある。一般的に結晶粒径は大きい程、
絞り加工性は向上し、機械的性質の異方性は消失してく
るが、強度そのものは結晶粒径の増大に伴って低下して
くる。また、本件発明合金の用途である電気・電子部品
用銅合金は複雑な曲げ加工を施すことが多く、そのため
には結晶粒径が大きすぎると曲げ部にオレンジピールと
呼ばれる肌荒れやそれに起因する割れなどが発生する。
この肌荒れは結晶粒内と粒界での変形によるひずみの相
違によって現れるものであり、製品価値を劣化させない
ためにも結晶粒径の制御は欠かせない。さらには応力腐
食割れ性に対する感受性も結晶粒径が増大してくるにつ
れて高くなり耐食性は低下する。そのため本件発明合金
では結晶粒径の上限を規定する必要がある。
(9) Restriction of crystal grain size Controlling the crystal grain size to an appropriate size in a copper alloy has an effect of improving mechanical properties and chemical properties such as corrosion resistance. In general, the larger the crystal grain size,
The drawability improves and the anisotropy of the mechanical properties disappears, but the strength itself decreases as the crystal grain size increases. In addition, copper alloys for electric and electronic parts, which are applications of the alloy of the present invention, are often subjected to complicated bending. For this reason, if the crystal grain size is too large, the bent portion has a rough surface called orange peel and a crack caused by the skin. And so on.
This rough surface is caused by a difference in strain due to deformation between crystal grains and at grain boundaries, and control of the crystal grain size is indispensable in order not to degrade the product value. Further, the susceptibility to stress corrosion cracking increases as the crystal grain size increases, and the corrosion resistance decreases. Therefore, in the alloy of the present invention, it is necessary to specify the upper limit of the crystal grain size.

【0021】本発明に係る銅合金の製造工程では、溶質
がミクロ的に偏析した鋳造凝固組織を均質化焼鈍あるい
は熱間圧延によって均質化した後冷間圧延を施し、圧延
繊維組織を持った硬くて伸びのない状態へと材料を加工
するが、このあと一般に仕上げ焼鈍と呼ばれる均質化焼
鈍よりも低い適当な温度での焼鈍によって、材料の内部
応力放散とともに繊維状組織を消失させ、再結晶組織が
形成されるよう熱処理を行う。このあとさらに仕上げ圧
延を施すことで、一般に1/4H、1/2H、H、EH
などと呼ばれる所定の調質に仕上げるが、この最後の圧
延工程によって多角形のグレインを持った再結晶組織
は、その結晶形状が圧延平行方向、すなわち材料長手方
向に引き延ばされた形状となる。従って、結晶粒径は圧
延平行方向と垂直方向の両方で規定する必要がある。
In the production process of the copper alloy according to the present invention, the cast solidified structure in which the solute is segregated microscopically is homogenized by homogenizing annealing or hot rolling, and then subjected to cold rolling to obtain a hardened material having a rolled fiber structure. The material is processed to a state of no elongation.After that, by annealing at an appropriate temperature lower than the homogenizing annealing generally called finish annealing, the internal stress of the material is dissipated and the fibrous structure disappears, and the recrystallized structure Is performed so as to form. After this, further finish rolling is performed, so that generally 1 / 4H, 1 / 2H, H, EH
Although it is finished to a predetermined temper called as such, the recrystallization structure with polygonal grains by this last rolling step, the crystal shape becomes a shape elongated in the rolling parallel direction, that is, the material longitudinal direction . Therefore, the crystal grain size needs to be defined in both the rolling parallel direction and the vertical direction.

【0022】本発明に係る銅合金において、最終板厚で
の結晶粒径がJISH 0501で規定する切断法で測
定した場合、材料の圧延方向に平行及び直角な断面で板
厚方向で共に20μmより小さければ、上記のような曲
げ加工部の肌荒れの発生や応力腐食割れ感受性増大は生
じないが、この範囲外にあると応力腐食割れ感受性は増
大し実用上問題となる。さらに、曲げ部に肌荒れが発生
して電気・電子部品用材料として著しく製品価値が劣化
する。
In the copper alloy according to the present invention, when the crystal grain size at the final plate thickness is measured by a cutting method specified in JIS 0501, both the cross section parallel to and perpendicular to the rolling direction of the material and both in the plate thickness direction are from 20 μm. If it is small, the occurrence of roughening of the bent portion and the increase in stress corrosion cracking susceptibility as described above do not occur. However, if it is outside this range, the stress corrosion cracking susceptibility increases and poses a practical problem. Further, the surface of the bent portion is roughened, and the product value is remarkably deteriorated as a material for electric / electronic parts.

【0023】[0023]

【発明の実施の形態】本発明に係る銅合金の製造には、
従来のりん青銅、すなわちJISH3110で規定され
たC5111、C5102、C5191、C5212及
びJISH3130で規定されたC5210と同じ製造
工程を適用することが可能である。具体的には、連続鋳
造によって作製したスラブを熱間圧延し、その後冷間圧
延と焼鈍を組み合わせて所定の厚さの薄板にする工程で
ある。また、これ以外にも、熱間圧延を採用せず横型連
続鋳造で作製した10〜30mmの薄スラブを熱処理と
冷間圧延を組み合わせた工程で所定の厚さの薄板にする
ことも可能である。
BEST MODE FOR CARRYING OUT THE INVENTION In producing a copper alloy according to the present invention,
It is possible to apply the same manufacturing process as conventional phosphor bronze, that is, C5111, C5102, C5191, C5212 specified in JIS 3110, and C5210 specified in JIS 3130. Specifically, this is a step of hot rolling a slab produced by continuous casting, and thereafter combining cold rolling and annealing to form a thin plate having a predetermined thickness. In addition to this, it is also possible to turn a thin slab of 10 to 30 mm produced by horizontal continuous casting without employing hot rolling into a thin plate having a predetermined thickness in a process in which heat treatment and cold rolling are combined. .

【0024】本発明に係る銅合金の熱間加工性、冷間加
工性は良好で熱間圧延、冷間圧延などの工程で割れなど
の問題が生じることはない。また、本合金の中間焼鈍に
はバッチ方式、連続式のどちらを用いても良い。中間焼
鈍条件はバッチ炉を用いた場合は350〜600℃×5
分〜5時間保持(材料到達温度×到達後保持時間)、連
続焼鈍炉を用いた場合は400〜800℃×10〜30
0秒保持(材料到達温度×到達後保持時間)することに
よって目的を達成できる。なお、本合金へNi、Fe、
Cr、Mn、Siが添加されるとNi−P、Fe−P、
Mn−P、Ni−Si、Crなどが析出する。これらの
化合物、元素を十分析出させる場合にはバッチ式焼鈍炉
で焼鈍を行うことが望ましい。これらの元素の添加量が
少ない場合や析出させる必要がない場合には連続焼鈍を
行ってもよい。
The hot workability and the cold workability of the copper alloy according to the present invention are good, and there is no problem such as cracking in the steps of hot rolling, cold rolling and the like. Either a batch method or a continuous method may be used for the intermediate annealing of the present alloy. Intermediate annealing conditions are 350 to 600 ° C x 5 when using a batch furnace.
Holding for 5 minutes to 5 hours (material arrival temperature x holding time after arrival), 400 to 800 ° C x 10 to 30 when using a continuous annealing furnace
The object can be achieved by holding for 0 seconds (material arrival temperature × retention time after arrival). In addition, Ni, Fe,
When Cr, Mn, and Si are added, Ni-P, Fe-P,
Mn-P, Ni-Si, Cr, etc. precipitate. In order to sufficiently precipitate these compounds and elements, it is desirable to perform annealing in a batch annealing furnace. When the addition amount of these elements is small or when precipitation is not necessary, continuous annealing may be performed.

【0025】また、仕上げ焼鈍後の最終圧延加工率によ
って材料の強度向上が得られるが、延性は低下する。こ
のため、必要とされる強度、伸びのバランスによって加
工率が決定されるが、通常は5〜90%の加工率が採用
される。この最終圧延加工のあと又は電気・電子部品に
成形後、さらにばね限界値の向上や延性の回復を目的と
する熱処理(低温焼鈍)を行うこともある。この熱処理
方式としてバッチ方式、連続式のどちらを用いても良
く、目的とする最終特性を得ることが可能である。
Further, although the strength of the material is improved by the final rolling ratio after the finish annealing, the ductility is reduced. For this reason, the working ratio is determined by the balance between the required strength and elongation, but usually a working ratio of 5 to 90% is adopted. After the final rolling or after forming into an electric / electronic part, heat treatment (low-temperature annealing) for the purpose of improving the spring limit value and recovering ductility may be further performed. As this heat treatment method, either a batch method or a continuous method may be used, and the desired final characteristics can be obtained.

【0026】上記低温焼鈍によりばね限界値の向上や延
性の回復が行われる理由、及び本発明において上記低温
焼鈍を200〜600℃の温度で10秒間〜2時間の条
件で行う理由について次に説明する。金属に圧延加工の
ような繰り返しの外力、あるいはプレス成形などの塑性
加工のための外力を加えることは、金属多結晶のこの外
力による運動の間に結晶粒の辷り面中の摩擦を上回るだ
けの仕事を供給していることに相当する。この仕事分の
エネルギーは非可逆的に熱となって消耗される。このエ
ネルギーの消耗機構が結晶粒内に存在する内部摩擦であ
り、この内部摩擦は冷間加工が行われると辷り面が増加
するためにさらに増加する。従って、冷間加工されたま
まの状態では与えた外力を取り去ったときに元に復旧し
ようとする力、すなわち弾性はその内部摩擦の大きさに
比例したエネルギー分だけ消耗されることになる。つま
り、それだけ弾性が失われていることになる。
The reason why the low temperature annealing improves the spring limit value and recovers the ductility, and the reason why the low temperature annealing is performed at a temperature of 200 to 600 ° C. for 10 seconds to 2 hours in the present invention will be described below. I do. Applying a repetitive external force such as rolling to the metal or an external force for plastic working such as press forming can only exceed the friction in the sliding surface of the crystal grains during the movement of the metal polycrystal due to this external force. Equivalent to supplying work. The energy of this work is irreversibly turned into heat and consumed. This energy wasting mechanism is internal friction existing in the crystal grains, and the internal friction further increases when cold working is performed because the sliding surface increases. Therefore, in the state of cold working, the force for restoring the original force when the applied external force is removed, that is, the elasticity, is consumed by an energy proportional to the magnitude of the internal friction. That is, the elasticity is lost accordingly.

【0027】本発明に係わる端子、コネクタ、リレーな
どの電気・電子部品には、高い弾性を外力を取り去った
後で元に戻ろうとする性質、すなわちばね性として利用
することが多い。金属材料の再結晶温度より低温側の温
度で、いわゆる低温焼鈍を実施すると内部摩擦が減少す
るために、その分だけ弾性が回復されて大きなばね性を
付与することが可能になる。本発明に係る銅合金を冷間
加工後又は端子などの電気・電子部品に成形後、200
〜600℃の温度で10秒間〜2時間加熱すると、加熱
前のばね限界値に対し1.1倍以上の値に回復させたば
ね限界値を付与することが可能である。しかし、この範
囲外の焼鈍条件であると逆にばね限界値は低下し、端
子、コネクタ、リレーなどの電気・電子部品用材料とし
て著しく製品価値が劣化する。
In the electric and electronic parts such as terminals, connectors and relays according to the present invention, high elasticity is often used as a property of returning to the original state after removing external force, that is, a spring property. When so-called low-temperature annealing is performed at a temperature lower than the recrystallization temperature of the metal material, the internal friction is reduced, so that the elasticity is recovered by that much and a large spring property can be imparted. After cold working the copper alloy according to the present invention or forming it into an electric / electronic part such as a terminal,
When heating is performed at a temperature of 600600 ° C. for 10 seconds to 2 hours, it is possible to provide a spring limit value that is 1.1 times or more the spring limit value before heating. However, if the annealing conditions are out of this range, the spring limit value is conversely reduced, and the product value is remarkably deteriorated as a material for electric and electronic parts such as terminals, connectors, and relays.

【0028】[0028]

【実施例】次に本発明に係わる電気・電子部品用銅合金
の実施例を説明する。 (実施例1)この実施例では板材の製造可否について実
証する。表1〜表4に示す含有成分及び成分割合の銅合
金を、クリプトル炉において大気中で木炭被覆下に溶解
し、鋳造して厚さ50mm、幅70mm、長さ200m
mの鋳塊を作製した。面削加工によって鋳塊表面の疵を
除去し、700〜850℃で熱間圧延を行い、厚さ17
mmの熱延材を作製した。この熱延材の表面を各1mm
づつ面削して酸化膜を除去し、その後冷間圧延及び熱処
理を実施した。ただし熱延中割れの発生したものについ
ては冷間圧延以後の工程を中止した。その後の工程は以
下のとおりであり、板材に割れの発生した場合はその段
階で製造を中止した。すなわち、この熱延材を板厚3.
2mmまで冷間圧延し、粗焼鈍を電気炉中で500℃の
温度で2時間実施し、この板材の酸化スケールを除去
後、冷間圧延を行ってこの焼き鈍し材を厚さ1.2mm
まで冷間圧延し、続いてこの板材に中間焼鈍を450℃
で2時間施す。次に最終製品での板厚0.25mmに対
し所定の調質を得るのに必要な加工率(各組成によりお
およそ20〜70%の範囲)を確保するために、酸化ス
ケール除去された中間焼鈍後の板材を0.9mm〜0.
3mmまで各組成に応じて冷間圧延し、仕上げ焼鈍を行
う。この仕上げ焼鈍は最終製品での結晶粒径を決定する
重要な工程になるが本発明合金及び比較例合金について
400℃〜490℃の範囲内で2時間行う。この板材を
酸洗により酸化スケールを除去後、さらに仕上げ圧延を
行って厚さ0.25mmの試料を作製する。
Next, examples of the copper alloy for electric / electronic parts according to the present invention will be described. (Example 1) In this example, the feasibility of manufacturing a plate material is demonstrated. The copper alloys having the components and component ratios shown in Tables 1 to 4 were melted under a charcoal coating in the air in a kryptor furnace, cast and cast to a thickness of 50 mm, a width of 70 mm, and a length of 200 m.
m was produced. The surface of the ingot was removed by face milling, hot-rolled at 700 to 850 ° C.
mm hot rolled material was produced. The surface of this hot rolled material is 1 mm each
The oxide film was removed by chamfering, and then cold rolling and heat treatment were performed. However, the processes after the cold rolling were stopped for those having cracks during hot rolling. The subsequent steps were as follows. If cracks occurred in the sheet material, the production was stopped at that stage. That is, this hot-rolled material is used in a plate thickness of 3.
Cold-rolled to 2 mm, rough annealing was performed in an electric furnace at a temperature of 500 ° C. for 2 hours, and after removing the oxide scale of the sheet material, the sheet material was cold-rolled to a thickness of 1.2 mm.
Cold-rolled to 450 ° C.
For 2 hours. Next, in order to secure a processing rate (in the range of approximately 20 to 70% depending on each composition) necessary for obtaining a predetermined temper for a sheet thickness of 0.25 mm in the final product, intermediate annealing from which oxide scale has been removed. Subsequent plate material is 0.9 mm to 0.2 mm.
Cold rolling is performed to 3 mm according to each composition, and finish annealing is performed. This finish annealing is an important step for determining the crystal grain size in the final product, and is performed for 2 hours at 400 ° C. to 490 ° C. for the alloys of the present invention and the comparative example. After removing the oxide scale by pickling this plate material, it is further subjected to finish rolling to produce a sample having a thickness of 0.25 mm.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【表4】 [Table 4]

【0033】その結果、組成が本発明に規定する範囲に
ある合金はすべて板材の作製が可能であったが、いずれ
かの成分が本発明に規定する範囲にない比較例合金は、
表5に示すような問題があり、製造を途中で断念した。
As a result, all alloys whose compositions were within the range specified in the present invention were able to produce plate materials, but the comparative alloys in which any component was not in the range specified in the present invention were:
There was a problem as shown in Table 5, and the production was abandoned halfway.

【0034】[0034]

【表5】 [Table 5]

【0035】(実施例2)この実施例では、はんだ濡れ
性、溶融はんだ及びSnの密着性、はんだめっき及びS
nめっきの密着性、比透磁率、酸洗性、Snめっきウィ
スカ発生抑止効果、プレス打ち抜き時及びプレス成形加
工時の金型摩耗低減あるいは摺動機構部品として用いら
れた場合の相手材の摩耗減量低減効果について実証す
る。実施例1で作製した厚さ0.25mmの銅合金板材
(表1及び表2の本発明合金)と、表6に示す含有成分
及び成分割合の銅合金に対し実施例1と同じ工程を施し
て作製した厚さ0.25mmの銅合金板材を試料とし
て、各種特性を下記要領で試験した。その結果を表7〜
表9に示す。
Example 2 In this example, the solder wettability, the adhesion of the molten solder and Sn, the solder plating and the S
Adhesion of n-plating, relative permeability, pickling properties, Sn plating whisker suppression effect, reduction of die wear during press punching and press forming, or reduction of wear of mating material when used as a sliding mechanism component The reduction effect is demonstrated. The same steps as in Example 1 were performed on the copper alloy sheet having a thickness of 0.25 mm (the alloy of the present invention in Tables 1 and 2) produced in Example 1 and the copper alloy having the components and component ratios shown in Table 6. Using a copper alloy sheet having a thickness of 0.25 mm produced as a sample, various characteristics were tested in the following manner. Table 7-
It is shown in Table 9.

【0036】[0036]

【表6】 [Table 6]

【0037】[0037]

【表7】 [Table 7]

【0038】[0038]

【表8】 [Table 8]

【0039】[0039]

【表9】 [Table 9]

【0040】・引張強さ、伸び及び導電率測定について 引張強さ及び伸びは、JIS13号Bで規定される引張
試験片を機械加工にて作製し、島津製作所製万能試験機
UH−10Bで引張試験を実施して実測した。導電率は
JISH0505に規定されている非鉄金属材料導電率
測定法に準拠し、横河電機製ダブルブリッジ5752を
用いて実測した。 ・はんだ濡れ性について はんだ濡れ性評価は、245℃の60Sn/40Pbは
んだ槽に、あらかじめ非活性フラックスを塗布した材料
を5秒間浸漬し、その際の全はんだ浸漬面積に対して、
浸漬後、実際にはんだに濡れている部分の面積の比率で
評価した。表8に示すように、本発明合金は95%以上
はんだに濡れており、はんだ濡れ性が良好である。
Measurement of Tensile Strength, Elongation, and Conductivity Tensile strength and elongation were measured by preparing a tensile test specimen specified by JIS No. 13B by machining and using a universal testing machine UH-10B manufactured by Shimadzu Corporation. Tests were performed and measured. The electric conductivity was measured using a double bridge 5752 manufactured by Yokogawa Electric Corporation in accordance with the non-ferrous metal material electric conductivity measurement method specified in JIS H0505. -Solder wettability The solder wettability was evaluated by immersing a material coated with a non-active flux in advance in a 245 ° C 60Sn / 40Pb solder bath for 5 seconds.
After immersion, evaluation was made based on the ratio of the area of the portion actually wet with the solder. As shown in Table 8, the alloy of the present invention was wet by 95% or more of the solder, and the solder wettability was good.

【0041】・はんだの白化の有無及びはんだ密着性に
ついて はんだの白化の有無及びはんだ密着性は、245℃の6
0Sn/40Pbはんだ槽に、あらかじめ非活性フラッ
クスを塗布した材料を5秒間浸漬してはんだ付けした
後、150℃オーブン中で最大1000時間加熱し、そ
の外観を加熱前のはんだ付けされた供試材と比較し白化
の有無を目視で確認した。さらに、その後2mmRで1
80°曲げた後平板に曲げ戻し、その際の材料からのは
んだの剥離の有無を目視で評価した。表8に示すよう
に、本発明合金は150℃,1000時間加熱後もはん
だの白化及びはんだの剥離を生じておらず、はんだの耐
白化性及びはんだ密着性は良好である。
Regarding the presence / absence of solder whitening and solder adhesion The presence / absence of solder whitening and solder adhesion are as follows.
A material coated with an inert flux beforehand is immersed in a 0Sn / 40Pb solder bath for 5 seconds and soldered, and then heated in an oven at 150 ° C. for up to 1000 hours, and its appearance is soldered before heating. The presence or absence of whitening was visually checked in comparison with the above. After that, 1 mm at 2 mmR
After bending by 80 °, the plate was bent back and the presence or absence of peeling of the solder from the material at that time was visually evaluated. As shown in Table 8, the alloy of the present invention did not cause solder whitening and solder peeling even after heating at 150 ° C. for 1000 hours, and the solder whitening resistance and solder adhesion were good.

【0042】・はんだめっきの白化の有無及びはんだめ
っき密着性について はんだめっきの白化の有無及びはんだめっき密着性は、
アルカノールスルフォン酸第一錫193g/l、アルカ
ノールスルフォン酸鉛3.5g/l、アルカンスルフォ
ン酸100g/l、添加剤30cc/lからなる90S
n/10Pbはんだめっき浴(40℃)で、電流密度3
A/dm2にてめっき厚さ10μmの90Sn/10P
bはんだめっきを施した後、150℃オーブン中で最大
1000時間加熱し、その外観を加熱前のはんだめっき
された供試材と比較し白化の有無を目視で確認した。さ
らに、その後2mmRで180°曲げた後平板に曲げ戻
し、その際の材料からのはんだめっきの剥離の有無を目
視で評価した。表8に示すように、本発明合金は150
℃,1000時間加熱後もはんだめっきの白化及びはん
だめっきの剥離を生じておらず、はんだめっきの耐白化
性及びはんだめっき密着性は良好である。
Regarding the presence / absence of whitening of solder plating and adhesion of solder plating The presence / absence of whitening of solder plating and adhesion of solder plating are as follows.
90S comprising 193 g / l stannous alkanolsulfonate, 3.5 g / l lead alkanolsulfonate, 100 g / l alkanesulfonic acid, and 30 cc / l additive
Current density 3 in n / 10Pb solder plating bath (40 ° C)
90Sn / 10P with plating thickness of 10μm at A / dm2
b After the solder plating, heating was performed in an oven at 150 ° C. for a maximum of 1000 hours, and the appearance was compared with a solder-plated test material before heating to visually check for whitening. Further, after bending at 180 ° at 2 mmR, the sheet was bent back to a flat plate, and at that time, the presence or absence of peeling of the solder plating from the material was visually evaluated. As shown in Table 8, the alloy of the present invention was 150
Even after heating at 1000C for 1000 hours, whitening of the solder plating and peeling of the solder plating did not occur, and the whitening resistance and the adhesion of the solder plating were good.

【0043】・Snめっき密着性について Snめっき密着性は、硫酸第一錫40g/l、硫酸10
0g/l、クレゾールスルフォン酸30g/l、ホルマ
リン5ml/l、分散剤20g/l、光沢剤10ml/
lからなるSnめっき浴中(20℃)で、電流密度2.
5A/dm2にてめっき厚さ1.5μmのSnめっきを
施した後、150℃オーブン中で最大1000時間加熱
し、その後2mmRで180°曲げを行った後平板に曲
げ戻し、その際の材料からのSnめっきの剥離の有無に
よって目視で評価した。表8に示すように、本発明合金
は150℃,1000時間加熱後もSnめっきの剥離を
生じておらずSnめっき密着性は良好である。
Sn plating adhesion Sn plating adhesion was 40 g / l of stannous sulfate and 10 g of sulfuric acid.
0 g / l, cresolsulfonic acid 30 g / l, formalin 5 ml / l, dispersant 20 g / l, brightener 10 ml /
current density in a Sn plating bath (20 ° C.)
After applying Sn plating with a plating thickness of 1.5 μm at 5 A / dm 2, heating was performed in an oven at 150 ° C. for up to 1000 hours, and then bent at 180 ° at 2 mmR, and then bent back to a flat plate. Was visually evaluated by the presence or absence of peeling of the Sn plating from. As shown in Table 8, the alloy of the present invention did not peel off the Sn plating even after heating at 150 ° C. for 1000 hours, and the Sn plating adhesion was good.

【0044】・Snめっきウィスカ発生の有無について Snめっきウィスカ発生の有無は、硫酸第一錫40g/
l、硫酸100g/l、クレゾールスルフォン酸30g
/l、ホルマリン5ml/l、分散剤20g/lit、
光沢剤10ml/lからなるSnめっき浴中(20℃)
で、電流密度2.5A/dm2にてめっき厚さ10μm
のSnめっきを施した後、常温の室内にSnめっきを施
した供試材を1年間静置し、その後走査型電子顕微鏡及
び光学顕微鏡で供試材表面を観察し確認した。表8に示
すように、本発明合金は1年経過後もウィスカは5μm
以下までしか成長しておらず、Snめっきウィスカ成長
が抑制されている。
Regarding the occurrence of whisker of Sn plating The presence or absence of whisker of Sn plating is determined by determining whether stannous sulfate is 40 g /
l, sulfuric acid 100g / l, cresolsulfonic acid 30g
/ L, formalin 5ml / l, dispersant 20g / lit,
In Sn plating bath consisting of brightener 10ml / l (20 ° C)
At a current density of 2.5 A / dm 2 and a plating thickness of 10 μm.
After applying the Sn plating, the test material subjected to the Sn plating was allowed to stand in a room at room temperature for one year, and then the surface of the test material was observed and confirmed with a scanning electron microscope and an optical microscope. As shown in Table 8, the alloy of the present invention still has a whisker of 5 μm after one year.
It grows only to the following, and the growth of the Sn plating whisker is suppressed.

【0045】・酸洗性について 酸洗性評価は、各材料を30重量%硫酸及び3重量%過
酸化水素からなる40℃のエッチング液で30秒間エッ
チングして各材料表面を調整したのち、5重量%フッ化
水素酸アンモニウム及び20重量%硫酸からなる40℃
の酸洗液に20秒間浸漬して表面の酸化物を除去し、こ
れを初期状態とする材料を用いた。これらの材料を大気
とブタンガス混合気の燃焼ガス、すなわち二酸化炭素ガ
ス10〜20体積%、一酸化炭素ガス3体積%以下、酸
素ガス0.2体積%以下、残部窒素ガス及び露点摂氏5
度の水分からなる発熱型雰囲気ガス中で450℃、2時
間加熱して材料表面を酸化させた。これらの材料を25
℃の20重量%硫酸水溶液中に10秒間浸漬したのち水
洗、乾燥し、材料表面をX線光電子分析装置(ESCA
LAB−210D、VG SCIENTIFIC製)で
Cu2p,Sn3d,Zn2p,P2pスペクトルの分
析を行い、各元素の酸化物残存の有無の確認を行った。
表9に示すように、本発明合金は硫酸のみを用いた酸洗
で材料の酸化物を除去することが可能である。
Regarding the pickling property The pickling property was evaluated by etching each material for 30 seconds with an etching solution of 30% by weight sulfuric acid and 3% by weight of hydrogen peroxide at 40 ° C., and adjusting the surface of each material. 40 ° C. consisting of 20% by weight of ammonium hydrofluoride and 20% by weight of sulfuric acid
The material was immersed in an acid washing solution for 20 seconds to remove oxides on the surface, and used as an initial state. These materials are used as a combustion gas of a mixture of air and butane gas, that is, 10 to 20% by volume of carbon dioxide gas, 3% by volume or less of carbon monoxide gas, 0.2% by volume or less of oxygen gas, the balance of nitrogen gas and dew point of 5 degrees Celsius.
The material surface was oxidized by heating at 450 ° C. for 2 hours in a heat-generating atmosphere gas composed of water. 25 of these materials
Immersed in a 20% by weight aqueous sulfuric acid solution at 10 ° C. for 10 seconds, washed with water and dried, and the surface of the material was analyzed with an X-ray photoelectron analyzer (ESCA).
LAB-210D, manufactured by VG SCIENTIFIC) was used to analyze Cu2p, Sn3d, Zn2p, and P2p spectra to confirm the presence or absence of oxides of each element.
As shown in Table 9, the alloy of the present invention can remove oxides of the material by pickling using only sulfuric acid.

【0046】・比透磁率測定について 比透磁率は、理研電子株式会社製振動試料型磁力計を用
いて測定した。表9に示すように本発明合金は比透磁率
が1.0002以下となっている。 ・酸洗時の脱亜鉛腐食発生の有無 酸洗時の脱亜鉛腐食発生の有無は、5重量%フッ化水素
酸アンモニウム及び20重量%硫酸からなる40℃の酸
洗液に材料を20秒間浸漬した後の材料断面を、200
倍の光学式顕微鏡で観察し、脱亜鉛腐食による多孔質部
分が形成されていないか判別することによって行った。
表9に示すように、本発明合金では酸洗時の脱亜鉛腐食
は発生していない。
Measurement of relative magnetic permeability The relative magnetic permeability was measured using a vibrating sample magnetometer manufactured by Riken Denshi Co., Ltd. As shown in Table 9, the alloy of the present invention has a relative magnetic permeability of not more than 1.0002. -Whether or not dezincification occurs during pickling. Whether or not dezincification occurs during pickling is determined by immersing the material in a 40 ° C pickling solution consisting of 5% by weight ammonium hydrofluoride and 20% by weight sulfuric acid for 20 seconds. The cross section of the material after
Observation was performed with an optical microscope at a magnification of × to determine whether a porous portion was formed due to dezincification corrosion.
As shown in Table 9, no dezincification corrosion occurred during pickling in the alloy of the present invention.

【0047】・金型摩耗試験について 金型摩耗試験は、図1に示すような耐工具摩耗性試験方
法を用いて評価した。これは、ボールホルダー1の先端
に鋼球ボール2を固定し、これを回転半径6.2mmで
回転させながらテーブル4上を一定速度で送られる供試
材3に押し付け、鋼球ボール2の摩耗重量を測定するも
のである。試験条件を表10に示す。
Regarding the mold wear test The mold wear test was evaluated using a tool wear resistance test method as shown in FIG. In this method, a steel ball 2 is fixed to the tip of a ball holder 1, and is pressed against a specimen 3 sent at a constant speed on a table 4 while rotating the ball 2 at a turning radius of 6.2 mm. It measures the weight. Table 10 shows the test conditions.

【0048】[0048]

【表10】 [Table 10]

【0049】鋼球ボールの摩耗重量は、図2(a)に示
すように摩耗部の半径cを測定し、次式により摩耗部
(図2(b))の体積Vを求め、これにボールの比重
(=7.9)をかけて求めた。 V=πh2(r−h/3)・・・・ h=r−(r2−c21/2 r:鋼球ボールの半径 この試験は100mの長さにわたって鋼球をこすりつけ
た場合に相当するが、表9に示すように、本発明合金は
摩耗減量が最大2.1μgに抑制される。
As shown in FIG. 2 (a), the wear weight of the steel ball is measured by measuring the radius c of the wear portion, and the volume V of the wear portion (FIG. 2 (b)) is calculated by the following equation. And multiplied by the specific gravity (= 7.9). V = πh 2 (r−h / 3)... H = r− (r 2 −c 2 ) 1/2 r: radius of a steel ball ball This test was performed when a steel ball was rubbed over a length of 100 m. However, as shown in Table 9, the alloy of the present invention has a maximum wear loss of 2.1 μg.

【0050】(実施例3)この実施例では、伸び特性の
向上、曲げ加工性の向上について実証する。表11に示
す含有成分及び成分割合の銅合金、すなわち本発明合金
No.30及びNo.31と、それに対してそれぞれZ
nが本発明の範囲を下回る量しか添加されていない比較
例合金No.32及び及び33に対し、実施例1と同じ
工程を施して作製した厚さ0.25mmの銅合金板材を
試料として、各種特性を下記要領で試験した。その結果
を表12に示す。なお、ここでの仕上げ圧延加工率は、
本発明合金と比較例合金(No.30とNo.32,N
o.31とNo.33)がそれぞれ圧延平行方向で可能
な限り同じ引張強さを持つように調整してある。
Example 3 In this example, the improvement of the elongation characteristics and the improvement of the bending workability will be demonstrated. Copper alloys having the components and component ratios shown in Table 11, that is, the alloy No. of the present invention. 30 and no. 31 and Z respectively
Comparative Example Alloy No. n in which only an amount less than the range of the present invention was added. 32 and 33 were subjected to the same steps as in Example 1 and a 0.25 mm-thick copper alloy sheet was used as a sample to test various characteristics in the following manner. Table 12 shows the results. The finishing rolling rate here is
Alloys of the present invention and comparative alloys (No. 30 and No. 32, N
o. 31 and No. 31. 33) are adjusted so as to have the same tensile strength as much as possible in the rolling parallel direction.

【0051】[0051]

【表11】 [Table 11]

【0052】[0052]

【表12】 [Table 12]

【0053】・引張強さ、伸び及び曲げ加工性について 引張強さ及び伸びは、先に述べた方法で実測した。さら
に島津製作所製X−YレコーダーUA−6122でその
際の応力−歪み曲線をプロットした。曲げ加工限界は、
CESM0002金属材料W曲げ試験方法に規定されて
いるB型曲げ治具で、幅10mm、長さ35mmに加工
した供試材をはさみ、島津製作所製万能試験機RH−3
0を使って1tonの荷重で曲げ加工を行って測定し
た。その判別は上記曲げ治具の曲げ半径を減少させてい
き、供試材の曲げ部が割れ等を呈していないかどうかル
ーペで検鏡して判別した。さらに上記曲げ治具の曲げ半
径が0になっても良好な曲げ性を有している場合は、曲
げ半径0の上記曲げ治具を使って供試材をW形状に曲げ
た後、さらにその試験片を島津製作所製万能試験機RH
−30を使い1tonの荷重で完全に押しつぶす加工、
いわゆる密着曲げを行い、その曲げ部をルーペで検鏡し
て曲げ加工限界を調べた。表12に示すように、本発明
合金は比較例合金と比較して圧延平行方向で同一の引張
強さを得るための仕上げ圧延加工率はより低くて済み、
圧延平行方向及び直角方向の伸びも比較例合金より大き
くなっている。また曲げ加工性限界も本発明合金の方が
より良好となっている。
Tensile strength, elongation and bending workability Tensile strength and elongation were measured by the methods described above. Further, a stress-strain curve at that time was plotted with an XY recorder UA-6122 manufactured by Shimadzu Corporation. The bending limit is
Using a B-type bending jig specified in the CESM0002 metal material W bending test method, a test material processed to a width of 10 mm and a length of 35 mm is sandwiched, and a universal testing machine RH-3 manufactured by Shimadzu Corporation.
It measured by performing bending with a load of 1 ton using 0. The discrimination was made by reducing the bending radius of the bending jig, and using a magnifying glass to determine whether or not the bent portion of the test material exhibited cracks or the like. Further, if the bending jig has a good bending property even when the bending radius of the bending jig becomes zero, the test material is bent into a W shape using the bending jig having the bending radius of zero, and then further bent. The test piece is a universal testing machine RH made by Shimadzu Corporation.
Completely crushing with a load of 1 ton using -30,
A so-called close-contact bending was performed, and the bending portion was inspected with a loupe to examine the bending limit. As shown in Table 12, the alloy of the present invention requires a lower finish rolling rate to obtain the same tensile strength in the rolling parallel direction as compared with the comparative example alloy,
The elongation in the direction parallel to the rolling direction and the direction perpendicular to the rolling direction are also larger than those of the comparative example alloy. Also, the bending workability limit of the alloy of the present invention is better.

【0054】(実施例4)この実施例では結晶粒径の規
定範囲を実証する。表13に示す含有成分及び成分割合
の銅合金に対し、実施例1と同じ工程によって1.2m
mの冷間圧延材を作製し、450℃で2時間焼鈍を行っ
た。この後、以下の工程で各板材に冷延及び仕上げ焼鈍
を行って厚さ0.25mmの銅合金板材を作製した。 No.34:0.321mmに冷延→400℃×2時間
の焼鈍→0.25mmに冷延(加工率22%) No.35:0.333mmに冷延→425℃×2時間
の焼鈍→0.25mmに冷延(加工率25%) No.36:0.362mmに冷延→470℃×2時間
の焼鈍→0.25mmに冷延(加工率31%) No.37:0.417mmに冷延→490℃×2時間
の焼鈍→0.25mmに冷延(加工率40%) このように各試料は0.25mmの板厚において圧延方
向に平行方向の引張強さがほぼ同一となるように最終加
工率を22〜40%に変化させた。また、仕上げ焼鈍で
再結晶させ、結晶粒径を調整した。その後の仕上げ圧延
によって再結晶粒は圧延方向に伸張するが、後述の方法
で容易に結晶粒径を測定することができた。これを試料
として、各種特性を下記要領で試験した。その結果を表
14に示す。
Example 4 This example demonstrates the specified range of crystal grain size. For the copper alloy having the components and component ratios shown in Table 13, 1.2 m
m of cold-rolled material was prepared and annealed at 450 ° C. for 2 hours. Thereafter, cold rolling and finish annealing were performed on each sheet material in the following steps to produce a copper alloy sheet material having a thickness of 0.25 mm. No. No. 34: cold rolling to 0.321 mm → annealing at 400 ° C for 2 hours → cold rolling to 0.25 mm (working ratio 22%) No. 35: cold rolling to 0.333 mm → annealing at 425 ° C × 2 hours → cold rolling to 0.25 mm (working rate 25%) No. 36: cold rolling to 0.362 mm → annealing at 470 ° C × 2 hours → cold rolling to 0.25 mm (working ratio 31%) 37: cold rolling to 0.417 mm → annealing at 490 ° C × 2 hours → cold rolling to 0.25 mm (working rate: 40%) Thus, each sample has a tensile strength in a direction parallel to the rolling direction at a thickness of 0.25 mm. The final processing rate was changed to 22 to 40% so that the values were almost the same. In addition, recrystallization was performed by finish annealing to adjust the crystal grain size. Although the recrystallized grains are elongated in the rolling direction by the subsequent finish rolling, the crystal grain size could be easily measured by the method described later. Using this as a sample, various characteristics were tested as follows. Table 14 shows the results.

【0055】[0055]

【表13】 [Table 13]

【0056】[0056]

【表14】 [Table 14]

【0057】・結晶粒径測定について 供試材を材料の圧延平行方向の断面及びそれに直角な方
向の断面が観察できるように研磨用樹脂に埋め込み鏡面
研磨仕上げしたあと、クロム酸水溶液及び塩化第二鉄水
溶液を用いて結晶粒が明瞭に現れるようエッチングした
後、結晶粒径を板厚方向にJISH0501で規定する
切断法で測定した。
Measurement of crystal grain size The sample material was embedded in a polishing resin so that a cross section in a direction parallel to the rolling direction of the material and a cross section in a direction perpendicular to the rolling direction could be observed and mirror-polished. After etching using an aqueous iron solution so that crystal grains appeared clearly, the crystal grain size was measured in the thickness direction by a cutting method specified by JIS H501.

【0058】・引張強さ、伸び及び曲げ加工部外観につ
いて 引張強さ及び伸びは先に述べた方法で実測した。曲げ試
験部外観はCESM0002金属材料W曲げ試験方法に
規定されているB型曲げ治具で幅10mm、長さ35m
mの供試材をはさみ、島津製作所製万能試験機RH−3
0を使い1tonの荷重で曲げ半径0mmの曲げ加工を
行った後、その曲げ部外側をオリンパス光学製SZH型
光学式実体顕微鏡(倍率40倍)で観察した際、外観上
感知できる結晶粒径の数倍程度のうねりで表れる肌荒れ
が発生していないか判別した。表14に示すように略同
一の引張強度であっても 圧延方向に平行方向及び直角
方向の断面で結晶粒径が本発明の範囲内にあるものは、
曲げ加工部外観が劣化していない。
Tensile strength, elongation, and appearance of bent portion The tensile strength and elongation were measured by the methods described above. The appearance of the bending test section is 10 mm wide and 35 m long using a B-type bending jig specified in the CESM0002 Metallic Material W Bending Test Method.
m sample material, Shimadzu Universal Testing Machine RH-3
After performing a bending process with a bending radius of 0 mm under a load of 1 ton using 0, when observing the outside of the bent portion with an Olympus SZH type optical stereo microscope (magnification: 40 times), the crystal grain size that can be visually detected is It was determined whether or not skin roughness, which was represented by a swell of several times, occurred. As shown in Table 14, even if the tensile strengths are substantially the same, those having a crystal grain size within the scope of the present invention in a cross section in a direction parallel to the rolling direction and in a direction perpendicular to the rolling direction are
The appearance of the bent part has not deteriorated.

【0059】・応力腐食割れ性について 応力腐食割れ性については、Material Res
earch&Standards 1(61)108に
記載してあるD.H.Thompsonの方法、すなわ
ち両端に穴あけした幅12.7mm、長さ150mmの
試験片をループ状に銅線で固定し、これを100時間ア
ンモニア蒸気中に暴露後、結びを解き試験片の距離を測
定することによって応力緩和率を求めた。ここで応力緩
和率は、L1をアンモニア暴露前の試験片両端の距離、
L2を暴露後の距離とした場合、下記式で計算され
る。 応力緩和率(%) =((L1−L2)/L1)×100(%)・・・・ また、アンモニア蒸気雰囲気は密閉容器中の14%アン
モニア水溶液を40℃に保持して作り出している。表1
4に示すように、同一の引張強度であっても圧延方向に
平行方向及び直角方向の断面で結晶粒径が本発明の範囲
内にあるものは、100時間アンモニア蒸気中に暴露後
も応力緩和率は30%以内に抑制されている。
Stress Corrosion Cracking Stress corrosion cracking is described in Material Res
ear & Standards 1 (61) 108. H. The method of Thompson, that is, a test piece with a width of 12.7 mm and a length of 150 mm, drilled at both ends, was fixed in a loop with a copper wire, exposed to ammonia vapor for 100 hours, then untied and the distance of the test piece was measured. Then, the stress relaxation rate was obtained. Here, the stress relaxation rate is defined as the distance between both ends of the test piece before L1 is exposed to ammonia,
When L2 is the distance after exposure, it is calculated by the following equation. Stress relaxation rate (%) = ((L1−L2) / L1) × 100 (%) ··· The ammonia vapor atmosphere is created by maintaining a 14% aqueous ammonia solution in a closed container at 40 ° C. Table 1
As shown in FIG. 4, even if the tensile strength is the same, the crystal grain size within the range of the present invention in the cross section in the direction parallel to the rolling direction and in the direction perpendicular to the rolling direction is the stress relaxation after exposure to ammonia vapor for 100 hours. The rate is kept within 30%.

【0060】(実施例5)この実施例では低温焼鈍条件
の規定範囲を実証する。表15に示す含有成分及び成分
割合の銅合金に対し、実施例1と同じ工程を施して作製
した厚さ0.25mmの銅合金板材を試料とし、さらに
これらの試料から試験片を切り出し、温度及び時間に応
じてオイルバス、硝石炉、オーブン、カンタル炉などを
使い分けて熱処理(低温焼鈍)を実施した。各種特性を
下記要領で試験し、その結果を表16に示す。
Example 5 This example demonstrates the specified range of low-temperature annealing conditions. A copper alloy sheet having a thickness of 0.25 mm produced by performing the same steps as in Example 1 on copper alloys having the components and component ratios shown in Table 15 was used as a sample. Further, test pieces were cut out from these samples, and the temperature was measured. The heat treatment (low-temperature annealing) was carried out by using an oil bath, a saltpet furnace, an oven, a Kanthal furnace, or the like depending on the time. Various properties were tested as follows, and the results are shown in Table 16.

【0061】[0061]

【表15】 [Table 15]

【0062】[0062]

【表16】 [Table 16]

【0063】・ばね限界値について ばね限界値(Kb0.1)は、焼鈍前及び焼鈍後の試料に
つき、JIS3130の規定に準拠し、供試材を所定の
寸法に機械加工したあと、明石製作所製ばね限界値測定
機APTを用いてモーメント式試験により室温で測定し
た。引張強さ及び伸びは先に述べた方法で焼鈍後の試料
につき実測した。表16に示すように、仕上げ圧延後、
本発明に規定する条件範囲で低温焼鈍すると、焼鈍前の
ばね限界値に対し1.1倍以上向上させたばね限界値を
付与することができるが、この範囲外の条件ではばね限
界値の向上は充分でないか、あるいは逆に低下し、端
子、コネクタ、リレーなどの電気・電子部品用材料とし
て著しく製品価値が劣化する。
Regarding the spring limit value The spring limit value (Kb 0.1 ) is determined for each sample before and after annealing in accordance with JIS 3130 by machining a test material to predetermined dimensions and then using a spring manufactured by Akashi Seisakusho. It was measured at room temperature by a moment type test using a limit value measuring device APT. The tensile strength and elongation were measured on the sample after annealing by the method described above. As shown in Table 16, after finish rolling,
When low-temperature annealing is performed within the condition range defined in the present invention, a spring limit value that is 1.1 times or more as large as the spring limit value before annealing can be provided. It is not enough or conversely decreases, and the product value is remarkably deteriorated as a material for electric / electronic parts such as terminals, connectors and relays.

【0064】[0064]

【発明の効果】本発明に係わる電気・電子部品用銅合金
は、りん青銅の長所である機械的性質をさらに上回る特
性を有し、かつ、りん青銅より優れたはんだ濡れ性と、
はんだ、はんだめっき及びSnめっきの密着性を有し、
さらに、酸洗はりん青銅よりもはるかに容易であり、S
nめっきウィスカの成長をも抑制できる。しかも、金型
摩耗の抑制効果はりん青銅よりもはるかに優れている。
Industrial Applicability The copper alloy for electric / electronic parts according to the present invention has properties that are far superior to the mechanical properties which are the advantages of phosphor bronze, and has better solder wettability than phosphor bronze.
Has adhesion of solder, solder plating and Sn plating,
Further, pickling is much easier than phosphor bronze,
The growth of n-plated whiskers can also be suppressed. Moreover, the effect of suppressing mold wear is far superior to that of phosphor bronze.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例の耐工具摩耗性試験方法の説
明図である。
FIG. 1 is an explanatory diagram of a tool wear resistance test method according to an example of the present invention.

【図2】 その実施例に使用した鋼球ボールの摩耗量を
測定する方法の説明図である。
FIG. 2 is an explanatory diagram of a method for measuring a wear amount of a steel ball ball used in the example.

【符号の説明】[Explanation of symbols]

2 鋼球ボール 2 Steel ball balls

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 630 C22F 1/00 630D 661 661A 685 685Z 686 686A 691 691B 691C 694 694Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C22F 1/00 630 C22F 1/00 630D 661 661A 685 685Z 686 686 686A 691 691B 691C 694 694Z

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Sn:0.2〜12重量%、Zn:0.
1〜12重量%、P:0.001〜0.4重量%、P
b:0.0005〜0.015重量%をZn/Sn比が
1以下となるように含有し、さらにCr:0.0001
〜0.1重量%、Mn:0.0001〜0.1重量%、
Al:0.0001〜0.1重量%、Si:0.000
1〜0.1重量%からなる群から選択された一種以上の
成分を総量で0.0001〜0.4重量%含有し、B
i、As、Sb、Sが個別には0.003重量%以下、
総量で0.005重量%以下とされ、残部がCu及び不
可避不純物からなることを特徴とする電気・電子部品用
銅合金。
1. Sn: 0.2 to 12% by weight, Zn: 0.1% by weight.
1 to 12% by weight, P: 0.001 to 0.4% by weight, P
b: 0.0005 to 0.015% by weight so that the Zn / Sn ratio is 1 or less, and Cr: 0.0001
0.1% by weight, Mn: 0.0001-0.1% by weight,
Al: 0.0001 to 0.1% by weight, Si: 0.000
A total of 0.0001 to 0.4% by weight of one or more components selected from the group consisting of 1 to 0.1% by weight;
i, As, Sb, and S are individually 0.003% by weight or less,
A copper alloy for electric / electronic parts, characterized in that the total amount is 0.005% by weight or less, and the balance consists of Cu and unavoidable impurities.
【請求項2】 さらにFeとNiのいずれか一方を0.
0005〜1.0重量%、又はその両方を合計で0.0
005〜2.0重量%含有することを特徴とする請求項
1に記載された電気・電子部品用銅合金。
2. The method according to claim 1, wherein one of Fe and Ni is added to 0.1.
0005-1.0% by weight or both in a total of 0.0
The copper alloy for electric / electronic parts according to claim 1, wherein the copper alloy is contained in an amount of 005 to 2.0% by weight.
【請求項3】 O含有量を50ppm以下、かつH含有
量を20ppm以下としたことを特徴とする請求項1又
は2に記載された電気・電子部品用銅合金。
3. The copper alloy for electric and electronic parts according to claim 1, wherein the O content is 50 ppm or less and the H content is 20 ppm or less.
【請求項4】 圧延方向に平行又は直角方向の断面にお
ける板厚方向の結晶粒径がともに20μmより小さいこ
とを特徴とする請求項1〜3のいずれかに記載された電
気・電子部品用銅合金。
4. The copper for electric / electronic parts according to claim 1, wherein the crystal grain size in the thickness direction in a cross section parallel or perpendicular to the rolling direction is less than 20 μm. alloy.
【請求項5】 請求項1〜4のいずれかに記載された成
分組成をもつ銅合金を、最終冷間加工後又は電気・電子
部品に成形後、200〜600℃の温度で10秒間〜2
時間加熱することにより、加熱前のばね限界値に対し
1.1倍以上の値に向上させたばね限界値とすることを
特徴とする請求項1〜4のいずれかに記載された電気・
電子部品用銅合金の製造方法。
5. A copper alloy having a component composition according to claim 1 after final cold working or after forming into an electric / electronic component, at a temperature of 200 to 600 ° C. for 10 seconds to 2 hours.
The electric / electronic device according to any one of claims 1 to 4, wherein by heating for a time, the spring limit value is improved to a value that is 1.1 times or more the spring limit value before heating.
Manufacturing method of copper alloy for electronic parts.
JP9143497A 1997-03-25 1997-03-25 Copper alloy for electrical/electronic parts and its production Pending JPH10265874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9143497A JPH10265874A (en) 1997-03-25 1997-03-25 Copper alloy for electrical/electronic parts and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9143497A JPH10265874A (en) 1997-03-25 1997-03-25 Copper alloy for electrical/electronic parts and its production

Publications (1)

Publication Number Publication Date
JPH10265874A true JPH10265874A (en) 1998-10-06

Family

ID=14026270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9143497A Pending JPH10265874A (en) 1997-03-25 1997-03-25 Copper alloy for electrical/electronic parts and its production

Country Status (1)

Country Link
JP (1) JPH10265874A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180165A (en) * 2000-12-18 2002-06-26 Dowa Mining Co Ltd Copper based alloy having excellent press blanking property and its production method
JP2004003036A (en) * 1999-08-25 2004-01-08 Kobe Steel Ltd Copper alloy for electrical/electronic parts
JP2007051370A (en) * 2005-07-22 2007-03-01 Nikko Kinzoku Kk Cu-zn-sn alloy strip excellent in heat-peeling resistance of sn plating and sn-plated strip made of the same
WO2008032738A1 (en) * 2006-09-12 2008-03-20 The Furukawa Electric Co., Ltd. Copper alloy plate material for electrical/electronic equipment and process for producing the same
CN101985703A (en) * 2010-11-22 2011-03-16 湖南省湘瑞铜套有限公司 Wearable cooper alloy and manufacturing method thereof
JP2012522382A (en) * 2009-03-26 2012-09-20 ケメット エレクトロニクス コーポレーション Leaded multilayer ceramic capacitor with low ESL and ESR
JP5933848B2 (en) * 2013-09-26 2016-06-15 三菱伸銅株式会社 Discoloration-resistant copper alloy and copper alloy member
US9873927B2 (en) 2013-09-26 2018-01-23 Mitsubishi Shindoh Co., Ltd. Copper alloy
US9970081B2 (en) 2013-09-26 2018-05-15 Mitsubishi Shindoh Co., Ltd. Copper alloy and copper alloy sheet

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003036A (en) * 1999-08-25 2004-01-08 Kobe Steel Ltd Copper alloy for electrical/electronic parts
JP2002180165A (en) * 2000-12-18 2002-06-26 Dowa Mining Co Ltd Copper based alloy having excellent press blanking property and its production method
JP4729680B2 (en) * 2000-12-18 2011-07-20 Dowaメタルテック株式会社 Copper-based alloy with excellent press punchability
JP2007051370A (en) * 2005-07-22 2007-03-01 Nikko Kinzoku Kk Cu-zn-sn alloy strip excellent in heat-peeling resistance of sn plating and sn-plated strip made of the same
WO2008032738A1 (en) * 2006-09-12 2008-03-20 The Furukawa Electric Co., Ltd. Copper alloy plate material for electrical/electronic equipment and process for producing the same
JP2008095185A (en) * 2006-09-12 2008-04-24 Furukawa Electric Co Ltd:The Copper alloy plate material for electrical/electronic equipment and process for producing the same
US7947133B2 (en) 2006-09-12 2011-05-24 Furukawa Electric Co., Ltd. Copper alloy strip material for electrical/electronic equipment and process for producing the same
JP2012522382A (en) * 2009-03-26 2012-09-20 ケメット エレクトロニクス コーポレーション Leaded multilayer ceramic capacitor with low ESL and ESR
CN101985703A (en) * 2010-11-22 2011-03-16 湖南省湘瑞铜套有限公司 Wearable cooper alloy and manufacturing method thereof
JP5933848B2 (en) * 2013-09-26 2016-06-15 三菱伸銅株式会社 Discoloration-resistant copper alloy and copper alloy member
US9873927B2 (en) 2013-09-26 2018-01-23 Mitsubishi Shindoh Co., Ltd. Copper alloy
US9970081B2 (en) 2013-09-26 2018-05-15 Mitsubishi Shindoh Co., Ltd. Copper alloy and copper alloy sheet

Similar Documents

Publication Publication Date Title
JP3999676B2 (en) Copper-based alloy and method for producing the same
JP3550233B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
KR102113988B1 (en) Conductive material for connection parts which has excellent minute slide wear resistance
JP4934785B2 (en) Sn-plated copper alloy material and manufacturing method thereof
JPH0741887A (en) Copper alloy for electric and electronic part and its preparation
JP4959141B2 (en) High strength copper alloy
JP4887851B2 (en) Ni-Sn-P copper alloy
KR900004109B1 (en) Copper alloy and production of the same and the method
JP4129807B2 (en) Copper alloy for connector and manufacturing method thereof
JP2593107B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JPWO2011019042A1 (en) Copper alloy material for electrical and electronic parts
JPH10265874A (en) Copper alloy for electrical/electronic parts and its production
JP2005163127A (en) Method of producing copper alloy sheet for high strength electrical/electronic component
JP4186095B2 (en) Copper alloy for connector and its manufacturing method
JP3056394B2 (en) Copper alloy excellent in solder adhesion and plating properties and easy to clean, and method for producing the same
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JP3729733B2 (en) Copper alloy plate for lead frame
JP2009013499A (en) Copper alloy for connector
JPH06220594A (en) Production of copper alloy for electric parts having good workability
EP1078995B1 (en) Copper alloy for electrical or electronic parts
JP3410125B2 (en) Manufacturing method of high strength copper base alloy
JPS6338547A (en) High strength conductive copper alloy
JP2017172012A (en) Titanium copper foil and manufacturing method therefor
JP2001131657A (en) Copper alloy for electrical and electronic parts
JPH0696757B2 (en) Method for producing high-strength, high-conductivity copper alloy with excellent heat resistance and bendability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070327