JP2006176886A - Copper alloy material for terminal or connector - Google Patents

Copper alloy material for terminal or connector Download PDF

Info

Publication number
JP2006176886A
JP2006176886A JP2006066505A JP2006066505A JP2006176886A JP 2006176886 A JP2006176886 A JP 2006176886A JP 2006066505 A JP2006066505 A JP 2006066505A JP 2006066505 A JP2006066505 A JP 2006066505A JP 2006176886 A JP2006176886 A JP 2006176886A
Authority
JP
Japan
Prior art keywords
mass
plating
less
copper alloy
alloy material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006066505A
Other languages
Japanese (ja)
Inventor
Takayuki Usami
隆行 宇佐見
Takao Hirai
崇夫 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2006066505A priority Critical patent/JP2006176886A/en
Publication of JP2006176886A publication Critical patent/JP2006176886A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper alloy material for electronic and electrical apparatus parts jointly having excellent mechanical properties, conductivity, stress relaxation properties, bending workability and plating properties, particularly, a copper alloy material for electronic and electrical apparatus parts having excellent plating properties and suitable for a terminal and a connector. <P>SOLUTION: The copper alloy material for a terminal or a connector having excellent mechanical strength, conductivity, stress relaxation properties, bending workability and the preventability of deterioration in plating has a composition comprising, by mass, 1.0 to 3.0% Ni, 0.2 to 0.7% Si, 0.01 to 0.2% Mg, 0.05 to 1.5% Sn, 0.2 to 1.5% Zn and <0.005% (including zero) S, and the balance Cu with inevitable impurities. After final plastic working, the surface roughness Ra is >0 to <0.1 μm, or, the surface roughness Rmax is >0 to <2.0 μm, Sn or Sn alloy plating is applied thereto, the thickness of the Sn or Sn alloy plating is 0.1 to 10 μm, the stress relaxation ratio after being kept for 1,000 hr at 150°C is ≤20%, and at the time when 180° bending is performed at the inside bending radius of 0 mm, cracks are not generated. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子電気機器部品用銅合金材に関し、特に、電子電気機器部品の小型化に対応し得る端子、コネクタ、スイッチ、リレー等に好適な電子電気機器部品用銅合金材に関する。   The present invention relates to a copper alloy material for electronic and electrical equipment components, and more particularly to a copper alloy material for electronic and electrical equipment components suitable for terminals, connectors, switches, relays, and the like that can be used for miniaturization of electronic and electrical equipment components.

従来、端子、コネクタ用材料として銅合金が用いられ、Cu-Zn系合金、耐熱性に優れたCu-Fe系合金、Cu-Sn系合金が多く用いられている。特に、自動車等の用途では安価なCu-Zn系合金が多く使用されているが、近年の自動車用端子、コネクタは小型化傾向が著しく、またエンジンルーム内などの過酷な環境にさらされる場合が多いため、Cu-Zn系合金ではもちろんのこと、Cu-Fe系合金、Cu-Sn系合金でも対応できなくなってきているのが現状である。
このように、使用されている環境の変化に伴い、端子、コネクタ用材料に求められる特性もより厳しくなってきている。このような用途に使用される銅合金には、応力緩和特性、機械的強度、熱伝導性、曲げ加工性、耐熱性、Snメッキの接続信頼性、耐マイグレーション特性など多岐に渡っているが、特に機械的強度や応力緩和特性、熱・電気の伝導性、曲げ加工性が重要な特性である。
これらの厳しい要求特性を満たす銅系材料として、Cu-Ni-Si系合金が注目されており、例えば特許文献1が知られている。しかしながら、このようなCu-Ni-Si系合金でも使用に耐えない状態に陥っている。具体的には部品の小型化、例えば一般的な箱型端子において、挿入されるオス端子のタブ幅が約2mmから約1mmへ小型化されたためバネ部の幅が1mm程度となり、十分な接続強度を得ることが困難になっている。また、小型化に関連してバネ部での接続強度を確保するために、端子の構造にも多くの工夫がなされているが、その結果、材料に要求される曲げ加工性もより厳しくなっており、従来のCu-Ni-Si系合金では曲げ部にクラックが生じる場合も多い。応力緩和特性も同様であり、材料に負荷される応力の増大、使用環境の高温化により従来のCu-Ni-Si系合金では長時間の使用は不可能な状況である。
Conventionally, a copper alloy is used as a material for terminals and connectors, and a Cu—Zn alloy, a Cu—Fe alloy excellent in heat resistance, and a Cu—Sn alloy are often used. In particular, inexpensive Cu-Zn alloys are often used in applications such as automobiles, but recent automobile terminals and connectors tend to be miniaturized and may be exposed to harsh environments such as in engine rooms. Due to the large number of Cu-Zn alloys, not only Cu-Fe alloys and Cu-Sn alloys can be used.
Thus, with changes in the environment in use, the characteristics required for the materials for terminals and connectors have become more severe. Copper alloys used for such applications are diverse, including stress relaxation characteristics, mechanical strength, thermal conductivity, bending workability, heat resistance, Sn plating connection reliability, and migration resistance characteristics. In particular, mechanical strength, stress relaxation characteristics, thermal / electrical conductivity, and bending workability are important characteristics.
As a copper-based material that satisfies these strict requirements, a Cu—Ni—Si-based alloy has attracted attention. For example, Patent Document 1 is known. However, even such Cu-Ni-Si alloys are in a state where they cannot be used. Specifically, the size of parts is reduced. For example, in a typical box-type terminal, the tab width of the male terminal to be inserted is reduced from about 2 mm to about 1 mm, so the width of the spring part is about 1 mm, and sufficient connection strength is achieved. It has become difficult to get. In addition, in order to ensure the connection strength at the spring part in connection with the miniaturization, many devices have been devised in the structure of the terminal. As a result, the bending workability required for the material becomes more severe. In conventional Cu-Ni-Si alloys, cracks often occur in the bent part. The stress relaxation characteristics are also the same, and the conventional Cu-Ni-Si alloy cannot be used for a long time due to the increase in stress applied to the material and the high usage environment.

このような状況下、例えば応力緩和特性を改善するためにはMgの添加が有効である。例えば特許文献2などにもMgの有効性が示されている。しかしながら、Mgの添加により応力緩和特性は向上するものの、曲げ加工性が劣化し、例えば180°密着曲げ試験でクラックが発生してしまう。自動車コネクタなどに使用する場合には曲げ加工性の改善が不可欠である。
曲げ加工性を改善するための検討もされているが、強度及びバネ性を保ったまま曲げ加工性を改善することはこれまで困難であった。
さらに、熱・電気の伝導性が悪いと、自己の発熱で応力緩和を促進するため、伝導性と応力緩和特性のバランスを考慮する必要がある。これらを満足した銅合金としては、本発明者らによる、特許文献3に開示された銅合金が挙げられる。しかし、次に述べるように、メッキを施す際のメッキ適性、及びメッキ後のメッキの劣化防止性(総称してメッキ特性ともいう)についてはさらなる改良の余地があった。
前述の箱型端子等の自動車コネクタに銅系材料を使用する際は信頼性向上のため、材料にCuメッキを下地として施し、さらに表層にSnメッキを施すことが一般的である。メッキ厚さよりも材料表面の凹凸が大きい場合、凸部にメッキされずにメッキがはじいた状態になり、均一なメッキができない。また材料-メッキ界面の面積が増大し、CuとSnの相互拡散が起こりやすくなり、Cu-Sn化合物とボイド(空孔)の生成により、メッキが剥離しやすくなる。このため材料表面はなるべく平滑にする必要がある。
また、携帯端末やパソコン等の電気電子機器用端子、コネクタには下地Niメッキの上にAuメッキを施すのが一般的であるが、このような、表層がAuメッキで、かつ、下地がNiメッキである場合も、材料表面の凹凸により上記のようなメッキ剥離などのメッキの劣化が発生する。
そこで、前記の各特性に加え、上記のようなメッキ特性についても満足することのできる銅合金が求められていた。
特開昭61−127842号公報 特開平5−59468号公報 特開平11−222641号公報
Under such circumstances, for example, the addition of Mg is effective for improving the stress relaxation characteristics. For example, Patent Document 2 shows the effectiveness of Mg. However, although the stress relaxation property is improved by the addition of Mg, the bending workability is deteriorated, and for example, cracks are generated in the 180 ° contact bending test. When used for automobile connectors, it is essential to improve bending workability.
Although studies have been made to improve bending workability, it has been difficult to improve bending workability while maintaining strength and springiness.
Furthermore, if thermal / electrical conductivity is poor, stress relaxation is promoted by its own heat generation, so it is necessary to consider the balance between conductivity and stress relaxation characteristics. Examples of the copper alloy satisfying these conditions include the copper alloy disclosed in Patent Document 3 by the present inventors. However, as described below, there is room for further improvement with respect to plating suitability during plating and prevention of plating deterioration after plating (generally referred to as plating characteristics).
When using a copper-based material for the automobile connector such as the box-type terminal described above, it is common to apply Cu plating to the material as a base and further to Sn plating on the surface layer in order to improve reliability. When the unevenness of the surface of the material is larger than the plating thickness, the plating is repelled without plating on the convex portion, and uniform plating cannot be performed. Moreover, the area of the material-plating interface increases, Cu and Sn are likely to diffuse each other, and plating is easily peeled off due to the formation of Cu-Sn compounds and voids (voids). For this reason, it is necessary to make the material surface as smooth as possible.
In general, terminals and connectors for electric and electronic devices such as portable terminals and personal computers are plated with Au on the base Ni plating, but the surface layer is Au plating and the base is Ni. Even in the case of plating, plating deterioration such as plating peeling as described above occurs due to unevenness of the material surface.
Therefore, a copper alloy that can satisfy the above-described plating characteristics in addition to the above-described characteristics has been demanded.
JP-A 61-127842 JP-A-5-59468 Japanese Patent Application Laid-Open No. 11-222641

本発明は、これらの要求に鑑み、優れた機械的特性、導電性、応力緩和特性、及び曲げ加工性、並びにメッキの劣化防止性に優れる電子電気機器部品用銅合金材を提供することを目的とする。
本発明は、特にメッキ特性(メッキ劣化防止性)に優れる、端子、コネクタに好適な、メッキ後の電子電気機器部品用銅合金材を提供するものである。
In view of these requirements, the present invention has an object to provide a copper alloy material for electronic and electrical equipment parts having excellent mechanical properties, electrical conductivity, stress relaxation properties, bending workability, and plating deterioration prevention properties. And
The present invention provides a copper alloy material for electronic and electrical equipment parts after plating, which is particularly suitable for terminals and connectors, which are excellent in plating characteristics (prevention of plating deterioration).

本発明は以下の(1)〜(7)により上記課題を解決するものである。
(1)Niを1.0〜3.0mass%、Siを0.2〜0.7mass%、Mgを0.01〜0.2mass%、Snを0.05〜1.5mass%、Znを0.2〜1.5mass%、Sを0.005mass%未満(零を含む)含有し、残部がCu及び不可避的不純物からなる銅合金材であって、最終塑性加工後の、表面粗度Raが0μmを越え0.1μm未満であるか、または表面粗度Rmaxが0μmを越え2.0μm未満であり、SnまたはSn合金メッキが施され、SnまたはSn合金メッキの厚さが0.1μm〜10μmであり、150℃1000時間後における応力緩和率が20%以下であり、内側曲げ半径0mmで180°曲げ加工を行ったときにクラックが起こらないことを特徴とする機械的強度、導電性、応力緩和特性、及び曲げ加工性、並びにメッキの劣化防止性に優れた、端子ないしはコネクタ用銅合金材。
(2)Niを1.0〜3.0mass%、Siを0.2〜0.7mass%、Mgを0.01〜0.2mass%、Snを0.05〜1.5mass%、Znを0.2〜1.5mass%、Ag、Co及びCrからなる群から選ばれる少なくとも1種を総量で0.005〜2.0mass%(但しCrは0.2mass%以下)、Sを0.005mass%未満(零を含む)含有し、残部がCu及び不可避的不純物からなる銅合金材であって、最終塑性加工後の、表面粗度Raが0μmを越え0.1μm未満であるか、または表面粗度Rmaxが0μmを越え2.0μm未満であり、SnまたはSn合金メッキが施され、SnまたはSn合金メッキの厚さが0.1μm〜10μmであり、150℃1000時間後における応力緩和率が20%以下であり、内側曲げ半径0mmで180°曲げ加工を行ったときにクラックが起こらないことを特徴とする機械的強度、導電性、応力緩和特性、及び曲げ加工性、並びにメッキの劣化防止性に優れた、端子ないしはコネクタ用銅合金材。
(3)前記端子ないしはコネクタ用銅合金材に、リフロー処理が行われていることを特徴とする(1)または(2)項記載の端子ないしはコネクタ用銅合金材。
(4)前記端子ないしはコネクタ用銅合金材に、下地CuまたはCu合金メッキが施され、さらにその上にSnまたはSn合金メッキが施されていることを特徴とする(1)または(2)項記載の端子ないしはコネクタ用銅合金材。
(5)前記端子ないしはコネクタ用銅合金材に、下地CuまたはCu合金メッキが施され、さらにその上にSnまたはSn合金メッキが施され、かつ、リフロー処理が行われていることを特徴とする(1)または(2)項記載の端子ないしはコネクタ用銅合金材。
(6)Niを1.0〜3.0mass%、Siを0.2〜0.7mass%、Mgを0.01〜0.2mass%、Snを0.05〜1.5mass%、Znを0.2〜1.5mass%、Sを0.005mass%未満(零を含む)含有し、残部がCu及び不可避的不純物からなる銅合金材であって、最終塑性加工後の、表面粗度Raが0μmを越え0.1μm未満であるか、または表面粗度Rmaxが0μmを越え2.0μm未満であり、下地NiまたはNi合金メッキが施され、さらにその上にAuまたはAu合金メッキが施され、AuまたはAu合金メッキの厚さが0.01μm〜2.0μmであり、150℃1000時間後における応力緩和率が20%以下であり、内側曲げ半径0mmで180°曲げ加工を行ったときにクラックが起こらないことを特徴とする機械的強度、導電性、応力緩和特性、及び曲げ加工性、並びにメッキの劣化防止性に優れた、端子ないしはコネクタ用銅合金材。
(7)Niを1.0〜3.0mass%、Siを0.2〜0.7mass%、Mgを0.01〜0.2mass%、Snを0.05〜1.5mass%、Znを0.2〜1.5mass%、Ag、Co及びCrからなる群から選ばれる少なくとも1種を総量で0.005〜2.0mass%(但しCrは0.2mass%以下)、Sを0.005mass%未満(零を含む)含有し、残部がCu及び不可避的不純物からなる銅合金材であって、最終塑性加工後の、表面粗度Raが0μmを越え0.1μm未満であるか、または表面粗度Rmaxが0μmを越え2.0μm未満であり、下地NiまたはNi合金メッキが施され、さらにその上にAuまたはAu合金メッキが施され、AuまたはAu合金メッキの厚さが0.01μm〜2.0μmであり、150℃1000時間後における応力緩和率が20%以下であり、内側曲げ半径0mmで180°曲げ加工を行ったときにクラックが起こらないことを特徴とする機械的強度、導電性、応力緩和特性、及び曲げ加工性、並びにメッキの劣化防止性に優れた、端子ないしはコネクタ用銅合金材。
本発明は端子、コネクタ材に好適な合金であるが、機械的特性と導電性、応力緩和特性、曲げ加工性、メッキ特性を要求されるあらゆる電子電気機器部品用材料に適用可能である。
The present invention solves the above problems by the following (1) to (7).
(1) Ni is 1.0 to 3.0 mass%, Si is 0.2 to 0.7 mass%, Mg is 0.01 to 0.2 mass%, Sn is 0.05 to 1.5 mass%, Zn is 0.2 to 1.5 mass%, and S is less than 0.005 mass% ( A copper alloy material containing Cu and unavoidable impurities and having a surface roughness Ra of more than 0 μm and less than 0.1 μm or a surface roughness Rmax after final plastic working More than 0 μm and less than 2.0 μm, Sn or Sn alloy plating is applied, the thickness of Sn or Sn alloy plating is 0.1 μm to 10 μm, the stress relaxation rate after 1000 hours at 150 ° C. is 20% or less, Terminals with excellent mechanical strength, electrical conductivity, stress relaxation characteristics, bending workability, and plating deterioration prevention, characterized by no cracks when bent 180 ° with an inner bend radius of 0 mm Or copper alloy material for connectors.
(2) Ni consists of 1.0-3.0 mass%, Si 0.2-0.7 mass%, Mg 0.01-0.2 mass%, Sn 0.05-1.5 mass%, Zn 0.2-1.5 mass%, Ag, Co and Cr A copper alloy containing at least one selected from the group in a total amount of 0.005 to 2.0 mass% (provided that Cr is 0.2 mass% or less), S less than 0.005 mass% (including zero), the balance being Cu and inevitable impurities The surface roughness Ra after the final plastic working is more than 0 μm and less than 0.1 μm, or the surface roughness Rmax is more than 0 μm and less than 2.0 μm, and Sn or Sn alloy plating is applied, Sn or Sn alloy plating thickness is 0.1μm to 10μm, stress relaxation rate is 20% or less after 1000 hours at 150 ° C, and no cracking occurs when bending at 180 ° with inner bending radius of 0mm A copper alloy material for terminals or connectors, which is excellent in mechanical strength, conductivity, stress relaxation characteristics, bending workability, and plating deterioration prevention characteristics.
(3) The terminal or connector copper alloy material according to (1) or (2), wherein the terminal or connector copper alloy material is subjected to reflow treatment.
(4) The terminal or connector copper alloy material is subjected to base Cu or Cu alloy plating, and further subjected to Sn or Sn alloy plating thereon (1) or (2) A copper alloy material for the terminal or connector described.
(5) The terminal or connector copper alloy material is subjected to base Cu or Cu alloy plating, further Sn or Sn alloy plating is performed thereon, and reflow treatment is performed. The copper alloy material for terminals or connectors as described in (1) or (2).
(6) Ni is 1.0 to 3.0 mass%, Si is 0.2 to 0.7 mass%, Mg is 0.01 to 0.2 mass%, Sn is 0.05 to 1.5 mass%, Zn is 0.2 to 1.5 mass%, and S is less than 0.005 mass% ( A copper alloy material containing Cu and unavoidable impurities and having a surface roughness Ra of more than 0 μm and less than 0.1 μm or a surface roughness Rmax after final plastic working More than 0 μm and less than 2.0 μm, a base Ni or Ni alloy plating is applied, and Au or Au alloy plating is further applied thereon, and the thickness of the Au or Au alloy plating is 0.01 μm to 2.0 μm, 150 The mechanical strength, conductivity, stress relaxation characteristics, characterized by the fact that the stress relaxation rate after 1000 hours at ℃ is 20% or less and cracks do not occur when bending at 180 ° with an inner bending radius of 0 mm, and Copper alloy material for terminals or connectors that excels in bending workability and prevents deterioration of plating.
(7) Ni is 1.0 to 3.0 mass%, Si is 0.2 to 0.7 mass%, Mg is 0.01 to 0.2 mass%, Sn is 0.05 to 1.5 mass%, Zn is 0.2 to 1.5 mass%, Ag, Co, and Cr. A copper alloy containing at least one selected from the group in a total amount of 0.005 to 2.0 mass% (provided that Cr is 0.2 mass% or less), S less than 0.005 mass% (including zero), the balance being Cu and inevitable impurities The material has a surface roughness Ra of more than 0 μm and less than 0.1 μm after final plastic working, or a surface roughness Rmax of more than 0 μm and less than 2.0 μm, and is coated with underlying Ni or Ni alloy. Furthermore, Au or Au alloy plating is applied thereon, the thickness of Au or Au alloy plating is 0.01 μm to 2.0 μm, the stress relaxation rate after 1000 hours at 150 ° C. is 20% or less, and the inner bending radius Mechanical strength, electrical conductivity, stress relaxation characteristics, bending workability, and plating deterioration characterized by no cracks when bending at 180 ° at 0 mm Excellent sealing properties, terminals or connectors for copper alloy material.
The present invention is an alloy suitable for a terminal and a connector material, but can be applied to any electronic and electrical equipment component material that requires mechanical properties, electrical conductivity, stress relaxation properties, bending workability, and plating properties.

本発明の電子電気機器部品用銅合金材は、機械的特性(引張強さ、伸び)、導電性、応力緩和特性、及び曲げ加工性、並びにメッキの劣化防止性(メッキ剥離防止性、メッキの耐食性)に優れるものである。
したがって、本発明は、近年の電子電気機器の小型、高性能化に対する要求に好適に対応できる。また従来のものよりメッキ特性が改善されたので、端子、コネクタ用に好適なものであるが、その他スイッチ、リレー材等、一般電子電気機器用導電材料としても好適である。
The copper alloy material for electronic and electrical equipment parts of the present invention has mechanical properties (tensile strength, elongation), electrical conductivity, stress relaxation properties, bending workability, and plating deterioration prevention (plating peeling prevention, plating resistance). It has excellent corrosion resistance.
Therefore, the present invention can suitably meet the recent demand for downsizing and high performance of electronic and electrical equipment. In addition, since the plating characteristics are improved over the conventional one, it is suitable for terminals and connectors, but is also suitable as a conductive material for general electronic equipment such as switches and relay materials.

本発明の端子ないしはコネクタ用銅合金材は、Cuマトリックス中にNiとSiの化合物を析出させ、適当な機械的特性及び熱・電気導電性を有する銅合金に、Sn、Mg、Znを特定量添加して応力緩和特性と曲げ加工性を改善し、また表面が平滑になるよう表面粗度を規定してSn等によるメッキ性を向上させたものである。本発明者らは、この合金材成分の含有量と表面粗度を子細に規定することで実用的に優れた電子電気機器部品用材料を実現させることができた。
以下に本発明の端子ないしはコネクタ用銅合金材(以下、これに限定した意味で電子電気機器部品用銅合金材ということがある。)に用いられる銅合金材の成分、及び表面粗度の限定理由を説明する。
The copper alloy material for a terminal or connector of the present invention is a copper alloy having a suitable mechanical property and thermal / electrical conductivity, by depositing a compound of Ni and Si in a Cu matrix, and a specific amount of Sn, Mg, Zn. It is added to improve the stress relaxation characteristics and bending workability, and to improve the plating performance by Sn or the like by defining the surface roughness so that the surface becomes smooth. The present inventors have been able to realize practically excellent materials for electronic and electrical equipment parts by finely defining the content of the alloy material component and the surface roughness.
The components of the copper alloy material used for the terminal or connector copper alloy material of the present invention (hereinafter also referred to as a copper alloy material for electronic / electric equipment parts) and the surface roughness are limited. Explain why.

まず、本発明の電子電気機器部品用銅合金材に用いられる銅合金材に含有される各成分について説明する。
CuにNiとSiを添加するとNi-Si化合物を作り、これをCu中に析出させると強度及び導電率が向上することが知られている。
Ni含有量が1.0mass%未満であると析出量が少ないため目標とする強度が得られない。逆にNi含有量が3.0mass%を越えて添加されると鋳造、熱間加工時に強度上昇に寄与しない析出が生じ添加量に見合う強度を得ることができないばかりか、熱間加工性、曲げ加工性にも悪影響を与えることになる。
Si含有量は析出するNiとSiの化合物が主にNi2Si相であると考えられるため、添加Ni量を決定すると最適なSi添加量が決まる。Si含有量が0.2mass%未満であるとNi含有量が少ないときと同様十分な強度を得ることができない。逆にSi含有量が0.7mass%を越えるときもNi含有量が多いときと同様の問題が生じる。
本発明では、Ni含有量を、好ましくは1.7〜3.0mass%、より好ましくは2.0〜2.8mass%、Si含有量を、好ましくは0.4〜0.7mass%、より好ましくは0.45〜0.6mass%となるように調整することが好ましい。
First, each component contained in the copper alloy material used for the copper alloy material for electronic and electrical equipment parts of this invention is demonstrated.
It is known that when Ni and Si are added to Cu, a Ni-Si compound is formed, and when this is precipitated in Cu, strength and conductivity are improved.
If the Ni content is less than 1.0 mass%, the target strength cannot be obtained because the amount of precipitation is small. Conversely, if the Ni content exceeds 3.0 mass%, precipitation does not contribute to strength increase during casting and hot working, and it is not possible to obtain the strength suitable for the added amount, but also hot workability and bending work. It will also adversely affect sex.
Since the Si content is thought to be mainly due to the Ni 2 Si phase of the precipitated Ni and Si compound, the optimum Si addition amount is determined when the addition Ni amount is determined. When the Si content is less than 0.2 mass%, sufficient strength cannot be obtained as when the Ni content is low. Conversely, when the Si content exceeds 0.7 mass%, the same problem as when the Ni content is high occurs.
In the present invention, the Ni content is preferably 1.7 to 3.0 mass%, more preferably 2.0 to 2.8 mass%, and the Si content is preferably 0.4 to 0.7 mass%, more preferably 0.45 to 0.6 mass%. It is preferable to adjust to.

Mg、Sn、Znは本発明を構成する重要な添加元素である。これらの元素は相互に関係しあって良好な特性バランスを実現している。
Mgは先述の通り応力緩和特性を大幅に改善するが、曲げ加工性には悪影響を及ぼす。応力緩和特性の観点からは、0.01mass%以上で含有量は多ければ多いほど良い。逆に、0.01mass%未満だと応力緩和特性の改善効果が現れず、0.2mass%を越えて添加すると曲げ加工性を満たさなくなる。
SnはMgと相互に関係しあって、より一層応力緩和特性を向上することができる。Snはりん青銅にも見られるように、応力緩和特性の改善効果を有するものの、その効果はMgほど大きくない。Snが0.05mass%未満であると改善効果は現れず、逆に1.5mass%を越えて添加されると導電性が低下する。
Znは応力緩和特性には寄与しないが、曲げ加工性を改善することができる。Znを0.2〜1.5mass%添加することにより、Mgを最大0.2mass%まで添加しても実用上問題ないレベルの曲げ加工性を達成できる。また、ZnはSnメッキや半田メッキの耐熱剥離性、耐マイグレーション特性も改善し、0.2mass%以上添加することが好ましい。逆に導電性を考慮し、1.5mass%を越えて添加することは好ましくない。
本発明では、Mg含有量は、好ましくは0.03〜0.2mass%、より好ましくは0.05〜0.15mass%、Sn含有量は、好ましくは0.05〜1.0mass%、より好ましくは0.1〜0.5mass%、Zn含有量は、好ましくは0.2〜1.0mass%、より好ましくは0.4〜0.6mass%である。
Mg, Sn, and Zn are important additive elements constituting the present invention. These elements are related to each other to achieve a good balance of properties.
Mg significantly improves stress relaxation properties as described above, but has an adverse effect on bending workability. From the viewpoint of stress relaxation characteristics, the higher the content, the better. Conversely, if it is less than 0.01 mass%, the effect of improving the stress relaxation property does not appear, and if it exceeds 0.2 mass%, bending workability is not satisfied.
Sn correlates with Mg and can further improve the stress relaxation characteristics. As seen in phosphor bronze, Sn has an effect of improving stress relaxation characteristics, but the effect is not as great as that of Mg. If Sn is less than 0.05 mass%, the improvement effect does not appear, and conversely if it exceeds 1.5 mass%, the conductivity is lowered.
Zn does not contribute to stress relaxation properties, but can improve bending workability. By adding Zn in an amount of 0.2 to 1.5 mass%, even if Mg is added up to a maximum of 0.2 mass%, it is possible to achieve a level of bending workability that is practically acceptable. Zn also improves the heat-resistant peelability and migration resistance properties of Sn plating and solder plating, and is preferably added in an amount of 0.2 mass% or more. On the contrary, it is not preferable to add more than 1.5 mass% in consideration of conductivity.
In the present invention, the Mg content is preferably 0.03 to 0.2 mass%, more preferably 0.05 to 0.15 mass%, and the Sn content is preferably 0.05 to 1.0 mass%, more preferably 0.1 to 0.5 mass%, Zn content The amount is preferably 0.2 to 1.0 mass%, more preferably 0.4 to 0.6 mass%.

Sは熱間加工性を悪化させる元素であり、その含有量を0.005mass%未満に規制することで、熱間加工性を向上させる。特にS含有量を0〜0.002mass%未満にする事が好ましい。   S is an element that deteriorates hot workability, and the hot workability is improved by regulating the content thereof to less than 0.005 mass%. In particular, the S content is preferably 0 to less than 0.002 mass%.

前記(2)項に記載の発明は、前記(1)項記載の銅合金材に、さらに、Ag、Co及びCrからなる群から選ばれる少なくとも1種を含有させた以外は前記(1)項記載の電子電気機器部品用銅合金材と同様である。これらの合金元素Ag、Co及びCrは、さらなる強度向上に寄与することができる。
これらの合金元素の含有量は合計で0.005〜2.0mass%であり、好ましくは0.005〜0.5mass%である。0.005mass%未満ではその効果が十分に得られず、2.0mass%を越えると、Agはコスト高を招き、CoおよびCrは鋳造時及び熱間加工時に粗大な化合物を晶出(析出)して含有量に見合う強度が得られなくなり、また熱間加工性および曲げ加工性が低下するためである。
Agは、耐熱性を向上させる効果及び結晶粒の粗大化を阻止して曲げ加工性を向上させる効果も有する。しかし、高価なためAgの含有量は0.3mass%以下が好ましい。
CoはNiと同様の作用を果たし、Niよりもその効果が大きい。またCo-Si化合物は析出硬化能が高いため応力緩和特性も改善される。従って、熱・電気伝導性が重視される部材などにはNiの一部をCoで代替するのが有効である。しかし、高価であるためCoの含有量は2.0mass%以下が好ましい。
Crは銅中に微細に析出して強度向上に寄与する。Crは曲げ加工性を低下させるためその含有量は0.2mass%以下であり、好ましくは0.1mass%以下である。
The invention described in the above item (2) is the above item (1), except that the copper alloy material described in the above item (1) further contains at least one selected from the group consisting of Ag, Co and Cr. It is the same as the copper alloy material for electronic electrical equipment components described. These alloy elements Ag, Co, and Cr can contribute to further strength improvement.
The total content of these alloy elements is 0.005 to 2.0 mass%, preferably 0.005 to 0.5 mass%. If it is less than 0.005 mass%, the effect cannot be obtained sufficiently, and if it exceeds 2.0 mass%, Ag invites high costs, and Co and Cr crystallize (precipitate) coarse compounds during casting and hot working. This is because the strength commensurate with the content cannot be obtained, and hot workability and bending workability are deteriorated.
Ag has an effect of improving heat resistance and an effect of preventing bending of crystal grains and improving bending workability. However, since it is expensive, the Ag content is preferably 0.3 mass% or less.
Co performs the same function as Ni and is more effective than Ni. In addition, since the Co-Si compound has high precipitation hardening ability, the stress relaxation property is also improved. Therefore, it is effective to substitute a part of Ni with Co for members where heat and electrical conductivity are important. However, since it is expensive, the Co content is preferably 2.0 mass% or less.
Cr precipitates finely in copper and contributes to strength improvement. Since Cr lowers the bending workability, its content is 0.2 mass% or less, preferably 0.1 mass% or less.

なお、基本的な特性を低下させない程度に、例えば総量として0.01〜0.5mass%の含有率で、Fe、Zr、P、Mn、Ti、V、Pb、Bi、Alなどを添加することができる。例えばMnは熱間加工性を改善する効果があり、導電性を劣化させない程度に0.01〜0.5mass%添加することは有効である。
本発明に用いられる銅合金材において、以上の各成分以外の残部は、Cu及び不可避的不純物である。
本発明に用いられる銅合金材は、常法により製造することができ、特に制限するものではないが、鋳塊を熱間圧延し、次いで冷間加工、例えば冷間圧延した後に、再結晶と溶体化させる目的で熱処理を行い、直ちに焼き入れを行うことにより製造することができる。また必要に応じて時効処理を行うこともできる。
It should be noted that Fe, Zr, P, Mn, Ti, V, Pb, Bi, Al, and the like can be added at a content of 0.01 to 0.5 mass% as a total amount, for example, so as not to deteriorate the basic characteristics. For example, Mn has an effect of improving hot workability, and it is effective to add 0.01 to 0.5 mass% so as not to deteriorate the conductivity.
In the copper alloy material used in the present invention, the balance other than the above components is Cu and inevitable impurities.
The copper alloy material used in the present invention can be produced by a conventional method and is not particularly limited. However, the ingot is hot-rolled and then cold-worked, for example, cold-rolled, and then recrystallized. It can be manufactured by performing heat treatment for the purpose of forming a solution and immediately quenching. An aging treatment can also be performed as necessary.

材料の表面状態を表す指標として表面粗度がある。
本発明において規定されるRaとは、算術平均粗さであり、JIS B 0601に説明されている。Rmaxとは、最大高さであり、JIS B 0601にRyとして説明されているものと同じである。
本発明の電子電気機器部品用銅合金材は、前記組成を有する銅合金材の最終塑性加工後の表面が、本発明に規定する表面粗度RaまたはRmaxを有するようにして製造される。RaまたはRmaxの調整は、例えば、圧延、研磨などにより行うことができる。
実操業においては表面粗度を調整した圧延ロールなどを用いて圧延することにより、銅合金材の表面粗度を調整することができる。
Surface roughness is an index representing the surface state of a material.
Ra defined in the present invention is an arithmetic average roughness and is described in JIS B 0601. Rmax is the maximum height, and is the same as that described as Ry in JIS B 0601.
The copper alloy material for electronic / electrical equipment parts of the present invention is manufactured such that the surface after the final plastic working of the copper alloy material having the above composition has the surface roughness Ra or Rmax defined in the present invention. The adjustment of Ra or Rmax can be performed, for example, by rolling or polishing.
In actual operation, the surface roughness of the copper alloy material can be adjusted by rolling using a rolling roll whose surface roughness is adjusted.

本発明の電子電気機器部品用銅合金材にはメッキを施す。メッキは、その方法に特に制限はなく、通常行われる方法により施される。
本発明の電子電気機器部品用銅合金材にSnメッキを施す場合、特にRaあるいはRmaxの値が大きいとはじき(不均一なメッキ)が発生する。また、材料とSnメッキの界面面積が大きくなり、材料のCu原子とメッキのSn原子の拡散が起こりやすくなる。そのため、Cu-Sn化合物とボイド(空孔)が発生しやすくなり、高温で保持した場合、メッキが剥離しやすくなる。
本発明の電子電気機器部品用銅合金材にAuメッキを施す場合、RaあるいはRmaxの値が大きいと、ピンホールが発生して耐食性が劣化する。よってRaは0μmを越え0.1μm未満、あるいはRmaxは0μmを越え2.0μm未満と規定することでメッキ性が向上する。好ましくはRaが0.09μm未満、あるいはRmaxが0.8μm未満であることが好ましい。
本発明の電子電気機器部品用銅合金材の表面にSnまたはSn合金メッキを施すと大気中での変色を防止することができ、好ましい。SnまたはSn合金メッキを施す場合、0.1μmを越え10μm以下の厚さで行うものである。メッキ厚さが、0.1μm未満ではその効果が得られず、10μmを越えるとこの効果は飽和するとともにコストが高くなる。Snメッキの下にCuあるいはCu合金をメッキするとメッキはじきを防止でき、さらに好ましい。CuまたはCu合金メッキの厚さは、好ましくは1.0μm以下である。なお、Sn合金として例えばSn-Pb系合金、Sn-Sb-Cu系合金、またCu合金としてCu-Ag系合金、Cu-Cd系合金などを用いることができる。
またリフロー処理を施すことも好ましく、この処理によりウィスカーが発生しなくなり、短絡を防止できる。ここでリフロー処理とは加熱溶融処理を意味し、メッキした材料を加熱し溶融させ、その後冷却しメッキを凝固させることである。
また本発明の電子電気機器部品用銅合金材の表面にAuまたはAu合金メッキを施すとコネクタ等の接続信頼性を向上させることができ、好ましい。AuまたはAu合金メッキを施す場合、0.01μmを越え2.0μm未満の厚さで行うものである。挿抜寿命特性向上のためにNiあるいはNi合金メッキをAuメッキの下に施しても良い。NiまたはNi合金メッキの厚さは2.0μm以下が好ましい。なお、Au合金として例えばAu-Cu系合金、Au-Cu-Ag系合金、またNi合金としてNi-Cu系合金、Ni-Fe系合金などを用いることができる。
The copper alloy material for electronic / electrical equipment parts of the present invention is plated. There is no restriction | limiting in particular in the method, and plating is performed by the method performed normally.
When Sn plating is applied to the copper alloy material for electronic and electrical equipment parts of the present invention, repelling (non-uniform plating) occurs particularly when Ra or Rmax is large. In addition, the interface area between the material and the Sn plating increases, and the diffusion of Cu atoms in the material and Sn atoms in the plating easily occurs. For this reason, Cu-Sn compounds and voids (voids) are likely to be generated, and plating is easily peeled off when held at a high temperature.
When Au plating is applied to the copper alloy material for electronic and electrical equipment parts of the present invention, if the value of Ra or Rmax is large, pinholes are generated and the corrosion resistance deteriorates. Therefore, by specifying Ra to be greater than 0 μm and less than 0.1 μm, or Rmax to be greater than 0 μm and less than 2.0 μm, the plating property is improved. Preferably, Ra is less than 0.09 μm, or Rmax is less than 0.8 μm.
When the surface of the copper alloy material for electronic / electric equipment parts of the present invention is plated with Sn or Sn alloy, discoloration in the atmosphere can be prevented, which is preferable. When Sn or Sn alloy plating is applied, the thickness is more than 0.1 μm and not more than 10 μm. If the plating thickness is less than 0.1 μm, the effect cannot be obtained. If the plating thickness exceeds 10 μm, this effect is saturated and the cost is increased. Plating of Cu or Cu alloy under Sn plating is more preferable because it can prevent plating repelling. The thickness of the Cu or Cu alloy plating is preferably 1.0 μm or less. As the Sn alloy, for example, a Sn—Pb alloy, a Sn—Sb—Cu alloy, and a Cu—Ag alloy, a Cu—Cd alloy, or the like can be used.
In addition, it is preferable to perform a reflow process, and no whisker is generated by this process, and a short circuit can be prevented. Here, the reflow process means a heat melting process, which means heating and melting a plated material, and then cooling to solidify the plating.
Further, it is preferable to apply Au or Au alloy plating to the surface of the copper alloy material for electronic / electrical equipment parts of the present invention, because the connection reliability of the connector or the like can be improved. When Au or Au alloy plating is applied, the thickness is more than 0.01 μm and less than 2.0 μm. Ni or Ni alloy plating may be applied under the Au plating to improve the insertion / extraction life characteristics. The thickness of the Ni or Ni alloy plating is preferably 2.0 μm or less. As the Au alloy, for example, an Au—Cu alloy, an Au—Cu—Ag alloy, and a Ni alloy such as a Ni—Cu alloy and a Ni—Fe alloy can be used.

以下に本発明を実施例に基づきさらに詳細に説明するが、本発明はこれに限定されるものではない。
高周波溶解炉にて、表1に記す組成の合金を溶解し、サイズ30mm×100mm×150mmに鋳造した。次にこれらの鋳塊を900℃まで昇温し、1時間保持後に熱間圧延によって30mmを12mmまで加工後、速やかに冷却を行った。表面の酸化皮膜を除去するために厚さ9mmまで両面面削し、冷間圧延により厚さ0.27mmに加工した。この後、供試材を再結晶と溶体化させる目的で、750〜850℃で30sの熱処理を行い、直ちに15℃/s以上の冷却速度で焼き入れを行った。次に圧下率5%の冷間圧延を行い、時効処理を施した。時効処理条件は不活性雰囲気中で515℃×2時間である。時効後、最終塑性加工である冷間圧延を行い、最終的な板厚を0.25mmにそろえた。最終塑性加工後、バネ性を改善する目的で350℃×2時間の焼鈍を施した。得られた銅合金材の表面を耐水ペーパーにて研磨し、表2に示した表面粗度に仕上げた。ここで、表面粗度Ra及びRmaxは、圧延方向に対して直角方向に長さ4mmの間をそれぞれRaとRmaxについて測定し、任意の部位を5回測定し、その平均値を用いた。このようにして得られた電子電気機器部品用銅合金材の試料について各種特性評価を行った。
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.
An alloy having the composition shown in Table 1 was melted in a high frequency melting furnace and cast to a size of 30 mm × 100 mm × 150 mm. Next, these ingots were heated to 900 ° C., held for 1 hour, then processed by hot rolling to 30 mm to 12 mm, and then quickly cooled. In order to remove the oxide film on the surface, both sides were cut down to a thickness of 9 mm and processed to a thickness of 0.27 mm by cold rolling. Thereafter, heat treatment was performed at 750 to 850 ° C. for 30 s and immediately quenched at a cooling rate of 15 ° C./s or more for the purpose of recrystallization and solution of the test material. Next, cold rolling was performed at a reduction rate of 5%, and an aging treatment was performed. The aging treatment conditions are 515 ° C. × 2 hours in an inert atmosphere. After aging, cold rolling, which is the final plastic working, was performed, and the final thickness was adjusted to 0.25 mm. After the final plastic working, annealing was performed at 350 ° C. for 2 hours in order to improve the spring property. The surface of the obtained copper alloy material was polished with water-resistant paper and finished to the surface roughness shown in Table 2. Here, the surface roughness Ra and Rmax were measured with respect to Ra and Rmax between 4 mm in length in the direction perpendicular to the rolling direction, and arbitrary portions were measured 5 times, and average values thereof were used. Various characteristics evaluation was performed about the sample of the copper alloy material for electronic electrical equipment components obtained in this way.

引っ張り強さと伸びはJIS Z 2241に準じ、導電率はJIS H 0505に準じて測定し、結果を表2に併記した。
曲げ加工性の評価は、内側曲げ半径が0mmの180°曲げを行った。評価の指標はクラックの有無による二段階評価とした。
応力緩和特性の評価は、日本電子材料工業会標準規格であるEMAS-3003に準拠して行った。ここで、特開平11-222641号公報の段落[0038]に記載の片持ちブロック式を採用し、表面最大応力が450MPaとなるよう負荷応力を設定し、150℃恒温槽で試験を行った。表2には1000時間試験後の緩和率(S.R.R)で示した。なお、S.R.Rは23%以上を好ましくないものとした。
The tensile strength and elongation were measured according to JIS Z 2241, and the conductivity was measured according to JIS H 0505. The results are also shown in Table 2.
The bending workability was evaluated by 180 ° bending with an inner bending radius of 0 mm. The evaluation index was a two-step evaluation based on the presence or absence of cracks.
The evaluation of stress relaxation characteristics was performed in accordance with EMAS-3003, which is a standard of the Japan Electronic Materials Industry Association. Here, the cantilever block type described in paragraph [0038] of JP-A-11-222641 was employed, the load stress was set so that the maximum surface stress was 450 MPa, and the test was conducted in a 150 ° C. constant temperature bath. Table 2 shows the relaxation rate (SRR) after 1000 hours test. Note that SRR of 23% or more was not preferable.

また、上記各試験で用いた試料とは別に、以下のように、Sn又はAuのメッキを施した試料を作製し、メッキ特性を試験した。
Snメッキは、前記試料上に、下地Cuメッキを厚さ0.2μm、さらにSnメッキを厚さ1.0μmとして施した。また、Auメッキは、前記試料上に、下地Niメッキを厚さ1.0μm、さらにAuメッキを厚さ0.2μmとして施した。
メッキはじき試験は、このようにして得られたSnメッキされた試料の外観を、目視により判断することにより行った。
メッキ剥離試験は、Snメッキされた試料について、150℃×1000時間の大気圧下加熱後に180°曲げ加工を行い、メッキの剥離の有無(耐熱剥離性)を目視にて確認することにより行った。
耐食性試験は、Auメッキされた試料に対して、温度35℃、5%NaCl水溶液雰囲気中で96時間まで塩水噴霧試験を行い、腐食生成物の発生有無について目視にて判断することにより行った。
In addition to the samples used in the above tests, a sample plated with Sn or Au was prepared and the plating characteristics were tested as follows.
For the Sn plating, the base Cu plating was applied to the sample with a thickness of 0.2 μm, and the Sn plating was applied with a thickness of 1.0 μm. In addition, Au plating was performed on the sample with a base Ni plating having a thickness of 1.0 μm and an Au plating having a thickness of 0.2 μm.
The plating repellency test was performed by visually observing the appearance of the Sn-plated sample thus obtained.
The plating peel test was performed on the Sn-plated sample by performing 180 ° bending after heating at 150 ° C. for 1000 hours under atmospheric pressure, and visually confirming whether the plating was peeled off (heat-resistant peelability). .
The corrosion resistance test was performed by performing a salt spray test for 96 hours in a 5% NaCl aqueous atmosphere at a temperature of 35 ° C. on the Au-plated sample, and visually judging whether or not a corrosion product was generated.

Figure 2006176886
Figure 2006176886

Figure 2006176886
Figure 2006176886

表1及び2より明らかなように、比較例の各試料は、本発明の試料に比べ、各特性の少なくとも1つが劣っている。具体的には、比較例のNo.151はNi及びSi含有量が少なかったため所定の強度が得られなかった。No.152、153はMg含有量が少ないため応力緩和特性に劣った。No.154はMg含有量が多いため曲げ加工性が劣った。No.155はSn含有量が少ないため応力緩和特性が劣った。No.156はSn含有量が多いため導電率が低下した。No.157はZn含有量が少ないためスズメッキ層の密着性が低下し、No.158はCr含有量が多いため曲げ加工性が低下した。No.159はS含有量が多いため熱間加工中に割れが発生し製造を中止した。No.160はZn含有量が多いため導電率が低下した。No.161はNi含有量が多いため曲げ加工性が劣った。No.162はSi含有量が多いため導電率が低下し、曲げ加工性が劣った。No.163はNi及びSi含有量がともに多いため熱間加工中に割れが発生し製造を中止した。No.164及びNo.165はRa及びRmaxの値が大きいためSnメッキ耐熱剥離性が劣り、Snメッキはじきが発生した。またAuメッキの耐食性が劣った。
これに対し、本発明例(試料No.101〜No.124)は、比較例に比べ、引張強さ、伸び、導電率、曲げ加工性、応力緩和特性及びメッキ特性のいずれも優れた特性を示していることがわかる。
As is clear from Tables 1 and 2, each sample of the comparative example is inferior in at least one of the characteristics as compared with the sample of the present invention. Specifically, No. 151 of the comparative example did not have a predetermined strength because the contents of Ni and Si were small. Nos. 152 and 153 were inferior in stress relaxation characteristics due to low Mg content. No.154 has poor bending workability due to its high Mg content. No. 155 was inferior in stress relaxation characteristics due to low Sn content. No. 156 had a high Sn content, so the conductivity decreased. No. 157 had a low Zn content, so the adhesion of the tin plating layer was reduced, and No. 158 had a high Cr content, so the bending workability was low. No.159 was discontinued due to high S content and cracking during hot working. No. 160 had a low Zn conductivity because of its high Zn content. No. 161 had poor bending workability due to its high Ni content. No. 162 had a high Si content, resulting in decreased electrical conductivity and inferior bending workability. No.163 was discontinued due to cracking during hot working due to high Ni and Si contents. No. 164 and No. 165 had high Ra and Rmax values, so the Sn plating heat-resistant peelability was poor and Sn plating repelling occurred. Moreover, the corrosion resistance of Au plating was inferior.
In contrast, the inventive examples (samples No. 101 to No. 124) are superior to the comparative examples in all of tensile strength, elongation, conductivity, bending workability, stress relaxation characteristics and plating characteristics. You can see that

Claims (7)

Niを1.0〜3.0mass%、Siを0.2〜0.7mass%、Mgを0.01〜0.2mass%、Snを0.05〜1.5mass%、Znを0.2〜1.5mass%、Sを0.005mass%未満(零を含む)含有し、残部がCu及び不可避的不純物からなる銅合金材であって、最終塑性加工後の、表面粗度Raが0μmを越え0.1μm未満であるか、または表面粗度Rmaxが0μmを越え2.0μm未満であり、SnまたはSn合金メッキが施され、SnまたはSn合金メッキの厚さが0.1μm〜10μmであり、150℃1000時間後における応力緩和率が20%以下であり、内側曲げ半径0mmで180°曲げ加工を行ったときにクラックが起こらないことを特徴とする機械的強度、導電性、応力緩和特性、及び曲げ加工性、並びにメッキの劣化防止性に優れた、端子ないしはコネクタ用銅合金材。   Ni: 1.0-3.0 mass%, Si: 0.2-0.7 mass%, Mg: 0.01-0.2 mass%, Sn: 0.05-1.5 mass%, Zn: 0.2-1.5 mass%, S: less than 0.005 mass% (including zero) 2) Copper alloy material containing Cu and inevitable impurities in the balance, and after the final plastic working, the surface roughness Ra exceeds 0 μm and is less than 0.1 μm, or the surface roughness Rmax exceeds 0 μm Less than 2.0 μm, Sn or Sn alloy plating is applied, Sn or Sn alloy plating thickness is 0.1 μm to 10 μm, stress relaxation rate is 20% or less after 1000 hours at 150 ° C., inner bending radius For terminals or connectors with excellent mechanical strength, electrical conductivity, stress relaxation characteristics, bending workability, and plating deterioration prevention, characterized by no cracks when bent at 180 ° at 0mm Copper alloy material. Niを1.0〜3.0mass%、Siを0.2〜0.7mass%、Mgを0.01〜0.2mass%、Snを0.05〜1.5mass%、Znを0.2〜1.5mass%、Ag、Co及びCrからなる群から選ばれる少なくとも1種を総量で0.005〜2.0mass%(但しCrは0.2mass%以下)、Sを0.005mass%未満(零を含む)含有し、残部がCu及び不可避的不純物からなる銅合金材であって、最終塑性加工後の、表面粗度Raが0μmを越え0.1μm未満であるか、または表面粗度Rmaxが0μmを越え2.0μm未満であり、SnまたはSn合金メッキが施され、SnまたはSn合金メッキの厚さが0.1μm〜10μmであり、150℃1000時間後における応力緩和率が20%以下であり、内側曲げ半径0mmで180°曲げ加工を行ったときにクラックが起こらないことを特徴とする機械的強度、導電性、応力緩和特性、及び曲げ加工性、並びにメッキの劣化防止性に優れた、端子ないしはコネクタ用銅合金材。   Ni selected from the group consisting of 1.0 to 3.0 mass%, Si 0.2 to 0.7 mass%, Mg 0.01 to 0.2 mass%, Sn 0.05 to 1.5 mass%, Zn 0.2 to 1.5 mass%, Ag, Co and Cr This is a copper alloy material containing 0.005 to 2.0 mass% (provided that Cr is 0.2 mass% or less), S less than 0.005 mass% (including zero), with the balance being Cu and inevitable impurities. After the final plastic working, the surface roughness Ra is more than 0 μm and less than 0.1 μm, or the surface roughness Rmax is more than 0 μm and less than 2.0 μm, Sn or Sn alloy plating is applied, Sn or Sn The thickness of the alloy plating is 0.1 to 10 μm, the stress relaxation rate after 1000 hours at 150 ° C. is 20% or less, and no cracks occur when bending 180 ° with an inner bending radius of 0 mm. A copper alloy material for terminals or connectors that is excellent in mechanical strength, electrical conductivity, stress relaxation characteristics, bending workability, and plating deterioration prevention. 前記端子ないしはコネクタ用銅合金材に、リフロー処理が行われていることを特徴とする請求項1または2記載の端子ないしはコネクタ用銅合金材。   The terminal or connector copper alloy material according to claim 1 or 2, wherein the terminal or connector copper alloy material is subjected to reflow treatment. 前記端子ないしはコネクタ用銅合金材に、下地CuまたはCu合金メッキが施され、さらにその上にSnまたはSn合金メッキが施されていることを特徴とする請求項1または2記載の端子ないしはコネクタ用銅合金材。   3. The terminal or connector according to claim 1 or 2, wherein the copper alloy material for the terminal or connector is subjected to base Cu or Cu alloy plating, and further subjected to Sn or Sn alloy plating thereon. Copper alloy material. 前記端子ないしはコネクタ用銅合金材に、下地CuまたはCu合金メッキが施され、さらにその上にSnまたはSn合金メッキが施され、かつ、リフロー処理が行われていることを特徴とする請求項1または2記載の端子ないしはコネクタ用銅合金材。   2. The copper alloy material for terminals or connectors is subjected to base Cu or Cu alloy plating, further Sn or Sn alloy plating is applied thereon, and reflow treatment is performed. Or a copper alloy material for a terminal or connector according to 2; Niを1.0〜3.0mass%、Siを0.2〜0.7mass%、Mgを0.01〜0.2mass%、Snを0.05〜1.5mass%、Znを0.2〜1.5mass%、Sを0.005mass%未満(零を含む)含有し、残部がCu及び不可避的不純物からなる銅合金材であって、最終塑性加工後の、表面粗度Raが0μmを越え0.1μm未満であるか、または表面粗度Rmaxが0μmを越え2.0μm未満であり、下地NiまたはNi合金メッキが施され、さらにその上にAuまたはAu合金メッキが施され、AuまたはAu合金メッキの厚さが0.01μm〜2.0μmであり、150℃1000時間後における応力緩和率が20%以下であり、内側曲げ半径0mmで180°曲げ加工を行ったときにクラックが起こらないことを特徴とする機械的強度、導電性、応力緩和特性、及び曲げ加工性、並びにメッキの劣化防止性に優れた、端子ないしはコネクタ用銅合金材。   Ni: 1.0-3.0 mass%, Si: 0.2-0.7 mass%, Mg: 0.01-0.2 mass%, Sn: 0.05-1.5 mass%, Zn: 0.2-1.5 mass%, S: less than 0.005 mass% (including zero) 2) Copper alloy material containing Cu and inevitable impurities in the balance, and after the final plastic working, the surface roughness Ra exceeds 0 μm and is less than 0.1 μm, or the surface roughness Rmax exceeds 0 μm Less than 2.0 μm, base Ni or Ni alloy plating is applied, Au or Au alloy plating is further applied thereon, and the thickness of Au or Au alloy plating is 0.01 μm to 2.0 μm, 150 ° C. for 1000 hours The mechanical strength, conductivity, stress relaxation characteristics, and bending workability are characterized by a stress relaxation rate of 20% or less and no cracking when bending 180 ° with an inner bending radius of 0 mm. In addition, copper alloy materials for terminals or connectors that are excellent in preventing deterioration of plating. Niを1.0〜3.0mass%、Siを0.2〜0.7mass%、Mgを0.01〜0.2mass%、Snを0.05〜1.5mass%、Znを0.2〜1.5mass%、Ag、Co及びCrからなる群から選ばれる少なくとも1種を総量で0.005〜2.0mass%(但しCrは0.2mass%以下)、Sを0.005mass%未満(零を含む)含有し、残部がCu及び不可避的不純物からなる銅合金材であって、最終塑性加工後の、表面粗度Raが0μmを越え0.1μm未満であるか、または表面粗度Rmaxが0μmを越え2.0μm未満であり、下地NiまたはNi合金メッキが施され、さらにその上にAuまたはAu合金メッキが施され、AuまたはAu合金メッキの厚さが0.01μm〜2.0μmであり、150℃1000時間後における応力緩和率が20%以下であり、内側曲げ半径0mmで180°曲げ加工を行ったときにクラックが起こらないことを特徴とする機械的強度、導電性、応力緩和特性、及び曲げ加工性、並びにメッキの劣化防止性に優れた、端子ないしはコネクタ用銅合金材。
Ni selected from the group consisting of 1.0 to 3.0 mass%, Si 0.2 to 0.7 mass%, Mg 0.01 to 0.2 mass%, Sn 0.05 to 1.5 mass%, Zn 0.2 to 1.5 mass%, Ag, Co and Cr This is a copper alloy material containing 0.005 to 2.0 mass% (provided that Cr is 0.2 mass% or less), S less than 0.005 mass% (including zero), with the balance being Cu and inevitable impurities. After the final plastic working, the surface roughness Ra is more than 0 μm and less than 0.1 μm, or the surface roughness Rmax is more than 0 μm and less than 2.0 μm, and the base Ni or Ni alloy plating is applied. Au or Au alloy plating is applied on top, the thickness of Au or Au alloy plating is 0.01 μm to 2.0 μm, the stress relaxation rate after 1000 hours at 150 ° C. is 20% or less, and 180 mm at an inner bending radius of 0 mm ° Mechanical strength, electrical conductivity, stress relaxation characteristics, bending workability, and plating deterioration prevention, characterized by no cracks when bending Excellent, terminal or connector copper alloy material.
JP2006066505A 2006-03-10 2006-03-10 Copper alloy material for terminal or connector Pending JP2006176886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006066505A JP2006176886A (en) 2006-03-10 2006-03-10 Copper alloy material for terminal or connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006066505A JP2006176886A (en) 2006-03-10 2006-03-10 Copper alloy material for terminal or connector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001148521A Division JP3824884B2 (en) 2001-05-17 2001-05-17 Copper alloy material for terminals or connectors

Publications (1)

Publication Number Publication Date
JP2006176886A true JP2006176886A (en) 2006-07-06

Family

ID=36731246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006066505A Pending JP2006176886A (en) 2006-03-10 2006-03-10 Copper alloy material for terminal or connector

Country Status (1)

Country Link
JP (1) JP2006176886A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038593A1 (en) * 2006-09-25 2008-04-03 Nippon Mining & Metals Co., Ltd. Cu-Ni-Si ALLOY

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038593A1 (en) * 2006-09-25 2008-04-03 Nippon Mining & Metals Co., Ltd. Cu-Ni-Si ALLOY

Similar Documents

Publication Publication Date Title
JP3824884B2 (en) Copper alloy material for terminals or connectors
JP3520034B2 (en) Copper alloy materials for electronic and electrical equipment parts
JP5170881B2 (en) Copper alloy material for electrical and electronic equipment and method for producing the same
JP4809602B2 (en) Copper alloy
JP4494258B2 (en) Copper alloy and manufacturing method thereof
JP3520046B2 (en) High strength copper alloy
JP2008024999A (en) Cu-Ni-Si TYPE COPPER ALLOY SHEET WITH EXCELLENT PROOF STRESS AND BENDABILITY
JP2002294368A (en) Copper alloy for terminal and connector and production method therefor
JP4397245B2 (en) Tin-plated copper alloy material for electric and electronic parts and method for producing the same
KR20010106204A (en) Electrical conductive metal strip and connector
JP4916206B2 (en) Cu-Cr-Si alloy and Cu-Cr-Si alloy foil for electric and electronic parts
TW201602369A (en) Copper alloy material, manufacturing method of the same, lead frame and connector
JP3800269B2 (en) High strength copper alloy with excellent stamping workability and silver plating
JP2516622B2 (en) Copper alloy for electronic and electrical equipment and its manufacturing method
JPH11293367A (en) Copper alloy excellent in property of proof stress relaxation, and its production
JP2007270171A (en) High-conductivity copper-based alloy with excellent bendability, and its manufacturing method
JP2007169764A (en) Copper alloy
JP2007246931A (en) Copper alloy for electrical and electronic equipment parts having excellent electric conductivity
JP2006176886A (en) Copper alloy material for terminal or connector
JPH0534409B2 (en)
JP2001279347A (en) High strength copper alloy excellent in bending workability and heat resistance and its producing method
JP2011190469A (en) Copper alloy material, and method for producing the same
JP4461269B2 (en) Copper alloy with improved conductivity and method for producing the same
JP5002767B2 (en) Copper alloy sheet and manufacturing method thereof
JP2005048225A (en) Copper alloy for terminal/connector, and manufacturing method therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20070724

A02 Decision of refusal

Effective date: 20080122

Free format text: JAPANESE INTERMEDIATE CODE: A02