TW200823302A - Cu-Ni-Si alloy - Google Patents

Cu-Ni-Si alloy Download PDF

Info

Publication number
TW200823302A
TW200823302A TW096134670A TW96134670A TW200823302A TW 200823302 A TW200823302 A TW 200823302A TW 096134670 A TW096134670 A TW 096134670A TW 96134670 A TW96134670 A TW 96134670A TW 200823302 A TW200823302 A TW 200823302A
Authority
TW
Taiwan
Prior art keywords
mass
alloy
rolling
conductivity
less
Prior art date
Application number
TW096134670A
Other languages
Chinese (zh)
Other versions
TWI355426B (en
Inventor
Takaaki Hatano
Original Assignee
Nippon Mining Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co filed Critical Nippon Mining Co
Publication of TW200823302A publication Critical patent/TW200823302A/en
Application granted granted Critical
Publication of TWI355426B publication Critical patent/TWI355426B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49579Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

A Cu-Ni-Si alloy for electronic material that with the addition of other alloy elements minimized, simultaneously exhibits enhanced electric conductivity, strength, flexure and stress relaxation performance. There is provided a Cu-Ni-Si alloy comprising 1.2 to 3.5 mass% Ni, Si in a concentration (mass%) of 1/6 to 1/4 of the Ni concentration (mass%) and the balance Cu and impurities whose total amount is 0.05 mass% or less, the Cu-Ni-Si alloy having its configuration of crystal grains and width of nonprecipitation zone regulated so as to fall within appropriate ranges through controlling of solution treatment conditions, aging treatment conditions and degree of roll working. Thus, there can be provided a copper alloy strip of 55 to 62% IACS electric conductivity and 550 to 700 Mpa tensile strength, being free from cracking at 180 DEG contact bending and exhibiting a stress relaxation ratio, as measured upon heating at 150 DEG C for 1000 hr, of 30% or below.

Description

200823302 九、發明說明: 【發明所屬之技術領域】 、連接器、接腳、 Cu - Ni - Si 系合 。並且,本發明關 本發明關於一種適合使用於導線架 端子、繼電器、開關等各種電子零件: 孟又,本發明關於該合金之製造方法 於一種利用該合金之電子零件。 【先前技術】 備…件等之電子材料用銅合金,係要求同時且 備南強度及而導電性(或導熱性)作為基本特性。又^ 要求’,、曲加工性、抗應力鬆弛特性、耐熱 鑛敷特性、焊料_性、_加卫性、衝壓性、耐 於此種背景下,近年來,作為電子材料用銅合金,時 ;硬化型銅合金之使用量不斷增加,取代先前以麟青銅、 汽銅等為代表之固溶強化型銅合金,該時效硬化型銅合全 t強度、導電率、應力鬆弛特性較固溶強化型銅合金優里。 :效硬化型銅合金中’藉由對經固溶處理之過飽和固溶體 進行時效處理,使微細之析出物均句分散,提高合金強度, 同時減少銅中之固溶元素量,提升導電性。 時效硬化型銅合金中,Cu_Ni—Si系合金為具有相對 車父雨之導電性及強度之銅合金,係業界目前積極進行開發 之合金之-。該銅合金係藉由在銅基質中析出微細之奶― Si系金屬間化合物粒子,提升強度及導電率。 例如’於日本特開2002 - 266〇42號公報(專利文獻】) 中’揭示-種同時具備高強度及彎曲加工性之Cun 5 200823302 系合金。揭示有··當製造該銅合金時,應使時效處理前後 之冷軋加工率之和為40%以下,於固溶處理中,應選擇使 再結晶粒之粒徑達到5〜15 μπ1之加熱條件,以及時效處 理應於440〜500°C下進行30〜30〇分鐘。 该文獻中具體揭示之銅合金於w彎曲時不會產生裂 痕,當導電率為最高之53%IACS時,拉伸強度為52〇MPa,200823302 IX. Description of the invention: [Technical field to which the invention pertains], connectors, pins, Cu-Ni-Si bonding. Further, the present invention relates to a variety of electronic components suitable for use in lead frame terminals, relays, switches, etc.: Meng, the present invention relates to a method of manufacturing the alloy to an electronic component using the alloy. [Prior Art] Copper alloys for electronic materials, such as preparations, are required to have both south strength and electrical conductivity (or thermal conductivity) as basic characteristics. ^Required ',,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, The use amount of the hardened copper alloy is increasing, replacing the solid solution-strengthened copper alloy previously represented by lin bronze, vapor copper, etc., and the age-hardening copper has a full t-strength, electrical conductivity, stress relaxation property and solid solution strengthening. Type copper alloy excellent. In the effect-hardening copper alloy, by aging treatment of the solution-treated supersaturated solid solution, the fine precipitates are uniformly dispersed, the strength of the alloy is increased, and the amount of solid solution elements in copper is reduced, and conductivity is improved. . Among the age-hardening type copper alloys, the Cu_Ni-Si-based alloy is a copper alloy having conductivity and strength with respect to the father's rain, and is an alloy which is actively developed in the industry. This copper alloy improves the strength and electrical conductivity by depositing fine milk-Si intermetallic compound particles in a copper matrix. For example, in the Japanese Patent Publication No. 2002-266-42 (Patent Literature), a Cun 5 200823302 alloy having high strength and bending workability is disclosed. It is revealed that when the copper alloy is produced, the sum of the cold rolling processing rates before and after the aging treatment is 40% or less, and in the solution treatment, the heating of the recrystallized grains to 5 to 15 μπ1 should be selected. Conditions, as well as aging treatment should be carried out at 440 ~ 500 ° C for 30 ~ 30 〇 minutes. The copper alloy specifically disclosed in this document does not cause cracks when bent at w, and the tensile strength is 52 MPa when the conductivity is the highest 53% IACS.

田拉伸強度為最南之71〇 MPa時,導電率為46%1ACs (參 照實施例之表2 )。 於曰本特開2〇〇1 - 207229號公報(專利文獻2)中, 記載有嘗試開發不僅具有強度、導電性,且 加工性的一 Si系合金之例。該文獻中,記載有= 由使合金中之Ni與Si之重量比接近於為金屬間化合物之 Nl2Si之濃度,即藉由使沁與Si之重量比為Ni/Si=3〜7, 以得到良好之導電性。又,記載有:藉由於C卜Ni— 系合金中,添加Fe及/或Zr、Cr、Ti、M〇中任一種以上 之元素,進行成分調整,然後可視需要使其含有Mg、Zn、 A1 P Μη Ag或Be ’藉此提供一種適合 材料用銅合金之材料。 該文獻所具體揭示之銅合金,於9〇。彎曲(非18〇。彎 曲)時不會產生裂痕,導電率為最高之56%職時,拉 伸強度為64G MPa ’拉伸強度為最高之⑽廳時,導電 (參照實施例之表υ。又,該文獻之實施 〔中,使時效處理前以及時效處理後所進行的冷軋加工度 分別為60%以及37.5% (總計97 5%)。 200823302 於曰本特開昭61 — 194158號公報(專利文獻3)中, 揭示有一種具有60% I ACS以上之導電率,強度高,剛度、 反覆彎曲性優異,且具有高耐熱性之Cu — Ni — Si系合金。 於該文獻中記載有:應當含有作為添加元素之Μη : 0.02〜 1.0 wt%、Ζη : 0.1 〜5.0 wt%、Mg : 〇·〇〇ι 〜0·01 wt%,並 且應當含有0_001〜〇·〇1 wt%之自Cr、Ti、Zr中選擇之1 種或2種以上之元素。 該文獻之實施例中,揭示有拉伸強度為5 1.0 kgf/ mm2 (500 MPa)、導電率為67.0% IACS之資料,以及拉伸強When the field tensile strength is 71 MPa at the southernmost point, the conductivity is 46% 1 ACs (refer to Table 2 of the examples). Japanese Patent Publication No. 2-207229 (Patent Document 2) discloses an attempt to develop a Si-based alloy which has not only strength, conductivity, and workability. In this document, it is described that = the weight ratio of Ni to Si in the alloy is close to the concentration of Nl2Si which is an intermetallic compound, that is, by making the weight ratio of bismuth to Si Ni/Si = 3 to 7, Good electrical conductivity. Further, it is described that the element is adjusted by adding any one or more of Fe and/or Zr, Cr, Ti, and M〇 to the C-Ni alloy, and then, if necessary, Mg, Zn, and A1 are contained. P Μη Ag or Be ' thereby providing a material suitable for the copper alloy of the material. The copper alloy specifically disclosed in this document is at 9 〇. When bending (non-18 〇. bending), cracks are not generated, the conductivity is the highest at 56% of the service, and the tensile strength is 64 G MPa. When the tensile strength is the highest (10), it is electrically conductive (refer to the table of the examples). Moreover, in the implementation of this document, the degree of cold rolling performed before and after the aging treatment was 60% and 37.5%, respectively (97 5% in total). 200823302 曰本本开开61-194158号(Patent Document 3) discloses a Cu-Ni-Si alloy having a conductivity of 60% I ACS or more, high strength, excellent rigidity and reverse bending property, and high heat resistance. : should contain Μη as an additive element: 0.02~1.0 wt%, Ζη: 0.1 〜5.0 wt%, Mg: 〇·〇〇ι ~0·01 wt%, and should contain 0_001~〇·〇1 wt% One or more elements selected from the group consisting of Cr, Ti, and Zr. In the examples of the literature, data showing a tensile strength of 5 1.0 kgf/mm 2 (500 MPa) and a conductivity of 67.0% IACS are disclosed, Strong tensile

度為 62.0 kgf/mm2 ( 593 MPa)、導電率為 64.0% I ACS 之資料(參照表2)。 將10 mm經熱軋之該Cu-Ni_ Si系合金冷軋至〇 25 mm為止,中途並不實施再結晶退火。此時軋製加工度高 達97.5%,推測彎曲加工性極度惡化。再者,於冷軋中途 以及冷軋後進行45 0°C之退火,於Cu~Ni — Si系合金之情 形,於該溫度下雖會進行析出反應,但不會進行再結晶。 於曰本特開平11 — 222641號公報(專利文獻4)中, 揭示有下述Cu—Ni — Si系合金:係添加特定量之Sn、Mg, 或者進一步添加特定量之Zn,限制S、〇之含量,並且使 結晶粒度超過1叫、| 25 μιη以下,藉此兼具優異之機械 知生、傳$性、應力鬆弛特性及彎、曲加工性。又,該文獻 中,記載有為將結晶粒度調整至上述範圍,而應當於冷加 工後,以700〜920。(:進行再結晶處理。 該文獻之實施例中,揭示有拉伸強度為61〇〜7ι〇 “匕 7 200823302 :了進行180度密合彎曲之Cu_Ni—si系合金。該合金 導電率為31〜42%IACS,於戰下加熱1000小時後 之應力鬆弛率為14〜22%。 了、於曰本特許第3520034號公報(專利文獻5)中,揭 不有下述Cu~Ni—Si系合金,其特徵在於:含有特定量 ^Mg、Sn、Zn、s,結晶粒徑超過〇 〇〇1麵、在〇 〇25醜 以下’並且,與最後塑性加工方向平行之剖自中的晶粒長 “、及與最後塑性加工方向正交之剖面中的晶粒長徑b 、(/b)在〇.8以上1,5以下,具有優異之彎曲加工 性以及應力鬆弛特性。 該文獻之實施例中,揭示有拉伸強度為685〜71〇 咖,導電“ 32〜㈣IACS,可進行⑽度密合彎曲之 Cu~ Ni— Si系合金。The degree is 62.0 kgf/mm2 (593 MPa) and the conductivity is 64.0% I ACS (refer to Table 2). The cold rolled Cu-Ni_Si alloy of 10 mm was cold rolled to 〇 25 mm, and recrystallization annealing was not performed in the middle. At this time, the degree of rolling processing was as high as 97.5%, and it was estimated that the bending workability was extremely deteriorated. Further, in the middle of cold rolling and after cold rolling, annealing at 45 °C is carried out, and in the case of Cu~Ni-Si alloy, precipitation reaction is carried out at this temperature, but recrystallization is not performed. Japanese Patent Publication No. Hei 11-222641 (Patent Document 4) discloses a Cu-Ni-Si alloy in which a specific amount of Sn or Mg is added or a specific amount of Zn is further added to limit S and 〇. The content is such that the crystal grain size exceeds 1 and is 25 μm or less, thereby achieving excellent mechanical knowledge, transmission property, stress relaxation property, and bending and bending property. Further, in this document, it is described that the crystal grain size is adjusted to the above range, and it should be 700 to 920 after cold working. (: Recrystallization treatment is carried out. In the examples of this document, a tensile strength of 61 〇 to 7 〇 is disclosed. "匕7 200823302: Cu_Ni-Si alloy which is 180 degree tightly bent. The conductivity of the alloy is 31. ~42% IACS, the stress relaxation rate after heating for 1000 hours under the war is 14 to 22%. In the Japanese Patent No. 3520034 (Patent Document 5), the following Cu~Ni-Si system is not disclosed. An alloy characterized by containing a specific amount of Mg, Sn, Zn, s, crystal grains having a crystal grain size exceeding 〇〇〇1 surface, below 〇〇25 ugly, and being parallel to the final plastic working direction The long and long grain diameters b and (/b) in the cross section perpendicular to the final plastic working direction are excellent in bending workability and stress relaxation characteristics in the range of 〇8 or more and 5 or less. In the examples, a Cu~Ni-Si alloy having a tensile strength of 685 to 71 ,, a conductive "32~(tetra) IACS, and a (10) degree close bending is disclosed.

最近關於Cu - Ni - Si系合金之特性改良之研究, 於非專利文獻1以及2等中,報告有著眼於析出物空乏區 (Z Precipitate free zone ),改善強度以及彎曲性的技 術。所謂析出物空乏(¾,仫扣τ 士 i 糸扎不存在微細析出物(因時效處 里t之日日界反應型析出(非連續析出)而形成於晶界附近) 的帶狀區域。由於不存在右舳 > 予社百助於強度之微細析出物,因此 當承受外力時,則該析出物空彡F , 切工之區會百先產生塑性變形, 導致拉伸強度及彎曲加工性降低。 根據非專利文獻1,為抑制批φ q μ利斫出物空乏區,添加P、Sn 以及兩段時效較為有效。 45〇°C><16h之通常時效之前 關於後者,係記載··藉由於 附加2 5 〇 °C X 4 8 h之預備時效, 8 200823302 使強度大幅增加,且不會損及拉伸性。具體而言,揭示一 種拉伸強度為770〜900 MPa、導電率為34〜36% I ACS之In the recent studies on the improvement of the properties of the Cu-Ni-Si alloy, in the non-patent documents 1 and 2, etc., there is reported a technique for improving the strength and the bendability in the Z Precipitate free zone. There is no depletion of precipitates (3⁄4, 仫 τ τ i i 糸 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 带 带 带 带 带 带 带 带 带 带 带 带 带 带 带 带 带 带 带 τ τ τ τ τ τ τ τ τ τ τ 由于 由于 由于There is no right-handedness> The company has a fine precipitate of strength, so when it is subjected to external force, the precipitate is empty, and the area of the cut will be plastically deformed, resulting in tensile strength and bending workability. According to Non-Patent Document 1, it is effective to add P, Sn, and two-stage aging to suppress the batch φ q μ profit-poor area. 45〇°C><16h Before the usual aging, the latter is recorded. · With the addition of 2 5 〇 ° CX 4 8 h preparation aging, 8 200823302 greatly increases the strength without compromising the stretchability. Specifically, it discloses a tensile strength of 770 to 900 MPa and conductivity. 34~36% I ACS

Cu— Ni— Si系合金。 非專利文獻2中,具有隨著時效時間增加,pFZ的寬 度亦增加之記載。 專利文獻1 ·日本特開2〇〇2 _ 266〇42號公報 專利文獻2 ··日本特開2〇〇1 一 2〇7229號公報 φ 專利文獻3 :日本特開昭61 — 194158號公報Cu—Ni—Si alloy. Non-Patent Document 2 has a description that the width of pFZ also increases as the aging time increases. [Patent Document 1] Japanese Patent Laid-Open Publication No. 2 〇〇 〇 29 专利 专利 专利 专利 φ φ φ φ φ φ φ 专利 专利 φ 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利

專利文獻4 ··日本特開平u— 222641號公報 專利文獻5 :日本特許第352〇〇34號公報 非專利文獻1 :渡邊千尋、宮腰勝、西嶋文哉、門前 儿 ’「Cu—4·0 mass% Ni - 0.95mass% Si - 〇.〇2mass% P 合金之機械特性之改善」,銅及銅合金,日本伸銅協會, 2006年,第45卷,第1版,第16- 22頁。 非專利文獻2 :伊藤吾朗、铃木俊亮、佟慶平、山本 _ 佳紀、伊藤伸英,「Ni、Si量及時效條件帶給Cu_Ni_Si 系合金板材之彎曲加工性之影響”,銅及銅合金,日本伸銅 協會,2006年,第45卷,第1版,第71 - 75頁。 【發明内容】 如上所述,關於Cu— Ni— si系合金之特性改善雖然開 毛有各種方法,然至今為止,試圖藉由添加其他合金元素 來二4寸丨生之方法仍為主流。然而,近年來,由於回收再 利用性之問題’係逐漸要求減少合金中之添加元素。 又,隨著近年來電子零件之高積體化以及小型化、薄 9 200823302 壁化之發展,亦要求改善Cu_Ni_si系合金之導電率。 其原因在於,由於通電部位之剖面積變小,導致焦耳熱所 引起之零件之溫度上升增加。 △ T= J2 · L2/ ( 2 · E · Η · S2) 此處,Ζ\τ為溫度上升,J為電流,Ε為導電率,Η為 導熱率,L及S分別為通電部之長度及剖面積。由於11與 Ε成比例關係,因此溫度上升與導電率之平方成反比。 ^另方面,當零件之剖面積減小時,則由於在連接器 ^ L中彈力會降低,故拉伸強度、抗應力鬆弛性等盘彈 力夂相關之特性亦受到重視。因此,不容許為提升導電:而 Ρ牛低拉伸強度或抗應力鬆弛性。同樣地,料零件之小型 化,零件加工亦變得複雜,故亦不容許彎曲性降低。 因此’本發明之目的在於裎 人今#备、,、 隹於棱供一種儘可能不添加其他 二且兼具有改善之導電率、強度、彎曲性以及 氣、㈣性之電子材料用Cu—Ni—Si系合金,。 又,本發明之其他目的在 合金之製造方法。 ^種該Cu-N丨-Si系Patent Document 4: Japanese Patent Laid-Open No. 222641 Patent Document 5: Japanese Patent No. 352〇〇34 Non-Patent Document 1: Watanabe Chihiro, Miyagawa Kasumi, Seibu Kei, and Front Door “Cu—4·0 mass % Ni - 0.95mass% Si - 〇.〇2mass% Improvement of mechanical properties of P alloys, Copper and Copper Alloys, Japan Copper Association, 2006, Vol. 45, 1st edition, pp. 16-22. Non-Patent Document 2: Ito-Uro, Suzuki Jun-liang, Sui Qing-Ping, Yamamoto _ Jia Ji, Ito Shin-yeon, "Impact of Ni and Si Quantity and Time-Dependent Conditions on Bending Machinability of Cu_Ni_Si Alloy Sheets", Copper and Copper Alloys, Japan Copper Association, 2006, Vol. 45, 1st edition, pp. 71-75. DISCLOSURE OF THE INVENTION As described above, there are various methods for improving the properties of the Cu-Ni-Si-based alloy. However, attempts to add two-inch twins by adding other alloying elements have hitherto been the mainstream. However, in recent years, the problem of recycling is gradually required to reduce the added elements in the alloy. In addition, with the recent development of high-volume electronic components and the miniaturization and thinning of the 200823302, it is also required to improve the electrical conductivity of the Cu_Ni_si alloy. The reason for this is that the temperature rise of the parts due to Joule heat increases due to the smaller sectional area of the energized portion. △ T= J2 · L2/ ( 2 · E · Η · S2) Here, Ζ\τ is the temperature rise, J is the current, Ε is the conductivity, Η is the thermal conductivity, and L and S are the lengths of the energized part, respectively. Sectional area. Since 11 is proportional to Ε, the temperature rise is inversely proportional to the square of the conductivity. On the other hand, when the sectional area of the part is reduced, since the elastic force is lowered in the connector ^ L, the characteristics of the tensile strength, the stress relaxation resistance, and the like are also emphasized. Therefore, it is not allowed to promote electrical conductivity: yak has low tensile strength or stress relaxation resistance. In the same way, the miniaturization of the material parts and the processing of the parts are complicated, so that the bending property is not allowed to be lowered. Therefore, the purpose of the present invention is to provide a metal material for the use of Cu, which is as far as possible, without any other additions and having improved conductivity, strength, flexibility, and gas, and (4). Ni-Si alloy. Further, another object of the present invention is a method of producing an alloy. ^The Cu-N丨-Si system

Ni二明之另一其他目的在於提供-種使用該。卜 Sl糸合金之伸銅品以及電子零件。 本务明人為解決上述問題妙:既、 在儘可能抑制雜質之Cu〜Ni、rs厂 =究後發現,可藉由 對時效處理之升溫速度、;之製造過程中, 間賦予特殊條件,並且使固溶處:=達溫度以及時效時 之軋製加,當化,得到兼具優異後 10 200823302 抗應力鬆弛特性及彎曲性的Cu — Ni — Si系合金。 以上述見解為基礎所完成的本發明之一態樣,係一種 Cu —Νι — Si系合金,其特徵在於:含有I ]〜3 5質量%之 Νι、以及濃度(質量%)為犯濃度(質量%)之1/6〜1 / 4之Si,剩餘部分由Cu及總量在〇·〇5質量%以下之雜 質構成,並且兼具下述特性··Another other purpose of Ni Erming is to provide this type of use. Bu 糸 alloy alloy copper and electronic parts. In order to solve the above problems, it is found that, in the case of Cu~Ni, rs factory, which suppresses impurities as much as possible, it is found that special conditions can be given in the manufacturing process by the temperature increase rate of the aging treatment, and The solid solution: = the temperature and the rolling effect at the time of aging, and the Cu-Ni-Si alloy having excellent stress relaxation resistance and flexibility is obtained. An aspect of the present invention which is based on the above findings is a Cu-Νι-Si-based alloy characterized in that it contains I?~35 mass% of Νι, and the concentration (% by mass) is the concentration ( Si of 1/6 to 1 / 4 of the mass %), and the remainder is composed of Cu and impurities having a total amount of 5% by mass or less of 〇·〇, and has the following characteristics··

(Α)導電率:55 〜62%IACS (B) 拉伸強度:550〜700 MPa (C) 言曲性:1 8 〇度密合彎曲時不會產生裂痕 (D) 抗應力鬆弛性:於150。(:下加熱1〇〇〇小時後之 應力鬆弛率在3 0 %以下 又’當於上述合金中添加Zn時,則雖然導電率會略 微降低’但是由於對Sn鍍敷之耐熱剝離性的改善效果大, 故尤其於要求良好之Sn鍍敷之耐熱剝離性時,可於上述 合金中添加上限為0 5質量%之Zll。 因此,本發明之另一態樣,係一種Cu—Ni— si系合金, 其特徵在於··含有L2〜3·5質量%之Ni、濃度(質量% ) 為Ni濃度(質量%)之1/6〜1/4之Si、以及〇·5質量 %以下之Zn ’剩餘部分由cu以及總量在〇·〇5質量%以下 之雜質構成,且兼具下述特性,(Α) Conductivity: 55 ~62% IACS (B) Tensile strength: 550~700 MPa (C) Speaking: 1 8 〇 密 密 弯曲 弯曲 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 150. (The stress relaxation rate after heating for 1 hour is less than 30%. 'When Zn is added to the above alloy, the conductivity is slightly lowered', but the heat-resistant peelability of Sn plating is improved. Since the effect is large, Zll may be added to the above alloy in an upper limit of 0.55% by mass, particularly in the case of a desired heat-resistant peeling property of Sn plating. Therefore, another aspect of the present invention is a Cu-Ni-si. The alloy is characterized in that it contains Ni in an amount of L2 to 3.5 mass%, and the concentration (% by mass) is 1/6 to 1/4 of Si of Ni concentration (% by mass), and 〇·5 mass% or less. The remainder of Zn' is composed of cu and impurities having a total amount of 5% by mass or less of 〇·〇, and has the following characteristics.

(Α)導電率:55〜62%IACS (B) 拉伸強度:550〜700 MPa (C) 禽曲性:1 § 〇度密合彎曲時不會產生裂痕 (〇)抗應力鬆弛性:於150。(:下加熱1〇〇〇小時後之 11 200823302 應力鬆弛率在3 〇 %以下 (E )耐熱剝離性··於Sn鍍敷财熱剝離測試後,未發 現鑛敷剝離 又’本發明之銅合金於一實施形態中,當於平行於乾 製面之剖面的金屬組織中,設與晶粒之軋製方向正交之方 向的平均粒徑為a,與軋製方向平行之方向的平均粒徑 時, # φ a=l 〜15pm,b/a=;L〇5 〜1.67, 亚且,金屬組織中之析出物空乏區之平均寬度為1〇〜 1 〇〇 nm 〇 又,本發明另一態樣,係一種使用上述銅合金之伸銅 πα ° 又本鲞明另一態樣,係使用上述銅合金之導線架、 、°接腳、^子、繼電器、開關、二次電池用箔材等 電子零件。 ' _ 八,本务明之另一態樣,係一種上述Cu- Ni — Si系合 ^之衣w方法,包括依序進行固溶處理、冷軋、時效處理、 々軋之步冑,其特徵在於以下㉝條件進行各步驟·· (固溶處理)將平均晶體粒徑調整至之範 圍; 1才放處理)使熱處理時材料之最高溫度在55〇π以 下卫將材料保持在450〜550°c之溫度範圍5〜15小時。 又’於升溫過程中’使2⑽〜25(TC、25〇〜3〇〇。〇及300〜35(rc 之各溫度區間的材料之平均升溫速度在5〇t:/h以下; 12 200823302(Α) Conductivity: 55~62% IACS (B) Tensile strength: 550~700 MPa (C) Avian curvature: 1 § No cracks when bending tightly (〇) Anti-stress relaxation: 150. (: 11 after heating for 1 hour) 200823302 Stress relaxation rate is less than 3% (E) Heat-resistant peelability · After the Sn plating hot-peeling test, no peeling of the mineral deposit was found. In one embodiment, in the metal structure parallel to the cross section of the dry surface, the average particle diameter in the direction orthogonal to the rolling direction of the crystal grains is a, and the average particle in the direction parallel to the rolling direction When the diameter is, φ a = l 〜 15 pm, b / a =; L 〇 5 ~ 1.67, and the average width of the depletion region of the precipitate in the metal structure is 1 〇 1 1 〇〇 nm 〇 again, the present invention In one aspect, a copper alloy using the copper alloy πα ° and another aspect of the copper alloy, the lead frame of the copper alloy, the ° pin, the ^, the relay, the switch, the foil for the secondary battery Electronic parts such as wood. ' _ 八, another aspect of this work, is a method of the above-mentioned Cu-Ni-Si-based coating, including sequential solution treatment, cold rolling, aging treatment, rolling Step, which is characterized by the following 33 conditions for each step (·Solution treatment) to adjust the average crystal grain size To the range; 1 before discharge treatment) when the maximum temperature of the material in the heat treatment following 55〇π guard holding the material at a temperature range of 450~550 ° c 5~15 hours. Further, during the heating process, 2 (10) to 25 (TC, 25 〇 to 3 〇〇. 〇 and 300 to 35 (the average temperature rise rate of the material in each temperature range of rc is 5 〇 t: / h or less; 12 200823302

(冷軋)使時效前之冷軋的軋製加工度與時效後之冷 軋的軋製加工度之合計為5〜40%。 Y 根據本發明,可提供一種下述電子材料用Ni〜s· 系合金,其未添加有Ni及Si以外之合金元素,或未添加1 有Ni' Si及Zn以外之合金元素’並且’兼具經改善之導 電率、強度、彎曲性以及應力鬆弛特性。 【實施方式】 合金組成 本發明之銅合金,係使Si濃度( 狀/又、貝里% )在Ni濃度 (質量%)之1/6〜1/4之範圍。其原因在於,若以脫 離該範圍,則無法獲得良好之導電率(例如55%iacs以 上)。較佳Si之範圍為Ni之1 / 5 5〜1 / /1 1 ^ ,乂5〜1/4.2,更佳Si之 範圍為Ni之1/5.2〜1/4_5。 又,使犯為U〜3.5質量%。若犯低於12質量%, 則無法獲得良好之拉伸強度(例如55q他以上)。若 超過U質量%’則無法獲得良好之彎曲加工性(例如18〇 度密合彎曲時會產生裂痕)。較佳Ni濃度A U〜25質 量%,更佳Ni之範圍為h5〜2〇質量%。 、 先前之主流係藉由在Cu xr n. ^ 入一 A 隹LU〜Nl— S!系合金中添加各種合 金7G素來改善合金特性,麸 …、根據本發明之目的,則律可銥 排除其他合金元素(本 ^中亦稱作雜質)。又,亦證實, 於有目的地含有其他合令 、 v 、’素之情形時,將會有無法獲得 充为之導電率之傾向,而難 日、 .k 難以獲传兼具強度、導電率、彎 曲性以及應力鬆弛特性的 弓 妁Cu—Ni~Si系合金。因此,於 13 200823302 本發明中’將雜質總量控制在0 05質量%以下,較佳控制 在〇.02質量%以下,更佳則控制在0.01質量%以下。因 此,本發明之較佳實施形態中,於Cu-Ni- si系合金中, 除不可,免之雜質以外,不存在犯及Sia外之合:元素’。 但是,由於Zn對導電率之影響較小,而對Sn鑛敷之 :熱剝離性之改善效果大’因此尤其在要求良好之h鍍 耐熱剝離性的情形時,可添加Zn。每(M質量%之〜 ::致導電率降低〇.職cs左右。然而,若〜超過〇 $ 貝里% ’則難以獲得充分之導電率(例如55%IACS以上), :Zn未達〇,G5 f量%之情形時’則幾乎不具有改善% 2之耐熱剝離性的效果。因此,較佳Zn濃度為〇〇5〜〇5 貝里/6,更佳Zn濃度為〇·ι〜〇·3質量%。 金屬組織 於平行於軋製面之剖面之金屬組織中,設與晶粒軋製 方向正交之方向的平均粒徑為a,與軋製方向 的平均粒徑為b時,使一 15μιη、一〇5〜: 如超Γ:二1,時’則無法獲得良好之應力鬆他率(例 h 心。且,時效時析出之不足,無法獲得 卿:拉伸強度。另一方面’“超過〜時,則無法 Γ:二良好…加工性(例如當⑽度密合彎曲時會產生 :2幻。較佳為…〜,於重視彎曲性之情形時,a 時,則以一_為更佳4抗應力鬆他特性之情形 當b/a未達1.05時,則無法獲得良好之拉伸強度(例 14 200823302 如低於550 MPa)。另一禾 ^ 面虽b/a超過1.67時,則 然法獲得良好之彎曲性則 (例如當180度密合彎曲時會產生 裂痕)。較佳為b/a=】, 座生 ⑶。 /a uo〜u〇’更佳為b八叫.20〜 織中析二Γ 面之剖面之金屬組織中,使金屬兔 ==物空乏區之平均寬度為一,若析出物:(Cold rolling) The total of the rolling degree of cold rolling before aging and the rolling degree of cold rolling after aging are 5 to 40%. Y According to the present invention, there is provided a Ni-s·-based alloy for an electronic material which is not added with an alloying element other than Ni and Si, or an alloying element other than Ni'Si and Zn. Improved conductivity, strength, flexibility and stress relaxation properties. [Embodiment] Alloy composition The copper alloy of the present invention has a Si concentration (%/By, Berry%) in the range of 1/6 to 1/4 of the Ni concentration (% by mass). The reason for this is that if the range is removed, a good electrical conductivity (e.g., 55% iCAS or more) cannot be obtained. Preferably, the range of Si is 1 / 5 5 to 1 / /1 1 ^ of Ni, 乂 5 to 1 / 4.2, and more preferably, the range of Si is 1 / 5.2 to 1/4 - 5 of Ni. Moreover, it is made U to 3.5% by mass. If it is less than 12% by mass, a good tensile strength (for example, 55 q or more) cannot be obtained. If it exceeds U mass%', good bending workability (for example, cracking occurs when the film is tightly bent at 18 degrees). Preferably, the Ni concentration is A U to 25% by mass, and more preferably Ni is in the range of h5 to 2% by mass. The previous mainstream system improves the alloy properties by adding various alloys 7G in Cu xr n. ^ into an A 隹 LU~Nl-S! alloy, and according to the purpose of the present invention, the law can exclude other Alloying elements (also referred to as impurities in this ^). Moreover, it has also been confirmed that when there is a purpose of including other orders, v, and 'sexuality, there will be a tendency to be unable to obtain a conductivity, and it is difficult to obtain a strength and conductivity. , Cu-Ni~Si alloy with bowing and stress relaxation properties. Therefore, in the present invention, the total amount of impurities is controlled to 0.25 mass% or less, preferably 0.02 mass% or less, and more preferably 0.01 mass% or less. Therefore, in the preferred embodiment of the present invention, in the Cu-Ni-Si-based alloy, there is no impurity other than Sia except for impurities. However, since Zn has a small influence on the electrical conductivity, and the Sn mineralization has a large effect of improving the thermal peelability, Zn can be added especially in the case where a good h plating heat-resistant peeling property is required. Each (M% by mass of ~: :: conductivity decreases 〇. job c or so. However, if ~ more than 〇 $ Berry% 'it is difficult to obtain sufficient conductivity (for example, 55% IACS or more), : Zn is not up to 〇 When the amount of G5 f is %, there is almost no effect of improving the heat-resistant peelability of % 2. Therefore, the preferred Zn concentration is 〇〇5 to 〇5, and the Zn concentration is 〇·ι~ 〇·3 mass%. The metal structure is such that the average particle diameter in the direction orthogonal to the grain rolling direction is a in the metal structure parallel to the cross section of the rolled surface, and the average particle diameter in the rolling direction is b. , so that a 15μιη, a 〇 5~: such as super Γ: two 1, when 'can not get a good stress rate (such as h heart. And, the aging is insufficient, can not get Qing: tensile strength. Another On the one hand, 'when it exceeds ~, it can't be smashed: two good...processability (for example, when (10) degree is tightly bent, it will produce: 2 illusion. It is preferably...~, when it is important to bend, a, then In the case of a better anti-stress loosening property, when b/a is less than 1.05, good tensile strength cannot be obtained (Example 14 20) 0823302 is lower than 550 MPa). When the b/a of the other surface exceeds 1.67, the good bending property is obtained (for example, cracks occur when the 180 degree is tightly bent). Preferably, b/a =], seat student (3). /a uo~u〇' is better for b 八叫.20~ 织中析二Γ The metal structure of the profile of the face, so that the average width of the metal rabbit == empty space is one, If the precipitate:

:之見度增大,則無法獲得充分之彎曲性、抗應力鬆: =拉伸強度。若析出物空乏區之寬度超過一: :錢得良好之彎曲性(例⑯180度密合彎曲時會產生= 喂’亦無法獲得良好之應力鬆他率(例如超過肩) 雖然析出物空乏區之寬度越窄越好,然若將其抑制為未達 i〇:m時’則即使實施下述為本發明之特徵的時效處理, 亦無法獲得良好之導電率(例如55%IACS以上)。因此, 為平衡良好地提升導電率、彎曲加工性以及抗應力鬆弛 性,較佳之析出物空乏區之平均寬度為20〜90 nm,更佳 之析出物空乏區之平均寬度為30〜80 nm。 再者,藉由調整成上述組織,有助於提升強度之具有 奈米級粒徑的微細Ni—Si系金屬間化合物粒子亦會高頻率 地析出。 合金特性 於一實施形態中,本發明之銅合金兼具以下特性:: When the visibility is increased, sufficient bending property and stress relaxation resistance are not obtained: = tensile strength. If the width of the depletion zone is more than one: : the money is well bent (in the case of 16180 degrees of tight bending, it will produce = feed 'and good stress relaxation rate (eg over shoulder). The narrower the width, the better, but if it is suppressed to less than i: m, then even if the aging treatment described below is a feature of the present invention, a good electrical conductivity (for example, 55% IACS or more) cannot be obtained. In order to improve the conductivity, bending workability and stress relaxation resistance in a balanced manner, the average width of the depletion region of the precipitate is preferably 20 to 90 nm, and the average width of the depletion region of the precipitate is 30 to 80 nm. The fine Ni-Si-based intermetallic compound particles having a nano-sized particle diameter which contributes to the improvement of strength by the above-mentioned structure are also precipitated at a high frequency. Alloy Characteristics In one embodiment, the copper alloy of the present invention It has the following characteristics:

(A) 導電率:55 〜62%IACS (B) 拉伸強度:550〜700 MPa (C )彎曲性·· 18〇度密合彎曲時不會產生裂痕 15 200823302 (D)抗應力鬆弛性:於150°C下加熱1000小時後之 應力鬆弛率在30%以下(例如15〜30% )。 於較佳之一實施形態中,本發明之銅合金兼具以下特 性··(A) Conductivity: 55 to 62% IACS (B) Tensile strength: 550 to 700 MPa (C) Flexibility · 18 degrees without bending when it is tightly closed 15 200823302 (D) Stress relaxation resistance: The stress relaxation rate after heating at 150 ° C for 1000 hours is 30% or less (for example, 15 to 30%). In a preferred embodiment, the copper alloy of the present invention has the following characteristics:

(A) 導電率:56〜60% IACS (B) 拉伸強度:600〜660 MPa (c )彎曲性:1 80度密合彎曲時不會產生裂痕 (D )抗應力鬆弛性··於15 0 °C下加熱1 〇 〇 〇小時後之 應力鬆弛率在25%以下(例如15〜25% )。 於另一較佳之一實施形態中,本發明之銅合金兼具以 下特性:(A) Conductivity: 56~60% IACS (B) Tensile strength: 600~660 MPa (c) Flexibility: 1 80 degrees without bending when tightly bent (D) Stress relaxation resistance · 15 The stress relaxation rate after heating at 0 ° C for 1 〇〇〇 is less than 25% (for example, 15 to 25%). In another preferred embodiment, the copper alloy of the present invention has the following characteristics:

(A) 導電率·· 60 〜62%IACS (B) 拉伸強度:600〜610 MPa (C) 彎曲性:iso度密合彎曲時不會產生裂痕 (D )抗應力鬆弛性:於15 0 °C下加熱1 〇 〇 〇小時後之 應力鬆弛率在25%以下(例如20〜25% )。 本發明之銅合金之添加有Zn者於另一實施形態中, 可同時達成以下特性:(A) Conductivity ·· 60 ~62% IACS (B) Tensile strength: 600~610 MPa (C) Bending: no cracks when the iso is tightly bent (D) Stress relaxation: at 15 0 The stress relaxation rate after heating for 1 hour at ° C is 25% or less (for example, 20 to 25%). In another embodiment, the addition of Zn to the copper alloy of the present invention achieves the following characteristics simultaneously:

(A) 導電率:55〜62%IACS (B) 拉伸強度:550〜700 MPa (C )彎曲性:ι80度密合彎曲時不會產生裂痕 (D) 抗應力鬆弛性:於15〇。〇下加熱1〇〇〇小時後之 應力鬆弛率在30%以下(例如15〜3〇%) (E) 耐熱剝離性··於Sn鍍敷耐熱剝離測試後,未觀 16 200823302 測到鍍敷剝離。 本發明之銅合金之添加有Zn者於較佳之實施形態中, 可同時達成以下特性:(A) Conductivity: 55 to 62% IACS (B) Tensile strength: 550 to 700 MPa (C) Flexibility: ι 80 degrees does not cause cracks when tightly bonded (D) Stress relaxation resistance: 15 〇. The stress relaxation rate after heating for 1 hour under the armpit is 30% or less (for example, 15 to 3% by weight) (E) Heat-resistant peelability · After the Sn plating heat-resistant peeling test, no reflection 16 200823302 Stripped. In the preferred embodiment, the copper alloy of the present invention is added with Zn, and the following characteristics can be simultaneously achieved:

(A) 導電率·· 56〜60%IACS (B) 拉伸強度·· 6〇〇〜660 MPa (C ) %曲性:1 8 〇度密合彎曲時不會產生裂痕 (D) 抗應力鬆弛性:於15(rc下加熱1〇〇〇小時後之 應力鬆弛率在25%以下(例如15〜25% ) (E) 耐熱剝離性:於Sn鍍敷耐熱剝離測試後,未觀 測到鍍敷剝離。 本發明之銅合金之添加有Zn者於另一較佳之實施形 態中,可同時達成以下特性:(A) Conductivity ·· 56~60% IACS (B) Tensile strength··6〇〇~660 MPa (C) % Flexibility: 1 8 Tensile tightness does not cause cracks when bent (D) Anti-stress Relaxation: The stress relaxation rate after heating for 15 hours at 15 (rc) is 25% or less (for example, 15 to 25%). (E) Heat-resistant peelability: No plating was observed after the Sn plating heat-resistant peeling test. The bismuth is added to the copper alloy of the present invention. In another preferred embodiment, the following characteristics can be simultaneously achieved:

(A) 導電率:56 〜60%IACS (B) 拉伸強度·· 640〜660 MPa (C )彎曲性:χ 80度密合彎曲時不會產生裂痕 (D) 抗應力鬆弛性:於15〇。〇下加熱1〇〇〇小時後之 應力鬆弛率在20%以下(例如15〜20% ) (E) 耐熱剝離性:於Sn鍍敷耐熱剝離測試後,未觀 測到鍍敷剝離。 再者’上述所謂「Sn鍍敷耐熱剝離測試」,係指以下 述要點對試片之Sn鍍敷剝離進行評價之方法。 對試片實施厚度〇·3 μπι之Cii底層鍍敷以及厚度i 之Sn鍵敷,進行回焊處理,於3〇〇〇c下加熱秒鐘。 之後,沿Good Way ( GW,彎曲軸與軋製方向正交之 17 200823302 方向)進行彎曲半徑為0.5 9〇。彎曲及折回(往返一 次90。彎曲)後,於彎曲内周部表面貼附黏接膠帶(鍍敷 用遮蔽膠帶;基材:聚酉旨;接著力:3.49N八m(i8〇。剝 離);例:貼附住友3M製造之#851八並撕去。 使用光學顯微鏡(倍率為20倍)觀察彎曲内周部表面, 評價有無鍍敷剝離。 據本發明人所知,迄今為止,尚不存在與本發明之銅 合金具有相同組成’且如本發明之水準,平衡良好地達成 可與本發明之銅合金相匹敵之特性,gp導電率、強度、彎 曲加工性以及應力鬆弛特性之例。 又 弓 製造方法 ^ Uu— Νι 拉皓 、 〜―工丨,目亢便用大氣(A) Conductivity: 56 to 60% IACS (B) Tensile strength · 640 to 660 MPa (C) Flexibility: 不会 80 degrees tight bending does not cause cracks (D) Stress relaxation: 15 Hey. The stress relaxation rate after heating for 1 hour under the armpit is 20% or less (for example, 15 to 20%). (E) Heat-resistant peeling property: No peeling of the plating was observed after the Sn plating heat-resistant peeling test. Further, the above-mentioned "Sn plating heat-resistant peeling test" refers to a method of evaluating Sn plating peeling of a test piece as described below. The test piece was subjected to a Cii underlayer plating having a thickness of 〇3 μm and a Sn bond of a thickness i, and subjected to a reflow process, and heated at 3 ° C for a second. Then, along the Good Way (GW, the bending axis is perpendicular to the rolling direction, the direction of 17 200823302), the bending radius is 0.5 9 〇. After bending and folding back (round-turning 90. bending), an adhesive tape is attached to the inner peripheral surface of the curved surface (masking tape for plating; base material: poly sputum; then force: 3.49N eight m (i8 〇. peeling) Example: Attached to Sumitomo 3M, #851, and torn it off. The surface of the curved inner peripheral surface was observed with an optical microscope (magnification: 20 times) to evaluate the presence or absence of plating peeling. According to the inventors' knowledge, so far, There is an example in which the copper alloy of the present invention has the same composition' and, as in the level of the present invention, balances well with the characteristics of the copper alloy of the present invention, gp conductivity, strength, bending workability, and stress relaxation characteristics. Another bow manufacturing method ^ Uu- Νι 拉皓, ~―工丨, seeing the atmosphere

、谷1,於被覆木炭之狀態下,熔化電解銅、Ni、&等原料 將此溶融㈣造成鑄錠。之後,進行熱軋,並反覆進行二 =熱處理n具有所欲厚度及特性之條或羯(例: :度為請〜o.64mm)。熱處理含有固溶處理及時效處 :在:溶處理’係以約700〜約崎之高溫進行加敎, 吏在=時等產生之粗大Ni—Si系化合物固溶於C 中,同時使Cu母相再結晶。有時 日士 4m y ^^田熱乳兼具固溶處理。 二處以約350〜約55rc之溫度範圍加熱:小時 子析二二中所固溶之Ni及Si之化合物以微細粒 =2。騎效處理會提升強度及導”。有時 -強度’而於時效前及/或時效後進行冷軋。 士更 後進行冷軋之情形時,有時 於呀效 1才%々軋後進行去應變退火(低 18 200823302 溫退火)。, Valley 1, in the state of covering charcoal, melting electrolytic copper, Ni, & and other raw materials to melt (4) into ingots. Thereafter, hot rolling is performed, and a strip or enthalpy having a desired thickness and characteristics is performed in the second heat treatment n (example: degree is ~o.64 mm). The heat treatment contains solid solution treatment and aging: in the: solution treatment, the tantalum is heated at a high temperature of about 700 to about saki, and the coarse Ni-Si compound produced by 吏 at the time is dissolved in C, and the Cu is simultaneously The phase recrystallizes. Sometimes the Japanese milk 4m y ^ ^ field hot milk has a solution treatment. The two places are heated at a temperature ranging from about 350 to about 55 rc: the compound of Ni and Si which are solid-dissolved in the second analysis of the second is a fine particle = 2. The riding effect will increase the strength and guidance. Sometimes - strength - and cold rolling before and / or after aging. When the cold rolling is carried out, it is sometimes carried out after the rolling effect Strain annealing (low 18 200823302 temperature annealing).

時效處理中,當將加熱溫度固定而使加 則導電率會隨著時間固定上升。卜方面,通常::伸強 度會於某-時間達到極大值,之後則隨著時間而降低。當 一定時間内使溫度變化時,導電率會伴隨溫度上升而固Z 上升,拉伸強度會於表現出極大值之後降低。於拉伸強: 極大值之條件下進行之時效稱作峰時效,於拉伸強度 隨時間或溫度而降低之區域中所進行之時效稱作過時效。 為提高Cu-Ni—以系合金之導電率,可進行過時效。 即’若選擇適當之時效時間及溫度’可較容易地獲得良好 ,導電率6〇%IACS左右)1而,拉伸強度會降 2 (例如降低至500 MPa左右),不僅如此,抗應力鬆弛 寸性及幫’曲性亦會產生劣化。之後’ I進行高加工度之冷 軋:拉伸強度可恢復至_ MPa左右,然因加工應變會: 致兮曲性顯著劣化’且亦無法期待抗應力鬆他特性獲得提 升。專利文獻3等中所揭示之先前之高導電性 系&金基本上為應用此過時效的技術。 本發明人為平衡良好地改#導電率、強度、f曲性以 及抗應力鬆弛特性’經反覆進行研究發現 抑制雜質“一丨系合金之製造過程中,對 =升溫速度、材料之最高到達溫度以及在時效時間賦予 寸的條件,使固溶處理條件以及時效處理前後之軋製加 ,度更加合理,便可獲得兼具優異之導電率、拉伸強:、σ 抗應力松弛特性以及彎曲性的Cu — Ni 一 s丨系合金。 19 200823302 因此,為製造本發明之銅合金,於固溶 :冷乾(中間⑽、時效處理、冷乾(最後 理。糸列#寸徵性流程。尤其重要的是進行特徵性之時效處 (時效處理) 規疋升溫速度、材料之最高到土素、、w ♦ 〜 τ狀取w達度、材料保持於450 了度之時間以及材料之升溫速度,作為時效條件。 a '溫速度:當使材料緩緩升溫時,於升溫過程中, 細之析出晶核,其後之晶界反應型析出即 :而進行長時間之時效,析出物空乏區亦無因此而=電 :此:械特性(強度、·彎曲、應力鬆他等)亦不會降低。 物空乏錢械特性而縮短時效時間’抑制析出 T、,j”,、法獲得尚導電率。又1為改善導電率 效時間時,則析出物空乏區成長,導致無法獲得 :機械特性。本發明在使此種相反之特性同時實現之 機Γ可謂具有重大意義。再者,本發明中所推斷之上述 铖制,並不限定本發明。 具體而言,必須使2⑼〜25(rc、25G〜鳩。c以及綱 r35〇C之各溫度區間中的材料之平均升溫速度在5(TC//h 声^再者,就生產效率方面而言,較佳為使平均升溫速 :4:广上。具有代表性的是該平均升溫速度為2。 此處’附加非專利文獻1中記載之25(TCX48 h之預備 20 200823302 程度抑制析出物空乏區之效果,然 會使得生產效率顯著降低。本發明 幾乎不會降低生產效率,為在工業 ⑴材料之最高到達溫度:使之在_以下。係由 於若超過5坑’則無論如何控制升溫速度,#會導致析 出物空乏區之寬度變寬(例如超㈣〇nm)。較佳在戰In the aging treatment, when the heating temperature is fixed, the conductivity is increased with time. In terms of Bu, usually: the extension will reach a maximum at a certain time, and then decrease with time. When the temperature is changed for a certain period of time, the conductivity increases with the temperature rise and the solid Z rises, and the tensile strength decreases after exhibiting a maximum value. The aging effect under the condition of tensile strength: maximum value is called peak aging, and the aging effect in the region where the tensile strength decreases with time or temperature is called overaging. To improve the conductivity of Cu-Ni-based alloys, overaging can be performed. That is, 'if the appropriate aging time and temperature' can be easily obtained, the conductivity is about 6% IACS) 1 and the tensile strength will drop by 2 (for example, to about 500 MPa), not only that, but also stress relaxation. Inch and help's curvature will also deteriorate. After that, the high-strength cold rolling: the tensile strength can be restored to about _ MPa, but the processing strain will be: the distortion is significantly deteriorated' and the anti-stress loosening property cannot be expected to be improved. The previously high conductivity & gold disclosed in Patent Document 3 and the like is basically a technique for applying this overaging. The inventors of the present invention have improved the conductivity, the strength, the f-curvature, and the stress-relaxing property in a well-balanced manner. It has been repeatedly studied to find that the impurity is inhibited. In the manufacturing process of the mono- bismuth alloy, the temperature rise rate, the maximum temperature of the material, and The condition of giving the inch in the aging time makes the solution treatment condition and the rolling addition before and after the aging treatment more reasonable, and the excellent electrical conductivity, tensile strength, σ stress relaxation resistance and bending property can be obtained. Cu—Ni—s lanthanide alloy. 19 200823302 Therefore, in order to manufacture the copper alloy of the present invention, it is solid solution: cold-drying (intermediate (10), aging treatment, cold drying (final treatment. 糸列# inch characterization process. Especially important The characteristic aging (aging treatment) is to regulate the heating rate, the highest material to the soil, the w ♦ ~ τ to take the w degree, the material to maintain the temperature of 450 degrees and the heating rate of the material, as Aging temperature: a 'Warm speed: When the material is slowly heated, during the heating process, the crystal nucleus is finely precipitated, and then the grain boundary reaction type precipitates: that is, the aging for a long time, precipitation There is no such thing as the empty space. = Electricity: This: The mechanical properties (strength, bending, stress, etc.) will not be reduced. The material is empty and the mechanical properties are shortened, and the aging time is reduced to suppress the precipitation of T, j, and The conductivity is still obtained. When the conductivity time is improved, the precipitate depletion zone grows, resulting in the inability to obtain: mechanical properties. The present invention is significant in achieving the opposite characteristics at the same time. The above-described tanning system inferred by the present invention does not limit the present invention. Specifically, it is necessary to increase the average temperature increase rate of materials in each temperature range of 2 (9) to 25 (rc, 25G to 鸠.c, and r35 〇C). In the case of 5 (TC//h), in terms of production efficiency, it is preferable to make the average heating rate: 4: wide. Typically, the average heating rate is 2. Here, 'additional non-patent The effect of 25 (TCX48 h preparation 20 200823302) in the literature 1 inhibits the depletion of the precipitates, but the production efficiency is significantly reduced. The present invention hardly reduces the production efficiency, for the highest temperature at the industrial (1) material: It’s below _. If more than 5 pits to 'control the rate of temperature rise in any case, # cause the depletion region is widened width of the precipitates (e.g. ultra ㈣〇nm) Preferably in the battle

=下,更佳在鮮㈡下。另—方面,若最高到達溫度未 450。時,則無法獲得良好之導電率,目此最高到達溫 度較佳在45(TC以上,更佳在48〇。〇以上。 (c) 45〇〜55(TC之保持時間:使之為5〜15小時。加 熱未達5小時,則析出物空乏區之寬度會變窄(例如未達 :〇⑽),然即便抑制升溫速度,亦無法獲得充分之導電 率虽超過15小時,則會導致析出物空乏區之寬度變寬 (例如超過1 00 ηπι ) 〇老;^ $丨丨袁丄L古 、 ; 亏葸到生產效率,更佳之時間為6= Lower, better under the fresh (two). On the other hand, if the maximum reaching temperature is not 450. When the conductivity is not good, the highest temperature of arrival is preferably 45 (TC or more, more preferably 48 〇. 〇 above. (c) 45 〇 ~ 55 (TC retention time: make it 5~ 15 hours. If the heating is less than 5 hours, the width of the depletion zone will be narrower (for example, less than: 〇 (10)). However, even if the temperature increase rate is suppressed, sufficient conductivity cannot be obtained, and if it exceeds 15 hours, precipitation will occur. The width of the empty area is widened (for example, more than 100 ηπι) 〇老; ^ 丨丨 丄 丄 古 L Gu;; deficit to production efficiency, better time is 6

熱處理,亦可獲得某種 由於附加預備熱處理, 之升温速度控制方法, 上極為有效之方法。 〜1 〇小時。 (固溶處理) 固溶處理中,將平均晶體粒徑調整為i5 pm之範 ::由於固溶處理後之平均晶體粒徑實質上與以上規定的 衣如階段之a相等’故而若此處之平均晶體粒徑未達丨pm, 則根據製品之金屬組織所求出之a未達i _,若此處之平 均晶體粒徑超過15 μιη,則a超過15 μιη。更佳之平均晶 體粒徑為2〜1〇 μιη,故可獲得a=2〜1〇 。 用以獲得上述晶體粒徑的固溶處理之加熱溫度以及加 21 200823302 熱條件本身為公知,若為該行業者即會適當加以設定,例 如,可藉由於700〜800°C之適當溫度下,將材料保持5〜6〇〇 移鐘之適當時間,之後迅速進行空冷或水冷,而獲得上述 晶體粒徑。 (冷軋)By heat treatment, it is also possible to obtain a method which is extremely effective because of an additional preparatory heat treatment and a heating rate control method. ~1 〇 hours. (Solution treatment) In the solution treatment, the average crystal grain size is adjusted to the range of i5 pm: Since the average crystal grain size after the solution treatment is substantially equal to the above-mentioned clothing such as the stage a, If the average crystal grain size is less than 丨pm, a which is determined according to the metal structure of the product does not reach i_, and if the average crystal grain size here exceeds 15 μm, a exceeds 15 μm. A more preferable average crystal grain size is 2 to 1 〇 μιη, so that a = 2 to 1 可获得 can be obtained. The heating temperature for solution treatment to obtain the above crystal grain size and the addition of 21 200823302 thermal conditions are known per se, and if it is for the industry, it is appropriately set, for example, at a suitable temperature of 700 to 800 ° C. The material is maintained at a suitable time for 5 to 6 〇〇 shifting of the clock, and then rapidly cooled or water-cooled to obtain the above crystal grain size. (cold rolling)

使中間軋製之加工度與最後軋製之加工度的合計為5 40/6。右總加工度未達5 %,則根據製品之金屬組織所 求出之b/a未達ι·〇5,若總加工度超過4〇%,則b/a超 過1,67。更佳之總加工度為1〇〜25%,可獲得 〜1.4〇。再者,即便使中間軋製以及最後軋製中一者之軋 β加工度為零亦不會有問題。 力度 R 可以 R ( % ) := ( t。— t) ( :乾製 則之厚度,t:軋製後之厚度)之式定義。當設中間乾製的 厚度為自%至tl,最後軋製的厚度為自^至h時,「加工 度之合計Rsum(%)」可以下式獲得:Rsum(%) = (t。— ti) /t〇xl〇〇+ (tl —/qm (去應變退火) 最終冷軋之後,可為改善彈性閾值等而進行去應變退 火。去應變退火可低溫長時間(例如3〇〇。〇30分)進行, 亦可高溫短時間(例如500。⑽秒)進行。若溫度過高或 時:過:、,則拉伸強度會大幅降低。較佳W拉伸強度 之降低里為10〜50 MPa,選定條件。 又 又即便對本發明之銅合金實施鑛锡或鐘金 理,亦可維持本發明之效果。 手衣面處 22 200823302 因此,於本發明之銅合金之製造方法的較佳/實施形 態中,包括依序進行下述步驟: -熔化鑄造鑄錠之步驟,該鑄錠中含有12〜3·5質量 %之Νι、濃度(質量% )為阳濃度(質量%)之1/6〜 1/4的Si、以及作為任意成分之〇·5質量%以下的Zn, 剩餘部分由Cu以及總量在〇 〇5質量%以下之雜質構成; -熱軋步驟; -冷軋步驟; -將平均晶體粒徑調整為丨〜15 μπι之範圍的固溶處 理步驟; -以0〜40%之加工度所進行的冷軋步驟; 。-時效處理步驟,係使熱處理中材料之最高溫度在 550 C以下,於450〜550。〇之溫度範圍將材料保持5〜15 小時,。於升溫過程中,使200〜25(rc、25〇〜3〇〇ό以及3〇〇 〜350T:之各溫度區間之材料的平均升溫速度在赃八以 下; 以0〜40 %之加工度所進行的冷軋步驟(其中,使 與時效處理前所進行之冷軋之加工度的合計為5〜娜广 以及 -任意之去應變退火步驟。The total of the degree of processing of the intermediate rolling and the degree of processing of the final rolling was 5 40/6. If the total right machining capacity is less than 5%, the b/a obtained from the metal structure of the product does not reach ι·〇5, and if the total machining degree exceeds 4〇%, b/a exceeds 1,67. A better total processing degree is 1 〇 25%, and 〜1.4 可获得 is available. Furthermore, there is no problem even if the degree of β-machining of one of the intermediate rolling and the final rolling is zero. The strength R can be defined by R ( % ) := ( t. — t) ( : thickness of dry, t: thickness after rolling). When the thickness of the intermediate dry is from % to tl, and the thickness of the final rolling is from ^ to h, the "computation Rsum (%)" can be obtained by: Rsum(%) = (t. - ti ) /t〇xl〇〇+ (tl —/qm (strain annealing) After final cold rolling, strain relief annealing can be performed to improve the elastic threshold, etc. The strain relief annealing can be performed at low temperatures for a long time (for example, 3〇〇.〇30) It can also be carried out at a high temperature for a short time (for example, 500 (10) seconds). If the temperature is too high or when: over:, the tensile strength will be greatly reduced. Preferably, the tensile strength is reduced by 10 to 50. MPa, selected conditions. Even if the tin alloy or the bell alloy of the copper alloy of the present invention is subjected to the effect of the present invention, the effect of the present invention can be maintained. Hand clothes surface 22 200823302 Therefore, preferred or embodiment of the method for producing the copper alloy of the present invention The method includes the following steps: - a step of melting the cast ingot, wherein the ingot contains 12 to 3.5 mass% of Ν, and the concentration (% by mass) is 1/6 of the positive concentration (% by mass). 1/4 of Si and Zn as an optional component of 5% by mass or less, and the remainder is Cu The total amount is less than 5% by mass of impurities; - hot rolling step; - cold rolling step; - solid solution treatment step of adjusting the average crystal grain size to a range of 丨 15 15 μm; - 0 to 40% The cold rolling step of the degree of processing; the aging treatment step is such that the maximum temperature of the material in the heat treatment is below 550 C at 450 to 550. The temperature is maintained for 5 to 15 hours in the temperature range of the crucible. , so that the average temperature rise rate of the materials in each temperature range of 200 to 25 (rc, 25 〇 to 3 〇〇ό, and 3 〇〇 to 350 T: is less than 赃8; cold rolling at a processing degree of 0 to 40%) The step (wherein the total degree of processing of the cold rolling performed before the aging treatment is 5 to Na Guang and - the arbitrary strain relief annealing step).

^再者,若為該業者’可理解可在上述各步驟之間隔中, 適當進行用以去除表面氧化錄皮之研磨H 洗等步驟。 例 本發明之Cu-Ni-Si系合金可加工成各種伸鋼品, 23 200823302 如板、條、总 ^ g、棒以及線,並且,本發明之Cu — Ni — Si :S — “ C其適用作為連接器、端子、繼電器、開關等導 私丨生弹性材料,或電晶體、積體電路等半導體設備之 架材料。 、 σ己載用以更好地理解本發明及其優點之實施例, 然本發明並非限定於此等實施例。 [實施例] 使用高頻感應爐,於内徑為60 mm、深度為200 mm 之石墨坩鍋中熔化2 kg之電解銅。使用木炭片被覆熔融液 表面後,添加特定量之Ni、Si以及視需要之Zn,將熔融 液溫度调整為12〇〇。〇。接著,將熔融液澆鑄於模具中,製 成覓度為60 mm、厚度為3〇 mm之鑄錠。藉由輝光放電_ 質譜法之全部元素半定量分析(semi — analysis) ’求出Ni、Si以及Zn以外之元素,即雜質,在 鉍錠中之濃度,總計約〇·〇1質量%。濃度較高之元素有& (0.005 質量 % )、S ( 0·001 質量 % )、c ( 〇 〇〇1 質量 % )。 將鑄錠於950。(:下加熱3小時後,熱軋至厚度8 mm, 使用研磨機研磨、去除表面之氧化鱗皮。之後,以冷軋、 固溶處理、冷軋(中間軋製)、時效處理、冷軋(最後乳 製)、去應變退火之順序實施加工、熱處理。調整各軋製 之加工度以及熱處理時之板厚,以使最後軋製完成之板厚 為0·25 mm。於固溶處理後、時效處理後以及去應變退火 後,為去除熱處理所產生之表面氧化膜,依序利用1〇質 量%硫酸一1質量%過氧化氫溶液進行酸洗以及使用# 24 200823302 1200砂紙進行機械研磨。 特二理於調整為特定溫度之_ 立即自電爐中取出進行空冷。 時二寺理中,使用電爐,以各種溫度條件對樣品加熱。 使熱電偶接觸樣品,測量樣品溫度之變化。 β去應變退火中’將樣品插人於寶C之電爐中30分鐘Further, if it is the manufacturer's understanding, it is understood that the steps of polishing H washing for removing the surface oxidation recording may be appropriately performed in the interval between the above steps. For example, the Cu-Ni-Si alloy of the present invention can be processed into various steel products, 23 200823302 such as plates, strips, total g, rods and wires, and Cu - Ni - Si : S - "C" of the present invention It can be used as a material for semiconductor devices such as connectors, terminals, relays, switches, etc., or for semiconductor devices such as transistors and integrated circuits. σ is an embodiment for better understanding of the present invention and its advantages. However, the present invention is not limited to the embodiments. [Example] Using a high frequency induction furnace, 2 kg of electrolytic copper was melted in a graphite crucible having an inner diameter of 60 mm and a depth of 200 mm. The charcoal sheet was coated and melted. After the surface of the liquid, a specific amount of Ni, Si, and optionally Zn were added to adjust the temperature of the melt to 12 Torr. Then, the melt was cast into a mold to have a twist of 60 mm and a thickness of 3. Ingots of 〇mm. Semi-quantitative analysis of all elements by glow discharge _ mass spectrometry (semi-analysis) 'To determine the concentration of elements other than Ni, Si and Zn, ie impurities, in bismuth ingots, total about 〇· 〇1% by mass. The higher concentration element has & (0.00 5 mass%), S (0.0001 mass%), c (〇〇〇1 mass%). The ingot was placed at 950. (: After heating for 3 hours, hot rolling to a thickness of 8 mm, grinding with a grinder, The oxidized scales on the surface are removed, and then the processing and heat treatment are performed in the order of cold rolling, solution treatment, cold rolling (intermediate rolling), aging treatment, cold rolling (final emulsion), and strain relief annealing. The degree of processing and the thickness of the sheet during heat treatment are such that the thickness of the final rolling is 0.25 mm. After the solution treatment, after the aging treatment, and after the strain relief annealing, the surface oxide film produced by the heat treatment is removed. It is acid-washed by using 1% by mass of sulfuric acid-1% by mass of hydrogen peroxide solution and mechanically grinding using #24 200823302 1200 sandpaper. Specially adjusted to a specific temperature _ Immediately taken out of the electric furnace for air cooling. In the temple, the electric furnace is used to heat the sample under various temperature conditions. The thermocouple is exposed to the sample and the temperature of the sample is measured. In the β strain relief annealing, the sample is inserted into the electric furnace of Bao C for 30 minutes.

1主开/士甩爐中取出進行空冷。再者,於不進行最後軋製之 月y日寸’不進行此去應變退火。 對所獲得之每一樣品進行下述評價。 (1)晶粒形狀 對完成固溶處理之樣品以及去應變退火後(未進行去 應變退火者則為最後軋製後)之樣品(以下稱為製品), 觀务與軋製面平行之剖面的組織。藉由機械研磨及電解研 磨㈣製面精加工成鏡面後,藉由㈣顯現出晶界,拍攝 、且、我肢片。使用混合有氨水與過氧化氫溶液之水溶液作為 蝕刻液,適當使用光學顯微鏡或掃描型電子顯微鏡,拍攝 組織照片。另一方面,當晶體粒徑較小而難以藉由蝕刻辨 別曰B界日守,使用電解研磨精加工之鏡面樣品,利用電子背 政射圖案(EBSP,Electron Backscattedng Pattern)法拍 攝疋位影像,並使用此影像測量晶粒形狀。 在上述組織照片上,沿與軋製方向正交之方向任意晝 出3條直線,求出由直線切割之晶粒個數。又,將直線長 度除以該晶粒個數之值作為a。同樣地,沿與軋製方向平 行之方向任思晝出3條直線,求出由直線切割之晶粒個數, 25 200823302 將直線長度除以此晶粒個數之值作為b。 對完成固溶處理之樣品求出(a+b) / 該值作為平均晶體粒徑。又,對製品求出b八之值:並將 (2)析出物空乏區之寬度 對與軋製面平行之剖面,使 10 ^ AiL -l· ^ 牙透式電子顯微鏡,w1 Take out the main open / grate furnace for air cooling. Furthermore, this strain relief annealing is not performed on the month of the last rolling. The following evaluation was performed for each sample obtained. (1) Grain shape The sample which is subjected to the solution treatment and the sample after the strain relief annealing (after the final rolling without the strain relief annealing) (hereinafter referred to as the product), the section parallel to the rolling surface Organization. After mechanical polishing and electrolytic grinding (4), the surface is finished into a mirror surface, and the grain boundary is revealed by (4), and the film is taken, and my limbs are taken. An aqueous solution in which ammonia water and a hydrogen peroxide solution are mixed is used as an etching solution, and an optical microscope or a scanning electron microscope is used as appropriate to take a photograph of the tissue. On the other hand, when the crystal grain size is small and it is difficult to distinguish the 界B boundary by etching, the mirror sample of the electrolytically polished finish is used, and the erect image is taken by the EBSP (Electron Backscattedng Pattern) method. And use this image to measure the grain shape. In the above-mentioned photograph of the structure, three straight lines are arbitrarily drawn in the direction orthogonal to the rolling direction, and the number of crystal grains cut by the straight line is obtained. Further, the value of the straight line length divided by the number of the crystal grains is taken as a. Similarly, three straight lines are drawn in the direction parallel to the rolling direction, and the number of crystal grains cut by the straight line is obtained, and 25 200823302 divides the length of the straight line by the value of the number of crystal grains as b. The (a+b) / value was obtained as the average crystal grain size for the sample which was subjected to the solution treatment. Further, the value of b8 is obtained for the product: (2) the width of the depletion region of the precipitate is parallel to the cross section of the rolling surface, so that 10 ^ AiL -l· ^ tooth-permeable electron microscope, w

1 〇萬t左右之倍率觀察製品 M 區之平均寬度(…0: 近,求出析出物空乏 •^卞J見度C任思30處之平均值)。 心 (3 )導電率 依據JIS Η 0505,蕻A 辦乂丄, ⑷mm 叫針法測量製品之導電率。 方式對!:使用衝墨機,以使拉伸方向與軋製方向平行之 ;衣JIS13B賴片〇根據JIS〜Z2241,對此n 進行拉伸測試,求出拉伸強度。 十此4片 (5 )彎曲加工性 自製^取$寬度1Gmm之帶狀樣品,依據 沿Go°d Way(GW,彎曲轴與軋製方向正交之方6 BadWay(BW,f曲轴與軋製 向)以及 度密合彎曲測試。對彎曲後…“方向),進行18 0 剖面觀察有無裂痕,將未觀农到:广:曲部之表面以及 觀察到有裂痕之情形二,:;=之價為〇,將 之龜裂作㈣ 超“㈣ (6)應力鬆他率 製方向平行之方 。如圖1 — A所 自製品中,以使試片之長度方向與軋 式’取出見 1〇Π1]Ι1、1 1AA . 長100 mm之帶狀試片 26 200823302 示,將1=25 mm之位置作為作用點,對試片施以y。之彎 曲量,使其負載相當於〇·2%安全限應力(軋製方向,依 據JIS—Ζ2241測量)之8〇%的應力(σ。)^根據下式求 出y〇。 y〇= (2/3) ·12· σ〇/ (Ε - t) 此處’ Ε為揚氏模量(Y〇ung,s M〇dulus) ,t為樣品 之厚度。於150°C下加熱1000小時後卸除負載,如圖j — B所示,測量永久變形量(高度y),計算出y/y〇xl〇〇 之值,作為應力鬆弛率(% 。 (7 ) Sn鍍敷耐熱剝離測試 進行鹼性脫脂以及藉由1 〇%硫酸進行酸洗之後,實施 厚度0.3 μηι2 Cu底層鍍敷後,實施厚度1 μπΐ2 sn鍍敷, 於300 C下加熱20秒作為回焊處理。鍍敷條件如下所述。 (Cu底層鍍敷) •鍍敷浴組成:硫酸銅2〇〇 g/L、硫酸60 g/L •鍍敷浴溫度:25°C •電流密度:5 A/dm2 (Sn鍍敷)1 The magnification of the M area is observed at a magnification of about 10,000 t (...0: Nearly, the depletion of the precipitate is determined. • The average value of the C-degree C is 30). Heart (3) Conductivity According to JIS Η 0505, 蕻A is handled, and (4) mm is called the needle method to measure the electrical conductivity of the product. The right way! : An ink pulverizer was used so that the stretching direction was parallel to the rolling direction. The coating JIS13B was subjected to a tensile test according to JIS to Z2241, and the tensile strength was determined. 10 pieces of this (5) bending process self-made ^ take a width of 1Gmm strip sample, according to the Go°d Way (GW, the bending axis and the rolling direction orthogonal to the square 6 BadWay (BW, f crankshaft and rolling To) and the degree of tightness bending test. After bending, "direction", observe the 18 0 section to see if there is any crack, and it will not be observed: wide: the surface of the curved part and the case of cracking observed 2::; The price is 〇, and the crack is made (4) Super “(4) (6) The stress is loose and the direction is parallel. As shown in Figure 1 - A, the length of the test piece and the rolling type are taken out as 1〇Π1]1, 1 1AA. The strip test piece 26 200823302, which is 100 mm long, shows 1=25 mm. The position is used as a point of action, and y is applied to the test piece. The bending amount is such that the load is equivalent to 〇·2% safety-limiting stress (rolling direction, measured according to JIS-Ζ2241) of 8〇% stress (σ.)^ y〇 is obtained according to the following formula. Y〇= (2/3) ·12· σ〇/ (Ε - t) where Ε is the Young's modulus (Y〇ung, s M〇dulus) and t is the thickness of the sample. After heating at 150 ° C for 1000 hours, the load was removed, as shown in Fig. j - B, the amount of permanent deformation (height y) was measured, and the value of y / y 〇 xl 计算 was calculated as the stress relaxation rate (%. 7) Sn plating heat-resistant peeling test for alkaline degreasing and pickling by 1 〇% sulfuric acid, then performing a thickness of 0.3 μηι 2 Cu underlayer plating, then applying a thickness of 1 μπΐ2 sn plating, and heating at 300 C for 20 seconds. Reflow treatment. The plating conditions are as follows: (Cu underplating) • Plating bath composition: copper sulfate 2〇〇g/L, sulfuric acid 60 g/L • plating bath temperature: 25°C • Current density: 5 A/dm2 (Sn plating)

’鍍敷浴組成:氧化亞錫41 g/L、苯酚磺酸268 g/ L、界面活性劑5 g/ L •鍍敷浴溫度:50°C •電流密度·· 9 A/ dm2 自回焊後之樣品取出寬度l〇mm之帶狀試片,於150°C 之溫度下在大氣中加熱1〇〇〇小時。之後,沿Good Way 27 200823302 (GW,彎曲軸與軋製方向正交之方 mm之90。彎曲及折回(往復一次9〇。彎:仃芎曲半徑〇_5 曲内周部表面貼附黏接膠帶(住友3 ,並且,於彎'Plating bath composition: stannous oxide 41 g / L, phenol sulfonic acid 268 g / L, surfactant 5 g / L • plating bath temperature: 50 ° C • current density · · 9 A / dm2 self-reflow The resulting sample was taken out of a strip test piece having a width of 10 mm, and heated in the atmosphere at a temperature of 150 ° C for 1 hour. After that, along Good Way 27 200823302 (GW, the bending axis is perpendicular to the rolling direction of the square mm of 90. Bending and folding back (reciprocating once 9 〇. Bend: 仃芎 radius 〇 _5 曲 inner peripheral surface sticking adhesion Tape (Sumitomo 3, and, in the bend

M製造之# 8 5】A 再加以剝離。然後,使用光學顯微 後 _ . 械鏡(倍率為20伴)邈 祭彎曲内周部表面,檢查有無鍍敷剝離。 " 將完全觀察不到鏟敷剝離之情形評價 面狀剝離之情形評價為X。將鑛敷局部點狀剝離之情★ 價為△。於連接器等用途中,實 ^ 不具有問題。 只際應用上即便為△水準亦 測試例1 說明製造條件帶給製品之金屬組織及特性之影塑。樣 品之辑Cu— U0質量%Ni—〇35質量咖合金改 雙固洛處理條件、時效處理條件以及軋製條件,加工成製 品0 (具有代表性之發明例與習知例) 圖2為代表性之時效處理的溫度曲線圖,虛線表示樣 品所接觸之氣體環境溫度,實線表示樣品溫度。 ^ ( a)中,將材料插入至溫度調整為200°C之電爐中保 寸】守後以5小時使爐溫自200〇C上升至350T:。接著, 以1小日守使爐溫上升至5〇〇。〇並保持8小時之後,自電爐 中取出進行空冷。 (b)中,將材料插入至溫度調整為2〇〇它之電爐中保 1 j日$後’以3小時使爐溫自2〇〇艺上升至25〇。〇,以2 ^才上升至300 C,再以1小時上升至350。<3。然後,以1 28 200823302 小時使爐溫上升至490°C,保持行空冷。 1 〇小時後, 自電爐取出進 500°C之電爐中 此相當於以往之 ,經 熱處 CO係將材料插A至溫度調整為 過9小時後,自電爐取出進行空冷。 理順序。 對圖2之各時效圖形,求出2〇〇 — 以及300->350°C之平均井、、西玮由 十。升,皿逮度、材料之最高到達溫度、M manufactured by # 8 5] A and then peeled off. Then, after using optical microscopy, the mechanical mirror (with a magnification of 20) was used to bend the inner peripheral surface to check for the presence or absence of plating peeling. " The case where the peeling of the shovel was not observed was evaluated completely. The case of the planar peeling was evaluated as X. The spot is peeled off locally. The price is △. In the use of connectors and other applications, there is no problem. Even if it is applied to the △ level, the test example 1 illustrates the manufacturing conditions to the metal structure and characteristics of the product. Sample series Cu-U0 mass% Ni-〇35 quality coffee alloy modified double solid treatment conditions, aging treatment conditions and rolling conditions, processed into products 0 (representative invention examples and conventional examples) Figure 2 represents The temperature profile of the aging treatment, the dotted line indicates the gas ambient temperature to which the sample is exposed, and the solid line indicates the sample temperature. ^ (a), insert the material into an electric furnace whose temperature is adjusted to 200 ° C. Keep the furnace temperature from 200 ° C to 350 T after 5 hours. Next, the furnace temperature was raised to 5 以 with 1 small day. After being kept for 8 hours, it was taken out from the electric furnace and air-cooled. In (b), the material was inserted into the electric furnace adjusted to a temperature of 2 〇〇, and the furnace temperature was increased from 2 至 to 25 3 in 3 hours. Hey, rise to 300 C with 2 ^, then rise to 350 in 1 hour. <3. Then, the furnace temperature was raised to 490 ° C at 1 28 200823302 hours, and the air cooling was maintained. After 1 hour, the electric furnace was taken out into an electric furnace at 500 °C. This is equivalent to the conventional one. After the heat is passed, the CO is inserted into the material to adjust the temperature to 9 hours, and then taken out from the electric furnace for air cooling. Order. For each aging graph of Fig. 2, an average well of 2 〇〇 - and 300 - > 350 ° C is obtained, and a scale of 10 。 is obtained. l, the catch of the dish, the highest temperature of the material,

450〜550。(:溫度範圍内之保持時間。又,以本發明之固溶 處理條件以及軋製條件加卫成製品,並分析組織以及特 性。其結果不於表1之No.1〜版3。圖2(a)、圖2(b)、 圖分別與表1之⑽^^^相對應。 猎由本發明之條件而製造之N〇1、版2,滿足本發明 所規定的製品之金屬組織及特性。 作為白知例之Νο·3之升溫速度大於本發明範圍,除此 以外之條件均與Νο·1相同。由於析出物空乏區遠超出1〇〇 nm,故而拉伸強度低於55〇 MPa,180度密合彎曲時產生 裂痕’應力鬆弛率超過30%。450~550. (: retention time in the temperature range. Further, the product was cured by the solution treatment conditions and rolling conditions of the present invention, and the structure and characteristics were analyzed. The results are not in No. 1 to No. 3 of Table 1. Fig. 2 (a), Fig. 2(b), and Fig. 1 correspond to (10)^^^ of Table 1. Hunting N〇1, 2, manufactured by the conditions of the present invention, satisfying the metal structure and characteristics of the article specified by the present invention As a white example, the temperature rise rate is greater than the range of the present invention, and the other conditions are the same as Νο·1. Since the precipitate depletion region is far beyond 1 〇〇 nm, the tensile strength is lower than 55 MPa. A crack occurs when the 180 degree is tightly bent and the stress relaxation rate exceeds 30%.

No.4亦為習知例,由於使N〇 3之拉伸強度在55〇 Mpa 以上’故軋製加工度得以提升。除加工度高以外,析出物 空乏區由於亦超過1 〇〇 nm,故而1 80度密合彎曲時,會產 生樣品斷裂程度較嚴重之裂痕,並且應力鬆弛超過30%。 Νο·5係先前之一般Cu — Ni — Si系合金。進行峰時效, 將拉伸強度作為優先之特性進行製作。儘管彎曲性及抗應 力鬆弛性良好,但導電率不足5〇% IACS。 29 200823302 (時效時之升溫速度) 使No」之時效時之升溫速度變化時的㈣示於表2。 I知藉由減緩升溫速度,可使析出物空乏區之寬度縮小。 田析^物空乏區之寬度縮小時’則可提升拉伸強度、彎曲 性、抗應力鬆弛性。比較例N〇 9、N〇 1〇,由於在任一田 f區間中升溫速度皆㈣50t/h,因此析出物空乏區: 見^超過100 nm,拉伸強度低於550 Mpa,⑽度密合彎 曲犄產生裂痕,且應力鬆弛率超過。 (時效時之最高到達溫度以及45G〜55(rc之保 間) 使Νο·2之時效時的最高到達溫度以及45〇〜55〇。〇下 之保持時間變化時的資料示於表3。 右450 550 C下之保持時間延長,則雖然導電率上 升,但是析出物空乏區卻變寬。於時效時間不足5小時之 比較例Ν。·"中,析出物空乏區未達1()⑽,導電率未達 55%IACS。於時效時間超過15小時之比較例No",析出 物空乏區之寬度超過拉伸強度低於55〇Mpa,18〇 度密合彎曲時會產生裂痕,且應力鬆弛率超過卿。 右隶问到達溫度升高,貝丨丨雜蚀、々曾 ^同則雖然導電率上升,然析出物 空乏區之寬度卻變寬。於最高到達溫度超過55。。〇之比較 例Ν ο · 16,析出物空彡菡夕宫库如 工之&之見度超過100 nm,拉伸強度低 於550 MPa,180度密合彎了 mu㈣ 率超過30%。 (軋製加工度) 30 200823302 使No · 1之軋製加工度變化時之資料示於表4。隨著加 工度增高,從製品之金屬組織所求出之!a增大,拉伸強 度增加。中間軋製加工度與最後軋製加工度之合計不足5 %2Νο·17的b/a未達1.05,拉伸強度不足55〇 MPa。中 間軋製加工度與最後軋製加工度之合計超過4〇%之 的b/a大於1.67,拉伸強度超過7〇〇 Mpa,18〇度密合彎 曲時產生了裂痕。No. 4 is also a conventional example, and since the tensile strength of N〇 3 is 55 〇 Mpa or more, the rolling workability is improved. In addition to the high degree of processing, the depletion region of the precipitate is also more than 1 〇〇 nm, so when the 180 degree is tightly bent, cracks with a severe degree of fracture of the sample are generated, and the stress relaxation is more than 30%. Νο·5 is a conventional Cu-Ni-Si alloy. Peak aging is performed, and tensile strength is produced as a priority characteristic. Although the flexibility and the resistance to relaxation are good, the electrical conductivity is less than 5% IACS. 29 200823302 (The rate of temperature rise during aging) (4) when the rate of temperature rise during the aging of No is changed. I know that by slowing down the rate of temperature rise, the width of the depletion zone of the precipitate can be reduced. When the width of the empty area of the field is reduced, the tensile strength, flexibility, and stress relaxation resistance can be improved. Comparative examples N〇9, N〇1〇, because the temperature rise rate in any field f interval is (4) 50t/h, so the precipitates are deficient: see ^ over 100 nm, tensile strength below 550 Mpa, (10) degree tight bend The flaws are cracked and the stress relaxation rate is exceeded. (The maximum temperature reached at the time of aging and 45G to 55 (interval between rc). The maximum temperature at which Νο·2 is aged and 45 〇 to 55 〇. The data at the time of the change in the hold time of 〇 is shown in Table 3. Right When the holding time is extended at 450 550 C, the conductivity is increased, but the depletion area of the precipitate is widened. In the comparative example where the aging time is less than 5 hours, the depletion area of the precipitate is less than 1 () (10) The conductivity is less than 55% IACS. In the comparative example No. of aging time exceeding 15 hours, the width of the depletion zone of the precipitate exceeds the tensile strength of less than 55〇Mpa, and cracks occur when the 18 degree is tightly bent and the stress is generated. The relaxation rate is higher than that of Qing. The right temperature rises, the shellfish is eclipsed, and the conductivity is increased, but the width of the depletion zone is widened. The maximum temperature reaches 55. Comparative example ο · 16, the precipitation of the 彡菡 彡菡 彡菡 库 如 如 如 & & & & 超过 超过 超过 超过 超过 之 超过 之 之 之 之 之 之 之 之 之 之 之 之 轧制 轧制 轧制 轧制 轧制 轧制 轧制 轧制 轧制 轧制 轧制 轧制 轧制 轧制 轧制 轧制 轧制Processing degree) 30 200823302 Information when the rolling degree of No. 1 is changed It is shown in Table 4. As the degree of processing increases, the ?a obtained from the metal structure of the product increases, and the tensile strength increases. The total of the intermediate rolling degree and the final rolling degree is less than 5%. The b/a is less than 1.05 and the tensile strength is less than 55 MPa. The b/a of the intermediate rolling degree and the final rolling degree exceeding 4% is greater than 1.67, and the tensile strength is more than 7 〇〇Mpa, 18 Cracks occur when the twist is tightly bent.

(完成固溶處理之晶體粒徑) 使Νο·2之完成固溶處理之晶體粒徑變化時之資料示於 表5。伴隨著完成固溶處理之晶體粒徑增大,從製品之金 屬組織所求出之a增大,應力鬆他率減小。完成固溶處理 之晶體粒徑不足i㈣之Ν〇·24的a未達i _,應力鬆弛 率超過30/6,由於固溶程度不足,拉伸強度低於。 完成固溶處理之晶體舱仰初;Μς 日日菔桠仫起過15 μηι之Νο·29的a則超過 / 5 μιη,180度密合彎曲時產生了裂痕。 測試例2 說明合金成分帶給製品之金屬組織及特性之影響。以 與上述發明例Ν。·1相同之製造條件,將各種成分之Cu〜 &系合金加工成製品。再者,於75〇£>cx6〇秒鐘之 件下進行ID溶處理,因成分而使晶體粒徑出現若干變化, 但所有樣品之晶體粒徑均在本發明之較佳範圍。 (Ni丨辰度/ Si濃度比之影響) 使犯固定為K60質量%而使Si濃度變化時之資料示 ; 〇.1及Νο·5與表!之樣品相同。此處,5係 31 200823302 導電率不足55% IACS之先前合金,其製造條件與其他合 金不同。 當Νι ?辰度/ Si濃度比脫離4〜6之範圍時,則導電率 未達55%IACS。X,當Ni/Si濃度比減小時,拉伸強度 會上升,此係由於si濃度增加,導致Ni2Si之析出量増加 之故。(Crystal grain size at which solution treatment is completed) The data at the time of changing the crystal grain size of the solution treatment of Νο·2 are shown in Table 5. As the crystal grain size of the solution treatment is completed, the a obtained from the metal structure of the product increases, and the stress relaxation rate decreases. When the crystal grain size of the solution treatment is less than i (4), the a of the Ν〇24 does not reach i _, the stress relaxation rate exceeds 30/6, and the tensile strength is lower because the solid solution degree is insufficient. The crystal tank that completed the solution treatment was raised at the beginning; a a day after 15 μηιΝ Ν·29 was over 5 μιη, and a crack occurred when the 180 degree tightness was bent. Test Example 2 illustrates the effect of alloy composition on the metal structure and properties of the article. With the above invention example. - 1 The same manufacturing conditions, the various components of the Cu ~ & alloys into a product. Further, ID dissolution treatment was carried out at 75 Å > cx6 〇 second, and the crystal grain size was changed by the composition, but the crystal grain size of all the samples was in the preferred range of the present invention. (Influence of Ni 丨 度 / Si concentration ratio) The data when the Si concentration is changed by K60 mass % is fixed; 〇.1 and Νο·5 and the table! The samples are the same. Here, the 5 series 31 200823302 Conductivity is less than 55%. The previous alloy of IACS is manufactured under different conditions than other alloys. When the ?ι ? Chen/Si concentration ratio is out of the range of 4 to 6, the conductivity is less than 55% IACS. X, when the Ni/Si concentration ratio is decreased, the tensile strength is increased, which is caused by the increase in the concentration of Si, which leads to the precipitation of Ni2Si.

本發明合金之Sn鍍敷耐熱剝離性評價結果為△(點狀 剝離)。另一方面,N〇.5、N〇.34之評價結果則為父。此 係由於固溶si會使耐熱剝離性降低之故。即,N〇 5中,NhSi 之析出量少,又No.34中,相對於Ni添加了過剩之 故導致固溶S i增加。 (Ni之影響) 使Ni濃度/Si濃度比保持於本發明之範圍内,同時 使沁濃度變化時的資料示於表7。於州濃度低於u質 =^之N〇·35,拉伸強度未達55〇MPa。於Ni濃度超過3·5 貝$ %之Ν〇·41,拉伸強度超過700 MPa,180度密合彎曲 時產生了裂痕。 山口弓 CZn之影響) 關於添加Zn之影響,於N〇1巾添加各種濃度之〜 時之資料示於表8。因添加〇.〇5議以上之“鍍 敷财熱剝離性評價結果為〇(無剝離)。3 —方面 又 〜增加,導電率降低’若Z….5冑量%以下之範圍" 可獲得55%IACS以上之導電率。 (雜質之影響) 32 200823302 關於雜質,使No.43之雜質增加時之資料示於表9。 假設混合有經Sn鍍敷之銅材料而添加Sn,且假設熔化時 殘留有脫氧元素而添加Mg,藉此改變雜質總量。雜質超 過〇·〇5質量%之各例中,導電率皆未達55%IACS。The result of evaluation of the heat-resistant peeling property of the Sn plating of the alloy of the present invention was Δ (dot-like peeling). On the other hand, the evaluation results of N〇.5 and N〇.34 are the father. This is because the solid solution of Si causes a decrease in heat-resistant peelability. That is, in N〇5, the amount of precipitation of NhSi is small, and in No. 34, excessive addition of Ni is caused to increase the solid solution S i . (Impact of Ni) The data at the time when the Ni concentration/Si concentration ratio was kept within the range of the present invention and the cerium concentration was changed are shown in Table 7. The concentration in Yuzhou is lower than u质=35, and the tensile strength is less than 55〇MPa. When the concentration of Ni exceeds 3·5 Å·% Ν〇·41, the tensile strength exceeds 700 MPa, and cracks occur when the 180 degree is tightly bent. Yamaguchi bow CZn effect) The effect of adding Zn on the N〇1 towel is shown in Table 8. As a result of the addition of 〇.〇5 or more, the evaluation result of the plating thermal peeling property is 〇 (no peeling). 3 - The aspect is increased, and the electrical conductivity is lowered 'If Z....5胄% or less of the range" The conductivity of 55% IACS or more is obtained. (Impact of impurities) 32 200823302 For the impurity, the information when the impurity of No. 43 is increased is shown in Table 9. It is assumed that Sn is added by mixing the copper material of Sn plating, and assuming When deoxidation is left at the time of melting, Mg is added to change the total amount of impurities. In each of the examples in which the impurities exceed 5 mass% of 〇·〇, the conductivity is less than 55% IACS.

33 20082330233 200823302

§§

OZOZ

S Έί oz ii#w05。鉍 »φ银 ^0001S Έί oz ii#w05.铋 »φ银 ^0001

ΜPQ AV〇 (勿|) 靶漶奪4 (SUV2 cd\qΜPQ AV〇 (Do not |) Target 漶 4 (SUV2 cd\q

{S=L} B (i) 2W nvw糾 r4寸 9 ζ.ίς{S=L} B (i) 2W nvw correct r4 inch 9 ζ.ίς

SI ϊ.寸 ο»ο 6寸9 Π9 29 寸,8们 0·卜们 2寸 0ΓΙ 3.1 9ΓΙ 0.寸 5 3 09 051SI ϊ.inch ο»ο 6 inch 9 Π9 29 inch, 8 people 0· Bu 2 inch 0ΓΙ 3.1 9ΓΙ 0. inch 5 3 09 051

05T (次) ^Η-δ^ι舞05T (times) ^Η-δ^ι dance

•\hO oz 03 03•\hO oz 03 03

0Z0Z

UU

0Z0Z

QL 03 S葩 舍ίW ροςς〜0们寸 0Ϊ 寸e 00»〇 06寸 00>〇 i 0卜寸 psrn—οοε 0»〇 寅 0S? poo£ 10^ ΟΓΠ 0 0QL 03 S葩 舍ίW ροςς~0 寸 inch 0 inch inch 00»〇 06 inch 00>〇 i 0 inch inch psrn—οοε 0»〇 寅 0S? poo£ 10^ ΟΓΠ 0 0

pos — 00(N 6(ν 81 0 3 3 0.寸 0> Ιί_姨囫 § 09 09 09 09 09 (p) β β 0«0(> β 0^ ?$ f# 銻 qJa 200823302 <Ν< 製品之特性 應力鬆 弛率 (%) oo ON (N ㈡ SI 180度密合 ―曲 PQ 〇 〇 〇 〇 〇 〇 〇 ο 〇 〇 〇 X X 拉伸 強度 (MPa) <N in CN s VO 00 <N| 芝1 §1 導電率 (% IACS) »〇 VO !n* t> 寸 1 製品之金屬組織 b/a 们 (N ▼—«η ro CN S Ψ^4· cs a (μπι) CN 寸· cn CNj 对· 寸 寸· 析出物 空乏區 之寬度 (nm) § S §1 §i Η ^ 宕 S S s O o O O ο o 時效 〇 $ :S维赶 00 oo 00 00 00 00 最高到 達溫度 (°C) o o »n o O ο ϊ〇 o 升溫速度(°c/h) 300- 350〇C O m m 00 m ΓΟ §1 250- 300°C OJ 沄 O ΙΟ m Si 200- 250〇C 2 Os (N o 裂 固溶處理 平均晶 體粒徑 (μπι) O — <N (N, — ρ m T-H 時間 (秒) § S S § S s 溫度 (°C) 卜 卜 卜 卜 發明例 發明例 發明例 發明例 比較例 比較例 \〇 — 卜 〇〇 OS 〇 200823302Pos — 00(N 6(ν 81 0 3 3 0. inch0> Ιί_姨囫§ 09 09 09 09 09 (p) β β 0«0(> β 0^ ?$ f# 锑qJa 200823302 <Ν< Product characteristic stress relaxation rate (%) oo ON (N) SI 180 degree adhesion - curve PQ 〇〇〇〇〇〇〇ο 〇〇〇 XX tensile strength (MPa) <N in CN s VO 00 &lt ;N| 芝 1 §1 Conductivity (% IACS) »〇VO !n* t> Inch 1 metal structure b/a (N ▼—«η ro CN S Ψ^4· cs a (μπι) CN Inch · cn CNj 对 · inch inch · width of the depletion area (nm) § S §1 §i Η ^ 宕SS s O o OO ο o aging 〇 $ : S dimension 00 oo 00 00 00 00 maximum arrival temperature ( °C) oo »no O ο ϊ〇o Heating rate (°c/h) 300- 350〇CO mm 00 m ΓΟ §1 250- 300°C OJ 沄O ΙΟ m Si 200- 250〇C 2 Os (N o Crack solution treatment average crystal grain size (μπι) O - < N (N, - ρ m TH time (sec) § SS § S s temperature (°C) 卜卜卜 invention example invention example invention example Comparative example comparison example\〇——卜〇〇OS 200 823 302

(麴礆客葩^# 举 〜0S 寸^¾¾^¾^^砸皭 w^f) £< 製品之特性 應力鬆 弛率 (%) v〇 (N m ^ ίψ Ο ·φ菊 2锲 CQ ^ 〇 〇 〇 〇 〇 〇 〇 〇 ^ 〇 〇 〇 〇 X 〇 X 拉伸強度 (MPa) s 寸 <N ON s g v〇 s 詞 導電率(% IACS) 1 m 寸 00 rn § SI o 1 製品之金屬組織 b/a 1 rn €S ΓΟ CO ro ro 寸 rn P! T"H a (μιη) 寸 wS ΓΟ wS ro wS 对 (N uS (N wS 析出物 空乏區 之寬度 (nm) s g Si SI SI Η ^ ii? tn (N (N (N CN i! (N (N (N (N (N S (N Ss ^ o O O O O O O 時效 1 ^ ^ ^ ^ Se ml VO o OJ V〇 v〇 最高到 達溫度 (°C) O On 寸 o On 寸 o m 1 升溫速度(°c/h) 300 — 350〇C 沄 250- 300°C m (N <N (N (N 04 200— 250〇C oo 00 00 oo oo OO 00 固溶處理 Μ < «9 in 寸 uS ro uri CN in CN uS ΓΟ in 時間 (秒) § s § s s s § 溫度 (。〇 O 卜 o 〇 卜 o 卜 o 卜 o 卜 o 卜 比較例 發明例 發明例 發明例 比較例 發明例 比較例 cs (N ro 2 JO VO 9ΓΟ 200823302 寸< 製品之特性 應力鬆 弛率 (%) <N (N CN (N CN (N ON 180度密 合彎曲 PQ ^ 〇 〇 〇 〇 〇 〇 〇 X 〇 ^ 〇 〇 〇 〇 〇 〇 〇 X 拉伸強度 (MPa) cn O s <N S cn oo v〇 S v〇 〇 ON 闺 導電率 (% IACS) O od 卜 卜: o !S Os 寸 v〇 製品之金屬組織 b/a 1.01 CO T—^ s «ο 1—< oo 画 a (μιη) m — Ο 寸· CN 寸· 寸, 寸’ ro 对· r-H 析出物 空乏區 之寬度 (nm) in § yn Η ^ 璨犮 ml O CO in O m o 心 m O 夺s? W誠 O O o o ο in 〇 時效 Z W舍^ ^ ϊί ^ Se oo 00 00 OO 00 00 00 00 最南到 達溫度 (°C) o o o o ο o ο 〇 »〇 升溫速度(°C/h) 300- 350〇C ^T) ro m ro to m cn CO m m 250- 300°C 沄 沄 沄 沄 沄 沄 200- 250〇C Os <N ON CN On <N as (N ON <Ν ON CN 〇\ <N <7\ (N 固溶處理 平均晶 體粒徑 (μπι) (N — 〇 寸· CN ro 寸· — CN — 〇 寸’ 時間 (秒) § s § S S S § 溫度 (°C) 卜 卜 卜 卜 卜 卜 卜 卜 比較例 發明例 發明例 發明例 發明例 發明例 發明例 比較例 Γ^· 00 Os(麴礆客葩^# 举~0S inch^3⁄43⁄4^3⁄4^^砸皭w^f) £< Product characteristic stress relaxation rate (%) v〇(N m ^ ψ Ο · φ菊 2锲CQ ^ 〇〇〇〇〇〇〇〇^ 〇〇〇〇X 〇X Tensile strength (MPa) s inch<N ON sgv〇s Word conductivity (% IACS) 1 m inch 00 rn § SI o 1 Metal of the product Organization b/a 1 rn €S ΓΟ CO ro ro inch rn P! T"H a (μιη) inch wS ΓΟ wS ro wS pair (N uS (N wS width of the depletion zone (nm) sg Si SI SI Η ^ ii? tn (N (N (N CN N! (N (N (N (N (N (N (N (N (N (N (N (N (N (N (N (N (N (N (N (N (N (N (N (N (N (N ) O On inch o On inch om 1 Heating rate (°c/h) 300 — 350〇C 沄250- 300°C m (N <N (N (N 04 200— 250〇C oo 00 00 oo oo OO 00 Solution treatment Μ < «9 in inch uS ro uri CN in CN uS ΓΟ in Time (seconds) § s § sss § Temperature (.〇O 卜o 〇 oo o 卜o 卜o 卜o 卜 Comparative example invention example Inventive Example Inventive Example Comparative Example Inventive Example Comparative Example cs (N ro 2 JO VO 9ΓΟ 200823302 inch < characteristic stress relaxation rate of the product (%) <N (N CN (N ON 180 degree tight bending PQ ^ 〇〇〇〇〇〇〇X 〇 ^ 〇〇〇〇〇〇 〇X Tensile strength (MPa) cn O s <NS cn oo v〇S v〇〇ON 闺Electrical conductivity (% IACS) O od Bub: o !S Os Inch v〇 product metal structure b/a 1.01 CO T—^ s «ο 1—< oo draw a (μιη) m — Ο inch · CN inch · inch, inch ' ro pair · rH width of the depletion zone (nm) in § yn Η ^ 璨犮ml O CO in O mo heart m O s? W OO oo ο in 〇 Z Z Z Z Z ^ ^ ϊ ί ^ Se oo 00 00 OO 00 00 00 00 Southmost arrival temperature (°C) oooo ο o ο 〇»〇 Speed (°C/h) 300-350〇C ^T) ro m ro to m cn CO mm 250- 300°C 沄沄沄沄沄沄200- 250〇C Os <N ON CN On <N as (N ON <Ν ON CN 〇\ <N <7\ (N solution treatment average crystal grain size (μπι) (N — 〇 inch · CN ro inch · — CN — 〇 inch' time (seconds) § s § SSS § Temperature (°C)卜卜卜卜卜卜 Comparative Example Inventive Example Inventive Example Inventive Example Inventive Example Inventive Example Comparative Example Γ^· 00 Os

Li 200823302 (#礆>勃4|| 吨 w^^^Ni^綾®) 製品之特性 應力鬆 弛率 (%) 00 (N to cs ro CN 卜 in 180度密 合脊曲 PQ ^ 〇 〇 〇 〇 〇 〇 X 〇 ^ 〇 〇 〇 〇 〇 〇 X 4 5 卜 00 m ON 04 \D Ό ra v〇 導電率(% IACS) 1 寸 〇< »n ο cK «η 卜 00 in od 〇 OO m 卜 wS 製品之金屬組織 b/a m cn m cn T-H o cn ΓΟ CN rn a (μηι) SI VO VO CN m 对 〇\ cn a 析出物 空乏區 之寬度 (nm) s S S <r> § ㈣ Η ^ in <N (N <N (N »〇 <N »r> CN 鹉麵:ii鉍 CN CN CN (N »n CN CA δ-踩W薪 o O O O O O O 時效 450〜 550〇C 之保持 時間 (h) o o o o o o o 最高到 達溫度 (°C) 寸 § 寸 o On § 寸 对 寸 升溫速度(°C/h) 300- 350〇C 250- 300°C 1 s <N cs (N CN in <N «η (Ν 200— 250〇C 00 00 00 OO 00 00 οο 固溶處理 平均晶 體粒徑 (μηι) Si 00 c4 m in 〇< OO CO a 時間 (粆) s s O S § § 溫度 (0〇 o 卜 o rn o O 卜 o g 卜 ο 00 比較例 發明例 發明例 發明例 發明例 發明例 比較例 (N CN a ooe 200823302Li 200823302 (#礆> Bo 4|| ton w^^^Ni^绫®) Characteristics of product stress relaxation rate (%) 00 (N to cs ro CN 卜 in 180 degree tightly ridged PQ ^ 〇〇〇 〇〇〇X 〇^ 〇〇〇〇〇〇X 4 5 Bu 00 m ON 04 \D Ό ra v〇 Conductivity (% IACS) 1 inch 〇< »n ο cK «η 卜 00 in od 〇OO m The metal structure of the wS product b/am cn m cn TH o cn ΓΟ CN rn a (μηι) SI VO VO CN m 〇 a 析 the width of the depletion region (nm) s SS <r> § (d) Η ^ in <N (N <N (N »〇<N »r> CN noodles: ii铋CN CN CN (N »n CN CA δ- step W salvation o OOOOOO aging 450~ 550〇C retention Time (h) ooooooo maximum arrival temperature (°C) inch § inch o On § inch to inch heating rate (°C/h) 300-350〇C 250- 300°C 1 s <N cs (N CN in &lt ;N «η (Ν 200—250〇C 00 00 00 OO 00 00 οο Solution treatment average crystal grain size (μηι) Si 00 c4 m in 〇< OO CO a time (粆) ss OS § § Temperature (0 〇o 卜o rn o O 卜 og ο 00 Comparative example Inventive Example Comparative Example (N CN a ooe 200823302 embodiment of the inventive example embodiment of the invention invention invention

(#^wqi^IMS\!N)9 < 製品之特性 耐熱剝離 1 1 < <] < < X X 應力鬆 弛率 (%) <30 to (N (N oo 180度密合彎曲 BW 〇 I 〇 〇 〇 〇 〇 〇 〇 GW 〇 1 〇 〇 〇 〇 〇 〇 〇 拉伸強度 (MPa) 550-700 600-660 § 612 624 642 f 650 00 s (N v〇 導電率(% IACS) 55-62 56-60 31 55.9 57.6 57.5 55.0 ai SI 製品之金屬組織 b/a 1.05-1.67 1.11 — 1.33 (N 1.26 1.23 1,23 1.24 VO <N a (μπι) 1 〇 T 寸· ΓΟ 〇 τί1 00 rn CM 析出物空 乏區之寬 度(nm) 〇 1 〇 20-90 | JO jrj 卜 成分(質量%) 雜質元素 <0.05 <0.02 — 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0,05-0.5 0.1 — 0.3 ! 1 1 1 t 1 1 Ni/Si 〇 1 寸 1 6.15 5.52 5.16 4.57 4.21 s 4.57 1 1 0.26 0.29 0.31 0.35 0.38 0.41 0.35 2 rn 1 CN 1.4-2.5 1.60 1.60 1.60 1.60 S 發明範圍 較好之範圍丨 比較例 發明例 發明例 發明例 發明例 比較例 比較例 ?! — m m 200823302(#^wqi^IMS\!N)9 < Characteristics of the product Heat-resistant peeling 1 1 <<>< XX Stress relaxation rate (%) <30 to (N (N oo 180 degree tight bending) BW 〇I 〇〇〇〇〇〇〇GW 〇1 〇〇〇〇〇〇〇 Tensile strength (MPa) 550-700 600-660 § 612 624 642 f 650 00 s (N v〇 conductivity (% IACS) 55-62 56-60 31 55.9 57.6 57.5 55.0 ai SI Metal structure b/a 1.05-1.67 1.11 — 1.33 (N 1.26 1.23 1,23 1.24 VO <N a (μπι) 1 〇T inch · ΓΟ 〇τί1 00 rn CM Depth of the depletion zone (nm) 〇1 〇20-90 | JO jrj Bu component (% by mass) Impurity element <0.05 <0.02 - 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0,05-0.5 0.1 — 0.3 ! 1 1 1 t 1 1 Ni/Si 〇1 inch 1 6.15 5.52 5.16 4.57 4.21 s 4.57 1 1 0.26 0.29 0.31 0.35 0.38 0.41 0.35 2 rn 1 CN 1.4-2.5 1.60 1.60 1.60 1.60 S Scope of the invention is better 丨Comparative Example Inventive Example Inventive Example Inventive Example Comparative Example Comparative Example?! — mm 200823302

(i^w ί N ) 製品之特性 耐熱 剝離 1 1 < < <] < < < <3 < 應力鬆弛 率(%) ο 7丨 νΊ 2 oo 180度密合彎 曲 BW 〇 i 〇 〇 〇 〇 〇 〇 〇 χ| GW 〇 ! 〇 〇 〇 〇 〇 〇 〇 χ| 拉伸強度 (MPa) 550-700 j 600—660 590 624 642 VO 00 νο to VO I 導電率(% IACS) (N VO 1 to 56—60 58.3 58.0 57.6 1 57.5 56.8 56.5 55.7 製品之金屬組織 b/a 1.05-1.67 1.11-1.33 1.24 1.25 1.25 1.23 ΓΟ (Ν 1.27 v〇 (N 1.23 a (μπι) T ο 1 00 v〇 〇 as rn v〇 oi 析出物空 乏區之寬 度(nm) o f-H 1 o 20-90 成分(質量%) 雜質元素 <0.05 <0.02 , 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 N 0.05-0.5 ro Ο 1 Ο 1 1 1 1 1 1 1 1 Ni/Si 1 对 4.5-5.5 4.60 4.64 4.55 4.57 4.79 4.66 4.57 4.62 1 1 0.25 丨 0.28 0.33 0.35 0.47 0.58 0.69 0.78 2 1.2-3.5 1.4-2.5 3 1.30 S 2.25 2.70 3.15 1 發明範圍 較佳範圍 比較例 發明例 發明例 發明例 發明例 發明例 發明例 比較例 VO ΓΟ 00 ΓΟ ON ο 200823302(i^w ί N ) Characteristics of the product Heat-resistant peeling 1 1 <<<<<<< 3 < Stress relaxation rate (%) ο 7丨νΊ 2 oo 180 degree close bending BW 〇i 〇〇〇〇〇〇〇χ| GW 〇! 〇〇〇〇〇〇〇χ| Tensile strength (MPa) 550-700 j 600-660 590 624 642 VO 00 νο to VO I Conductivity (% IACS (N VO 1 to 56-60 58.3 58.0 57.6 1 57.5 56.8 56.5 55.7 Metal structure b/a of the product 1.05-1.67 1.11-1.33 1.24 1.25 1.25 1.23 ΓΟ (Ν 1.27 v〇(N 1.23 a (μπι) T ο 1 00 v〇〇as rn v〇oi Width of the depletion zone (nm) o fH 1 o 20-90 Component (% by mass) Impurity element <0.05 <0.02, 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 N 0.05- 0.5 ro Ο 1 Ο 1 1 1 1 1 1 1 1 Ni/Si 1 Pair 4.5-5.5 4.60 4.64 4.55 4.57 4.79 4.66 4.57 4.62 1 1 0.25 丨0.28 0.33 0.35 0.47 0.58 0.69 0.78 2 1.2-3.5 1.4-2.5 3 1.30 S 2.25 2.70 3.15 1 Scope of the Invention Preferred Range Comparative Example Invention Example Invention Example Invention Example Invention Example Comparative Example VO Γ Ο 00 ΓΟ ON ο 200823302

故品之特性 1 1 <3 〇 〇 〇 〇 〇 應力鬆 弛率 (%) 〇 m VI ON 180度密合彎 曲 〇 1 〇 〇 o 〇 〇 〇 〇 〇 i 〇 〇 〇 〇 〇 〇 拉伸強度 (MPa) 550—700 8 1 o § \D s m s (N s S oo s 導電率(% IACS) 55-62 56-60 ro o (N v〇 m J 製品之金屬組織 b/a vq f—Η 1: S m ro f R to <N r—H <N s a (μιη) •T) 1 O T 〇 — On rn o (N 寸* 析出物空 乏區之寬 度(nm) o 1 o 20-90 沄 泛 成分(質量%) 雜質元素 <0.05 1 <0.02 O ο ο f—4 o 〇 o o 〇 ! g o 0.1-0.3 i s <D 〇 〇 d jrj O 0.60 Ni/Si VO 1 寸 4.5 —5.5 !n !n 寸 — !n !n 寸· ΰο 1 1 ro o m o CO o m 〇 m o m 〇 2 1,2-3.5 1.4-2.5 s s r-H s s S s T—4 較佳範圍 發明例 發明例 發明例 發明例 I 發明例 比較例 3 JO τ-Η 00 200823302Characteristics of the product 1 1 <3 〇〇〇〇〇 Stress relaxation rate (%) 〇m VI ON 180 degree tight bending 〇1 〇〇o 〇〇〇〇〇i 〇〇〇〇〇〇 tensile strength ( MPa) 550-700 8 1 o § \D sms (N s S oo s conductivity (% IACS) 55-62 56-60 ro o (N v〇m J metal structure of products b/a vq f-Η 1 : S m ro f R to <N r—H <N sa (μιη) •T) 1 OT 〇— On rn o (N inch* width of the depletion zone (nm) o 1 o 20-90 沄General composition (% by mass) Impurity element <0.05 1 <0.02 O ο ο f—4 o 〇oo 〇! go 0.1-0.3 is <D 〇〇d jrj O 0.60 Ni/Si VO 1 inch 4.5 —5.5 ! n !n inch - !n !n inch · ΰο 1 1 ro omo CO om 〇mom 〇2 1,2-3.5 1.4-2.5 ss rH ss S s T-4 preferred range invention examples invention examples invention examples I Inventive Example Comparative Example 3 JO τ-Η 00 200823302

i品之特性 耐熱 剝離 I 1 〇 〇 〇 〇 〇 應力鬆 弛率 (%) ο to VI Os 00 Os 180度密 合 >彎曲 BW 〇 1 0 〇 〇 〇 〇 Ο ^ 〇 1 〇 〇 〇 〇 〇 拉伸強度 (MPa) 1 550-700 600-660 VO 647 1 659 644 導電率 (%IACS) 1 55-62 56-60 57.0 56.1 SI 55.8 S] 故品之金屬組織 b/a ί 1.05—1.67 1.11 — 1.33 1.25 1.24 1.25 1.25 1.25 a (μιη) 1 U^i τ ο ! τ-Η OS ΓΛ 〇 寸· 〇〇 ro (N — ρ 寸’ 析出物空 乏區之寬 度(nm) ο τ*-Η 1 ο 20-90 jn 〇 jn 成分(質量%) 雜質元素 <0.05 1 <0.02 0.01 0.02 (+0.01 Sn) 0.06 (+0.05Sn) 0.04 (+0.03Mg) 0.08 (+0.04Sn+0.03Mg) 0.05-0.5 0.1-0.3 0.01 j 0.01 0.01 0.01 0.01 Ni/Si Ό 1 寸 1 ΙΟ 4.57 4.57 I 4.57 4·57 4.57 1 ι 0.35 0.35 1 0.35 0.35 0.35 2 in to 1 (Ν fsi i 1.60 1.60 1.60 發明範圍ι 較佳範圍 發明例 發明例 比較例 發明例 比較例 9 σ\ 200823302 ^ 【圖式簡單說明】 圖1係說明應力鬆弛測試方法之圖。 圖2係表示時效處理之溫度曲線圖(圖2 ( a )及圖2 ( b ) 為發明例,圖2 ( c )為習知例)之圖。 【主要元件符號說明】 (無)Characteristics of heat resistance I 1 〇〇〇〇〇 Stress relaxation rate (%) ο to VI Os 00 Os 180 degree tightness > BW 〇1 0 〇〇〇〇Ο ^ 〇1 〇〇〇〇〇拉Extensive strength (MPa) 1 550-700 600-660 VO 647 1 659 644 Conductivity (%IACS) 1 55-62 56-60 57.0 56.1 SI 55.8 S] Metal structure b/a ί 1.05—1.67 1.11 — 1.33 1.25 1.24 1.25 1.25 1.25 a (μιη) 1 U^i τ ο ! τ-Η OS ΓΛ · · 〇〇ro (N — ρ 寸 ' Width of the depletion zone (nm) ο τ*-Η 1 ο 20-90 jn 〇jn Composition (% by mass) Impurity element <0.05 1 <0.02 0.01 0.02 (+0.01 Sn) 0.06 (+0.05Sn) 0.04 (+0.03Mg) 0.08 (+0.04Sn+0.03Mg) 0.05- 0.5 0.1-0.3 0.01 j 0.01 0.01 0.01 0.01 Ni/Si Ό 1 inch 1 ΙΟ 4.57 4.57 I 4.57 4·57 4.57 1 ι 0.35 0.35 1 0.35 0.35 0.35 2 in to 1 (Ν fsi i 1.60 1.60 1.60 Scope of the invention ι Scope of the invention Example of the invention Comparative example Inventive example Comparative example 9 σ\ 200823302 ^ [Simple description of the drawing] Fig. 1 is a diagram illustrating a stress relaxation test method. Temperature profile of the aging process (FIG. 2 (a) and FIG. 2 (b) is the embodiment of the invention, FIG. 2 (c) of conventional embodiment) of FIG. SIGNS LIST] [Main element (none)

4343

Claims (1)

.200823302 十、申請專利範圍: 1 · 一種Cu — Ni — Si系合金,其特徵在於: 含有I·2〜3·5質量%之Ni、及濃度(質量% )為抝 /辰度(質量% )之1 / 6〜1 / 4之Si,剩餘部分由Cu及總 量在0.05質量%以下之雜質構成,並且兼具下述特性: (A) 導電率:55 〜62%IACS (B) 拉伸強度:550〜700 MPa (C )言曲性:1 8 〇度密合彎曲時不會產生裂痕 (D) 抗應力鬆弛性:以15〇。〇加熱ι〇〇〇小時後之應 力鬆弛率在30%以下。 2_—種Cu — Ni — Si系合金,其特徵在於·· 含有1.2〜3.5質量%之Ni、濃度(質量%)為Ni濃 度(質量%)之1/6〜1/4之Si、及〇·5質量%以下之Zn, 剩餘部分由Cii及總量在〇·〇5質量%以下之雜質構成,並 且兼具下述特性: (Α)導電率:55 〜62%IACS (B)拉伸強度:550〜700 MPa (C )彎曲性:1 80度密合彎曲時不會產生裂痕 (D )抗應力鬆弛性:以15 〇 °C加熱1 〇 〇 〇小時後之應 力鬆弛率在30%以下 (E) 耐熱剝離性:於Sn鍍敷耐熱剝離測試後,無產 生鍍敷剝離。 3·一種Cu—Ni—Si系合金,其特徵在於: 含有1·2〜3.5質量%之Ni、濃度(質量% )為Ni濃 44 200823302 又(貝里%)之1//6〜4之Si、及0.5質量%以下之作 為4〜成刀之Zn,剩餘部分由Cu及總量在〇 〇5質量妬以 下之雜質構成’於平行於軋製面之剖面之金屬組織中,設 與晶粒軋製方向正交之方向的平均粒徑為&,與乳製方命 平行之方向的平均粒徑為b時,a=i〜Μ _、〇5 1.67,亚且金屬組織申之析出物空乏區之平均寬度為ι〇 〜100 nm。.200823302 X. Patent application scope: 1 · A Cu-Ni-Si alloy, characterized by: Ni containing I·2~3·5 mass%, and concentration (% by mass) 拗/□ (% by mass) 1 / 6 to 1 / 4 of Si, the remainder consists of Cu and a total amount of impurities below 0.05% by mass, and has the following characteristics: (A) Conductivity: 55 ~ 62% IACS (B) Extensive strength: 550~700 MPa (C) Speech: 1 8 〇 密 密 弯曲 弯曲 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( The stress relaxation rate after 〇 heating for 〇〇〇 is less than 30%. 2—a Cu—Ni—Si-based alloy characterized in that it contains 1.2 to 3.5% by mass of Ni, and the concentration (% by mass) is 1/6 to 1/4 of Si of the Ni concentration (% by mass), and 〇 · 5% by mass or less of Zn, and the remainder consists of Cii and impurities having a total amount of 5% by mass or less of 〇·〇, and has the following characteristics: (Α) Conductivity: 55 to 62% IACS (B) stretching Strength: 550~700 MPa (C) Bending: 1 80 degrees without bending when tightly bent (D) Stress relaxation: The stress relaxation rate after heating at 15 °C for 1 〇〇〇 is 30% (E) Heat-resistant peeling property: No plating peeling occurred after the Sn plating heat-resistant peeling test. 3. A Cu-Ni-Si-based alloy characterized in that it contains 1·2 to 3.5% by mass of Ni, and the concentration (% by mass) is Ni-rich 44 200823302 and (Berile%) 1//6 to 4 Si, and 0.5% by mass or less of Zn as a 4 to a knives, and the remainder is composed of Cu and an impurity having a total amount of less than 5 妒 ', in a metal structure parallel to the cross section of the rolling surface, and The average particle diameter in the direction in which the grain rolling direction is orthogonal is &, when the average particle diameter in the direction parallel to the milk square life is b, a = i ~ Μ _, 〇 5 1.67, and the metal structure is precipitated. The average width of the empty area is ι〇~100 nm. 4. 一種伸銅品,其特徵在於: 係使用申請專利範圍第i i 3項中任一項之cu__Ni_ S i系合金。 5·—種電子零件,其特徵在於: 係使用申明專利範圍第i至3項中任一項之〜一 一 S i系合金。 ^ 6· 一種Cu—Ni— Si系合金之製造方法,係用以製造申 月專利fc圍第1至3項中任一項之Ni 一以系合金, 已3依序進行固溶處理、冷軋、時效處理、冷軋之步驟, 其特徵在於,以下述條件進行各步驟: 固溶處理:將平均晶體粒徑調整為之範園; $放處理·使熱處理中材料之最高溫度在5 50°C以下, 並將材料於450〜550ac之溫度範圍内保持5〜15小時,又, 於升溫過程中,使2〇〇〜25〇。〇、25〇〜3〇〇。〇及3〇〇〜35〇。〇 之各溫度區間中的材料之平均升溫速度在5(rc/h以下; ,Q軋·使蚪效前冷軋之軋製加工度與時效後冷軋之軋 製加工度之合計為5〜40%。 45A copper-exposed product, characterized in that the cu__Ni_S i-based alloy according to any one of the claims i i 3 is used. 5. An electronic component characterized in that: the alloy of any one of items i to 3 of the claims is used. ^6· A method for producing a Cu-Ni-Si alloy, which is used to manufacture a Ni-based alloy according to any one of items 1 to 3 of the patent of the Japanese patent, which has been subjected to solution treatment and cold in sequence. The steps of rolling, aging treatment, and cold rolling are characterized in that each step is carried out under the following conditions: solution treatment: adjusting the average crystal grain size to be a garden; $put treatment: the highest temperature of the material in the heat treatment is 5 50 Below °C, and keep the material in the temperature range of 450~550ac for 5~15 hours, and, in the process of heating up, make 2〇〇~25〇. 〇, 25〇~3〇〇. 〇 and 3〇〇~35〇. The average heating rate of the material in each temperature zone is 5 (rc/h or less; , the total of the rolling process of the cold rolling before the rolling effect and the rolling process of the cold rolling after the aging is 5~ 40%. 45
TW096134670A 2006-09-25 2007-09-17 Cu-Ni-Si alloy TW200823302A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006259294A JP4143662B2 (en) 2006-09-25 2006-09-25 Cu-Ni-Si alloy

Publications (2)

Publication Number Publication Date
TW200823302A true TW200823302A (en) 2008-06-01
TWI355426B TWI355426B (en) 2012-01-01

Family

ID=39230028

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096134670A TW200823302A (en) 2006-09-25 2007-09-17 Cu-Ni-Si alloy

Country Status (6)

Country Link
US (1) US20100000637A1 (en)
JP (1) JP4143662B2 (en)
KR (1) KR101056973B1 (en)
CN (1) CN101512026B (en)
TW (1) TW200823302A (en)
WO (1) WO2008038593A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI461549B (en) * 2012-02-14 2014-11-21 Jx Nippon Mining & Metals Corp Carbene alloy and its manufacturing method

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101946014A (en) * 2008-02-18 2011-01-12 古河电气工业株式会社 Copper alloy material
JP5468798B2 (en) * 2009-03-17 2014-04-09 古河電気工業株式会社 Copper alloy sheet
JP2010255042A (en) * 2009-04-24 2010-11-11 Hitachi Cable Ltd Copper alloy and method for producing copper alloy
CN102597283B (en) * 2009-12-02 2014-04-09 古河电气工业株式会社 Copper alloy sheet material, connector using same, and copper alloy sheet material production method for producing same
JP4885332B2 (en) * 2009-12-02 2012-02-29 古河電気工業株式会社 Copper alloy sheet and manufacturing method thereof
JP5476149B2 (en) * 2010-02-10 2014-04-23 株式会社神戸製鋼所 Copper alloy with low strength anisotropy and excellent bending workability
JP5319578B2 (en) * 2010-03-01 2013-10-16 Jx日鉱日石金属株式会社 Manufacturing method of titanium copper for electronic parts
CN102822364A (en) * 2010-04-02 2012-12-12 Jx日矿日石金属株式会社 Cu-Ni-Si alloy for electronic material
WO2011125264A1 (en) 2010-04-07 2011-10-13 古河電気工業株式会社 Wrought copper alloy, copper alloy part, and process for producing wrought copper alloy
JP4630387B1 (en) * 2010-04-07 2011-02-09 古河電気工業株式会社 Copper alloy wrought material, copper alloy parts, and method for producing copper alloy wrought material
WO2012004868A1 (en) * 2010-07-07 2012-01-12 三菱伸銅株式会社 Cu-ni-si copper alloy plate with excellent deep-draw characteristics and production method thereof
EP2610359A4 (en) * 2010-08-27 2017-08-02 Furukawa Electric Co., Ltd. Copper alloy sheet and method for producing same
JP4824124B1 (en) * 2010-09-17 2011-11-30 古河電気工業株式会社 Copper alloy wrought material, copper alloy parts, and method for producing copper alloy wrought material
CN102021359B (en) * 2010-11-03 2013-01-02 西安理工大学 Cu-Ni-Si alloy with high Ni and Si content and preparation method thereof
JP5192536B2 (en) * 2010-12-10 2013-05-08 三菱伸銅株式会社 Cu-Ni-Si based copper alloy sheet excellent in deep drawing workability and fatigue resistance and method for producing the same
JP5180283B2 (en) * 2010-12-24 2013-04-10 三菱伸銅株式会社 Cu-Ni-Si based copper alloy sheet having excellent fatigue resistance and spring characteristics after bending, and method for producing the same
US9159985B2 (en) * 2011-05-27 2015-10-13 Ostuka Techno Corporation Circuit breaker and battery pack including the same
CN103703154B (en) 2011-08-04 2015-11-25 株式会社神户制钢所 Copper alloy
CN104583430B (en) * 2012-07-26 2017-03-08 日本碍子株式会社 Copper alloy and its manufacture method
KR101274063B1 (en) * 2013-01-22 2013-06-12 한국기계연구원 A metal matrix composite with two-way shape precipitation and method for manufacturing thereof
DE102014008136B4 (en) * 2013-06-07 2016-08-04 VDM Metals GmbH Process for producing a metal foil
JP6301618B2 (en) * 2013-09-17 2018-03-28 古河電気工業株式会社 Copper alloy material and method for producing the same
CN107119247B (en) * 2017-06-08 2018-10-30 西安交通大学 It is a kind of improve in high tonnage melting CuNiSiCr alloy property stability heat treatment method
CN112813368B (en) * 2020-12-25 2022-05-13 大连交通大学 High-performance Cu-Ni-Si alloy plate strip and production process thereof
CN113249666A (en) * 2021-05-14 2021-08-13 太原晋西春雷铜业有限公司 Preparation method for reducing heat shrinkage rate of Cu-Ni-Si alloy
CN115029581B (en) * 2022-06-10 2022-12-09 中铁建电气化局集团轨道交通器材有限公司 Silicon bronze forging and integral forging and pressing and heat treatment method without internal stress
CN115613043A (en) * 2022-11-11 2023-01-17 安徽鑫科铜业有限公司 Copper-nickel-silicon alloy strip surface treatment solution and copper-nickel-silicon alloy strip surface treatment method
CN115627380B (en) * 2022-11-11 2023-07-25 安徽鑫科铜业有限公司 Low-concentration copper-nickel-silicon alloy material and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03162553A (en) * 1989-11-22 1991-07-12 Nippon Mining Co Ltd Manufacture of high strength and high conductivity copper alloy having good bendability
JP3334157B2 (en) * 1992-03-30 2002-10-15 三菱伸銅株式会社 Copper alloy strip with less wear on stamping mold
JP2001207229A (en) 2000-01-27 2001-07-31 Nippon Mining & Metals Co Ltd Copper alloy for electronic material
CN1195395C (en) * 2001-01-30 2005-03-30 日鉱金属股份有限公司 Copper alloy foil for integrated board
JP2004315940A (en) * 2003-04-18 2004-11-11 Nikko Metal Manufacturing Co Ltd Cu-Ni-Si ALLOY AND ITS PRODUCTION METHOD
JP4255330B2 (en) * 2003-07-31 2009-04-15 日鉱金属株式会社 Cu-Ni-Si alloy member with excellent fatigue characteristics
JP4100629B2 (en) * 2004-04-16 2008-06-11 日鉱金属株式会社 High strength and high conductivity copper alloy
JP2006176886A (en) * 2006-03-10 2006-07-06 Furukawa Electric Co Ltd:The Copper alloy material for terminal or connector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI461549B (en) * 2012-02-14 2014-11-21 Jx Nippon Mining & Metals Corp Carbene alloy and its manufacturing method

Also Published As

Publication number Publication date
KR101056973B1 (en) 2011-08-16
WO2008038593A1 (en) 2008-04-03
CN101512026A (en) 2009-08-19
KR20090016485A (en) 2009-02-13
US20100000637A1 (en) 2010-01-07
JP4143662B2 (en) 2008-09-03
TWI355426B (en) 2012-01-01
JP2008075172A (en) 2008-04-03
CN101512026B (en) 2011-03-09

Similar Documents

Publication Publication Date Title
TW200823302A (en) Cu-Ni-Si alloy
TWI649437B (en) Copper alloy plate and manufacturing method of copper alloy plate
JP4584692B2 (en) High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof
JP4809935B2 (en) Copper alloy sheet having low Young's modulus and method for producing the same
JP4566048B2 (en) High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof
JP5476149B2 (en) Copper alloy with low strength anisotropy and excellent bending workability
JP5847987B2 (en) Copper alloy containing silver
TWI502086B (en) Copper alloy sheet and method for producing same
JP3961529B2 (en) High strength copper alloy
JP5097970B2 (en) Copper alloy sheet and manufacturing method thereof
JP5156317B2 (en) Copper alloy sheet and manufacturing method thereof
JP2008013836A (en) High-strength copper alloy sheet showing little anisotropy, and manufacturing method therefor
JP2002356726A (en) High-strength titanium-copper alloy, its manufacturing method, and terminal and connector using it
WO2013018228A1 (en) Copper alloy
TW201239107A (en) Cu-Ni-Si based alloy and process for manufacturing same
TW201035336A (en) Ni-si-co base copper alloy, and method for producing the same
JP2014527578A (en) Copper alloy
JP2012102398A (en) Copper alloy sheet material and method of manufacturing the same
JP2007100145A (en) Copper-alloy sheet material with improved bendability and fatigue characteristic
JP2002266042A (en) Copper alloy sheet having excellent bending workability
JP4876225B2 (en) High-strength copper alloy sheet with excellent bending workability and manufacturing method thereof
JP6111028B2 (en) Corson alloy and manufacturing method thereof
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
TW201200606A (en) Cu-co-si-based alloy sheet, and process for production thereof
JP2010285671A (en) High-strength and high-electrical conductivity copper alloy and method of producing the same