JP2016053220A - Copper alloy sheet excellent in conductivity, stress relaxation characteristic and molding processability - Google Patents

Copper alloy sheet excellent in conductivity, stress relaxation characteristic and molding processability Download PDF

Info

Publication number
JP2016053220A
JP2016053220A JP2015235219A JP2015235219A JP2016053220A JP 2016053220 A JP2016053220 A JP 2016053220A JP 2015235219 A JP2015235219 A JP 2015235219A JP 2015235219 A JP2015235219 A JP 2015235219A JP 2016053220 A JP2016053220 A JP 2016053220A
Authority
JP
Japan
Prior art keywords
copper alloy
mpa
mass
stress relaxation
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2015235219A
Other languages
Japanese (ja)
Other versions
JP2016053220A5 (en
Inventor
波多野 隆紹
Takaaki Hatano
隆紹 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2015235219A priority Critical patent/JP2016053220A/en
Publication of JP2016053220A publication Critical patent/JP2016053220A/en
Publication of JP2016053220A5 publication Critical patent/JP2016053220A5/ja
Abandoned legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a copper alloy sheet having high strength, high conductivity and excellent press relaxation characteristic, and a high-current electronic component and an electronic component for heat release using the copper alloy sheet.SOLUTION: There is provided a copper alloy sheet containing at least one or more kinds of Ni and Co of 0.8 to 5.0 mass% in total, Si of 0.2 to 1.5 mass% and the balance copper with inevitable impurities, having 0.2% bearing force σof 500 MPa or more, and a conductivity of 30%IACS or more, a relationship between a spring deflection limit Kb (MPa) and 0.2% bearing force σ(MPa) given Kb≥(σ-100), and I/Iof 5.0 or less where Iis diffraction integrated strength of a (hkl) face calculated in a thickness direction on a surface by using an X-ray diffraction method.SELECTED DRAWING: None

Description

本発明は銅合金板及び通電用又は放熱用電子部品に関し、特に、電機・電子機器、自動車等に搭載される端子、コネクタ、リレー、スイッチ、ソケット、バスバー、リードフレーム、放熱板等の電子部品の素材として使用される銅合金板及び該銅合金板を用いた電子部品に関する。中でも、電気自動車、ハイブリッド自動車等で用いられる大電流用コネクタや端子等の大電流用電子部品の用途、又はスマートフォンやタブレットPCで用いられる液晶フレーム等の放熱用電子部品の用途に好適な銅合金板及び該銅合金板を用いた電子部品に関するものである。   TECHNICAL FIELD The present invention relates to a copper alloy plate and electronic parts for energization or heat dissipation, and in particular, electronic parts such as terminals, connectors, relays, switches, sockets, bus bars, lead frames, heat sinks, etc. mounted on electric machines / electronic devices, automobiles and the like. The present invention relates to a copper alloy plate used as a material for the above and an electronic component using the copper alloy plate. Among these, copper alloys suitable for use in high current electronic parts such as high current connectors and terminals used in electric vehicles, hybrid cars, etc., or in heat dissipation electronic parts such as liquid crystal frames used in smartphones and tablet PCs. The present invention relates to a plate and an electronic component using the copper alloy plate.

電機・電子機器、自動車等には、端子、コネクタ、スイッチ、ソケット、リレー、バスバー、リードフレーム、放熱板等の電気又は熱を伝えるための部品が組み込まれており、これら部品には銅合金が用いられている。ここで、電気伝導性と熱伝導性は比例関係にある。   Electrical and electronic equipment, automobiles, etc. have built-in parts for conducting electricity or heat, such as terminals, connectors, switches, sockets, relays, bus bars, lead frames, heat sinks, etc. These parts are made of copper alloy. It is used. Here, electrical conductivity and thermal conductivity are in a proportional relationship.

近年、電子部品の小型化に伴い、通電部における銅合金の断面積が小さくなる傾向にある。断面積が小さくなると、通電した際の銅合金からの発熱が増大する。また、成長著しい電気自動車やハイブリッド電気自動車で用いられる電子部品には、バッテリー部のコネクタ等の著しく高い電流が流される部品があり、通電時の銅合金の発熱が問題になっている。発熱が過大になると、銅合金は高温環境に晒されることになる。   In recent years, with the miniaturization of electronic components, the cross-sectional area of the copper alloy in the current-carrying part tends to be small. When the cross-sectional area becomes small, heat generation from the copper alloy when energized increases. In addition, electronic parts used in fast-growing electric vehicles and hybrid electric vehicles include parts through which a remarkably high current flows, such as a connector of a battery unit, and heat generation of a copper alloy during energization is a problem. When the heat generation becomes excessive, the copper alloy is exposed to a high temperature environment.

コネクタ等の電子部品の電気接点では、銅合金板にたわみが与えられ、このたわみで発生する応力により、接点での接触力を得ている。たわみを与えた銅合金を高温下に長時間保持すると、応力緩和現象により、応力すなわち接触力が低下し、接触電気抵抗の増大を招く。この問題に対処するため銅合金には、発熱量が減ずるよう導電性により優れることが求められ、また発熱しても接触力が低下しないよう耐応力緩和特性により優れることも求められている。   In an electrical contact of an electronic component such as a connector, a deflection is given to the copper alloy plate, and a contact force at the contact is obtained by a stress generated by the deflection. When a bent copper alloy is held at a high temperature for a long time, the stress, that is, the contact force is lowered due to the stress relaxation phenomenon, and the contact electric resistance is increased. In order to cope with this problem, the copper alloy is required to be more excellent in conductivity so that the amount of generated heat is reduced, and is also required to be superior in stress relaxation resistance so that the contact force does not decrease even if heat is generated.

一方、例えばスマートフォンやタブレットPCの液晶には液晶フレームと呼ばれる放熱部品が用いられている。このような放熱用途の銅合金板においても、耐応力緩和特性を高めると、外力による放熱板のクリープ変形が抑制され、放熱板周りに配置される液晶部品、ICチップ等に対する保護性が改善される、等の効果を期待できる。   On the other hand, for example, a heat radiating component called a liquid crystal frame is used for a liquid crystal of a smartphone or a tablet PC. Even in such a copper alloy plate for heat dissipation, when the stress relaxation resistance is increased, creep deformation of the heat sink due to external force is suppressed, and the protection against liquid crystal components, IC chips, etc. arranged around the heat sink is improved. You can expect effects such as.

さらに、上記銅合金板は、曲げ加工、絞り加工等の成形加工を経て通電用又は放熱用の電子部品となるが、部品の小型化や高機能化に伴い、より優れた成形加工性が銅合金板に求められている。   Furthermore, the copper alloy sheet becomes an electronic component for energization or heat dissipation through forming processing such as bending and drawing, but with the miniaturization and high functionality of the component, more excellent forming workability is achieved. There is a demand for alloy plates.

高い導電率、高い強度、及び比較的良好な耐応力緩和特性と成形加工性を有する銅合金として、コルソン合金が知られている。コルソン合金はCuマトリックス中にNi−Si、Co−Si、Ni−Co−Si等の金属間化合物を析出させた合金である。   A Corson alloy is known as a copper alloy having high electrical conductivity, high strength, and relatively good stress relaxation resistance and moldability. A Corson alloy is an alloy in which an intermetallic compound such as Ni—Si, Co—Si, or Ni—Co—Si is precipitated in a Cu matrix.

近年のコルソン合金に関する研究は、曲げ加工性改善を目的とするものが中心であり、そのための方策として{001}<100>方位(Cube方位)を発達させる技術が種々提唱されている。例えば、特許文献1(特開2006−283059号)では、Cube方位の面積率を50%以上に制御し、曲げ加工性を改善している。特許文献2(特開2010−275622号)では、(200)({001}と同義)のX線回折強度を銅粉標準試料のX線回折強度以上に制御し曲げ加工性を改善している。特許文献3(特開2011−17072号)では、Cube方位の面積率を5〜60%に制御すると同時に、Brass方位及びCopper方位の面積率をともに20%以下に制御し、曲げ加工性を改善している。特許文献4(特許第4857395号公報)では、板厚方向の中央部において、Cube方位の面積率を10〜80%に制御すると同時に、Brass方位及びCopper方位の面積率をともに20%以下に制御し、ノッチ曲げ性を改善している。特許文献5(WO2011/068121号)では、材料の表層および深さ位置で全体の1/4の位置でのCube方位面積率をそれぞれW0およびW4とし、W0/W4を0.8〜1.5、W0を5〜48%に制御し、さらに平均結晶粒径を12〜100μmに調整することで、180度密着曲げ性を改善している。特許文献6(WO2011/068134号)では、圧延方向に向く(100)面の面積率を30%以上に制御することにより、ヤング率を110GPa以下、曲げたわみ係数を105GPa以下に調整している。   Recent research on the Corson alloy is mainly aimed at improving the bending workability, and various techniques for developing the {001} <100> orientation (Cube orientation) have been proposed as measures for that purpose. For example, in patent document 1 (Unexamined-Japanese-Patent No. 2006-283059), the area ratio of Cube direction is controlled to 50% or more, and the bending workability is improved. Patent Document 2 (Japanese Patent Laid-Open No. 2010-275622) improves the bending workability by controlling the X-ray diffraction intensity of (200) (synonymous with {001}) to be equal to or higher than the X-ray diffraction intensity of the copper powder standard sample. . In Patent Document 3 (Japanese Patent Laid-Open No. 2011-17072), the area ratio of the Cube orientation is controlled to 5 to 60%, and at the same time, the area ratios of the Brass orientation and Copper orientation are both controlled to 20% or less to improve bending workability. doing. In Patent Document 4 (Japanese Patent No. 4857395), the area ratio of the Cube orientation is controlled to 10 to 80% at the center in the thickness direction, and at the same time, the area ratios of the Brass orientation and Copper orientation are both controlled to 20% or less. And notch bendability is improved. In patent document 5 (WO2011 / 068121), Cube azimuth | direction area ratio in the position of 1/4 of the whole in the surface layer and depth position of material is set to W0 and W4, respectively, and W0 / W4 is 0.8-1.5. , W0 is controlled to 5 to 48%, and the average crystal grain size is adjusted to 12 to 100 μm to improve the 180-degree adhesion bendability. In Patent Document 6 (WO 2011/068134), the Young's modulus is adjusted to 110 GPa or less and the bending deflection coefficient is adjusted to 105 GPa or less by controlling the area ratio of the (100) plane facing the rolling direction to 30% or more.

特開2006−283059号公報JP 2006-283059 A 特開2010−275622号公報JP 2010-275622 A 特開2011−17072号公報JP 2011-17072 A 特許第4857395号公報Japanese Patent No. 4857395 国際公開WO2011/068121号International publication WO2011 / 068121 国際公開WO2011/068134号International publication WO2011 / 068134

しかしながら、コルソン合金は、比較的良好な耐応力緩和特性を有するものの、その耐応力緩和特性のレベルは大電流を流す部品の用途又は大熱量を放散する部品の用途として必ずしも十分とはいえなかった。特に、良好な耐応力緩和特性と成形加工性を兼ね備えたコルソン合金はこれまで報告されていなかった。   However, although the Corson alloy has a relatively good stress relaxation resistance, the level of the stress relaxation resistance is not always sufficient for the use of a component that conducts a large current or a component that dissipates a large amount of heat. . In particular, no Corson alloy having good stress relaxation resistance and moldability has been reported so far.

そこで、本発明は、高強度、高導電性、優れた耐応力緩和特性を有する銅合金板を提供することを目的とし、具体的には、耐応力緩和特性が改善されたコルソン合金を提供することを課題とする。また、耐応力緩和特性に加え、成形加工性を改善することも課題とする。さらに、大電流用途又は放熱用途に好適な電子部品を提供することをも課題とする。   Therefore, the present invention aims to provide a copper alloy plate having high strength, high conductivity, and excellent stress relaxation resistance, and specifically provides a Corson alloy having improved stress relaxation resistance. This is the issue. Another object is to improve the moldability in addition to the stress relaxation resistance. It is another object of the present invention to provide an electronic component suitable for high current use or heat dissipation use.

本発明者は、鋭意検討を重ねた結果、高強度および高導電性を有するコルソン合金について、ばね限界値および特定の結晶方位を調整することにより、耐応力緩和特性が向上することを見出した。さらに、この耐応力緩和特性を改善したコルソン合金に対し、その表面にCube方位を発達させると成形加工性が向上することを知見した。   As a result of intensive studies, the present inventor has found that the stress relaxation resistance is improved by adjusting the spring limit value and the specific crystal orientation for the Corson alloy having high strength and high conductivity. Furthermore, it has been found that, when the Cube orientation is developed on the surface of the Corson alloy having improved stress relaxation resistance, the moldability is improved.

以上の知見を基礎として完成した本発明は、
(1)Ni及びCoのうち一種以上を合計で0.8〜5.0質量%、Siを0.2〜1.5質量%含有し、残部が銅及び不可避的不純物からなり、500MPa以上の0.2%耐力σyおよび30%IACS以上の導電率を有し、ばね限界値Kb(MPa)と0.2%耐力σy(MPa)との関係が、Kb≧(σy−100)で与えられ、X線回折法を用い表面において厚み方向に求めた(hkl)面の回折積分強度をI(hkl)としたときに、I(111)/I(311)が5.0以下であることを特徴とする銅合金板。
(2)X線回折を用い銅粉末に対し求めた(hkl)面の回折積分強度をI0(hkl)としたときに、I(200)/I0(200)≧1.0であることを特徴とする(1)の銅合金板。
(3)Sn、Zn、Mg、Fe、Ti、Zr、Cr、Al、P、Mn、B及びAgのうち1種以上を総量で3.0質量%以下含有する(1)または(2)の銅合金板。
(4)(1)〜(3)の何れか1項に記載の銅合金板を用いた大電流用電子部品。
(5)(1)〜(3)の何れか1項に記載の銅合金板を用いた放熱用電子部品。
を提供する。
The present invention completed on the basis of the above knowledge,
(1) One or more of Ni and Co are added in a total of 0.8 to 5.0 mass%, Si is contained in 0.2 to 1.5 mass%, the balance is made of copper and inevitable impurities, and is 500 MPa or more. has a 0.2% proof stress sigma y, and 30% IACS or more conductivity, spring limit value Kb (MPa) 0.2% proof stress sigma y relationship between (MPa) is, Kb ≧ (σ y -100) I (111) / I (311) is 5.0 or less, where I (hkl) is the integrated diffraction intensity of the (hkl) plane obtained in the thickness direction on the surface using the X-ray diffraction method. A copper alloy plate characterized by being.
(2) When the integrated diffraction intensity of the (hkl) plane obtained for copper powder using X-ray diffraction is I 0 (hkl) , I (200) / I 0 (200) ≧ 1.0 (1) The copper alloy plate characterized by these.
(3) (1) or (2) containing one or more of Sn, Zn, Mg, Fe, Ti, Zr, Cr, Al, P, Mn, B, and Ag in a total amount of 3.0% by mass or less Copper alloy plate.
(4) A high-current electronic component using the copper alloy plate according to any one of (1) to (3).
(5) A heat dissipating electronic component using the copper alloy plate according to any one of (1) to (3).
I will provide a.

本発明によれば、高強度、高導電性および優れた耐応力緩和特性を兼ね備え、さらに優れた成形加工性をも有する銅合金板並びに大電流用途又は放熱用途に好適な電子部品を提供することが可能である。この銅合金板は、端子、コネクタ、スイッチ、ソケット、リレー、バスバー、リードフレーム、放熱板等の電子部品の素材として好適に使用することができ、特に大電流を通電する電子部品の素材又は大熱量を放散する電子部品の素材として有用である。   According to the present invention, it is possible to provide a copper alloy plate having high strength, high conductivity, and excellent stress relaxation characteristics, and also having excellent formability, and an electronic component suitable for large current use or heat radiation use. Is possible. This copper alloy plate can be suitably used as a material for electronic parts such as terminals, connectors, switches, sockets, relays, bus bars, lead frames, heat sinks, etc. It is useful as a material for electronic parts that dissipate heat.

本発明に係る合金を種々の温度で焼鈍したときの焼鈍温度と引張強さとの関係を示すグラフである。It is a graph which shows the relationship between the annealing temperature when the alloy which concerns on this invention is annealed at various temperatures, and tensile strength. 応力緩和率の測定原理を説明する図である。It is a figure explaining the measurement principle of a stress relaxation rate. 応力緩和率の測定原理を説明する図である。It is a figure explaining the measurement principle of a stress relaxation rate.

以下、本発明について説明する。
(Ni、Co及びSiの添加量)
大電流を通電する部品又は大熱量を放散する部品の素材として用いる銅合金板には、30%IACS以上の導電率および500MPa以上の0.2%耐力が必要である。
そのために、本発明の銅合金板には、Ni及び/またはCoを添加し、さらにSiを添加する。Ni、Co及びSiは、適当な時効処理を行うことにより、Ni−Si、Co−Si、Ni−Co−Si等の金属間化合物として析出する。この析出物の作用により強度が向上し、析出によりCuマトリックス中に固溶したNi、Co及びSiが減少するため導電率が向上する。
The present invention will be described below.
(Addition amount of Ni, Co and Si)
A copper alloy plate used as a material for a part that conducts a large current or a part that dissipates a large amount of heat needs to have a conductivity of 30% IACS or more and a 0.2% proof stress of 500 MPa or more.
Therefore, Ni and / or Co is added to the copper alloy plate of the present invention, and Si is further added. Ni, Co, and Si are precipitated as intermetallic compounds such as Ni—Si, Co—Si, and Ni—Co—Si by performing an appropriate aging treatment. The strength of the precipitate is improved by the action of the precipitate, and Ni, Co, and Si dissolved in the Cu matrix are reduced by the precipitation, so that the conductivity is improved.

NiとCoの合計量が0.8質量%未満又はSiが0.2質量%未満になると500MPa以上の0.2%耐力を得ることが難しくなる。NiとCoの合計量が5.0質量%を超えると又はSiが1.5質量%を超えると、30%IACS以上の導電率を得ることが難しくなる。このため、本発明に係るコルソン合金では、NiとCoのうち一種以上の添加量の合計は0.8〜5.0質量%とし、Siの添加量は0.2〜1.5質量%としている。NiとCoのうち一種以上の添加量の合計は1.0〜4.0質量%がより好ましく、Siの添加量は0.25〜0.90質量%がより好ましい。   When the total amount of Ni and Co is less than 0.8% by mass or Si is less than 0.2% by mass, it becomes difficult to obtain a 0.2% yield strength of 500 MPa or more. When the total amount of Ni and Co exceeds 5.0% by mass or when Si exceeds 1.5% by mass, it becomes difficult to obtain a conductivity of 30% IACS or more. Therefore, in the Corson alloy according to the present invention, the total addition amount of one or more of Ni and Co is 0.8 to 5.0 mass%, and the addition amount of Si is 0.2 to 1.5 mass%. Yes. The total of one or more addition amounts of Ni and Co is more preferably 1.0 to 4.0 mass%, and the addition amount of Si is more preferably 0.25 to 0.90 mass%.

(その他の添加元素)
コルソン合金には、強度や耐熱性を改善するために、Sn、Zn、Mg、Fe、Ti、Zr、Cr、Al、P、Mn、B及びAgのうちの一種以上を含有させることができる。ただし、添加量が多すぎると、導電率が低下して30%IACSを下回ったり、合金の製造性が悪化したりする場合があるので、添加量は総量で3.0質量%以下、より好ましくは2.5質量%以下とする。また、添加による効果を得るためには、添加量を総量で0.001質量%以上にすることが好ましい。
(Other additive elements)
The Corson alloy may contain one or more of Sn, Zn, Mg, Fe, Ti, Zr, Cr, Al, P, Mn, B, and Ag in order to improve strength and heat resistance. However, if the addition amount is too large, the electrical conductivity may be reduced to be less than 30% IACS or the productivity of the alloy may be deteriorated. Therefore, the addition amount is preferably 3.0% by mass or less, more preferably Is 2.5% by mass or less. Moreover, in order to acquire the effect by addition, it is preferable to make addition amount 0.001 mass% or more in total amount.

(ばね限界値)
ばね限界値を指標に金属組織を調整することにより、銅合金板の耐応力緩和特性が向上する。本発明に係る銅合金板においては、製品のばね限界値をKb(MPa)、0.2%耐力をσy(MPa)としたときに、Kb≧(σy−100)の関係に、より好ましくは、Kb≧(σy−50)の関係に調整することで、耐応力緩和特性が向上する。Kbの上限値は特に規制されないが、通常はσyを超える値になることはない。
(Spring limit value)
By adjusting the metal structure using the spring limit value as an index, the stress relaxation resistance of the copper alloy sheet is improved. In the copper alloy plate according to the present invention, when the spring limit value of the product is Kb (MPa) and the 0.2% proof stress is σ y (MPa), the relationship of Kb ≧ (σ y −100) Preferably, the stress relaxation resistance is improved by adjusting the relationship to Kb ≧ (σ y −50). The upper limit value of Kb is not particularly limited, but usually does not exceed σ y .

(結晶方位)
本発明では、X線回折法により、銅合金板の表面に対しθ/2θ測定を行い、所定方位(hkl)面の回折ピークの積分強度(I(hkl))を測定する。また、ランダム方位試料として銅粉末に対しても(hkl)面の回折ピークの積分強度(I0(hkl))を測定する。
(Crystal orientation)
In the present invention, the θ / 2θ measurement is performed on the surface of the copper alloy plate by the X-ray diffraction method, and the integrated intensity (I (hkl) ) of the diffraction peak in the predetermined orientation (hkl) plane is measured. Further, the integrated intensity (I 0 (hkl) ) of the diffraction peak on the (hkl) plane is also measured for copper powder as a random orientation sample.

(結晶方位と耐応力緩和特性)
Kbを調整した銅合金板につき、表面の結晶方位を制御することで、銅合金板の耐応力緩和特性がさらに向上する。本発明に係る銅合金板においては、I(111)/I(311)を5.0以下、好ましくは2.0以下に調整することにより、耐応力緩和特性が向上する。I(111)/I(311)の下限値は耐応力緩和特性改善の点からは制限されないものの、I(111)/I(311)は典型的には0.01以上の値をとる。
(Crystal orientation and stress relaxation resistance)
By controlling the crystal orientation of the surface of the copper alloy plate with adjusted Kb, the stress relaxation resistance of the copper alloy plate is further improved. In the copper alloy sheet according to the present invention, the stress relaxation resistance is improved by adjusting I (111) / I (311) to 5.0 or less, preferably 2.0 or less. Although the lower limit of I (111) / I (311 ) is not limited in terms of the stress relaxation property improves, I (111) / I ( 311) typically takes a value of more than 0.01.

(成形加工性と結晶方位)
良好な成形加工性を得るために、I(200)/I0(200)を調整する。I(200)/I0(200)が高いほどCube方位が発達しているといえる。本発明に係る銅合金板においては、I(200)/I0(200)を1.0以上、好ましくは2.0以上に制御すると、成形加工性が向上する。I(200)/I0(200)の上限値は、成形加工性改善の点からは規制されないものの、本発明のコルソン合金のI(200)/I0(200)は典型的には10.0以下である。
(Formability and crystal orientation)
In order to obtain good moldability, I (200) / I 0 (200) is adjusted. It can be said that the higher the I (200) / I 0 (200) , the more developed the Cube orientation. In the copper alloy sheet according to the present invention, when I (200) / I 0 (200) is controlled to 1.0 or more, preferably 2.0 or more, the moldability is improved. The upper limit of I (200) / I 0 ( 200) , although in terms of moldability improved not regulated, I (200) of Corson alloy of the present invention / I 0 (200) is typically 10. 0 or less.

(厚み)
製品の厚みは0.1〜2.0mmであることが好ましい。厚みが薄すぎると、通電部断面積が小さくなり通電時の発熱が増加するため大電流を流すコネクタ等の素材として不適であり、また、わずかな外力で変形するようになるため放熱板等の素材としても不適である。一方で、厚みが厚すぎると、成形加工が困難になる。このような観点から、より好ましい厚みは0.2〜1.5mmである。厚みが上記範囲となることにより、通電時の発熱を抑えつつ、成形加工性を良好なものとすることができる。
(Thickness)
The thickness of the product is preferably 0.1 to 2.0 mm. If the thickness is too thin, the cross-sectional area of the current-carrying part will decrease and heat generation will increase during energization, making it unsuitable as a material for connectors that carry large currents, and because it will deform with a slight external force, It is also unsuitable as a material. On the other hand, when the thickness is too thick, the molding process becomes difficult. From such a viewpoint, a more preferable thickness is 0.2 to 1.5 mm. When the thickness is in the above range, the moldability can be improved while suppressing heat generation during energization.

(用途)
本発明の実施の形態に係る銅合金板は、電機・電子機器、自動車等で用いられる端子、コネクタ、リレー、スイッチ、ソケット、バスバー、リードフレーム、放熱板等の電子部品の用途に好適に使用することができ、特に、電気自動車、ハイブリッド自動車等で用いられる大電流用コネクタや端子等の大電流用電子部品の用途、又はスマートフォンやタブレットPCで用いられる液晶フレーム等の放熱用電子部品の用途に有用である。
(Use)
The copper alloy plate according to the embodiment of the present invention is suitably used for applications of electronic parts such as terminals, connectors, relays, switches, sockets, bus bars, lead frames, heat sinks, etc. used in electric / electronic devices, automobiles, etc. In particular, applications of high-current electronic components such as connectors and terminals for large currents used in electric vehicles, hybrid vehicles, etc., or uses of electronic components for heat dissipation such as liquid crystal frames used in smartphones and tablet PCs Useful for.

ここで、大電流用電子部品としては、特に限定されず一般に大電流用として用いられるものを含み、例えば、10アンペア以上、より典型的には30アンペア以上、さらに典型的には50アンペア以上の電流が流れる電子部品を示す。電気自動車用やハイブリッド自動車等用のコネクタでは100アンペア以上の電流が流れるものもある。   Here, the electronic component for large current is not particularly limited and includes those generally used for large current. For example, it is 10 amperes or more, more typically 30 amperes or more, and more typically 50 amperes or more. An electronic component through which a current flows is shown. Some connectors for electric vehicles and hybrid vehicles carry a current of 100 amperes or more.

(製造方法)
コルソン合金の一般的な製造プロセスでは、まず溶解炉で電気銅、Ni、Co、Si等の原料を溶解し、所望の組成の溶湯を得る。そして、この溶湯をインゴットに鋳造する。その後、熱間圧延、冷間圧延、溶体化処理、時効処理、最終冷間圧延、歪取焼鈍の順で所望の厚みおよび特性に仕上げる。熱処理後には、熱処理時に生成した表面酸化膜を除去するために、表面の酸洗や研磨等を行ってもよい。また、高強度化のために、溶体化処理と時効の間に冷間圧延を行ってもよい。
(Production method)
In a general manufacturing process of a Corson alloy, first, raw materials such as electrolytic copper, Ni, Co, and Si are melted in a melting furnace to obtain a molten metal having a desired composition. Then, this molten metal is cast into an ingot. Then, it finishes in desired thickness and a characteristic in order of a hot rolling, cold rolling, solution treatment, an aging treatment, final cold rolling, and stress relief annealing. After the heat treatment, surface pickling, polishing, or the like may be performed in order to remove the surface oxide film generated during the heat treatment. In order to increase the strength, cold rolling may be performed between the solution treatment and aging.

ばね限界値及びI(111)/I(311)値を上記範囲に調整する手段は、特定の方法に制限されないが、例えば、歪取焼鈍の条件を、次のように制御することで可能となる。 The means for adjusting the spring limit value and the I (111) / I (311) value to the above range is not limited to a specific method, but for example, it is possible by controlling the conditions for stress relief annealing as follows. Become.

本発明の歪取焼鈍は連続焼鈍炉を用いて行う。バッチ炉の場合、コイル状に巻き取った状態で材料を加熱するため、加熱中に材料が変形を起こし材料に反りが生じる。したがって、バッチ炉は本発明の歪取焼鈍に不適である。   The strain relief annealing of the present invention is performed using a continuous annealing furnace. In the case of a batch furnace, since the material is heated in a state of being wound in a coil shape, the material is deformed during the heating, and the material is warped. Therefore, the batch furnace is not suitable for the strain relief annealing of the present invention.

連続焼鈍炉において、炉内温度を300〜700℃とし、5秒から10分の範囲で加熱時間を適宜調整し、歪取焼鈍後の0.2%耐力(σy)を歪取焼鈍前の0.2%耐力(σy0)に対し10〜50MPa低い値、好ましくは15〜45MPa低い値に調整する。これにより、最終冷間圧延上がりにおいて低かったKbが充分に上昇する。(σy0−σy)が小さすぎても大きすぎても、Kbが充分に上昇せず、Kb≧(σy−100)の関係を得ることが難しくなる。 In the continuous annealing furnace, the furnace temperature is set to 300 to 700 ° C., the heating time is appropriately adjusted in the range of 5 seconds to 10 minutes, and the 0.2% proof stress (σ y ) after the stress relief annealing is set to be before the stress relief annealing. The 0.2% proof stress (σ y0 ) is adjusted to a value 10 to 50 MPa lower, preferably 15 to 45 MPa lower. Thereby, Kb which was low in the final cold rolling is sufficiently increased. If (σ y0 −σ y ) is too small or too large, Kb does not rise sufficiently and it becomes difficult to obtain the relationship of Kb ≧ (σ y −100).

歪取焼鈍においては、連続焼鈍炉内において材料に付加される張力を1〜5MPa、より好ましくは1〜4MPaに調整する。張力が大きすぎると、I(111)/I(311)を5.0以下に調整することが難しくなる。また、Kbの上昇が充分ではなくなる傾向にある。一方、張力が小さすぎると、焼鈍炉を通板中の材料が炉壁と接触し、材料の表面やエッジに傷が付くことがある。 In the strain relief annealing, the tension applied to the material in the continuous annealing furnace is adjusted to 1 to 5 MPa, more preferably 1 to 4 MPa. If the tension is too large, it becomes difficult to adjust I (111) / I (311) to 5.0 or less. Further, the increase in Kb tends to be insufficient. On the other hand, if the tension is too small, the material in the passing plate of the annealing furnace may come into contact with the furnace wall, and the surface or edge of the material may be damaged.

次に本発明では、I(200)/I0(200)≧1.0の結晶方位を得るために、溶体化処理の前に、熱処理(以下、予備焼鈍ともいう)及び比較的低加工度の冷間圧延(以下、軽圧延ともいう)を行ってもよい。 Next, in the present invention, in order to obtain a crystal orientation of I (200) / I 0 (200) ≧ 1.0, a heat treatment (hereinafter also referred to as pre-annealing) and a relatively low workability are performed before the solution treatment. Cold rolling (hereinafter also referred to as light rolling) may be performed.

予備焼鈍は、熱間圧延後の冷間圧延により形成された圧延組織中に、部分的に再結晶粒を生成させることを目的に行う。圧延組織中の再結晶粒の割合には最適値があり、少なすぎてもまた多すぎても上述の結晶方位が得られない。最適な割合の再結晶粒は、下記に定義する軟化度Sが0.2〜0.8、より好ましくは0.3〜0.7になるよう、予備焼鈍条件を調整することにより得られる。   The preliminary annealing is performed for the purpose of partially generating recrystallized grains in a rolled structure formed by cold rolling after hot rolling. There is an optimum value for the ratio of recrystallized grains in the rolled structure, and the above-mentioned crystal orientation cannot be obtained if the amount is too small or too large. The optimum proportion of recrystallized grains can be obtained by adjusting the pre-annealing conditions so that the softening degree S defined below is 0.2 to 0.8, more preferably 0.3 to 0.7.

図1に本発明に係る合金を種々の温度で焼鈍したときの焼鈍温度と引張強さとの関係を例示する。熱電対を取り付けた試料を1000℃の管状炉に挿入し、熱電対で測定される試料温度が所定温度に到達したときに、試料を炉から取り出して水冷し、引張強さを測定したものである。試料到達温度が500〜700℃の間で再結晶が進行し、引張強さが急激に低下している。高温側での引張強さの緩やかな低下は、再結晶粒の成長によるものである。   FIG. 1 illustrates the relationship between the annealing temperature and the tensile strength when the alloy according to the present invention is annealed at various temperatures. A sample with a thermocouple attached was inserted into a 1000 ° C. tubular furnace, and when the sample temperature measured by the thermocouple reached a predetermined temperature, the sample was taken out of the furnace, cooled with water, and the tensile strength was measured. is there. Recrystallization proceeds when the sample arrival temperature is 500 to 700 ° C., and the tensile strength is drastically decreased. The gradual decrease in tensile strength on the high temperature side is due to the growth of recrystallized grains.

予備焼鈍における軟化度Sを次式で定義する。
S=(σ0−σ)/(σ0−σ950
ここで、σ0は焼鈍前の引張強さであり、σおよびσ950はそれぞれ予備焼鈍後および950℃で焼鈍後の引張強さである。950℃という温度は、本発明に係る合金を950℃で焼鈍すると安定して完全再結晶することから、再結晶後の引張強さを知るための基準温度として採用している。
The softening degree S in the pre-annealing is defined by the following equation.
S = (σ 0 −σ) / (σ 0 −σ 950 )
Here, σ 0 is the tensile strength before annealing, and σ and σ 950 are the tensile strength after preliminary annealing and after annealing at 950 ° C., respectively. The temperature of 950 ° C. is adopted as a reference temperature for knowing the tensile strength after recrystallization because the alloy according to the present invention is stably completely recrystallized when annealed at 950 ° C.

軟化度が0.2〜0.8の範囲から外れると、銅合金板表面において、I(200)/I0(200)が1.0未満になる。予備焼鈍の温度および時間は特に制約されず、軟化度Sを上記範囲に調整することが重要である。一般的には、連続焼鈍炉を用いる場合には炉温400〜750℃で5秒間〜10分間の範囲、バッチ焼鈍炉を用いる場合には炉温350〜600℃で30分間〜20時間の範囲で行われる。 When the softening degree is out of the range of 0.2 to 0.8, I (200) / I 0 (200) is less than 1.0 on the surface of the copper alloy plate. The temperature and time of the pre-annealing are not particularly limited, and it is important to adjust the softening degree S to the above range. Generally, when a continuous annealing furnace is used, the furnace temperature ranges from 400 to 750 ° C. for 5 seconds to 10 minutes, and when a batch annealing furnace is used, the furnace temperature ranges from 350 to 600 ° C. for 30 minutes to 20 hours. Done in

なお、予備焼鈍条件の設定は、次の手順により行うことができる。
(1)予備焼鈍前の材料の引張強さ(σ0)を測定する。引張試験は圧延方向と平行に行えばよい(以下同様)。
(2)予備焼鈍前の材料を950℃で焼鈍する。具体的には、熱電対を取り付けた材料を1000℃の管状炉に挿入し、熱電対で測定される試料温度が950℃に到達したときに、試料を炉から取り出して水冷する。
(3)上記950℃焼鈍後の材料の引張強さ(σ950)を求める。
(4)例えば、σ0が800MPa、σ950が300MPaの場合、軟化度0.20及び0.80に相当する引張強さは、それぞれ700MPa及び400MPaである。
(5)焼鈍後の引張強さが400〜700MPaとなるように、予備焼鈍の条件を求める。
The pre-annealing conditions can be set by the following procedure.
(1) Measure the tensile strength (σ 0 ) of the material before pre-annealing. The tensile test may be performed in parallel with the rolling direction (the same applies hereinafter).
(2) The material before preliminary annealing is annealed at 950 ° C. Specifically, the material to which the thermocouple is attached is inserted into a 1000 ° C. tubular furnace, and when the sample temperature measured by the thermocouple reaches 950 ° C., the sample is taken out of the furnace and water-cooled.
(3) Obtain the tensile strength (σ 950 ) of the material after annealing at 950 ° C.
(4) For example, when σ 0 is 800 MPa and σ 950 is 300 MPa, the tensile strengths corresponding to the softening degrees of 0.20 and 0.80 are 700 MPa and 400 MPa, respectively.
(5) Pre-annealing conditions are determined so that the tensile strength after annealing is 400 to 700 MPa.

上記予備焼鈍の後、溶体化処理に先立ち、加工度が3〜50%の軽圧延を行う。加工度が3〜50%の範囲から外れると、I(200)/I0(200)が1.0未満になる。ここで、加工度(r)は圧延工程前後の板厚減少率であり、r(%)=(t0−t)/t0×100(t0:圧延前の板厚、t:圧延後の板厚)で与えられる。 After the preliminary annealing, prior to solution treatment, light rolling with a workability of 3 to 50% is performed. When the degree of processing is out of the range of 3 to 50%, I (200) / I 0 (200) becomes less than 1.0. Here, the working degree (r) is a sheet thickness reduction rate before and after the rolling process, and r (%) = (t 0 −t) / t 0 × 100 (t 0 : sheet thickness before rolling, t: after rolling. Thickness).

本発明合金に関わる好ましい製造方法を工程順に列記すると次のようになる。
(1)インゴットの鋳造(厚み20〜300mm)
(2)熱間圧延(温度800〜1000℃、厚み3〜20mmまで)
(3)冷間圧延
(4)予備焼鈍(軟化度:0.20〜0.80)
(5)軽圧延(加工度:3〜50%)
(6)溶体化処理(700〜950℃で5〜300秒)
(7)冷間圧延(加工度0〜60%)
(8)時効処理(350〜600℃で2〜20時間)
(9)最終冷間圧延(加工度:3〜80%)
(10)歪取焼鈍(300〜700℃で5秒〜10分、張力:1〜5MPa、0.2%耐力低下量:10〜50MPa)
Preferred manufacturing methods related to the alloy of the present invention are listed in the order of steps as follows.
(1) Ingot casting (thickness 20 to 300 mm)
(2) Hot rolling (temperature 800 to 1000 ° C., thickness 3 to 20 mm)
(3) Cold rolling (4) Pre-annealing (softening degree: 0.20 to 0.80)
(5) Light rolling (working degree: 3-50%)
(6) Solution treatment (700 to 950 ° C. for 5 to 300 seconds)
(7) Cold rolling (working degree 0-60%)
(8) Aging treatment (2 to 20 hours at 350 to 600 ° C.)
(9) Final cold rolling (working degree: 3-80%)
(10) Strain relief annealing (at 300 to 700 ° C. for 5 seconds to 10 minutes, tension: 1 to 5 MPa, 0.2% yield strength reduction: 10 to 50 MPa)

工程(2)、(6)及び(8)については、コルソン合金の一般的な製造条件を選択すればよい。   For the steps (2), (6) and (8), general production conditions for the Corson alloy may be selected.

最終冷間圧延(9)は高強度化のために必須であり、その加工度が3%未満の場合は0.2%耐力を500MPa以上に調整することが難しく、80%を超える場合は成形加工性が著しく低下する。また、冷間圧延(7)は高強度化のために任意に行うものであり、加工度の増加とともに0.2%耐力が増加する反面、成形加工性が低下する。   The final cold rolling (9) is indispensable for increasing the strength. When the degree of work is less than 3%, it is difficult to adjust the 0.2% proof stress to 500 MPa or more, and when it exceeds 80%, forming is performed. Workability is significantly reduced. Further, the cold rolling (7) is arbitrarily performed for increasing the strength, and the 0.2% proof stress increases as the workability increases, but the forming workability decreases.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。   Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.

溶銅に合金元素を添加した後、厚みが200mmのインゴットに鋳造した。インゴットを950℃で3時間加熱し、熱間圧延により厚み15mmの板にした。その後、次の順に加工と熱処理を行なった。
(1)冷間圧延
(2)予備焼鈍:連続焼鈍炉を用い、加熱温度を30秒とし、炉内温度を500〜750℃の間で調整し、軟化度を種々変化させた。一部の例では予備焼鈍を行わなかった。
(3)軽圧延:加工度を変化させた。
(4)溶体化処理:連続焼鈍炉を用い、炉内温度を800℃とし、溶体化処理後の結晶粒径が5〜20μmになるよう、加熱時間を1秒から10分の間で調整した。
(5)時効処理:バッチ炉を用い、加熱時間を5時間とし、引張強さが最大になるよう、炉内温度を350〜600℃の間で調整した。
(6)最終冷間圧延:加工度を変化させた。
(7)歪取焼鈍:連続焼鈍炉を用い、炉内温度を500℃とし加熱時間を1秒から15分の間で調整し、歪取焼鈍による0.2%耐力の低下量を種々変化させた。また、炉内において材料に付加する張力を種々変化させた。一部の例では歪取焼鈍を行わなかった。
After adding the alloy element to the molten copper, it was cast into an ingot having a thickness of 200 mm. The ingot was heated at 950 ° C. for 3 hours and formed into a plate having a thickness of 15 mm by hot rolling. Thereafter, processing and heat treatment were performed in the following order.
(1) Cold rolling (2) Pre-annealing: A continuous annealing furnace was used, the heating temperature was 30 seconds, the furnace temperature was adjusted between 500-750 ° C., and the softening degree was changed variously. In some cases, no pre-annealing was performed.
(3) Light rolling: The degree of processing was changed.
(4) Solution treatment: Using a continuous annealing furnace, the furnace temperature was set to 800 ° C., and the heating time was adjusted between 1 second and 10 minutes so that the crystal grain size after solution treatment was 5 to 20 μm. .
(5) Aging treatment: Using a batch furnace, the heating time was 5 hours, and the furnace temperature was adjusted between 350 and 600 ° C. so that the tensile strength was maximized.
(6) Final cold rolling: The degree of processing was changed.
(7) Straightening annealing: Using a continuous annealing furnace, adjusting the furnace temperature to 500 ° C. and adjusting the heating time from 1 second to 15 minutes, and variously changing the amount of 0.2% proof stress reduction by straightening annealing. It was. In addition, various tensions were added to the material in the furnace. In some cases, strain relief annealing was not performed.

歪取焼鈍後(歪取焼鈍を行っていないものでは最終冷間圧延後)の材料につき、次の測定を行った。   The following measurements were made on the material after strain relief annealing (after final cold rolling for those not subjected to strain relief annealing).

(成分)
合金元素濃度をICP−質量分析法で分析した。
(component)
The alloy element concentration was analyzed by ICP-mass spectrometry.

(0.2%耐力)
JIS Z2241に規定する13B号試験片を引張方向が圧延方向と平行になるように採取し、JIS Z2241に準拠して圧延方向と平行に引張試験を行い、0.2%耐力を求めた。
(0.2% yield strength)
A No. 13B test piece specified in JIS Z2241 was taken so that the tensile direction was parallel to the rolling direction, and a tensile test was performed in parallel with the rolling direction in accordance with JIS Z2241, to obtain 0.2% yield strength.

(導電率)
試験片の長手方向が圧延方向と平行になるように試験片を採取し、JIS H0505に準拠し四端子法により20℃での導電率を測定した。
(conductivity)
The test piece was sampled so that the longitudinal direction of the test piece was parallel to the rolling direction, and the conductivity at 20 ° C. was measured by a four-terminal method in accordance with JIS H0505.

(ばね限界値)
幅10mm、長さ100mmの短冊形状の試験片を、試験片の長手方向が圧延方向と平行になるように採取し、JIS H3130に規定されているモーメント式試験により圧延方向と平行な方向のばね限界値を測定した。
(Spring limit value)
A strip-shaped test piece having a width of 10 mm and a length of 100 mm was taken so that the longitudinal direction of the test piece was parallel to the rolling direction, and a spring in a direction parallel to the rolling direction was measured by a moment type test specified in JIS H3130. The limit value was measured.

(製品のX線回折)
材料表面に対し厚み方向に(111)面、(311)面および(200)面のX線回折積分強度を測定した。さらに、銅粉末(関東化学株式会社製、銅(粉末)、2N5、>99.5%、325mesh)に対し、(200)面のX線回折積分強度を測定した。X線回折装置には(株)リガク製RINT2500を使用し、Cu管球にて、管電圧25kV、管電流20mAで測定を行った。
(Product X-ray diffraction)
The X-ray diffraction integrated intensity of the (111) plane, (311) plane, and (200) plane was measured in the thickness direction with respect to the material surface. Furthermore, the X-ray diffraction integrated intensity of the (200) plane was measured for copper powder (manufactured by Kanto Chemical Co., Inc., copper (powder), 2N5,> 99.5%, 325 mesh). RINT 2500 manufactured by Rigaku Corporation was used as the X-ray diffractometer, and measurement was performed with a Cu tube bulb at a tube voltage of 25 kV and a tube current of 20 mA.

(応力緩和率)
幅10mm、長さ100mmの短冊形状の試験片を、試験片の長手方向が圧延方向と平行になるように採取した。図2のように、l=50mmの位置を作用点として、試験片にy0のたわみを与え、圧延方向の0.2%耐力の80%に相当する応力(s)を負荷した。y0は次式により求めた。
0=(2/3)・l2・s / (E・t)
ここで、Eは圧延方向のヤング率であり、tは試料の厚みである。150℃にて3000時間加熱後に除荷し、図3のように永久変形量(高さ)yを測定し、応力緩和率{[y(mm)/y0(mm)]×100(%)}を算出した。
上記応力緩和率が30%以下の場合、耐応力緩和特性が良好とみなした。
(Stress relaxation rate)
A strip-shaped test piece having a width of 10 mm and a length of 100 mm was collected so that the longitudinal direction of the test piece was parallel to the rolling direction. As shown in FIG. 2, with the position of l = 50 mm as the working point, the test piece was given a deflection of y 0 and a stress (s) corresponding to 80% of the 0.2% proof stress in the rolling direction was applied. y 0 was determined by the following equation.
y 0 = (2/3) · l 2 · s / (E · t)
Here, E is the Young's modulus in the rolling direction, and t is the thickness of the sample. After unloading at 150 ° C. for 3000 hours, the amount of permanent deformation (height) y is measured as shown in FIG. 3, and the stress relaxation rate {[y (mm) / y 0 (mm)] × 100 (%) } Was calculated.
When the stress relaxation rate was 30% or less, the stress relaxation resistance was considered good.

(成形加工性)
エリクセン社製試験機を用い、ブランク径:φ64mm、ポンチ(パンチ)径:φ33mm、シート圧力:3.0kN、潤滑剤:グリスの条件で、カップを作製した。
(Molding processability)
Using an Eriksen tester, a cup was prepared under the conditions of blank diameter: φ64 mm, punch (punch) diameter: φ33 mm, sheet pressure: 3.0 kN, and lubricant: grease.

このカップを開放端側を下にしてガラス板上に置き、耳同士の間の凹部とガラス板との間隙を読み取り顕微鏡で測定し、カップに発生した4個の耳の間の凹部の間隙の平均値を求め、耳の高さとした。
又、カップの外観を目視観察し、肌荒れの有無を判定した。
Place this cup on the glass plate with the open end side down, read the gap between the recesses between the ears and the glass plate with a microscope, and measure the gap between the four ears generated in the cup. The average value was obtained and used as the ear height.
Further, the appearance of the cup was visually observed to determine the presence or absence of rough skin.

以下の基準で加工性を評価した。
◎:耳の高さが0.5mm以下で、肌荒れがないもの
○:耳の高さが0.5mm以下で、わずかに肌荒れが生じたもの
×:耳の高さが0.5mmを超えたもの、または肌荒れが生じたもの
Workability was evaluated according to the following criteria.
◎: Ear height of 0.5 mm or less and no skin roughness ○: Ear height of 0.5 mm or less and slight skin roughness ×: Ear height exceeded 0.5 mm Or skin irritation

表1に製品厚みと合金組成を示し、表2に製造条件と評価結果を示す。   Table 1 shows the product thickness and alloy composition, and Table 2 shows the manufacturing conditions and evaluation results.

Figure 2016053220
Figure 2016053220

Figure 2016053220
Figure 2016053220

発明例1〜40では、Ni及びCoのうち一種以上を合計で0.8〜5.0質量%に、Siを0.2〜1.5質量%に調整し、最終冷間圧延において加工度を3〜80%に調整し、歪取焼鈍において材料を連続焼鈍炉に張力1〜5MPaで通板して0.2%耐力を10〜50MPa低下させた。その結果、Kb≧(σy−100)なる関係およびI(111)/I(311)≦5.0なる関係が得られ、応力緩和率が30%以下となった。また、30%IACS以上の導電率と500MPa以上の0.2%耐力も得られた。 In Invention Examples 1 to 40, at least one of Ni and Co is adjusted to a total of 0.8 to 5.0 mass%, Si is adjusted to 0.2 to 1.5 mass%, and the degree of workability in the final cold rolling Was adjusted to 3 to 80%, and the material was passed through a continuous annealing furnace at a tension of 1 to 5 MPa in strain relief annealing to reduce the 0.2% proof stress by 10 to 50 MPa. As a result, a relationship of Kb ≧ (σ y −100) and a relationship of I (111) / I (311) ≦ 5.0 were obtained, and the stress relaxation rate was 30% or less. In addition, a conductivity of 30% IACS or higher and a 0.2% proof stress of 500 MPa or higher were also obtained.

軟化度が0.2〜0.8の予備焼鈍および加工度が3〜50%の軽圧延を行った発明例1〜31の場合、I(200)/I0(200)が1.0以上になった。そして、I(200)/I0(200)が2.0以上の発明例1〜23では成形加工性の評価が◎となり、I(200)/I0(200)が1.0以上2.0未満の発明例23〜30では成形加工性の評価が○となった。 In the case of Invention Examples 1 to 31 in which pre-annealing with a softening degree of 0.2 to 0.8 and light rolling with a working degree of 3 to 50% were performed, I (200) / I 0 (200) was 1.0 or more. Became. In Invention Examples 1 to 23 where I (200) / I 0 (200) is 2.0 or more, the evaluation of molding processability is ◎, and I (200) / I 0 (200) is 1.0 or more. In the inventive examples 23 to 30 of less than 0, the evaluation of the molding processability was “good”.

一方、発明例32〜36は予備焼鈍および軽圧延を行わなかったため、発明例37、38は予備焼鈍の軟化度が0.2〜0.8の範囲から外れたため、発明例39、40は軽圧延の加工度が3〜50%の範囲から外れたため、I(200)/I0(200)が1.0未満となり成形加工性の評価が×となった。 On the other hand, since Inventive Examples 32 to 36 were not pre-annealed and light-rolled, Inventive Examples 37 and 38 were out of the range of 0.2 to 0.8 in the pre-annealing, and Inventive Examples 39 and 40 were light. Since the rolling workability was out of the range of 3 to 50%, I (200) / I 0 (200) was less than 1.0, and the evaluation of forming workability was x.

比較例1、2は歪取焼鈍を行わなかったものであり、(σy−Kb)が100を超えてI(111)/I(311)も5.0を超え、応力緩和率が30%を超えた。 Comparative Examples 1 and 2 were not subjected to strain relief annealing, (σ y −Kb) exceeded 100, I (111) / I (311) also exceeded 5.0, and the stress relaxation rate was 30%. Exceeded.

比較例3〜7では歪取焼鈍における0.2%耐力の低下量が過小であり、比較例8、9では歪取焼鈍における0.2%耐力の低下量が過大であった。このため(σy−Kb)が100を超え、応力緩和率が30%を超えた。 In Comparative Examples 3 to 7, the amount of decrease in 0.2% yield strength in strain relief annealing was excessively small, and in Comparative Examples 8 and 9, the amount of decrease in 0.2% yield strength in strain relief annealing was excessive. Therefore, (σ y −Kb) exceeded 100, and the stress relaxation rate exceeded 30%.

比較例10〜15では炉内での材料張力が5MPaを超えたため、I(111)/I(311)が5.0を超え、特に張力が高かった比較例10、11では(σy−Kb)も100を超えた。これらの応力緩和率は30%を超えた。 In Comparative Examples 10 to 15, since the material tension in the furnace exceeded 5 MPa, I (111) / I (311) exceeded 5.0, and in Comparative Examples 10 and 11 where the tension was particularly high, (σ y −Kb ) Also exceeded 100. These stress relaxation rates exceeded 30%.

比較例16では最終冷間圧延における加工度が3%に満たなかったため、歪取焼鈍後の0.2%耐力が500MPaに満たなかった。   In Comparative Example 16, the degree of work in final cold rolling was less than 3%, so the 0.2% yield strength after strain relief annealing was less than 500 MPa.

Claims (5)

Ni及びCoのうち一種以上を合計で0.8〜5.0質量%、Siを0.2〜1.5質量%含有し、残部が銅及び不可避的不純物からなり、500MPa以上の0.2%耐力σyおよび30%IACS以上の導電率を有し、ばね限界値Kb(MPa)と0.2%耐力σy(MPa)との関係が、Kb≧(σy−100)で与えられ、X線回折法を用い表面において厚み方向に求めた(hkl)面の回折積分強度をI(hkl)としたときに、I(111)/I(311)が5.0以下であることを特徴とする銅合金板。 One or more of Ni and Co are added in a total amount of 0.8 to 5.0 mass%, Si is contained in an amount of 0.2 to 1.5 mass%, the balance is made of copper and inevitable impurities, % Proof stress σ y and electrical conductivity of 30% IACS or more, and the relationship between spring limit value Kb (MPa) and 0.2% proof stress σ y (MPa) is given by Kb ≧ (σ y −100) When the integrated diffraction intensity of the (hkl) plane obtained in the thickness direction on the surface using the X-ray diffraction method is I (hkl) , I (111) / I (311) is 5.0 or less. Features copper alloy sheet. X線回折を用い銅粉末に対し求めた(hkl)面の回折積分強度をI0(hkl)としたときに、I(200)/I0(200)≧1.0であることを特徴とする請求項1の銅合金板。 It is characterized in that I (200) / I 0 (200) ≧ 1.0 when the diffraction integrated intensity of the (hkl) plane obtained for copper powder using X-ray diffraction is I 0 (hkl). The copper alloy sheet according to claim 1. Sn、Zn、Mg、Fe、Ti、Zr、Cr、Al、P、Mn、B及びAgのうち1種以上を総量で3.0質量%以下含有することを特徴とする請求項1または2の銅合金板。   3. The content of one or more of Sn, Zn, Mg, Fe, Ti, Zr, Cr, Al, P, Mn, B, and Ag is 3.0% by mass or less in total amount. Copper alloy plate. 請求項1〜3の何れか1項に記載の銅合金板を用いた大電流用電子部品。   The electronic component for large currents using the copper alloy plate of any one of Claims 1-3. 請求項1〜3の何れか1項に記載の銅合金板を用いた放熱用電子部品。   The electronic component for thermal radiation using the copper alloy plate of any one of Claims 1-3.
JP2015235219A 2015-12-01 2015-12-01 Copper alloy sheet excellent in conductivity, stress relaxation characteristic and molding processability Abandoned JP2016053220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015235219A JP2016053220A (en) 2015-12-01 2015-12-01 Copper alloy sheet excellent in conductivity, stress relaxation characteristic and molding processability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015235219A JP2016053220A (en) 2015-12-01 2015-12-01 Copper alloy sheet excellent in conductivity, stress relaxation characteristic and molding processability

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013243107A Division JP6113061B2 (en) 2013-11-25 2013-11-25 Copper alloy sheet with excellent electrical conductivity, stress relaxation resistance and formability

Publications (2)

Publication Number Publication Date
JP2016053220A true JP2016053220A (en) 2016-04-14
JP2016053220A5 JP2016053220A5 (en) 2016-11-17

Family

ID=55744829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015235219A Abandoned JP2016053220A (en) 2015-12-01 2015-12-01 Copper alloy sheet excellent in conductivity, stress relaxation characteristic and molding processability

Country Status (1)

Country Link
JP (1) JP2016053220A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019167613A (en) * 2018-03-26 2019-10-03 Jx金属株式会社 Cu-Ni-Si BASED COPPER ALLOY STRIP EXCELLENT IN DIE WEAR RESISTANCE AND PRESS PUNCHABILITY
US20210247337A1 (en) * 2018-07-02 2021-08-12 Shanghai Electric Cable Research Institute Co., Ltd. Method for determining softening temperature of copper and copper alloy
US11607844B2 (en) 2016-10-04 2023-03-21 Tokyo Printing Ink Mfg. Co., Ltd. Treatment agent for additive manufacturing apparatus
KR20230094188A (en) 2020-10-29 2023-06-27 후루카와 덴키 고교 가부시키가이샤 Copper alloy plate, method of manufacturing copper alloy plate and contact parts

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11607844B2 (en) 2016-10-04 2023-03-21 Tokyo Printing Ink Mfg. Co., Ltd. Treatment agent for additive manufacturing apparatus
JP2019167613A (en) * 2018-03-26 2019-10-03 Jx金属株式会社 Cu-Ni-Si BASED COPPER ALLOY STRIP EXCELLENT IN DIE WEAR RESISTANCE AND PRESS PUNCHABILITY
US20210247337A1 (en) * 2018-07-02 2021-08-12 Shanghai Electric Cable Research Institute Co., Ltd. Method for determining softening temperature of copper and copper alloy
KR20230094188A (en) 2020-10-29 2023-06-27 후루카와 덴키 고교 가부시키가이샤 Copper alloy plate, method of manufacturing copper alloy plate and contact parts

Similar Documents

Publication Publication Date Title
JP4143662B2 (en) Cu-Ni-Si alloy
JP6223057B2 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP6050738B2 (en) Copper alloy sheet with excellent conductivity, moldability and stress relaxation properties
JP6113061B2 (en) Copper alloy sheet with excellent electrical conductivity, stress relaxation resistance and formability
JP5470483B1 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP6099543B2 (en) Copper alloy sheet with excellent conductivity, stress relaxation resistance and formability
JP6328380B2 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP2014077192A (en) Copper alloy and connector terminal material for high current
JP2016053220A (en) Copper alloy sheet excellent in conductivity, stress relaxation characteristic and molding processability
JP2017155340A (en) Copper alloy sheet excellent in conductivity and stress relaxation characteristic
JP6047466B2 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP2017066532A (en) Copper alloy sheet having excellent conductivity and stress relaxation properties
JP2014029016A (en) Copper alloy sheet excellent in conductivity and stress relaxation property
JP5453565B1 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP2017002407A (en) Copper alloy sheet excellent in conductivity and stress relaxation characteristic
WO2014041865A1 (en) Copper alloy plate having excellent electroconductive properties and stress relaxation properties
JP5352750B1 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP5525101B2 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP2017179503A (en) Copper alloy sheet excellent in strength and conductivity
JP2016035111A (en) Copper alloy sheet excellent in conductivity, molding property and stress relaxation characteristic
JP2017082335A (en) Copper alloy sheet excellent in conductivity and bending deflection coefficient
JP2016053221A (en) Copper alloy sheet excellent in conductivity, stress relaxation characteristic and molding processability
JP2017089011A (en) Copper alloy sheet excellent in conductivity and flexure deflection coefficient
JP2014055347A (en) Copper alloy sheet excellent in conductivity and stress relief properties

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160928

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160928

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20170224