JP2019167613A - Cu-Ni-Si BASED COPPER ALLOY STRIP EXCELLENT IN DIE WEAR RESISTANCE AND PRESS PUNCHABILITY - Google Patents

Cu-Ni-Si BASED COPPER ALLOY STRIP EXCELLENT IN DIE WEAR RESISTANCE AND PRESS PUNCHABILITY Download PDF

Info

Publication number
JP2019167613A
JP2019167613A JP2018058111A JP2018058111A JP2019167613A JP 2019167613 A JP2019167613 A JP 2019167613A JP 2018058111 A JP2018058111 A JP 2018058111A JP 2018058111 A JP2018058111 A JP 2018058111A JP 2019167613 A JP2019167613 A JP 2019167613A
Authority
JP
Japan
Prior art keywords
rolling
mpa
less
copper alloy
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018058111A
Other languages
Japanese (ja)
Other versions
JP6811199B2 (en
Inventor
捷 村上
Sho Murakami
捷 村上
寛之 北川
Hiroyuki Kitagawa
寛之 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2018058111A priority Critical patent/JP6811199B2/en
Publication of JP2019167613A publication Critical patent/JP2019167613A/en
Application granted granted Critical
Publication of JP6811199B2 publication Critical patent/JP6811199B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

To provide a Cu-Ni-Si based copper alloy that has an excellent strength and electrical conductivity, and an excellent die wear resistance and press punchability.SOLUTION: Provided is a Cu-Ni-Si based copper alloy, containing, in mass%, Ni: 3.0 to 5.0%, Si: 0.5 to 1.5%, the balance consisting of Cu and inevitable impurities, 0.2% yield stress YS in the rolling parallel direction is 950 to 1300 MPa, elongation EL in the rolling right-angle direction is 3% or less, conductivity is 25% IACS or more, and (0.2% yield strength YS in the rolling parallel direction)/(elongation EL in the rolling right-angle direction) is 317 to 1300 (MPa/%), and furthermore, the spring deflection limit value in the rolling right-angle direction is 850 MPa or more.SELECTED DRAWING: Figure 1

Description

本発明は、例えばコネクタ、端子、リレ−、スイッチ等の導電性ばね材に好適なCu−Ni−Si系銅合金条およびその製造方法に関するものである。   The present invention relates to a Cu—Ni—Si based copper alloy strip suitable for conductive spring materials such as connectors, terminals, relays, switches, and the like, and a method of manufacturing the same.

コネクタ、リレー、スイッチ等の通電部品として使用される銅合金には、通電によるジュール熱の発生を抑制するために導電率が高いことが要求されるとともに、電気・電子機器の組み立て時や作動時に付与される応力に耐え得る高い強度を有することが要求される。
この要求に応じ、従来のりん青銅や黄銅といった固溶強化型銅合金に替わり、高い強度および導電率を有するコルソン合金等の析出強化型銅合金の需要が増加している。コルソン合金は、Cuマトリックス中にNi−Si、Co−Si、Ni−Co−Si等の金属間化合物を析出させた合金であり、高強度、高い導電率、良好な曲げ加工性を兼ね備えている。
Copper alloys used as current-carrying parts such as connectors, relays, and switches are required to have high conductivity in order to suppress the generation of Joule heat due to current flow, and during assembly and operation of electrical and electronic equipment. It is required to have a high strength that can withstand the applied stress.
In response to this demand, demand for precipitation strengthened copper alloys such as Corson alloys having high strength and conductivity is increasing instead of conventional solid solution strengthened copper alloys such as phosphor bronze and brass. A Corson alloy is an alloy in which an intermetallic compound such as Ni-Si, Co-Si, Ni-Co-Si is precipitated in a Cu matrix, and has high strength, high electrical conductivity, and good bending workability. .

また、近年では、コネクタなどの電気・電子部品の高集積化、小型化および軽量化の進に伴って、それらの電気・電子部品の素材である銅合金には、薄肉化の要求も高まっている。さらに、これら電気・電子部品は、一般にプレス打ち抜き後に曲げ加工によって形成されることから、優れたプレス打ち抜き性および耐金型摩耗性を有することも要求される。   In recent years, with the progress of high integration, miniaturization, and weight reduction of electrical and electronic parts such as connectors, there has been an increasing demand for thinning of copper alloys as materials of such electrical and electronic parts. Yes. Furthermore, since these electric / electronic parts are generally formed by bending after press punching, they are also required to have excellent press punchability and mold wear resistance.

従来、コルソン合金のプレス打ち抜き性を向上させる方法として、Pb、Cdなどの微量成分添加、あるいは破断の起点となる化合物を分散させるなど、化学成分に着目することが行われている。しかし、このような方法は微量成分の制御が困難であったり、他の特性を劣化させたり、コストアップにつながるため、化学成分以外の手法でプレス打ち抜き性を向上させる方法も検討されてきている。
例えば、特許文献1、2にはCu−Ni−Si系銅合金の板表面における結晶方位の集積度を制御する技術が記載されており、特許文献3、4にはCu−Ni−Co−Si系銅合金の析出物の粒径および個数密度を制御する技術が開示されている。
Conventionally, as a method for improving the press punchability of a Corson alloy, attention has been paid to chemical components such as addition of trace components such as Pb and Cd, or dispersion of a compound that is a starting point of fracture. However, such a method is difficult to control a trace amount component, deteriorates other characteristics, and leads to an increase in cost. Therefore, a method for improving press punchability by a method other than a chemical component has been studied. .
For example, Patent Documents 1 and 2 describe techniques for controlling the degree of integration of crystal orientations on the surface of a Cu—Ni—Si-based copper alloy, and Patent Documents 3 and 4 describe Cu—Ni—Co—Si. A technique for controlling the particle size and number density of precipitates of a copper alloy is disclosed.

また、コルソン合金等の時効硬化型銅基合金の多くは活性元素を含有しており、りん青銅に比べて、プレス金型を著しく磨耗する傾向があり、金型摩耗の抑制が望まれている。プレス金型が磨耗すると、被加工材の切断面にバリやダレが生じて加工形状の低下を来たし、製造コストも上昇する。
そこで、特許文献5にはCu−Ni−Si系銅合金の成分組成を制御する技術が開示されている。又、特許文献6にはCu−Ni−Si系銅合金の第二相粒子の大きさおよび個数密度を制御する技術が報告されている。
In addition, many age-hardening copper-based alloys such as Corson alloys contain active elements, and tend to wear out press dies significantly compared to phosphor bronze, and suppression of mold wear is desired. . When the press die is worn, burrs and sagging occur on the cut surface of the workpiece, resulting in a decrease in the processed shape and an increase in manufacturing cost.
Therefore, Patent Document 5 discloses a technique for controlling the component composition of a Cu—Ni—Si based copper alloy. Patent Document 6 reports a technique for controlling the size and number density of second phase particles of a Cu—Ni—Si based copper alloy.

特開2000−73130号公報JP 2000-73130 A 特開2008−95185号公報JP 2008-95185 A 特開2014−156623号公報JP 2014-156623 A 特開2017−43789号公報JP 2017-43789 A 特開平11−256256号公報JP-A-11-256256 特許第5189708号公報Japanese Patent No. 5189708

しかしながら、特許文献1、2記載の技術の場合、プレス打ち抜き性は改善されるものの、強度が十分とはいえない。
特許文献3、4記載の技術の場合、プレス打ち抜き性を改善するものの、Cu−Ni−Si系銅合金にCoを添加するため、粗大な第二相粒子が多く存在して耐金型摩耗性が低下する。
特許文献5、6記載の技術の場合、耐金型摩耗性は改善されるものの、強度が十分とはいえない。
However, in the case of the techniques described in Patent Documents 1 and 2, the press punchability is improved, but the strength is not sufficient.
In the case of the techniques described in Patent Documents 3 and 4, although the press punchability is improved, since Co is added to the Cu—Ni—Si based copper alloy, there are many coarse second-phase particles and the mold wear resistance. Decreases.
In the case of the techniques described in Patent Documents 5 and 6, although the wear resistance of the mold is improved, the strength is not sufficient.

本発明は上記の課題を解決するためになされたものであり、強度および導電率に優れ、耐金型摩耗性及びプレス打ち抜き性に優れるCu−Ni−Si系銅合金の提供を目的とする。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide a Cu—Ni—Si based copper alloy that is excellent in strength and conductivity, excellent in mold wear resistance and press punchability.

本発明者は、Cu−Ni−Si系銅合金のプレス打ち抜き性を向上させる因子として、プレス後のプレス破面におけるせん断面比率を小さくすることに着目し、強度が高いほどせん断面比率は小さくなることを見出しした。
又、伸びが高くなると、耐金型摩耗性が低下することを見出した。
そして、強度と伸びの制御の手法として、歪取焼鈍における低温焼鈍硬化に着目した。低温焼鈍硬化とは時効後の冷間圧延によって組織中に圧延ひずみを導入すると、その後の歪取焼鈍で固溶元素がひずみに固着し、転位を妨げることで強化される現象である。
The inventor of the present invention pays attention to reducing the shear plane ratio at the press fracture surface after pressing as a factor for improving the press punchability of the Cu—Ni—Si based copper alloy. The higher the strength, the smaller the shear plane ratio. I found out that
Further, it has been found that the mold wear resistance decreases as the elongation increases.
As a method for controlling strength and elongation, attention was paid to low-temperature annealing hardening in strain relief annealing. Low-temperature annealing hardening is a phenomenon in which when rolling strain is introduced into a structure by cold rolling after aging, solid solution elements are fixed to the strain by subsequent strain relief annealing and are strengthened by preventing dislocation.

低温焼鈍硬化は歪取焼鈍直前の冷間圧延の加工度と、その冷間圧延時の固溶元素の析出の度合によって硬化の程度が変化する。しかしながら、冷間圧延と低温焼鈍硬化によって強度を高くしすぎると、プレスの際に金型摩耗を促の固溶元素の析出の度合に着目し、歪取焼鈍前に低温で熱処理を施し、製造時の加工度と析出の度合(導電率EC)との関係を規定することで、0.2%耐力を950MPa以上に向上させることに成功した。   In the low-temperature annealing hardening, the degree of hardening varies depending on the degree of cold rolling work immediately before strain relief annealing and the degree of precipitation of the solid solution element during the cold rolling. However, if the strength is increased too much by cold rolling and low-temperature annealing hardening, pay attention to the degree of precipitation of solid solution elements that promote mold wear during pressing, and heat treatment is performed at a low temperature before strain relief annealing. By defining the relationship between the degree of processing at the time and the degree of precipitation (conductivity EC), we succeeded in improving the 0.2% yield strength to 950 MPa or more.

上記の目的を達成するために、本発明のCu−Ni−Si系銅合金は、質量%で、Ni:3.0〜5.0%、Si:0.5〜1.5%含有し、残部がCuおよび不可避不純物からなり、圧延平行方向の0.2%耐力YSが950〜1300MPa、圧延直角方向の伸びELが3%以下、導電率が25%IACS以上であり、かつ(圧延平行方向の0.2%耐力YS)/(圧延直角方向の伸びEL)が317〜1300(MPa/%)であり、さらに圧延直角方向のばね限界値が850MPa以上である。   In order to achieve the above object, the Cu—Ni—Si based copper alloy of the present invention contains, by mass%, Ni: 3.0 to 5.0%, Si: 0.5 to 1.5%, The balance is made of Cu and inevitable impurities, 0.2% proof stress YS in the rolling parallel direction is 950 to 1300 MPa, elongation EL in the perpendicular direction of rolling is 3% or less, conductivity is 25% IACS or more, and (rolling parallel direction 0.2% yield strength YS) / (elongation EL in the direction perpendicular to rolling) is 317 to 1300 (MPa /%), and the spring limit value in the direction perpendicular to rolling is 850 MPa or more.

本発明のCu−Ni−Si系銅合金において、前記ばね限界値が900MPa以上であることが好ましい。
本発明のCu−Ni−Si系銅合金は、さらにMg、Mn、Sn、ZnおよびCrの群から選ばれる少なくとも1種以上を総量で0.005〜1.0質量%含有することが好ましい。
本発明のCu−Ni−Si系銅合金は、さらにP、B、Ti、Zr、Al、FeおよびAgの群から選ばれる少なくとも1種以上を総量で0.005〜1.0質量%含有することが好ましい。
In the Cu—Ni—Si based copper alloy of the present invention, the spring limit value is preferably 900 MPa or more.
The Cu—Ni—Si based copper alloy of the present invention preferably further contains 0.005 to 1.0 mass% in total of at least one selected from the group consisting of Mg, Mn, Sn, Zn and Cr.
The Cu—Ni—Si based copper alloy of the present invention further contains at least one selected from the group of P, B, Ti, Zr, Al, Fe and Ag in a total amount of 0.005 to 1.0 mass%. It is preferable.

本発明によれば、強度および導電率に優れ、耐金型摩耗性及びプレス打ち抜き性に優れるCu−Ni−Si系銅合金が得られる。   According to the present invention, it is possible to obtain a Cu—Ni—Si based copper alloy that is excellent in strength and electrical conductivity, excellent in mold wear resistance and press punchability.

歪取焼鈍前の導電率と、冷間圧延の加工率REとの相関を示す図である。It is a figure which shows the correlation with the electrical conductivity before strain relief annealing, and the processing rate RE of cold rolling. 耐金型摩耗性の評価方法を示す図である。It is a figure which shows the evaluation method of metal mold | die wear resistance.

以下、本発明の実施形態に係るCu−Ni−Si系銅合金について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。   Hereinafter, the Cu—Ni—Si based copper alloy according to the embodiment of the present invention will be described. In the present invention, “%” means “% by mass” unless otherwise specified.

(組成)
[NiおよびSi]
銅合金中にNi:3.0〜5.0%、Si:0.5〜1.5%を含有する。NiおよびSiは、適当な熱処理を施すことにより金属間化合物を形成し,導電率を劣化させずに強度を向上させる。
NiおよびSiの含有量が上記範囲未満であると、強度の向上効果が得られず、上記範囲を超えると導電性が低下すると共に熱間加工性が低下する。
また、上述の低温焼鈍硬化を発現するためには多量の固溶元素が必要であるため、本発明ではNiおよびSiの含有量を多くしている。
(composition)
[Ni and Si]
The copper alloy contains Ni: 3.0 to 5.0% and Si: 0.5 to 1.5%. Ni and Si form an intermetallic compound by performing an appropriate heat treatment, and improve the strength without deteriorating the electrical conductivity.
When the content of Ni and Si is less than the above range, the effect of improving the strength cannot be obtained, and when the content exceeds the above range, the electrical conductivity is lowered and the hot workability is lowered.
In addition, since a large amount of solid solution element is required to develop the above-described low-temperature annealing hardening, the contents of Ni and Si are increased in the present invention.

[他の添加元素]
合金中に、さらにMg、Mn、Sn、ZnおよびCrの群から選ばれる少なくとも1種以上を総量で0.005〜1.0質量%含有してもよい。
Mgは強度と耐応力緩和特性を向上させる。Mnは強度と熱間加工性を向上させる。Snは強度を向上させる。Znは半田接合部の耐熱性を向上させる。Crは、Niと同様にSiと化合物を形成するため、析出硬化により導電率を劣化させずに強度を向上させる。
また、合金中に、さらにP、B、Ti、Zr、Al、FeおよびAgの群から選ばれる少なくとも1種以上を総量で0.005〜1.0質量%含有してもよい。これら元素を含有すると、導電率、強度、応力緩和特性、めっき性等の製品特性が改善される。
なお、上記した各元素の総量が上記範囲未満であると上記した効果が得られず、上記範囲を超えると導電率の低下を招く場合がある。
[Other additive elements]
The alloy may further contain 0.005 to 1.0% by mass in total of at least one selected from the group consisting of Mg, Mn, Sn, Zn and Cr.
Mg improves strength and stress relaxation resistance. Mn improves strength and hot workability. Sn improves the strength. Zn improves the heat resistance of the solder joint. Since Cr forms a compound with Si like Ni, it improves the strength without deteriorating conductivity by precipitation hardening.
Moreover, you may contain 0.005-1.0 mass% of at least 1 sort (s) chosen from the group of P, B, Ti, Zr, Al, Fe, and Ag further in a total amount in an alloy. When these elements are contained, product characteristics such as conductivity, strength, stress relaxation characteristics, and plating properties are improved.
In addition, when the total amount of each element described above is less than the above range, the above effect cannot be obtained, and when it exceeds the above range, the conductivity may be lowered.

[0.2%耐力]
Cu−Ni−Si系銅合金の圧延平行方向の0.2%耐力が950〜1300MPaである。圧延平行方向の0.2%耐力に着目した理由は、耐力(強度)は一般に圧延平行方向の値で代表されるからである。
材料のプレス打ち抜き性を向上させるためには、プレス後のプレス破面におけるせん断面比率を小さくすることが有効であるが、強度が高いほどせん断面比率は小さくなる。よって、0.2%耐力が950MPa以上であると、プレス打ち抜き性が向上する。
ただし、0.2%耐力を高くしすぎると、高硬度の析出物が生じ、この析出物に起因して硬度の高いせん断面が金型と接触して金型摩耗を促進することから、1300MPaを上限とする。
なお、0.2%耐力は、プレス機を用いてJIS13B号試験片を作製し、JIS−Z2241に従い引張試験して常温で求める。
[0.2% yield strength]
The 0.2% yield strength of the Cu-Ni-Si based copper alloy in the rolling parallel direction is 950 to 1300 MPa. The reason for paying attention to the 0.2% yield strength in the rolling parallel direction is that the yield strength (strength) is generally represented by a value in the rolling parallel direction.
In order to improve the press punchability of the material, it is effective to reduce the shear plane ratio at the press fracture surface after pressing. However, the higher the strength, the smaller the shear plane ratio. Therefore, when the 0.2% proof stress is 950 MPa or more, the press punchability is improved.
However, if the 0.2% proof stress is too high, a precipitate with high hardness is generated, and the high shear surface comes into contact with the mold due to the precipitate and promotes mold wear. Is the upper limit.
The 0.2% proof stress is obtained at room temperature by preparing a JIS 13B test piece using a press and performing a tensile test according to JIS-Z2241.

[伸び]
Cu−Ni−Si系銅合金の圧延直角方向の伸びが3%以下である。端子やコネクタ等の電子材料は、自身の長手方向が銅合金条の圧延直角方向に平行になるように打ち抜かれて製造されることが多く、圧延直角方向の伸びがプレス打ち抜き性を評価するのに有効である。
伸びが小さくなると、プレス後のプレス破面におけるせん断面比率が小さくなる傾向にあり、圧延直角方向の伸びを3%以下に低減すると、プレス打ち抜き性が向上する。また、銅合金材料を金型で打ち抜く際、抵抗が少なく打ち抜けるので、金型と銅合金材料の接触部のダレが抑制され、耐金型摩耗性も向上する。
[Elongation]
The elongation in the direction perpendicular to the rolling direction of the Cu—Ni—Si based copper alloy is 3% or less. Electronic materials such as terminals and connectors are often manufactured by being punched so that their longitudinal direction is parallel to the direction perpendicular to the rolling direction of the copper alloy strip, and the elongation in the direction perpendicular to the rolling evaluates the press punching property. It is effective for.
When the elongation becomes small, the shear surface ratio in the press fracture surface after pressing tends to be small, and when the elongation in the direction perpendicular to the rolling is reduced to 3% or less, the press punching property is improved. Further, when the copper alloy material is punched with a mold, the resistance is punched out with little resistance, so that the contact between the mold and the copper alloy material is suppressed, and the mold wear resistance is improved.

伸びの下限は特に制限されないが、例えば1%である。
また、伸びは破断伸びであり、引張試験機により、JIS−Z2241に従い、上述の0.2%耐力を測定するのと同時に測定した。そして、試験片が破断したときの標点間の長さL(ゲージ長さ)と、試験前の標点距離L0との差を%で求めた。
The lower limit of elongation is not particularly limited, but is, for example, 1%.
Further, the elongation is elongation at break, and was measured simultaneously with the above-described 0.2% proof stress according to JIS-Z2241 using a tensile tester. And the difference of the length L (gauge length) between the gauge points when the test piece broke and the gauge distance L0 before the test was obtained in%.

[(圧延平行方向の0.2%耐力)/(圧延直角方向の伸び)]
前述のように、プレス打ち抜き性を向上させるためには、プレス後のプレス破面におけるせん断面比率を小さくすることが有効であり、圧延平行方向の強度が高く、圧延直角方向の伸びが小さいほどせん断面比率は小さくなる。しかし、強度を高くしすぎると耐金型摩耗性が低下する。
よって、圧延平行方向の0.2%耐力YSと、圧延直角方向の伸びELの比(YS/EL)を規定することで、プレス打ち抜き性および耐金型摩耗性のより良い指標となると考えられる。そして、比(YS/EL)が317〜1300(MPa/%)を満たすとプレス打ち抜き性および耐金型摩耗性が向上する。
[(0.2% yield strength in the rolling parallel direction) / (elongation in the direction perpendicular to the rolling)]
As described above, in order to improve the press punchability, it is effective to reduce the shear plane ratio in the press fracture surface after pressing, the higher the strength in the rolling parallel direction, the smaller the elongation in the direction perpendicular to the rolling. The shear plane ratio becomes small. However, if the strength is increased too much, the wear resistance of the mold decreases.
Therefore, by defining the ratio of 0.2% proof stress YS in the rolling parallel direction and the elongation EL in the direction perpendicular to the rolling (YS / EL), it is considered that it becomes a better index of press punchability and die wear resistance. . When the ratio (YS / EL) satisfies 317 to 1300 (MPa /%), press punchability and die wear resistance are improved.

比(YS/EL)が317(MPa/%)未満であると、プレス後のプレス破面におけるせん断面が大きくなり、プレス打ち抜き性が低下する。比(YS/EL)が1300(MPa/%)より大きいと、強度が高くなりすぎることから、高硬度の析出物、および析出物に起因して硬度の高いせん断面が金型と接触し、耐金型摩耗性が低下する。   When the ratio (YS / EL) is less than 317 (MPa /%), the shear surface at the press fracture surface after pressing becomes large, and the press punchability is deteriorated. If the ratio (YS / EL) is greater than 1300 (MPa /%), the strength becomes too high, so that the precipitate with high hardness and the shear surface with high hardness due to the precipitate are in contact with the mold, Mold wear resistance is reduced.

[ばね限界値]
Cu−Ni−Si系銅合金の圧延直角方向のばね限界値が850MPa以上である。上述のように、端子やコネクタ等の電子材料は、自身の長手方向が銅合金条の圧延直角方向に平行になるように打ち抜かれて製造されることが多く、圧延直角方向のばね限界値がプレス打ち抜き性を評価するのに有効である。
[Spring limit value]
The spring limit value in the direction perpendicular to the rolling of the Cu—Ni—Si based copper alloy is 850 MPa or more. As described above, electronic materials such as terminals and connectors are often manufactured by stamping so that their longitudinal direction is parallel to the direction perpendicular to the rolling direction of the copper alloy strip, and the spring limit value in the direction perpendicular to the rolling direction is often produced. It is effective for evaluating press punchability.

一般に歪取焼鈍を行うことにより、ばね限界値が向上するが、本発明の合金では、歪取焼鈍の際に低温焼鈍硬化を行うと、0.2%耐力が向上すると共に、ばね限界値が850MPa以上に高くなる。
ばね限界値が850MPa未満であると、材料を金型で打ち抜く際に抵抗が大きくなり、プレス打ち抜き性が低下する。
ばね限界値の上限は特に制限されないが、例えば1250MPa以下である。
圧延直角方向のばね限界値は、JIS−H3130に規定されているモーメント式試験により、圧延直角方向が長い短冊状の試験片を片持ち式に保持し、材料板厚により規定した、たわみ量を生じさせる曲げモーメントから表面最大応力を測定して求めた。
In general, by performing strain relief annealing, the spring limit value is improved. However, in the alloy of the present invention, when low temperature annealing hardening is performed during strain relief annealing, the 0.2% proof stress is improved and the spring limit value is increased. It becomes higher than 850 MPa.
When the spring limit value is less than 850 MPa, the resistance increases when the material is punched with a die, and the press punching property is deteriorated.
The upper limit of the spring limit value is not particularly limited, but is, for example, 1250 MPa or less.
The spring limit value in the direction perpendicular to the rolling direction is determined by the moment type test specified in JIS-H3130. The maximum surface stress was measured from the bending moment to be generated.

[平均結晶粒径]
結晶粒径を微細化することにより、高い強度が得られるため、プレス後のプレス破面におけるせん断面が小さくなり、プレス打ち抜き性が向上する。最終製品の結晶粒径は溶体化処理後のそれと同一であるため、溶体化処理後の圧延平行断面の平均結晶粒径を20μm以下とすると好ましい。平均結晶粒径が20μmを超える場合、強度が低下することからプレス打ち抜き性が低下する場合がある。
一方、平均結晶粒径が10μmよりも小さくなると、金属組織の一部が未再結晶となり、未再結晶部が残るとプレス打ち抜き性が低下するため、平均結晶粒径を10〜20μmとするのが好ましい。
平均結晶粒径は、JIS−H0501(切断法)に基いて測定する。
[Average crystal grain size]
By refining the crystal grain size, high strength can be obtained, so that the shear surface at the press fracture surface after pressing is reduced, and the press punchability is improved. Since the crystal grain size of the final product is the same as that after the solution treatment, it is preferable that the average crystal grain size of the rolled parallel section after the solution treatment is 20 μm or less. When the average crystal grain size exceeds 20 μm, the press punchability may be lowered because the strength is lowered.
On the other hand, when the average crystal grain size is smaller than 10 μm, a part of the metal structure becomes non-recrystallized, and when the non-recrystallized part remains, the press punching property decreases, so the average crystal grain size is set to 10 to 20 μm. Is preferred.
The average crystal grain size is measured based on JIS-H0501 (cutting method).

<製造方法>
本発明のCu−Ni−Si系銅合金は、通常、インゴットを熱間圧延、冷間圧延、溶体化処理、時効処理、低温熱処理、低温熱処理後冷間圧延、歪取焼鈍の順で行って製造することができる。溶体化処理前の冷間圧延や再結晶焼鈍は必須ではなく、必要に応じて実施してもよい。
<Manufacturing method>
The Cu—Ni—Si based copper alloy of the present invention is usually obtained by performing an ingot in the order of hot rolling, cold rolling, solution treatment, aging treatment, low temperature heat treatment, cold rolling after low temperature heat treatment, and strain relief annealing. Can be manufactured. Cold rolling and recrystallization annealing before solution treatment are not essential, and may be performed as necessary.

<溶体化処理>
溶体化処理は、温度を800〜950℃として行うとよい。これにより、NiおよびSiの固溶が進む。この温度が800℃未満である場合は、母相の再結晶および上記の固溶が十分に進まず、プレス打ち抜き性が低下する場合がある。一方、この温度が950℃を超える場合は粒径が粗大化し、結晶粒界強化による強度向上が小さくなることから、強度が低下し、プレス打ち抜き性が低下する場合がある。加熱時間は15〜300秒として行うことができる。
銅合金の平均結晶粒径については、溶体化処理の温度が高いほど大きくなり、温度が低いほど小さくなる。また、平均結晶粒径は加熱時間が長いほど大きくなり、短いほど小さくなる。従って、溶体化処理の温度と加熱時間を調整することで、溶体化処理後の平均結晶粒径(最終製品の平均結晶粒径と同じ)を10〜20μmに制御できる。
<Solution treatment>
The solution treatment may be performed at a temperature of 800 to 950 ° C. Thereby, the solid solution of Ni and Si advances. When this temperature is less than 800 ° C., recrystallization of the mother phase and the above solid solution do not sufficiently proceed, and the press punchability may be deteriorated. On the other hand, when the temperature exceeds 950 ° C., the grain size becomes coarse and the strength improvement due to the strengthening of the crystal grain boundary becomes small, so the strength is lowered and the press punchability may be lowered. The heating time can be 15 to 300 seconds.
The average crystal grain size of the copper alloy increases as the solution treatment temperature increases, and decreases as the temperature decreases. Further, the average crystal grain size increases as the heating time increases and decreases as the heating time decreases. Therefore, by adjusting the temperature of the solution treatment and the heating time, the average crystal grain size after the solution treatment (same as the average crystal grain size of the final product) can be controlled to 10 to 20 μm.

さらに、銅合金の0.2%耐力および導電率を向上させるためには、溶体化処理後の冷却速度を約10℃/秒以上、好ましくは約15℃/秒以上、より好ましくは約20℃/秒以上とし、約400℃〜室温まで冷却するとよい。
冷却速度が毎秒10℃未満であると、固溶元素(NiおよびSi)の量が減少し、0.2%耐力強度が低下する場合がある。
ただし、冷却速度を高くし過ぎると、0.2%耐力が却って向上し難くなるため、約30℃/秒以下、好ましくは約25℃/秒以下であるとよい。
ここで、「冷却速度」とは溶体化処理温度(800℃〜950℃)から400℃までの冷却時間を計測し、(溶体化処理温度−400)(℃)/冷却時間(秒)によって算出した値(℃/秒)をいう。
Furthermore, in order to improve the 0.2% yield strength and conductivity of the copper alloy, the cooling rate after the solution treatment is about 10 ° C./second or more, preferably about 15 ° C./second or more, more preferably about 20 ° C. / Second or more, and may be cooled to about 400 ° C. to room temperature.
If the cooling rate is less than 10 ° C. per second, the amount of solid solution elements (Ni and Si) may decrease, and the 0.2% yield strength may decrease.
However, if the cooling rate is too high, the 0.2% proof stress is difficult to improve. Therefore, the cooling rate is about 30 ° C./second or less, preferably about 25 ° C./second or less.
Here, the “cooling rate” is measured by measuring the cooling time from the solution treatment temperature (800 ° C. to 950 ° C.) to 400 ° C. and calculated by (solution treatment temperature−400) (° C.) / Cooling time (seconds). Value (° C./second).

<時効処理>
時効処理は温度を400〜550℃として行うとよい。この温度が400℃より低いと導電率が低くなり、550℃より高いと強度が低下する場合がある。加熱時間は1〜15hの範囲で行うことができる。
<Aging treatment>
The aging treatment is preferably performed at a temperature of 400 to 550 ° C. When this temperature is lower than 400 ° C., the conductivity is lowered, and when it is higher than 550 ° C., the strength may be lowered. The heating time can be performed in the range of 1 to 15 hours.

<低温熱処理後冷間圧延>
Cu−Ni−Si系銅合金の圧延平行方向の0.2%耐力を高くし、圧延直角方向の伸びを低くする手法として、歪取焼鈍における低温焼鈍硬化を利用する。低温焼鈍硬化とは時効後の冷間圧延によって組織中に圧延ひずみを導入すると、その後の歪取焼鈍で固溶元素がひずみに固着し、転位を妨げることで強化される現象である。
そして、そのためには歪取焼鈍の直前の低温熱処理後冷間圧延の加工率をなるべく高くし、歪取焼鈍直前の固溶元素(NiおよびSi)の量を増やす必要がある。
なお、歪取焼鈍直前の固溶元素量をさらに増やすため、低温熱処理後冷間圧延の前に、詳しくは後述する「低温熱処理」を行う。
<Cold rolling after low temperature heat treatment>
As a technique for increasing the 0.2% proof stress of the Cu—Ni—Si based copper alloy in the rolling parallel direction and decreasing the elongation in the direction perpendicular to the rolling, low temperature annealing hardening in strain relief annealing is used. Low-temperature annealing hardening is a phenomenon in which when rolling strain is introduced into a structure by cold rolling after aging, solid solution elements are fixed to the strain by subsequent strain relief annealing and are strengthened by preventing dislocation.
For this purpose, it is necessary to increase the working rate of cold rolling after low-temperature heat treatment immediately before strain relief annealing and increase the amount of solid solution elements (Ni and Si) immediately before strain relief annealing.
In order to further increase the amount of the solid solution element immediately before the strain relief annealing, the “low temperature heat treatment” described later in detail is performed before the cold rolling after the low temperature heat treatment.

低温焼鈍硬化は歪取焼鈍直前の低温熱処理後冷間圧延の加工度と、その冷間圧延時の固溶元素の析出の度合によって硬化の程度が変化する。しかしながら、冷間圧延と低温焼鈍硬化によって強度を高くしすぎると、プレスの際に金型摩耗を促進するおそれがあるため、歪取焼鈍直前の固溶元素の析出の度合に着目し、歪取焼鈍前に低温で熱処理を施し、製造時の加工度と析出の度合(導電率EC)との関係を規定することで、0.2%耐力を950MPa以上に向上させる。   In the low-temperature annealing hardening, the degree of hardening varies depending on the degree of cold rolling after low temperature heat treatment just before strain relief annealing and the degree of precipitation of solid solution elements during the cold rolling. However, if the strength is increased too much by cold rolling and low-temperature annealing hardening, there is a risk of accelerating die wear during pressing, so pay attention to the degree of solid solution element precipitation just before strain relief annealing. Heat treatment is performed at a low temperature before annealing, and the 0.2% proof stress is improved to 950 MPa or more by defining the relationship between the degree of processing during manufacture and the degree of precipitation (conductivity EC).

具体的には、低温熱処理後冷間圧延の加工率REを70%以上90%未満とし、かつ低温熱処理後冷間圧延の加工率REが式(1):RE≧−0.3074×(EC)+11.986×EC−18.934を満たすと好ましい。なお、EC(%IACS)は、歪取焼鈍前(低温熱処理後冷間圧延後)の導電率である。
加工率REが70%未満であると、低温焼鈍硬化が不十分となって0.2%耐力が950MPa未満となる場合がある。加工率REが90%以上であると、冷間圧延中に試料に割れが発生し、最終製品を製造できない場合がある。
なお、加工率REは、低温熱処理後冷間圧延の前後での合金の板厚の変化の割合(%)である。
Specifically, the processing rate RE of the cold rolling after the low-temperature heat treatment is set to 70% or more and less than 90%, and the processing rate RE of the cold rolling after the low-temperature heat processing is expressed by the formula (1): RE ≧ −0.3074 × (EC ) It is preferable to satisfy 2 + 11.986 × EC-18.934. EC (% IACS) is the electrical conductivity before strain relief annealing (after low temperature heat treatment and cold rolling).
If the processing rate RE is less than 70%, the low-temperature annealing hardening may be insufficient and the 0.2% yield strength may be less than 950 MPa. If the processing rate RE is 90% or more, the sample may be cracked during cold rolling, and the final product may not be manufactured.
The processing rate RE is the rate (%) of change in the plate thickness of the alloy before and after cold rolling after low-temperature heat treatment.

また、低温熱処理後冷間圧延時の合金の析出強化(固溶)の度合によっても必要とする最低限の加工率は変化するので、固溶の度合に応じて加工率を設定する必要がある。そして、この固溶の度合として、低温熱処理後冷間圧延後で歪取焼鈍前の圧延平行方向の導電率EC(%IACS)を指標とし、上記導電率から算出される式(1)で必要な加工率を規定することで、合金の強度を安定して向上させることができる。   In addition, since the minimum processing rate required also changes depending on the degree of precipitation strengthening (solid solution) of the alloy during cold rolling after low-temperature heat treatment, it is necessary to set the processing rate according to the degree of solid solution . And as the degree of this solid solution, the electric conductivity EC (% IACS) in the rolling parallel direction after low-temperature heat treatment, cold-rolling and before strain relief annealing is used as an index, and it is necessary in the formula (1) calculated from the above-mentioned conductivity. By defining a low processing rate, the strength of the alloy can be stably improved.

ここで、上記導電率EC(%IACS)を25%以上40%未満とすることで、時効処理と歪取焼鈍の条件が共に適切となり、いずれの処理においても強度が上昇し、結果として高い強度が得られる。導電率ECが40%以上になると時効処理で強度は上昇するが、固溶量が少なくなるので、加工率REを高くしても歪取焼鈍で強度が十分に上昇せず、所望の強度が得られない場合がある。一方、導電率ECが25%未満であると、歪取焼鈍で強度は上昇するが、時効処理で強度が上昇せず、所望の強度が得られない場合がある。
なお、歪取焼鈍後の最終製品の導電率EC(%IACS)は、25〜40%程度である。
Here, by setting the above-mentioned conductivity EC (% IACS) to 25% or more and less than 40%, the conditions of aging treatment and strain relief annealing are both appropriate, and the strength increases in both treatments, resulting in high strength. Is obtained. When the electrical conductivity EC is 40% or more, the strength increases by aging treatment, but the amount of solid solution decreases, so even if the processing rate RE is increased, the strength is not sufficiently increased by strain relief annealing, and the desired strength is increased. It may not be obtained. On the other hand, when the electrical conductivity EC is less than 25%, the strength is increased by strain relief annealing, but the strength is not increased by aging treatment, and a desired strength may not be obtained.
Note that the electrical conductivity EC (% IACS) of the final product after strain relief annealing is about 25 to 40%.

そして、歪取焼鈍前の導電率ECが低いほど時効処理による強度の増加が少ないので、加工率REをより高くして圧延歪をより多数導入しないと、必要な強度の向上が図れない。そこで、式(1):RE≧−0.3074×(EC)+11.986×EC−18.934を満たすように加工率REを設定すると好ましい。この式(1)は、事前実験から表1および図1に示すようにして求めたものである。 And, as the electrical conductivity EC before strain relief annealing is lower, the increase in strength due to the aging treatment is smaller. Therefore, unless the processing rate RE is increased and a larger number of rolling strains are introduced, the required strength cannot be improved. Therefore, it is preferable to set the processing rate RE so as to satisfy the formula (1): RE ≧ −0.3074 × (EC) 2 + 11.986 × EC-18.934. This equation (1) is obtained from preliminary experiments as shown in Table 1 and FIG.

この事前実験は、表1に示す組成のインゴットを熱間圧延、冷間圧延、溶体化処理、時効処理、低温熱処理、低温熱処理後冷間圧延、歪取焼鈍の順で行って板厚0.05mmの試料を製造し、その特性を評価した。熱間圧延は1000℃で3時間行い、溶体化処理を800〜950℃で行った。時効処理は400℃〜550℃で1〜15時間の範囲で実施した。
なお、低温熱処理は550〜800℃の範囲で行い、後述するΔECが2.0%となるように加熱時間を1〜250秒の範囲で調整した。そして、歪取焼鈍前の導電率EC、および低温熱処理後冷間圧延の加工率REを表1に示すように変化させてそれぞれ事前実験1〜8を行った。
In this preliminary experiment, an ingot having the composition shown in Table 1 was subjected to hot rolling, cold rolling, solution treatment, aging treatment, low-temperature heat treatment, cold rolling after low-temperature heat treatment, and strain relief annealing in the order of sheet thickness of 0. A 05 mm sample was manufactured and its characteristics were evaluated. Hot rolling was performed at 1000 ° C. for 3 hours, and solution treatment was performed at 800 to 950 ° C. The aging treatment was performed at 400 ° C. to 550 ° C. for 1 to 15 hours.
The low-temperature heat treatment was performed in the range of 550 to 800 ° C., and the heating time was adjusted in the range of 1 to 250 seconds so that ΔEC described later was 2.0%. Then, prior experiments 1 to 8 were performed by changing the electrical conductivity EC before strain relief annealing and the cold rolling after-low temperature heat treatment ratio RE as shown in Table 1.

次に、表1に示す加工率REと導電率ECとの関係を図1にプロットし、圧延平行方向の0.2%耐力YSが950MPa以上である実験1〜3につき、最小二乗法により、各プロットを通る二次曲線を求めて式(1)を得た。
一方、実験6,7は0.2%耐力が950MPa未満となり、式(1)よりもREが低い領域に存在していた。また実験5,8は式(1)上、または式(1)よりもREが高い領域にあるが、実験5は加工率REが70%未満で、0.2%耐力が950MPa未満となり、実験8は加工率REが90%以上で、冷間圧延中に試料に割れが発生し、最終製品を製造できなかった。
Next, the relationship between the processing rate RE and the electrical conductivity EC shown in Table 1 is plotted in FIG. 1, and for Experiments 1 to 3 in which the 0.2% proof stress YS in the rolling parallel direction is 950 MPa or more, the least square method is used. A quadratic curve passing through each plot was obtained to obtain Equation (1).
On the other hand, in Experiments 6 and 7, the 0.2% proof stress was less than 950 MPa, and the RE was lower than that in the formula (1). Experiments 5 and 8 are on the formula (1) or in a region where the RE is higher than the formula (1). However, the experiment 5 has a processing rate RE of less than 70% and a 0.2% proof stress of less than 950 MPa. In No. 8, the processing rate RE was 90% or more, and cracks occurred in the sample during cold rolling, and the final product could not be manufactured.

なお、実験4は、実験1と加工率REをほぼ同一(70%)とし、導電率ECを多くしたものであり、0.2%耐力が1000MPa以上であった。実験4は、式(1)よりもREが高い領域が本発明の好適な範囲であることを示すためのデータである。
以上の結果から、0.2%耐力および耐金型摩耗性の目標を達成するために、低温熱処理後冷間圧延の加工率REを70%以上90%未満かつ式(1)を満たす条件にする必要がある。
In Experiment 4, the processing rate RE was almost the same (70%) as in Experiment 1, the conductivity EC was increased, and the 0.2% proof stress was 1000 MPa or more. Experiment 4 is data for indicating that the region where the RE is higher than that of the formula (1) is a preferable range of the present invention.
From the above results, in order to achieve the targets of 0.2% proof stress and die wear resistance, the processing rate RE of cold rolling after low-temperature heat treatment should be 70% or more and less than 90% and satisfy the formula (1). There is a need to.

加工率REが式(1)を満たさない場合には、時効処理後の強度に対して加工率REが小さすぎるため、必要な強度の向上が図れない場合がある。   When the processing rate RE does not satisfy the formula (1), the processing rate RE is too small with respect to the strength after the aging treatment, and thus the required strength may not be improved.

<低温熱処理>
また、歪取焼鈍直前の固溶元素量を増やすため、上記した低温熱処理を行う。低温熱処理は、溶体化温度未満で、かつ時効温度以上の温度で実施する。低温熱処理は、時効処理で析出した固溶元素を、再びマトリクス中に固溶させるので、歪取焼鈍直前の固溶元素量が増加する。
そして、歪取焼鈍直前の固溶元素の量を表す指標として、時効処理後(つまり、低温熱処理前)と、低温熱処理後の導電率の変化量ΔECを用いる。ΔEC=(時効処理後の導電率)−(低温熱処理後の導電率)で表される。ΔEC=2〜4%(IACS)となるように低温熱処理を550〜800℃で1〜250秒で行うとよい。
歪取焼鈍直前の低温熱処理により、時効処理後に比べて固溶元素の量が増えれば、導電率が低下する。
<Low temperature heat treatment>
Further, the above-described low-temperature heat treatment is performed in order to increase the amount of the solid solution element immediately before the strain relief annealing. The low-temperature heat treatment is performed at a temperature lower than the solution temperature and higher than the aging temperature. In the low-temperature heat treatment, the solid solution element precipitated by the aging treatment is again dissolved in the matrix, so that the amount of the solid solution element immediately before the strain relief annealing increases.
Then, as an index representing the amount of the solid solution element immediately before the strain relief annealing, the change amount ΔEC of the conductivity after the aging treatment (that is, before the low temperature heat treatment) and after the low temperature heat treatment is used. ΔEC = (conductivity after aging treatment) − (conductivity after low-temperature heat treatment). Low temperature heat treatment may be performed at 550 to 800 ° C. for 1 to 250 seconds so that ΔEC = 2 to 4% (IACS).
If the amount of the solid solution element is increased by the low-temperature heat treatment immediately before the strain relief annealing as compared with that after the aging treatment, the conductivity is lowered.

ΔECが2%IACS未満の場合、低温熱処理後(歪取焼鈍前)の材料の固溶元素の量が少ないことを示す。歪取焼鈍時に固溶元素の量が少ないと、歪取焼鈍で転位に固着する固溶元素の量が減り、低温焼鈍硬化での硬化の度合いが低減し、または硬化しなくなる場合がある。
ΔECが4%IACSを超える場合は、低温熱処理後(歪取焼鈍前)に材料の固溶元素の量が多すぎることを示す。このため、歪取焼鈍時の低温焼鈍硬化での硬化の度合いが増加しすぎると共に、強度に寄与しない固溶元素が増えることで歪取焼鈍後の材料の0.2%耐力が低下する場合がある。また、0.2%耐力の低下に伴い、圧延直角方向の伸びが3%を超えて大きくなる。その結果、材料を金型で打ち抜く際の抵抗が大きくなり、ダレが発生して耐金型摩耗性が低下する場合がある。
When ΔEC is less than 2% IACS, it indicates that the amount of solid solution elements in the material after low-temperature heat treatment (before strain relief annealing) is small. When the amount of the solid solution element is small during the strain relief annealing, the amount of the solid solution element fixed to the dislocation by the strain relief annealing is decreased, and the degree of curing in the low temperature annealing hardening may be reduced or may not be cured.
When ΔEC exceeds 4% IACS, it indicates that the amount of the solid solution element in the material is too large after the low-temperature heat treatment (before strain relief annealing). For this reason, the degree of hardening in low-temperature annealing hardening at the time of strain relief annealing increases excessively, and the 0.2% proof stress of the material after strain relief annealing may decrease due to an increase in solid solution elements that do not contribute to strength. is there. Further, along with the decrease in 0.2% proof stress, the elongation in the direction perpendicular to the rolling increases beyond 3%. As a result, the resistance when the material is punched with a mold increases, and sagging may occur, resulting in a decrease in mold wear resistance.

また、歪取焼鈍前の導電率EC(%IACS)を25%以上〜40%未満とするとよい。この理由は既に述べた通りである。   The electrical conductivity EC (% IACS) before strain relief annealing is preferably 25% or more and less than 40%. The reason for this is as already described.

<歪取焼鈍>
歪取焼鈍を200〜500℃で5〜100秒間行うとよい。歪取焼鈍の温度が上記範囲未満であると、歪取焼鈍が不十分となることで、上述の低温焼鈍硬化による強度の向上が小さくなり、圧延平行方向の0.2%耐力を950MPa以上にすることが困難である場合がある。歪取焼鈍の温度が上記範囲を超えると、歪取焼鈍による上述の低温焼鈍硬化が過度となって合金が軟化し、0.2%耐力の向上が図れない場合がある。
歪取焼鈍の時間が上記未満であると、低温焼鈍硬化は発現するが、ばね限界値が850MPa以下となり、プレス打ち抜き性が低下する場合がある。歪取焼鈍の時間が上記範囲を超えると、低温焼鈍硬化が発現して0.2%耐力は向上するが、伸びが3%を超えて大きくなり、プレス打ち抜き性が低下する場合がある。
<Strain relief annealing>
The strain relief annealing is preferably performed at 200 to 500 ° C. for 5 to 100 seconds. If the temperature of the stress relief annealing is less than the above range, the stress relief annealing becomes insufficient, so that the improvement in strength due to the low-temperature annealing hardening described above becomes small, and the 0.2% proof stress in the rolling parallel direction becomes 950 MPa or more. May be difficult to do. When the temperature of strain relief annealing exceeds the above range, the above-mentioned low temperature annealing hardening due to strain relief annealing becomes excessive and the alloy is softened, and the 0.2% yield strength may not be improved.
When the time for strain relief annealing is less than the above, low temperature annealing hardening is exhibited, but the spring limit value is 850 MPa or less, and the press punchability may be lowered. When the time for strain relief annealing exceeds the above range, low-temperature annealing hardening is developed and the 0.2% proof stress is improved, but the elongation exceeds 3%, and the press punchability may be lowered.

大気溶解炉中にて電気銅を溶解し、必要に応じて表2に示す添加元素を所定量投入し、溶湯を攪拌した。その後、鋳込み温度1200℃にて鋳型に出湯し、表2に示す組成の銅合金インゴットを得た。インゴットは熱間圧延し、板厚を10mmとした。その後、面削、冷間圧延、溶体化処理、時効処理、低温熱処理、低温熱処理後冷間圧延の順に行い、板厚0.03〜0.2mmの試料を得た。低温熱処理後冷間圧延の後に歪取焼鈍を行った。
なお、熱間圧延は1000℃で3時間行い、溶体化処理を800〜950℃で行った。時効処理は400℃〜550℃で1〜15時間の範囲、低温熱処理は550〜800℃の範囲で行い、歪取焼鈍は200〜500℃で5〜100秒間の範囲で行った。時効処理および歪取焼鈍はそれぞれの処理後の0.2%耐力が最大となる温度および時間で行った。
The electrolytic copper was melted in an atmospheric melting furnace, and a predetermined amount of the additive elements shown in Table 2 was added as necessary, and the molten metal was stirred. Thereafter, the molten metal was poured into a mold at a casting temperature of 1200 ° C. to obtain a copper alloy ingot having the composition shown in Table 2. The ingot was hot rolled to a plate thickness of 10 mm. Thereafter, chamfering, cold rolling, solution treatment, aging treatment, low temperature heat treatment, cold rolling after low temperature heat treatment were performed in this order to obtain a sample having a plate thickness of 0.03 to 0.2 mm. Stress relief annealing was performed after cold rolling after low temperature heat treatment.
In addition, hot rolling was performed at 1000 degreeC for 3 hours, and the solution treatment was performed at 800-950 degreeC. The aging treatment was performed at 400 ° C. to 550 ° C. for 1 to 15 hours, the low temperature heat treatment was performed at 550 to 800 ° C., and the stress relief annealing was performed at 200 to 500 ° C. for 5 to 100 seconds. The aging treatment and the strain relief annealing were performed at a temperature and a time at which the 0.2% yield strength after each treatment was maximized.

<評価>
得られた試料について以下の項目を評価した。
[導電率]
時効処理後および低温熱処理後の圧延平行方向の試料、および歪取焼鈍後の最終製品の圧延平行方向の試料について、JISH0505に準拠し、ダブルブリッジ装置を用いた四端子法により求めた体積抵抗率から導電率(%IACS)を算出した。
[強度]
歪取焼鈍後の最終製品につき、引張方向が圧延平行方向および圧延直角方向と平行になるように、プレス機を用いてJIS13B号試験片を作製した。JIS−Z2241に従ってこの試験片の引張試験を行い、0.2%耐力YSを測定した。
引張試験の条件は、試験片幅12.7mm、室温(15〜35℃)、引張速度5mm/min、ゲージ長さL=50mmで、材料の圧延平行方向および圧延直角方向に引張試験した。
<Evaluation>
The following items were evaluated for the obtained samples.
[conductivity]
Volume resistivity obtained by a four-terminal method using a double bridge apparatus in accordance with JISH0505 for samples in the rolling parallel direction after aging treatment and low-temperature heat treatment, and samples in the rolling parallel direction of the final product after strain relief annealing. From this, the conductivity (% IACS) was calculated.
[Strength]
For the final product after strain relief annealing, a JIS No. 13B specimen was prepared using a press so that the tensile direction was parallel to the rolling parallel direction and the rolling perpendicular direction. The test piece was subjected to a tensile test according to JIS-Z2241, and 0.2% yield strength YS was measured.
The tensile test conditions were a test piece width of 12.7 mm, room temperature (15 to 35 ° C.), a tensile speed of 5 mm / min, and a gauge length L = 50 mm.

[伸び]
歪取焼鈍後の最終製品につき、引張方向が圧延平行方向および圧延直角方向と平行になるように、プレス機を用いてJIS13B号試験片を作製し、上述の0.2%耐力を測定するのと同時に測定した。そして、試験片が破断したときの標点間の長さL(ゲージ長さ)と、試験前の標点距離L0との差を%で求めた。
[Elongation]
For the final product after strain relief annealing, a JIS13B test piece is prepared using a press so that the tensile direction is parallel to the rolling parallel direction and the perpendicular direction of rolling, and the above 0.2% yield strength is measured. It was measured at the same time. And the difference of the length L (gauge length) between the gauge points when the test piece broke and the gauge distance L0 before the test was obtained in%.

[平均結晶粒径]
平均結晶粒径は、圧延方向に平行な断面を鏡面研磨後に化学腐食し、切断法(JIS−H0501)により求めた。
[Average crystal grain size]
The average crystal grain size was obtained by chemical corrosion after a mirror polishing of a cross section parallel to the rolling direction and a cutting method (JIS-H0501).

[ばね限界値]
歪取焼鈍後の最終製品につき、JIS−H3130に規定されているモーメント式試験により、圧延直角方向が長い短冊状の試験片(試験片幅10mm)を片持ち式に保持し、材料板厚により規定した永久たわみ量を生じさせる曲げモーメントから表面最大応力を測定し、圧延直角方向のばね限界値とした。
試験条件は材料板厚t(mm)、材料の固定端から負荷点までの距離l(mm)、永久たわみ量δ(mm)について、材料板厚tが0.03〜0.05mmの場合はl=1300t、δ=0.0325、材料板厚tが0.051〜0.07mmの場合はl=2000t、δ=0.050、材料板厚tが0.071〜0.09mmの場合はl=3000t、δ=0.075、材料板厚tが0.09mmよりも大きい場合はl=4000t、δ=0.1とし、試験を行った。
[Spring limit value]
For the final product after strain relief annealing, a strip-shaped test piece (test piece width 10 mm) that is long in the direction perpendicular to the rolling direction is held in a cantilevered manner by a moment type test specified in JIS-H3130. The maximum surface stress was measured from the bending moment that produced the specified amount of permanent deflection, and the spring limit value in the direction perpendicular to the rolling direction was determined.
The test conditions are the material plate thickness t (mm), the distance l (mm) from the fixed end of the material to the load point, and the permanent deflection amount δ (mm). When the material plate thickness t is 0.03 to 0.05 mm When l 2 = 1300 t, δ = 0.0325, and the material plate thickness t is 0.051 to 0.07 mm, l 2 = 2000 t, δ = 0.050, and the material plate thickness t is 0.071 to 0.09 mm. In this case, l 2 = 3000 t and δ = 0.075, and when the material plate thickness t is larger than 0.09 mm, l 2 = 4000 t and δ = 0.1.

[耐金型摩耗性]
タレットパンチプレスを使用して最終製品の試料を打ち抜き、20万ショット打ち抜いた後のパンチ刃の摩耗量を、プレス前を基準として測定した。パンチは円筒形のものを使用し、クリアランスは板厚の5%、プレス速度は290shot/minとし、パンチの押し込み深さは板厚の50%に設定した。また、パンチとダイはそれぞれ硬度の異なるものを使用し、パンチの硬度がダイの硬度の60〜80%の値となるよう設定した。
パンチ刃の摩耗量は、レーザー顕微鏡を使用し、図2に示すように、プレス前のパンチ刃の断面プロファイルP1とプレス後のパンチ刃の断面プロファイルP2の間で高低差が生じた面積S1を摩耗した面積とみなし、その面積を算出した。図2の符号Dはプレス方向を示す。以下の基準で金型摩耗性を評価した。評価が○であれば、耐金型摩耗性が優れている。
○:摩耗面積が4000μm未満
×:摩耗面積が4000μm以上
[Mold wear resistance]
A sample of the final product was punched using a turret punch press, and the wear amount of the punch blade after punching 200,000 shots was measured based on the pre-press. The punch used was a cylindrical one, the clearance was 5% of the plate thickness, the press speed was 290 shots / min, and the indentation depth of the punch was set to 50% of the plate thickness. Further, punches and dies having different hardnesses were used, and the punch hardness was set to be 60 to 80% of the die hardness.
As shown in FIG. 2, the wear amount of the punch blade is determined by the area S1 in which the height difference occurs between the cross-sectional profile P1 of the punch blade before pressing and the cross-sectional profile P2 of the punch blade after pressing, as shown in FIG. The area was calculated as the worn area. 2 indicates the pressing direction. The mold wear was evaluated according to the following criteria. If the evaluation is ○, the mold wear resistance is excellent.
○: Wear area is less than 4000 μm 2 ×: Wear area is 4000 μm 2 or more

[プレス打ち抜き性]
一辺10mmの正方形型のポンチと、クリアランスを板厚の5%設けたダイスとの間に歪取焼鈍後の最終製品を配置した状態で、速度0.1mm/minでパンチをダイに向けて変位させプレスを行った。プレス後のプレス破面を光学顕微鏡により観察し、板厚方向におけるせん断面の幅をS(mm)、破断面の幅をH(mm)としたとき、S/Hでプレス打ち抜き性を評価した。せん断面幅S、破断面幅Hは、観察面の写真から画像解析ソフトを使用して算出し、以下の指標で評価した。評価が◎、○であればプレス打ち抜き性が優れている。
◎:S/H≦1.0
○:1.0<S/H≦1.5
×:S/H>1.5
[Press punchability]
Displacement of the punch toward the die at a speed of 0.1 mm / min with the final product after strain relief annealing placed between a square punch with a side of 10 mm and a die with 5% clearance. And pressed. The press fracture surface after pressing was observed with an optical microscope, and when the width of the shear surface in the thickness direction was S (mm) and the width of the fracture surface was H (mm), the press punchability was evaluated by S / H. . The shear surface width S and the fracture surface width H were calculated from the photograph of the observation surface using image analysis software, and evaluated by the following indices. If evaluation is (double-circle) and (circle), press punching property is excellent.
A: S / H ≦ 1.0
○: 1.0 <S / H ≦ 1.5
×: S / H> 1.5

得られた結果を表2〜表4に示す。表2、表3の「0.5Zn」は、Znを0.5質量%含むことを意味する。   The obtained results are shown in Tables 2 to 4. “0.5Zn” in Tables 2 and 3 means that 0.5% by mass of Zn is contained.

表2〜表4に示すように、各実施例はいずれも、YSが950MPa以上、ELが3%以下、導電率が25%IACS以上、かつ比(圧YS/EL)が317〜1300(MPa/%)であり、さらに圧延直角方向のばね限界値が850MPa以上となった。その結果、耐金型摩耗性およびプレス打ち抜き性が良好となった。   As shown in Tables 2 to 4, in each Example, YS is 950 MPa or more, EL is 3% or less, conductivity is 25% IACS or more, and the ratio (pressure YS / EL) is 317 to 1300 (MPa). Further, the spring limit value in the direction perpendicular to the rolling was 850 MPa or more. As a result, the mold wear resistance and press punchability were good.

溶体化処理温度が実施例より高すぎて、溶体化処理後の平均結晶粒径が20μmを超えた比較例1の場合、圧延平行方向の0.2%耐力が950MPa未満、圧延直角方向のばね限界値が850MPa未満となり、プレス打ち抜き性が低下した。
溶体化処理温度が実施例より低すぎて、溶体化処理後の平均結晶粒径が10μm未満となった比較例2の場合、金属組織の一部が未再結晶となり、圧延平行方向の0.2%耐力が950MPa未満、圧延直角方向のばね限界値が850MPa未満となり、プレス打ち抜き性が低下した。
In the case of Comparative Example 1 in which the solution treatment temperature is too higher than the example and the average crystal grain size after the solution treatment exceeds 20 μm, the 0.2% proof stress in the rolling parallel direction is less than 950 MPa, and the spring in the direction perpendicular to the rolling The limit value was less than 850 MPa, and the press punchability was reduced.
In the case of Comparative Example 2 in which the solution treatment temperature was too lower than the example and the average crystal grain size after solution treatment was less than 10 μm, a part of the metal structure became non-recrystallized, and 0. The 2% proof stress was less than 950 MPa, the spring limit value in the direction perpendicular to the rolling was less than 850 MPa, and the press punchability was reduced.

溶体化処理後の冷却速度が実施例より高すぎた比較例3、及び溶体化処理後の冷却速度が実施例より低すぎた比較例4の場合、圧延平行方向の0.2%耐力が950MPa未満、圧延直角方向のばね限界値が850MPa未満となり、プレス打ち抜き性が低下した。   In the case of Comparative Example 3 in which the cooling rate after the solution treatment was too high compared to the Examples and Comparative Example 4 in which the cooling rate after the solution treatment was too low than the Examples, the 0.2% yield strength in the rolling parallel direction was 950 MPa. The spring limit value in the direction perpendicular to the rolling was less than 850 MPa, and the press punchability was reduced.

時効温度が実施例より高すぎた比較例5の場合、歪取焼鈍前の導電率が25%未満で加工率REが式(1)を満たさず、圧延平行方向の0.2%耐力が950MPa未満、圧延直角方向のばね限界値が850MPa未満となり、プレス打ち抜き性が低下した。
時効温度が実施例より低すぎた比較例6の場合、圧延平行方向の0.2%耐力が950MPa未満、圧延直角方向のばね限界値が850MPa未満、導電率が25%IACS未満となり、プレス打ち抜き性が低下した。又、伸びが3%を超え、耐金型摩耗性及びも低下した。これは、時効処理が不十分なため、低温焼鈍硬化が不十分になったためと考えられる。
In the case of Comparative Example 5 in which the aging temperature is too higher than the Examples, the electrical conductivity before strain relief annealing is less than 25%, the processing rate RE does not satisfy the formula (1), and the 0.2% yield strength in the rolling parallel direction is 950 MPa. The spring limit value in the direction perpendicular to the rolling was less than 850 MPa, and the press punchability was reduced.
In the case of Comparative Example 6 in which the aging temperature was too lower than the examples, the 0.2% yield strength in the rolling parallel direction was less than 950 MPa, the spring limit value in the direction perpendicular to the rolling was less than 850 MPa, and the conductivity was less than 25% IACS, Decreased. Further, the elongation exceeded 3%, and the mold wear resistance and also decreased. This is presumably because low temperature annealing hardening was insufficient due to insufficient aging treatment.

ΔECが2%IACS未満の比較例7の場合、圧延平行方向の0.2%耐力が950MPa未満、圧延直角方向のばね限界値が850MPa未満となり、伸びが3%を超え、耐金型摩耗性及びプレス打ち抜き性が低下した。耐金型摩耗性が低下したのは低温焼鈍硬化が不十分なためと考えられる。
ΔECが4%IACSを超えた比較例8の場合、圧延平行方向の0.2%耐力が950MPa未満、圧延直角方向のばね限界値が850MPa未満となり、プレス打ち抜き性が低下した。これは、歪取焼鈍時に強度が十分に向上しなかったためと考えられる。又、伸びが3%を超え、耐金型摩耗性も低下した。
In the case of Comparative Example 7 in which ΔEC is less than 2% IACS, the 0.2% yield strength in the rolling parallel direction is less than 950 MPa, the spring limit value in the direction perpendicular to the rolling is less than 850 MPa, the elongation exceeds 3%, and the mold wear resistance In addition, the press punchability was lowered. The reason why the wear resistance of the mold was lowered is thought to be due to insufficient low-temperature annealing hardening.
In the case of Comparative Example 8 in which ΔEC exceeded 4% IACS, the 0.2% yield strength in the rolling parallel direction was less than 950 MPa, and the spring limit value in the direction perpendicular to the rolling was less than 850 MPa. This is presumably because the strength was not sufficiently improved during strain relief annealing. Further, the elongation exceeded 3%, and the mold wear resistance also decreased.

歪取焼鈍前の導電率が40%を超えた比較例9の場合、圧延平行方向の0.2%耐力が950MPa未満、圧延直角方向のばね限界値が850MPa未満となり、伸びが3%を超え、耐金型摩耗性及びプレス打ち抜き性が低下した。これは低温焼鈍硬化が発現しなかったためと考えられる。
歪取焼鈍前の導電率が25%未満かつ加工率REが式(1)を満たさなかった比較例10の場合、圧延平行方向の0.2%耐力が950MPa未満、圧延直角方向のばね限界値が850MPa未満、導電率が25%IACS未満となり、伸びが3%を超え、耐金型摩耗性及びプレス打ち抜き性が低下した。これは、低温焼鈍硬化が不十分なためと考えられる。
In the case of Comparative Example 9 in which the electrical conductivity before strain relief annealing exceeds 40%, the 0.2% proof stress in the rolling parallel direction is less than 950 MPa, the spring limit value in the direction perpendicular to the rolling is less than 850 MPa, and the elongation exceeds 3%. In addition, the wear resistance of the mold and the press punchability were lowered. This is presumably because low-temperature annealing hardening did not occur.
In the case of Comparative Example 10 in which the electrical conductivity before strain relief annealing is less than 25% and the processing rate RE does not satisfy the formula (1), the 0.2% proof stress in the rolling parallel direction is less than 950 MPa, and the spring limit value in the direction perpendicular to the rolling direction. Was less than 850 MPa, the conductivity was less than 25% IACS, the elongation exceeded 3%, and the wear resistance of the mold and the press punching property were lowered. This is thought to be due to insufficient low-temperature annealing hardening.

加工率REが70%未満の比較例11の場合、圧延平行方向の0.2%耐力が950MPa未満、圧延直角方向のばね限界値が850MPa未満となり、伸びが3%を超え、耐金型摩耗性及びプレス打ち抜き性が低下した。これは低温焼鈍硬化が発現しなかったためと考えられる。
加工率REが90%以上の比較例12の場合、冷間圧延中に試料に割れが発生し、最終製品を製造できなかった。
In the case of Comparative Example 11 in which the processing rate RE is less than 70%, the 0.2% proof stress in the rolling parallel direction is less than 950 MPa, the spring limit value in the direction perpendicular to the rolling is less than 850 MPa, the elongation exceeds 3%, and the mold wear resistance And press punchability were reduced. This is presumably because low-temperature annealing hardening did not occur.
In the case of Comparative Example 12 in which the processing rate RE was 90% or more, the sample was cracked during cold rolling, and the final product could not be manufactured.

歪取焼鈍の加熱時間が実施例より短すぎた比較例13の場合、ばね限界値が850MPa未満となり、プレス打ち抜き性が低下した。
歪取焼鈍の加熱時間が実施例より長すぎた比較例14の場合、伸びが3%を超え、(YS/EL)の比が317未満となり、耐金型摩耗性及びプレス打ち抜き性が低下した。
In the case of Comparative Example 13 in which the heating time for strain relief annealing was too short compared to the examples, the spring limit value was less than 850 MPa, and the press punching property was lowered.
In the case of Comparative Example 14 in which the heating time for strain relief annealing was too long compared to the examples, the elongation exceeded 3%, the (YS / EL) ratio was less than 317, and the mold wear resistance and press punchability were reduced. .

ΔECが4%IACSを超え、歪取焼鈍前の導電率が25%未満かつ加工率REが式(1)を満たさなかった比較例15の場合、圧延平行方向の0.2%耐力が950MPa未満、圧延直角方向のばね限界値が850MPa未満、導電率が25%IACS未満となり、伸びが3%を超え、耐金型摩耗性及びプレス打ち抜き性が低下した。これは低温焼鈍硬化が不十分なためと考えられる。
ΔECが2%IACS未満であり、加工率REが70%未満の比較例16の場合、圧延平行方向の0.2%耐力が950MPa未満、伸びが3%を超え、圧延直角方向のばね限界値が850MPa未満となり、耐金型摩耗性及びプレス打ち抜き性が低下した。
In the case of Comparative Example 15 in which ΔEC exceeds 4% IACS, the electrical conductivity before strain relief annealing is less than 25%, and the processing rate RE does not satisfy the formula (1), the 0.2% proof stress in the rolling parallel direction is less than 950 MPa. The spring limit value in the direction perpendicular to the rolling was less than 850 MPa, the electrical conductivity was less than 25% IACS, the elongation exceeded 3%, and the die wear resistance and press punchability were reduced. This is thought to be due to insufficient low-temperature annealing hardening.
In the case of Comparative Example 16 in which ΔEC is less than 2% IACS and the processing rate RE is less than 70%, the 0.2% yield strength in the rolling parallel direction is less than 950 MPa, the elongation exceeds 3%, and the spring limit value in the direction perpendicular to the rolling direction. Was less than 850 MPa, and the mold wear resistance and press punchability were reduced.

歪取焼鈍前の導電率が40%を超え、加工率REが70%未満の比較例17の場合、圧延平行方向の0.2%耐力が950MPa未満、伸びが3%を超え、圧延直角方向のばね限界値が850MPa未満となり、耐金型摩耗性及びプレス打ち抜き性が低下した。   In the case of Comparative Example 17 where the electrical conductivity before strain relief annealing exceeds 40% and the processing rate RE is less than 70%, the 0.2% proof stress in the rolling parallel direction is less than 950 MPa, the elongation exceeds 3%, and the direction perpendicular to the rolling direction. The spring limit value was less than 850 MPa, and the die wear resistance and the press punching property were deteriorated.

Niの含有量が5.0%を超えた比較例18の場合、熱間圧延で割れが発生し、合金を製造できなかった。
Niの含有量が5.0%を超え、Siの含有量が1.5%を超えた比較例19の場合、圧延平行方向の0.2%耐力が1300MPaを超えたため、耐金型摩耗性が低下した。これは、高硬度の析出物、および析出物に起因してせん断面が硬くなったためと考えられる。
In the case of Comparative Example 18 in which the Ni content exceeded 5.0%, cracking occurred during hot rolling, and the alloy could not be produced.
In the case of Comparative Example 19 in which the Ni content exceeds 5.0% and the Si content exceeds 1.5%, the 0.2% proof stress in the rolling parallel direction exceeded 1300 MPa. Decreased. This is considered to be because the shear surface became hard due to the precipitate having high hardness and the precipitate.

Mg、Mn、Sn、ZnおよびCrを総量で1.0%を超えて含有した比較例20の場合、熱間圧延で割れが発生し、合金を製造できなかった。
Niの合計含有量が3.0%未満の比較例21の場合、圧延平行方向の0.2%耐力が950MPa未満、圧延直角方向のばね限界値が850MPa未満となり、プレス打ち抜き性が低下した。
In the case of Comparative Example 20 containing Mg, Mn, Sn, Zn and Cr in a total amount exceeding 1.0%, cracks were generated by hot rolling, and an alloy could not be produced.
In the case of Comparative Example 21 in which the total content of Ni was less than 3.0%, the 0.2% yield strength in the rolling parallel direction was less than 950 MPa, the spring limit value in the direction perpendicular to the rolling was less than 850 MPa, and the press punchability was deteriorated.

Claims (4)

質量%で、Ni:3.0〜5.0%、Si:0.5〜1.5%含有し、残部がCuおよび不可避不純物からなり、
圧延平行方向の0.2%耐力YSが950〜1300MPa、圧延直角方向の伸びELが3%以下、導電率が25%IACS以上であり、
かつ(圧延平行方向の0.2%耐力YS)/(圧延直角方向の伸びEL)が317〜1300(MPa/%)であり、
圧延直角方向のばね限界値が850MPa以上である、Cu−Ni−Si系銅合金。
In mass%, Ni: 3.0-5.0%, Si: 0.5-1.5% contained, the balance consists of Cu and inevitable impurities,
0.2% proof stress YS in the rolling parallel direction is 950 to 1300 MPa, elongation EL in the direction perpendicular to the rolling is 3% or less, conductivity is 25% IACS or more,
And (0.2% yield strength YS in the rolling parallel direction) / (elongation EL in the direction perpendicular to the rolling) is 317 to 1300 (MPa /%),
A Cu—Ni—Si based copper alloy having a spring limit value in the direction perpendicular to the rolling of 850 MPa or more.
前記ばね限界値が900MPa以上である請求項1に記載のCu−Ni−Si系銅合金。   The Cu-Ni-Si based copper alloy according to claim 1, wherein the spring limit value is 900 MPa or more. さらにMg、Mn、Sn、ZnおよびCrの群から選ばれる少なくとも1種以上を総量で0.005〜1.0質量%含有する請求項1または2に記載のCu−Ni−Si系銅合金。   Furthermore, the Cu-Ni-Si type copper alloy of Claim 1 or 2 which contains 0.005-1.0 mass% of at least 1 sort (s) chosen from the group of Mg, Mn, Sn, Zn, and Cr in a total amount. さらにP、B、Ti、Zr、Al、FeおよびAgの群から選ばれる少なくとも1種以上を総量で0.005〜1.0質量%含有する請求項1〜3のいずれか一項に記載のCu−Ni−Si系銅合金。   Furthermore, 0.005-1.0 mass% of at least 1 sort (s) chosen from the group of P, B, Ti, Zr, Al, Fe, and Ag is contained in a total amount as described in any one of Claims 1-3. Cu-Ni-Si based copper alloy.
JP2018058111A 2018-03-26 2018-03-26 Cu-Ni-Si copper alloy strip with excellent mold wear resistance and press punching resistance Active JP6811199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018058111A JP6811199B2 (en) 2018-03-26 2018-03-26 Cu-Ni-Si copper alloy strip with excellent mold wear resistance and press punching resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018058111A JP6811199B2 (en) 2018-03-26 2018-03-26 Cu-Ni-Si copper alloy strip with excellent mold wear resistance and press punching resistance

Publications (2)

Publication Number Publication Date
JP2019167613A true JP2019167613A (en) 2019-10-03
JP6811199B2 JP6811199B2 (en) 2021-01-13

Family

ID=68106328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018058111A Active JP6811199B2 (en) 2018-03-26 2018-03-26 Cu-Ni-Si copper alloy strip with excellent mold wear resistance and press punching resistance

Country Status (1)

Country Link
JP (1) JP6811199B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08325681A (en) * 1985-04-26 1996-12-10 Olin Corp Production of copper-based alloy having improved combinationof ultimate tensile strength, electrical conductivity and stress relaxation resistance
JP2015034336A (en) * 2013-07-11 2015-02-19 古河電気工業株式会社 Copper alloy sheet material and production method thereof
JP2015101760A (en) * 2013-11-25 2015-06-04 Jx日鉱日石金属株式会社 Copper alloy sheet excellent in conductivity, stress relaxation resistance and moldability
JP2016053220A (en) * 2015-12-01 2016-04-14 Jx金属株式会社 Copper alloy sheet excellent in conductivity, stress relaxation characteristic and molding processability
JP2017179512A (en) * 2016-03-31 2017-10-05 Jx金属株式会社 Cu-Ni-Si-BASED COPPER ALLOY AND MANUFACTURING METHOD THEREFOR

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08325681A (en) * 1985-04-26 1996-12-10 Olin Corp Production of copper-based alloy having improved combinationof ultimate tensile strength, electrical conductivity and stress relaxation resistance
JP2015034336A (en) * 2013-07-11 2015-02-19 古河電気工業株式会社 Copper alloy sheet material and production method thereof
JP2015101760A (en) * 2013-11-25 2015-06-04 Jx日鉱日石金属株式会社 Copper alloy sheet excellent in conductivity, stress relaxation resistance and moldability
JP2016053220A (en) * 2015-12-01 2016-04-14 Jx金属株式会社 Copper alloy sheet excellent in conductivity, stress relaxation characteristic and molding processability
JP2017179512A (en) * 2016-03-31 2017-10-05 Jx金属株式会社 Cu-Ni-Si-BASED COPPER ALLOY AND MANUFACTURING METHOD THEREFOR

Also Published As

Publication number Publication date
JP6811199B2 (en) 2021-01-13

Similar Documents

Publication Publication Date Title
JP6385382B2 (en) Copper alloy sheet and method for producing copper alloy sheet
JP4729680B2 (en) Copper-based alloy with excellent press punchability
JP4177104B2 (en) High-strength copper alloy excellent in bending workability, manufacturing method thereof, and terminal / connector using the same
JP5619389B2 (en) Copper alloy material
JP3977376B2 (en) Copper alloy
JP6306632B2 (en) Copper alloy for electronic materials
JP5189708B1 (en) Cu-Ni-Si-based copper alloy sheet having good mold wear resistance and shearing workability and method for producing the same
TW201348467A (en) Cu-Zn-Sn-Ni-P-based alloy
JP6355672B2 (en) Cu-Ni-Si based copper alloy and method for producing the same
JP5261691B2 (en) Copper-base alloy with excellent press punchability and method for producing the same
JP6085633B2 (en) Copper alloy plate and press-molded product including the same
KR102121180B1 (en) Cu-Ni-Si BASED COPPER ALLOY HAVING EXCELLENT WEAR-RESISTANCE OF MOLDING
JP5017719B2 (en) Copper-based alloy plate excellent in press workability and method for producing the same
JP2001152303A (en) Copper or copper-base alloy, excellent in press workability, and its manufacturing method
JP6542817B2 (en) Copper alloy for electronic materials
JP6845885B2 (en) Cu-Ni-Si copper alloy strip with excellent mold wear resistance
JP5748945B2 (en) Copper alloy material manufacturing method and copper alloy material obtained thereby
CN111575531B (en) High-conductivity copper alloy plate and manufacturing method thereof
JP4175920B2 (en) High strength copper alloy
JP6811199B2 (en) Cu-Ni-Si copper alloy strip with excellent mold wear resistance and press punching resistance
JP5827530B2 (en) Cu-Ni-Si based copper alloy sheet with excellent spring limit and stress relaxation resistance and good shear workability
JP6845884B2 (en) Cu-Ni-Si copper alloy strip with excellent mold wear resistance
JP2014019888A (en) High strength copper alloy material, and method of manufacturing the same
KR102345805B1 (en) Cu-Ni-Si-BASED ALLOY STRIP EXCELLENT IN STRENGTH AND BENDING WORKABILITY IN ROLLING PARALLEL DIRECTION AND ROLLING ORTHOGONAL DIRECTION
JP6619389B2 (en) Cu-Ni-Si copper alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201214

R151 Written notification of patent or utility model registration

Ref document number: 6811199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250