JP2015034336A - Copper alloy sheet material and production method thereof - Google Patents

Copper alloy sheet material and production method thereof Download PDF

Info

Publication number
JP2015034336A
JP2015034336A JP2014108910A JP2014108910A JP2015034336A JP 2015034336 A JP2015034336 A JP 2015034336A JP 2014108910 A JP2014108910 A JP 2014108910A JP 2014108910 A JP2014108910 A JP 2014108910A JP 2015034336 A JP2015034336 A JP 2015034336A
Authority
JP
Japan
Prior art keywords
mass
copper alloy
alloy sheet
residual stress
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014108910A
Other languages
Japanese (ja)
Other versions
JP6696720B2 (en
Inventor
翔一 檀上
Shoichi Danjo
翔一 檀上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2014108910A priority Critical patent/JP6696720B2/en
Publication of JP2015034336A publication Critical patent/JP2015034336A/en
Application granted granted Critical
Publication of JP6696720B2 publication Critical patent/JP6696720B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a copper alloy sheet material having high conductivity and high 0.2% proof stress and small residual stress, and a production method thereof.SOLUTION: There is provided the copper alloy sheet material containing Ni:1.5 to 7.0 mass%, Si:0.1 to 1.9 mass% and 0.000 to 2.000 mass% of element selected from among Mg:0.00 to 0.20 mass%, Sn:0.00 to 1.50 mass%, Zn:0.0 to 1.5 mass%, Cr:0.000 to 0.500 mass%, Mn:0.00 to 0.50 mass%, Ag:0.000 to 0.300 mass%, Co:0.00 to 2.00 mass%, and the balance Cu with inevitable impurities, and having a 0.2% proof stress of 900 MPa or more. In a sheet thickness-direction distribution of residual stress in the cross section vertical to the sheet width direction of the copper alloy sheet material and a sheet thickness-direction distribution of residual stress in the cross section vertical to the rolling direction of the copper alloy sheet material, an absolute value of difference between a maximum value and a minimum value of a residual stress of each of the cross section is 80 MPa or less.

Description

本発明は、リードフレーム、コネクタ、ばね材等の電気・電子機器材料に用いられる高強度の銅合金板材とその製造方法に関するものである。   The present invention relates to a high-strength copper alloy sheet material used for electrical and electronic equipment materials such as lead frames, connectors, and spring materials, and a method for manufacturing the same.

携帯電話やポータブルオーディオプレイヤー、デジタルカメラといった電子機器の小型化・多機能化が進むにつれ、これらに搭載される基板の軽量化・多層化が求められている。また、実装される部品にも、更なる軽量化・小型化が求められている。   As electronic devices such as mobile phones, portable audio players, and digital cameras are becoming smaller and more multifunctional, there is a need for lighter and multilayered boards mounted on them. Further, parts to be mounted are required to be further reduced in weight and size.

従来、コネクタ、リレー等の部品にはりん青銅や黄銅等の固溶強化合金が使用されていた。しかし、部品の小型化に伴い、薄肉・小型であっても必要とされる強度を満足できる高強度材として析出強化合金の使用が増加している。析出強化合金の中でも、比較的高い導電率と強度を持ちながら、良好な加工性も有するCu−Ni−Si系合金(コルソン系合金)は、ばね性が必要とされるコネクタのメス端子やCPUソケット等に広く用いられている。強度や加工性のさらなる改善に関して、種々の合金材が提案されている(例えば、特許文献1〜3)。   Conventionally, solid solution strengthened alloys such as phosphor bronze and brass have been used for components such as connectors and relays. However, with the miniaturization of parts, the use of precipitation-strengthened alloys is increasing as a high-strength material that can satisfy the required strength even if it is thin and small. Among precipitation-strengthened alloys, Cu—Ni—Si alloys (corson alloys) that have good workability while having relatively high electrical conductivity and strength are female terminals and CPUs for connectors that require springiness. Widely used for sockets. Various alloy materials have been proposed for further improvement in strength and workability (for example, Patent Documents 1 to 3).

特許文献1では、CuとAgとの共晶相(CuAg相)およびNiSi粒子を複合して含有する耐へたり性に優れた高強度銅合金材料が提案されている。また、特許文献2、3では、冷間加工や調質焼鈍の条件を規定し、表面の残留応力を低減させることで、リードフレームのリード変形が生じにくく、かつプレス加工後の歪取り焼鈍に要する時間の短い、加工性に優れた銅合金板または条が提案されている。 Patent Document 1 proposes a high-strength copper alloy material excellent in sag resistance, which contains a composite phase of Cu and Ag (CuAg phase) and Ni 2 Si particles. In Patent Documents 2 and 3, the conditions for cold working and temper annealing are specified, and the residual stress on the surface is reduced, so that lead deformation of the lead frame is less likely to occur, and the stress relief annealing after press working is performed. A copper alloy sheet or strip having a short work time and excellent workability has been proposed.

特開2006−291271号公報JP 2006-291271 A 特開2010−7171号公報JP 2010-7171 A 特開2011−38126号公報JP 2011-38126 A

しかしながら、従来の銅合金板材は、導電率が30%IACS以上である場合には0.2%耐力が900MPa以下であったため、携帯電話、ノートバソコン等のモバイル機器に用いられるカメラAF(オートフォーカス)モジュールやハードディスクドライブの磁気ヘッド用サスペンションに使われるばね材等に対しては強度が不足していた。また、0.2%耐力が900MPaを超える場合には導電率が20%IACS以下であり、電子部品としては導電率が低かった。さらに、板厚0.1mm以下の薄板材では、冷間加工により生じる残留応力を抑制することが困難になり、調質焼鈍後の板材に対してエッチングやプレス加工を行うと、残留応力に起因して反り等の変形が生じる問題があった。特許文献2または特許文献3に記載された発明においては、最終段階で行われる歪取り焼鈍前の冷間圧延において、残留応力の抑制が不十分であった。そのため、歪取り焼鈍において、残留応力を十分に除去するためには、保持温度を高くする必要があり、強度の低下が不可避であるという問題があった。   However, since the conventional copper alloy sheet has a 0.2% proof stress of 900 MPa or less when the conductivity is 30% IACS or more, the camera AF (autofocus) used for mobile devices such as mobile phones and notebook computers is used. ) Insufficient strength for spring materials used in suspensions for magnetic heads of modules and hard disk drives. Further, when the 0.2% proof stress exceeded 900 MPa, the conductivity was 20% IACS or less, and the conductivity of the electronic component was low. Furthermore, with thin sheet materials with a thickness of 0.1 mm or less, it becomes difficult to suppress the residual stress caused by cold working, and if etching or pressing is performed on the plate material after temper annealing, it is caused by the residual stress. As a result, there is a problem that deformation such as warpage occurs. In the invention described in Patent Document 2 or Patent Document 3, residual stress is not sufficiently suppressed in cold rolling before strain relief annealing performed in the final stage. Therefore, in the strain relief annealing, in order to sufficiently remove the residual stress, it is necessary to increase the holding temperature, and there is a problem in that the strength is unavoidable.

本発明は、上述した課題に鑑みてなされたものであり、導電率および0.2%耐力が高く、残留応力が小さく、かつ加工性に優れた銅合金板材およびその製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and provides a copper alloy sheet material having high conductivity and 0.2% proof stress, low residual stress, and excellent workability, and a method for producing the same. Objective.

上記目的を達成するために、本発明に係る銅合金板材は、Ni:1.5〜7.0質量%、Si:0.1〜1.9質量%を含有し、Mg:0.00〜0.20質量%、Sn:0.00〜1.50質量%、Zn:0.0〜1.5質量%、Cr:0.000〜0.500質量%、Mn:0.00〜0.50質量%、Ag:0.000〜0.300質量%、Co:0.00〜2.00質量%から選ばれる元素を0.000〜2.000質量%含有し、残部Cuおよび不可避不純物からなる銅合金板材であって、0.2%耐力が900MPa以上であり、前記銅合金板材の板幅方向に垂直な断面の板厚方向の残留応力分布、および前記銅合金板材の圧延方向に垂直な断面の板厚方向の残留応力分布において、それぞれの断面の残留応力の最大値と最小値の差の絶対値が80MPa以下であることを特徴とする。   In order to achieve the above object, a copper alloy sheet according to the present invention contains Ni: 1.5 to 7.0 mass%, Si: 0.1 to 1.9 mass%, and Mg: 0.00 to 0.20% by mass, Sn: 0.00-1.50% by mass, Zn: 0.0-1.5% by mass, Cr: 0.000-0.500% by mass, Mn: 0.00-0. 50% by mass, Ag: 0.000 to 0.300% by mass, Co: 0.000 to 2.00% by mass of an element selected from 0.000 to 2.00% by mass, and the balance from Cu and inevitable impurities A copper alloy sheet material having a 0.2% proof stress of 900 MPa or more, a residual stress distribution in the sheet thickness direction of a cross section perpendicular to the sheet width direction of the copper alloy sheet material, and a direction perpendicular to the rolling direction of the copper alloy sheet material In the residual stress distribution in the thickness direction of various sections, the maximum and minimum values of residual stress in each section The absolute value of the difference is equal to or less than 80 MPa.

本発明に係る銅合金板材は、さらに、Mg:0.01〜0.20質量%、Sn:0.05〜1.50質量%、Zn:0.2〜1.5質量%、Cr:0.005〜0.500質量%、Mn:0.01〜0.50質量%、Ag:0.005〜0.300質量%、Co:0.05〜2.00質量%のうち、少なくとも1種を総量で0.005〜2.000質量%含有することが好ましい。   The copper alloy sheet according to the present invention further includes Mg: 0.01-0.20% by mass, Sn: 0.05-1.50% by mass, Zn: 0.2-1.5% by mass, Cr: 0. 0.005 to 0.500 mass%, Mn: 0.01 to 0.50 mass%, Ag: 0.005 to 0.300 mass%, Co: 0.05 to 2.00 mass%, at least one kind Is preferably contained in a total amount of 0.005 to 2.000 mass%.

また、本発明に係る銅合金板材は、平均結晶粒径が0.1μm超50μm以下であることが好ましい。   The copper alloy sheet according to the present invention preferably has an average crystal grain size of more than 0.1 μm and 50 μm or less.

また、本発明に係る銅合金板材は、厚さが5μm以上80μm以下であることが好ましい。   The copper alloy sheet according to the present invention preferably has a thickness of 5 μm or more and 80 μm or less.

本発明に係る銅合金板材の製造方法は、鋳造、均質化熱処理、熱間加工、面削、第1の冷間加工、溶体化熱処理、時効処理、第2の冷間加工および調質焼鈍から構成される処理をこの順に施し、前記時効処理における処理温度が400〜700℃、処理時間が5秒〜20時間であり、前記第2の冷間加工におけるワークロール径が150mm以下、ワークロールの表面粗さRaが0.5μm以下、圧延速度が300m/min以下、1パスあたりの加工率が3〜20%、かつ、総加工率が20〜90%であり、前記調質焼鈍における処理温度が200〜450℃、処理時間が30分〜5時間であることを特徴とする。   The method for producing a copper alloy sheet according to the present invention includes casting, homogenizing heat treatment, hot working, face cutting, first cold working, solution heat treatment, aging treatment, second cold working and temper annealing. The treatment process is performed in this order, the treatment temperature in the aging treatment is 400 to 700 ° C., the treatment time is 5 seconds to 20 hours, the work roll diameter in the second cold working is 150 mm or less, The surface roughness Ra is 0.5 μm or less, the rolling speed is 300 m / min or less, the processing rate per pass is 3 to 20%, and the total processing rate is 20 to 90%, and the processing temperature in the temper annealing. Is 200 to 450 ° C., and the treatment time is 30 minutes to 5 hours.

本発明の銅合金板材は、0.2%耐力が900MPa以上、導電率が30%IACS以上の特性を併せ持つ。また、銅合金板材の板幅方向に垂直な断面の板厚方向の残留応力分布、および銅合金板材の圧延方向に垂直な断面の板厚方向の残留応力分布において、それぞれの断面の残留応力の最大値と最小値の差の絶対値が80MPa以下であるため、銅合金板材を加工する際に反り等の不良が発生しづらい。すなわち、本発明の銅合金板材は加工性に優れる。また、本発明の銅合金板材の製造方法では、銅合金板材の板幅方向に垂直な断面の板厚方向の残留応力分布、および銅合金板材の圧延方向に垂直な断面の板厚方向の残留応力分布において、それぞれの断面の残留応力の最大値と最小値の差の絶対値が80MPa以下である銅合金板材を、好適に提供することができる。   The copper alloy sheet of the present invention has the characteristics that 0.2% proof stress is 900 MPa or more and conductivity is 30% IACS or more. In addition, the residual stress distribution in the plate thickness direction of the cross section perpendicular to the plate width direction of the copper alloy plate material and the residual stress distribution in the plate thickness direction of the cross section perpendicular to the rolling direction of the copper alloy plate material Since the absolute value of the difference between the maximum value and the minimum value is 80 MPa or less, it is difficult for defects such as warpage to occur when a copper alloy sheet is processed. That is, the copper alloy sheet of the present invention is excellent in workability. Further, in the method for producing a copper alloy sheet according to the present invention, the residual stress distribution in the thickness direction of the cross section perpendicular to the width direction of the copper alloy sheet, and the residual in the thickness direction of the cross section perpendicular to the rolling direction of the copper alloy sheet. In the stress distribution, a copper alloy plate material in which the absolute value of the difference between the maximum value and the minimum value of the residual stress in each cross section is 80 MPa or less can be suitably provided.

本発明の実施形態に係る銅合金板材の断面を説明するための図である。It is a figure for demonstrating the cross section of the copper alloy board | plate material which concerns on embodiment of this invention. (A)は、図1における銅合金板材の板幅方向に垂直な断面の部分拡大図である。(B)は、図1における銅合金板材の圧延方向に垂直な断面の部分拡大図である。(A) is the elements on larger scale of the cross section perpendicular | vertical to the board width direction of the copper alloy board | plate material in FIG. (B) is the elements on larger scale of the cross section perpendicular | vertical to the rolling direction of the copper alloy board | plate material in FIG.

以下、本発明を実施するための形態(以下、本実施形態という。)について、具体的に説明する。本発明において銅合金板材とは、圧延工程によって、例えば板材や条材、箔などの特定の形状に加工された銅合金材を意味する。本願では、これらをまとめて銅合金板材と呼ぶ。また、本願では以降「質量%(mass%)」を単に「%」とも記す。   Hereinafter, a mode for carrying out the present invention (hereinafter referred to as the present embodiment) will be specifically described. In the present invention, the copper alloy plate means a copper alloy material processed into a specific shape such as a plate, strip, or foil by a rolling process. In the present application, these are collectively referred to as a copper alloy sheet. Further, in the present application, “mass%” is also simply referred to as “%”.

(1)銅合金板材の組成
Niは、Siと反応してNiSi化合物を形成する。NiSi化合物を時効析出させることにより、銅合金板材の強度を向上させ、かつ、導電率を高めることができる。本実施形態の銅合金板材におけるNiの含有量は1.5〜7.0%である。より好ましくは、2.0〜5.0%である。Niの含有量が1.5%未満であると、Ni−Si析出物による析出硬化量が小さく強度が不足する。また、Niの含有量が7.0%を超えると、熱処理時に粒界反応型析出が生じ、さらに粗大な晶出物の量が多くなり過ぎ、強度が低下することがある。
(1) Composition of copper alloy sheet material Ni reacts with Si to form a Ni 2 Si compound. By aging precipitation of the Ni 2 Si compound, the strength of the copper alloy sheet can be improved and the electrical conductivity can be increased. The content of Ni in the copper alloy sheet according to the present embodiment is 1.5 to 7.0%. More preferably, it is 2.0 to 5.0%. When the Ni content is less than 1.5%, the precipitation hardening amount due to the Ni—Si precipitate is small and the strength is insufficient. On the other hand, if the Ni content exceeds 7.0%, grain boundary reaction type precipitation occurs during the heat treatment, and the amount of coarse crystallized material increases excessively, which may reduce the strength.

Siは、Niと反応してNiSi化合物を形成する。NiSi化合物を時効析出させることにより、銅合金板材の強度を向上させ、かつ、導電率を高めることができる。本実施形態の銅合金板材におけるSiの含有量は0.1〜1.9%である。より好ましくは、0.35〜1.7%である。Siの含有量が0.1%未満であると、時効処理による強度向上が不十分になる。また、Siの含有量が1.9%を超えると、Ni量が多い場合と同じ問題が生じることに加え、導電率の低下をもたらす。 Si reacts with Ni to form a Ni 2 Si compound. By aging precipitation of the Ni 2 Si compound, the strength of the copper alloy sheet can be improved and the electrical conductivity can be increased. The Si content in the copper alloy sheet of the present embodiment is 0.1 to 1.9%. More preferably, it is 0.35 to 1.7%. If the Si content is less than 0.1%, the strength improvement by the aging treatment is insufficient. On the other hand, if the Si content exceeds 1.9%, the same problem as in the case where the Ni content is large is caused, and the conductivity is lowered.

Mgは母相に固溶する形態で存在し、粒界反応型析出の形成を抑制すると共に、応力緩和特性の改善効果がある。本実施形態の銅合金板材におけるMgの含有量は0.01〜0.20%であることが好ましく、より好ましくは、0.05〜0.15%である。Mgの含有量が0.01%未満であると、その効果が十分に現れず、0.20%を超えると、曲げ加工性が低下する。   Mg exists in the form of a solid solution in the matrix phase, and has the effect of suppressing the formation of grain boundary reaction type precipitation and improving the stress relaxation characteristics. The Mg content in the copper alloy sheet of the present embodiment is preferably 0.01 to 0.20%, more preferably 0.05 to 0.15%. If the Mg content is less than 0.01%, the effect does not sufficiently appear, and if it exceeds 0.20%, the bending workability deteriorates.

Snは母相に固溶する形態で存在し、粒界反応型析出の形成を抑制すると共に、応力緩和特性を改善する。本実施形態の銅合金板材におけるSnの含有量は0.05〜1.50%であることが好ましく、より好ましくは、0.1〜0.7%である。Snの含有量が0.05%未満であると、その効果が十分に現れず、1.50%を超えると、導電性が大幅に低下する。   Sn exists in a solid solution form in the parent phase, and suppresses the formation of grain boundary reaction type precipitation and improves the stress relaxation characteristics. The Sn content in the copper alloy sheet according to the present embodiment is preferably 0.05 to 1.50%, more preferably 0.1 to 0.7%. If the Sn content is less than 0.05%, the effect is not sufficiently exhibited, and if it exceeds 1.50%, the conductivity is significantly lowered.

Znは母相に固溶する形態で存在し、熱間加工性を向上させる。本実施形態の銅合金板材におけるZnの含有量は0.2〜1.5%であることが好ましく、より好ましくは、0.3〜1.2%である。Znの含有量が0.2%未満であると、その効果が十分に得られず、Znの含有量が1.5%を超えると、導電性が低下する。   Zn is present in the form of a solid solution in the matrix and improves hot workability. The content of Zn in the copper alloy sheet according to the present embodiment is preferably 0.2 to 1.5%, more preferably 0.3 to 1.2%. If the Zn content is less than 0.2%, the effect cannot be sufficiently obtained, and if the Zn content exceeds 1.5%, the conductivity is lowered.

CrはSiやNiと反応してCr−Si化合物およびNi−Cr−Si化合物を形成する。これらの金属間化合物は、溶体化処理時に粒界の移動を抑制して母相の結晶粒径を微細にすると共に、粒界反応型析出の抑制に寄与する。本実施形態の銅合金板材におけるCrの含有量は0.005〜0.500%であることが好ましく、より好ましくは、0.05〜0.3%である。Crの含有量が0.005%未満ではその効果が十分に得られず、0.500%を超えると、曲げ加工性が劣化する。   Cr reacts with Si and Ni to form a Cr—Si compound and a Ni—Cr—Si compound. These intermetallic compounds suppress the movement of the grain boundary during the solution treatment to make the crystal grain size of the parent phase fine, and contribute to the suppression of the grain boundary reaction type precipitation. The content of Cr in the copper alloy sheet according to this embodiment is preferably 0.005 to 0.500%, and more preferably 0.05 to 0.3%. If the Cr content is less than 0.005%, the effect cannot be sufficiently obtained, and if it exceeds 0.500%, the bending workability deteriorates.

Agは耐熱性および強度を向上させると同時に、結晶粒の粗大化を阻止して曲げ加工性を改善する。本実施形態の銅合金板材におけるAgの含有量は0.005〜0.300%であることが好ましい。Agの含有量が0.005%未満ではその効果が十分に得られない。また、Agの含有量が0.300%を超えても特性に悪影響はないもののコスト高になる。   Ag improves heat resistance and strength, and at the same time, prevents coarsening of crystal grains and improves bending workability. The Ag content in the copper alloy sheet according to the present embodiment is preferably 0.005 to 0.300%. If the Ag content is less than 0.005%, the effect cannot be sufficiently obtained. Further, even if the Ag content exceeds 0.300%, the properties are not adversely affected, but the cost is increased.

Coは、Niと同様にSiと化合物を形成して強度を向上させる作用を有する。本実施形態の銅合金板材におけるCoの含有量は0.05〜2.00%であることが好ましい。Coの含有量が0.05%未満ではその効果が十分に得られない。また、Coの含有量が2.00%を超えると、溶体化処理後にも強度に寄与しない晶出・析出物が存在して曲げ加工性が劣化する。   Co, like Ni, has a function of forming a compound with Si and improving the strength. The Co content in the copper alloy sheet of the present embodiment is preferably 0.05 to 2.00%. If the Co content is less than 0.05%, the effect cannot be sufficiently obtained. On the other hand, if the Co content exceeds 2.00%, crystallization / precipitates that do not contribute to the strength exist after the solution treatment, and the bending workability deteriorates.

Mnは熱間加工性を改善する効果があり、導電性を劣化させない程度に0.01〜0.50質量%含有させることは有効である。   Mn has an effect of improving hot workability, and it is effective to contain 0.01 to 0.50% by mass so as not to deteriorate the conductivity.

上述のMg、Sn、Zn、Cr、Ag、Co、Mnを1種又は2種以上含有する場合には、要求特性に応じて合計で、0.005〜2.000%の範囲で決定される。   When one or more of the above-mentioned Mg, Sn, Zn, Cr, Ag, Co, and Mn are contained, the total is determined in the range of 0.005 to 2.000% depending on the required characteristics. .

なお、本実施形態の銅合金板材において、Sの含有量は0.005%未満であることが好ましく、より好ましくは、0.002%未満である。Sの含有量が0.005%以上であると、熱間加工性が悪化する。   In the copper alloy sheet according to the present embodiment, the S content is preferably less than 0.005%, and more preferably less than 0.002%. When the S content is 0.005% or more, the hot workability deteriorates.

(2)銅合金板材の物性
本実施形態の銅合金板材は、板材中の残留応力が小さいことが特徴の1つである。残留応力は熱処理や冷間加工などによる不均一な変形の結果発生し、銅合金板材(圧延材)の表面および板材内部に広く分布している。圧延材の表面および内部の残留応力分布の勾配が大きい、すなわち残留応力の最大値と最小値の差が大きいと、エッチングやプレス加工を行った際に、残留応力が開放されて、反り等の変形が生じやすくなる。もしくは、加工時には変形として現れていなくても、使用中に変形を起こす可能性のある板材となる。よって、銅合金板材中の残留応力を小さく制御することが必要となる。
(2) Physical properties of copper alloy sheet material The copper alloy sheet material of this embodiment is characterized by a small residual stress in the sheet material. Residual stress occurs as a result of non-uniform deformation due to heat treatment or cold working, and is widely distributed on the surface of the copper alloy plate (rolled material) and inside the plate. If the gradient of the residual stress distribution on the surface and inside of the rolled material is large, that is, if the difference between the maximum value and the minimum value of the residual stress is large, the residual stress is released when etching or pressing is performed, and warping, etc. Deformation tends to occur. Or, even if it does not appear as deformation at the time of processing, it becomes a plate material that may cause deformation during use. Therefore, it is necessary to control the residual stress in the copper alloy sheet material to be small.

そこで、本発明では、銅合金板材の圧延方向(RD;Rolling Direction)に垂直な断面および板幅方向(TD;Transverse Direction)に垂直な断面のそれぞれの断面の板厚方向(ND;Normal Direction)の残留応力分布において、それぞれの断面の残留応力の最大値と最小値の差の絶対値を80MPa以下に制御している。より詳しくは、銅合金板材の圧延方向(RD)に垂直な断面における板厚方向の残留応力分布において、その断面の残留応力の最大値と最小値の差の絶対値が80MPa以下であり、かつ、銅合金板材の板幅方向(TD)に垂直な断面における板厚方向の残留応力分布において、その断面の残留応力の最大値と最小値の差の絶対値が80MPa以下である。   Therefore, in the present invention, the thickness direction (ND: Normal Direction) of each cross section of the cross section perpendicular to the rolling direction (RD; Rolling Direction) and the cross section perpendicular to the plate width direction (TD; Transverse Direction) of the copper alloy sheet material. In the residual stress distribution, the absolute value of the difference between the maximum value and the minimum value of the residual stress in each cross section is controlled to 80 MPa or less. More specifically, in the residual stress distribution in the thickness direction in the cross section perpendicular to the rolling direction (RD) of the copper alloy sheet material, the absolute value of the difference between the maximum value and the minimum value of the residual stress in the cross section is 80 MPa or less, and In the residual stress distribution in the plate thickness direction in the cross section perpendicular to the plate width direction (TD) of the copper alloy plate material, the absolute value of the difference between the maximum value and the minimum value of the residual stress in the cross section is 80 MPa or less.

図1および図2を参照して、本実施形態の銅合金板材1の断面における残留応力分布について説明する。図1は、本実施形態の銅合金板材1の断面を説明するための図である。図1に、銅合金板材1の板幅方向(TD)に垂直な断面における板厚方向(ND)の残留応力分布2と、銅合金板材1の圧延方向(RD)に垂直な断面における板厚方向(ND)の残留応力分布3を示した。図2(A)は、図1における銅合金板材1の板幅方向(TD)に垂直な断面の部分拡大図であり、図2(B)は、図1における銅合金板材1の圧延方向(RD)に垂直な断面の部分拡大図である。   With reference to FIG. 1 and FIG. 2, the residual stress distribution in the cross section of the copper alloy sheet | seat material 1 of this embodiment is demonstrated. FIG. 1 is a view for explaining a cross section of a copper alloy sheet 1 of the present embodiment. FIG. 1 shows the residual stress distribution 2 in the thickness direction (ND) in the cross section perpendicular to the plate width direction (TD) of the copper alloy plate 1 and the thickness in the cross section perpendicular to the rolling direction (RD) of the copper alloy plate 1. The residual stress distribution 3 in the direction (ND) is shown. 2A is a partially enlarged view of a cross section perpendicular to the plate width direction (TD) of the copper alloy sheet 1 in FIG. 1, and FIG. 2B is a rolling direction of the copper alloy sheet 1 in FIG. It is the elements on larger scale of the cross section perpendicular | vertical to (RD).

図2(A)において、曲線2aは、圧延方向(RD)の残留応力の値を示しており、軸2bは、残留応力が0であることを示す。板幅方向(TD)に垂直な断面における板厚方向(ND)の残留応力分布2では、その断面において圧延方向(RD)の残留応力が板厚に対してどのような分布をしているのかを示している。値Aは、圧延方向(RD)の残留応力の最大値と最小値の差の絶対値を意味する。また、図2(B)において、曲線3aは、板幅方向(TD)の残留応力の値を示しており、軸3bは、残留応力が0であることを示す。圧延方向(RD)に垂直な断面における板厚方向(ND)の残留応力分布3では、その断面において板幅方向(TD)の残留応力が板厚に対してどのような分布をしているかを示している。値Bは、板幅方向(TD)の残留応力の最大値と最小値の差の絶対値を意味する。これらの各断面における残留応力分布において、その最大応力値(σmax)と最小応力値(σmin)の差の絶対値を80MPa以下(|σmax−σmin|≦80MPa)とするように制御したのが本発明である。すなわち、A≦80MPa、かつ、B≦80MPaである。   In FIG. 2A, a curve 2a indicates a value of residual stress in the rolling direction (RD), and an axis 2b indicates that the residual stress is zero. In the residual stress distribution 2 in the plate thickness direction (ND) in the cross section perpendicular to the plate width direction (TD), how the residual stress in the rolling direction (RD) is distributed with respect to the plate thickness in the cross section. Is shown. The value A means the absolute value of the difference between the maximum value and the minimum value of the residual stress in the rolling direction (RD). In FIG. 2B, a curve 3a indicates a value of residual stress in the plate width direction (TD), and an axis 3b indicates that the residual stress is zero. In the residual stress distribution 3 in the plate thickness direction (ND) in the cross section perpendicular to the rolling direction (RD), the distribution of the residual stress in the plate width direction (TD) with respect to the plate thickness in the cross section is shown. Show. The value B means the absolute value of the difference between the maximum value and the minimum value of the residual stress in the plate width direction (TD). In the residual stress distribution in each cross section, the absolute value of the difference between the maximum stress value (σmax) and the minimum stress value (σmin) is controlled to be 80 MPa or less (| σmax−σmin | ≦ 80 MPa). It is an invention. That is, A ≦ 80 MPa and B ≦ 80 MPa.

なお、図2(A)および図2(B)に示すように、軸2b、軸3bに対して残留応力の正(プラス)の値を引張応力とし、負(マイナス)の値を圧縮応力とする。このようにすると、残留応力の最大値は引張応力であり、最小値は圧縮応力となる。すなわち、本発明における残留応力の制御は、「引張応力の最大値」と「圧縮応力の最小値」の差(絶対値)を80MPa以内とすることに相当する。それぞれの断面の板厚方向の残留応力分布における残留応力の最大値と最小値の差の絶対値は、より好ましくは50MPa以下である。それぞれの断面の板厚方向の残留応力分布における残留応力の最大値と最小値の差の絶対値について、下限は特に規定しないが、絶対値であるため0以上である。なお、本発明における残留応力は、Treuting−Read法に基づいて測定した値である。   As shown in FIGS. 2A and 2B, the positive (plus) value of the residual stress with respect to the shaft 2b and the shaft 3b is set as the tensile stress, and the negative (minus) value is set as the compressive stress. To do. In this way, the maximum value of residual stress is tensile stress, and the minimum value is compressive stress. That is, the control of the residual stress in the present invention corresponds to setting the difference (absolute value) between the “maximum value of tensile stress” and the “minimum value of compressive stress” within 80 MPa. The absolute value of the difference between the maximum value and the minimum value of the residual stress in the residual stress distribution in the thickness direction of each cross section is more preferably 50 MPa or less. The absolute value of the difference between the maximum value and the minimum value of the residual stress in the residual stress distribution in the plate thickness direction of each cross section is not particularly specified, but is 0 or more because it is an absolute value. In addition, the residual stress in this invention is the value measured based on the Truting-Read method.

本実施形態の銅合金板材は、平均結晶粒径が0.1μm超50μm以下であることが好ましい。より好ましくは、0.1μm超25μm以下である。平均結晶粒径が0.1μm以下であると、加工性が悪化する。平均結晶粒径が50μmを超えると、十分な強度が得られず、また、圧延垂直方向と圧延平行方向の強度差が大きくなる。なお、本発明における平均結晶粒径は、JISH0501(切断法)に基づいて測定した値である。   The copper alloy sheet of the present embodiment preferably has an average crystal grain size of more than 0.1 μm and 50 μm or less. More preferably, it is more than 0.1 μm and 25 μm or less. If the average crystal grain size is 0.1 μm or less, the workability deteriorates. When the average crystal grain size exceeds 50 μm, sufficient strength cannot be obtained, and the strength difference between the rolling vertical direction and the rolling parallel direction becomes large. The average crystal grain size in the present invention is a value measured based on JISH0501 (cutting method).

本実施形態の銅合金板材は、0.2%耐力(YS)が900MPa以上である。好ましくは1000MPa以上である。0.2%耐力YSの上限値は特に限定されないが、現実的には1500MPa程度である。本発明における0.2%耐力は、通常の引張試験機による引張試験に基づいて測定した値である。   The copper alloy sheet of this embodiment has a 0.2% yield strength (YS) of 900 MPa or more. Preferably it is 1000 MPa or more. The upper limit value of 0.2% proof stress YS is not particularly limited, but is practically about 1500 MPa. The 0.2% proof stress in the present invention is a value measured based on a tensile test using a normal tensile tester.

本実施形態の銅合金板材の厚さは、用途や成形条件等に応じて適宜調整可能であるが、5μm〜80μmであることが好ましい。より好ましくは、10〜80μmである。厚さが5μm未満であると、残留応力の最大値と最小値の差を80MPa以下になる圧延を行うには、パス回数が多くなり、生産効率が大幅に悪化する。なお、本実施形態の銅合金板材は、特に板厚80μm以下の銅合金板材が対象であるが、80μmを超える銅合金板材に適用することも可能である。本発明は、薄い板厚においても、残留応力が小さくかつ高い0.2%耐力を有することに技術的意義を有するものである。   The thickness of the copper alloy sheet according to the present embodiment can be appropriately adjusted according to the application, molding conditions, etc., but is preferably 5 μm to 80 μm. More preferably, it is 10-80 micrometers. When the thickness is less than 5 μm, the number of passes increases and the production efficiency deteriorates significantly in order to perform rolling so that the difference between the maximum value and the minimum value of the residual stress is 80 MPa or less. In addition, although the copper alloy plate material of this embodiment is a copper alloy plate material with a plate thickness of 80 μm or less in particular, it can be applied to a copper alloy plate material exceeding 80 μm. The present invention has technical significance in that it has a small residual stress and a high 0.2% proof stress even at a thin plate thickness.

上記物性を備えた銅合金板材は、高い強度が要求される電気・電子機器材料として好適に用いることができる。例えば、リードフレーム、コネクタ又はばね材などである。   The copper alloy sheet having the above physical properties can be suitably used as an electrical / electronic equipment material that requires high strength. For example, a lead frame, a connector, or a spring material.

(3)銅合金板材の製造方法
本実施形態の銅合金板材は、所定の組成からなる銅合金に、鋳造、均質化熱処理、熱間加工、面削、第1の冷間加工、溶体化熱処理、時効処理、第2の冷間加工および調質焼鈍の各工程をこの順に施すことにより製造される。以下、本実施形態の銅合金板材の製造方法について詳細に説明する。
(3) Manufacturing method of copper alloy plate material The copper alloy plate material of the present embodiment is formed by casting, homogenizing heat treatment, hot working, surface cutting, first cold working, solution heat treatment to a copper alloy having a predetermined composition. , Aging treatment, second cold working and temper annealing are performed in this order. Hereinafter, the manufacturing method of the copper alloy sheet of this embodiment will be described in detail.

まず、鋳造工程において、所定の組成の銅合金素材を溶解した後、鋳造により銅合金鋳塊を得る。均質化熱処理工程では、合金成分や組織の均質化等を目的として、銅合金鋳塊を850〜1000℃で0.5〜6時間保持する。その後、所望の板厚とすべく熱間加工を行う。熱間加工工程では700〜1000℃で圧延を行う。面削工程は、銅合金板材の表皮の酸化皮膜や変質層を除去するために行う。これは通常公知の方法により行うことができる。   First, in a casting process, after melting a copper alloy material having a predetermined composition, a copper alloy ingot is obtained by casting. In the homogenizing heat treatment step, the copper alloy ingot is held at 850 to 1000 ° C. for 0.5 to 6 hours for the purpose of homogenizing the alloy components and the structure. Thereafter, hot working is performed to obtain a desired plate thickness. In the hot working step, rolling is performed at 700 to 1000 ° C. The chamfering step is performed in order to remove the oxide film and the altered layer on the skin of the copper alloy sheet. This can be done by a generally known method.

続いて、第1の冷間加工工程では、加工率が80〜99.99%になるように圧延するのが好ましい。その後、材料を溶体化させるため、溶体化熱処理を行う。溶体化熱処理工程では、温度800〜1000℃、3秒〜1時間保持することが好ましい。   Subsequently, in the first cold working step, rolling is preferably performed so that the working rate is 80 to 99.99%. Thereafter, a solution heat treatment is performed in order to solution the material. In the solution heat treatment step, it is preferable to hold the temperature at 800 to 1000 ° C. for 3 seconds to 1 hour.

時効処理は、過飽和固溶体となった材料の母相にNiSiを始めとした析出相を析出させるための処理である。時効処理工程における処理温度は400〜700℃である。好ましくは、350〜600℃である。処理温度が400℃未満であると、十分なNiSi析出量を得るために長時間を要することになりコスト高になる。または、耐力および導電率が不十分である。また、処理温度が700℃を超えると、粗大化したNiSiが形成するため、耐力を十分に得られない。処理時間は、5秒〜20時間である。 The aging treatment is a treatment for precipitating a precipitated phase such as Ni 2 Si in the parent phase of the material that has become a supersaturated solid solution. The processing temperature in an aging treatment process is 400-700 degreeC. Preferably, it is 350-600 degreeC. If the treatment temperature is less than 400 ° C., it takes a long time to obtain a sufficient amount of Ni 2 Si deposited, resulting in an increase in cost. Or the proof stress and the electrical conductivity are insufficient. On the other hand, when the processing temperature exceeds 700 ° C., coarse Ni 2 Si is formed, so that sufficient proof stress cannot be obtained. The processing time is 5 seconds to 20 hours.

第2の冷間加工工程では残留応力の発生があり、エッチングやプレス加工における寸法精度の悪化を防ぐためには、表面及び内部における残留応力分布のばらつきをできるだけ抑える処理を行うことが重要である。第2の冷間加工工程における、残留応力分布のばらつきとは、銅合金板材の「板幅方向に垂直な断面」および「圧延方向に垂直な断面」のそれぞれの断面において、残留応力の最大値と最小値の差である。   Residual stress is generated in the second cold working step, and in order to prevent deterioration of dimensional accuracy in etching and press working, it is important to perform a process that suppresses variations in the residual stress distribution on the surface and inside as much as possible. The variation in the residual stress distribution in the second cold working step is the maximum value of the residual stress in each of the “cross section perpendicular to the sheet width direction” and “cross section perpendicular to the rolling direction” of the copper alloy sheet. And the minimum value.

ここで、第2の冷間加工工程のワークロール径は150mm以下である。ワークロール径が150mmを超えると、銅合金板材の内部側の変形が大きくなり、板材表面から板材内部の残留応力分布のばらつきが増加する。また、ワークロールの表面粗さは算術平均粗さRaで0.5μm以下であり、好ましくは0.3μm以下あり、更に好ましくは0.1μm以下である。算術平均粗さRaが0.5μmを超えると銅合金板材の表面と内部の変形量に差が生じ、残留応力分布のばらつきが大きくなる。算術平均粗さRaに特に下限値は設けないが、小さすぎるとロールと板の間にスリップが生じ圧延制御が不安定になる。また、圧延速度は300m/min以下、好ましくは200m/minである。圧延速度が300m/minを超えると、残留応力分布のばらつきを低減することができない。特に圧延速度に下限値は設けないが、低すぎると生産効率が悪化する。また、1パスあたりの加工率は3〜20%である。1パスあたりの加工率が3%未満もしくは、加工率が20%を超えると、表面と内部の変形量に大きな差が生じ、残留応力分布のばらつきが増す。また、総加工率は、20〜90%である。十分な強度を得るには、総加工率が20%以上とするのが好ましく、30%以上とするのがより好ましい。更に好ましくは50%以上である。総加工率が90%を超えると、調質焼鈍工程後に、圧延方向に対して平行方向と垂直方向の強度差が大きくなり、電気・電子部品用銅合金板材として設計の自由度が減少する。   Here, the work roll diameter in the second cold working step is 150 mm or less. When the work roll diameter exceeds 150 mm, the deformation on the inner side of the copper alloy sheet increases, and the dispersion of the residual stress distribution within the sheet increases from the surface of the sheet. The surface roughness of the work roll is 0.5 μm or less in terms of arithmetic average roughness Ra, preferably 0.3 μm or less, and more preferably 0.1 μm or less. When the arithmetic average roughness Ra exceeds 0.5 μm, a difference occurs in the amount of deformation between the surface and the inside of the copper alloy sheet, and the dispersion of the residual stress distribution increases. No particular lower limit is set for the arithmetic average roughness Ra, but if it is too small, slip will occur between the roll and the plate, and the rolling control will become unstable. The rolling speed is 300 m / min or less, preferably 200 m / min. If the rolling speed exceeds 300 m / min, the variation in the residual stress distribution cannot be reduced. In particular, a lower limit is not set for the rolling speed, but if it is too low, the production efficiency will deteriorate. The processing rate per pass is 3 to 20%. When the processing rate per pass is less than 3% or the processing rate exceeds 20%, a large difference occurs in the amount of deformation between the surface and the inside, and the dispersion of the residual stress distribution increases. The total processing rate is 20 to 90%. In order to obtain sufficient strength, the total processing rate is preferably 20% or more, and more preferably 30% or more. More preferably, it is 50% or more. When the total processing rate exceeds 90%, the strength difference between the parallel direction and the vertical direction with respect to the rolling direction becomes large after the temper annealing step, and the degree of design freedom as a copper alloy sheet for electric / electronic parts decreases.

また、第2の冷間加工工程において、本実施形態の銅合金板材の中伸び、端伸びなどの程度を表す急峻度は1.0%以下であることが好ましい。このような急峻度を有する銅合金板材の形状は、良好と言える。   In the second cold working step, it is preferable that the steepness indicating the degree of middle elongation, end elongation, and the like of the copper alloy sheet according to the present embodiment is 1.0% or less. It can be said that the shape of the copper alloy sheet having such a steepness is good.

最後に、銅合金板材の調質を目的として、調質焼鈍を行う。調質焼鈍工程における処理温度は200〜450℃である。好ましくは、250〜350℃である。処理温度が200℃未満であると、伸び、曲げ加工性およびばね限界値の回復が不十分であり、また強度が不足する。処理温度が450℃を超えると、強度低下をもたらす。処理時間は特に制限されないが、例えば、30分〜5時間である。   Finally, temper annealing is performed for the purpose of tempering the copper alloy sheet. The processing temperature in a temper annealing process is 200-450 degreeC. Preferably, it is 250-350 degreeC. When the treatment temperature is less than 200 ° C., the elongation, bending workability, and recovery of the spring limit value are insufficient, and the strength is insufficient. When the processing temperature exceeds 450 ° C., the strength is reduced. The treatment time is not particularly limited, but is, for example, 30 minutes to 5 hours.

以下、本発明の実施例を具体的に説明するが、本発明はこれら実施例に限定されるものではない。   Examples of the present invention will be specifically described below, but the present invention is not limited to these examples.

表1に記載した組成を有する銅合金を溶解して、これを鋳造して銅合金鋳塊を得た。その後、均質化処理、熱間加工、面削を施した。次に、加工率が95%以上になるよう冷間加工を行い、溶体化熱処理を875℃で6秒行い、時効処理を475℃で2時間行った。次に、表2に記載した条件(ワークロール径、ワークロールの表面粗さ、総加工率、1パスあたりの最大加工率、圧延速度)で冷間加工を行った。そして、表2に記載した条件(処理時間、処理温度)で調質焼鈍を行い、厚さ0.03mmの銅合金板材を得た。   A copper alloy having the composition shown in Table 1 was melted and cast to obtain a copper alloy ingot. Thereafter, homogenization treatment, hot working, and chamfering were performed. Next, cold working was performed so that the processing rate was 95% or more, solution heat treatment was performed at 875 ° C. for 6 seconds, and aging treatment was performed at 475 ° C. for 2 hours. Next, cold working was performed under the conditions described in Table 2 (work roll diameter, work roll surface roughness, total working rate, maximum working rate per pass, rolling speed). And temper annealing was performed on the conditions (processing time, processing temperature) described in Table 2, and the copper alloy board | plate material of thickness 0.03mm was obtained.

なお、本実施例では銅合金板材の板厚が0.03mm(=30μm)の例を示したが、本発明は加工条件や熱処理条件を本願の開示の範囲内で調整することによって、5〜80μmの板厚で実施できることを確認した。   In addition, although the board | plate thickness of the copper alloy board | plate material showed the example of 0.03 mm (= 30 micrometers) in the present Example, this invention is 5-5 by adjusting a process condition and heat processing conditions within the range of an indication of this application. It was confirmed that it can be carried out with a plate thickness of 80 μm.

(残留応力)
銅合金板材の圧延方向(RD)に垂直な断面及び板幅方向(TD)に垂直な断面における板厚方向の残留応力はそれぞれ、以下の方法で測定した。まず、板幅方向(TD)に垂直な断面の残留応力分布は、圧延方向(RD)を「長手方向」として、銅合金板から幅20mm×長さ100mmの大きさの試験板を切り出す。試験片の片面の表層をエッチング液を用いて徐々に除去しながら、各深さにおける残部試験片の長手方向(x)及び幅方向(y)の曲率φx、φyを測定する。これを板厚が半分になるまで繰り返し実施する。曲率は試験片の反りを測定することで求める。試験片の反りを円周の一部と考え、この円に相当する半径の逆数を曲率とする。曲率は弦の長さと高さを測定すれば数学的に容易に求められる。その後、エッチング深さaと曲率の関係を図にプロットし、以下の式によってエッチング深さにおける圧延方向(x)の残留応力の最大値σxmax(a)及び最小値σxmin(a)を測定する。また、圧延方向(RD)に垂直な断面の残留応力分布についても、板幅方向(TD)を「長手方向」とする試験片を用いて、同様に測定を行う。本方法はTreuting−Read法と呼ばれるよく知られた方法であり、例えば下記の参考文献に記載されている。この方法に基づいて、銅合金板材の板幅方向に垂直な断面の板厚方向の残留応力分布、および銅合金板材の圧延方向に垂直な断面の板厚方向の残留応力分布における、それぞれの断面の残留応力の最大値と最小値の差の絶対値を算出した。その結果を、表2に示す。
参考文献:R.G.Treuting、W.F.Read:J.App.Physics、22 (1951)130.
(Residual stress)
The residual stress in the plate thickness direction in the cross section perpendicular to the rolling direction (RD) and the cross section perpendicular to the plate width direction (TD) of the copper alloy sheet was measured by the following methods. First, the residual stress distribution in a cross section perpendicular to the plate width direction (TD) is obtained by cutting a test plate having a width of 20 mm × length of 100 mm from a copper alloy plate with the rolling direction (RD) as the “longitudinal direction”. While gradually removing the surface layer on one side of the test piece using an etching solution, the curvatures φ x and φ y in the longitudinal direction (x) and the width direction (y) of the remaining test piece at each depth are measured. This is repeated until the plate thickness is halved. The curvature is obtained by measuring the warpage of the specimen. The curvature of the test piece is considered as a part of the circumference, and the reciprocal of the radius corresponding to this circle is the curvature. The curvature can be easily obtained mathematically by measuring the length and height of the strings. Thereafter, the relationship between the etching depth a and the curvature is plotted in the figure, and the maximum value σ xmax (a) and the minimum value σ xmin (a) of the residual stress in the rolling direction (x) at the etching depth are measured by the following equations. To do. Further, the residual stress distribution in the cross section perpendicular to the rolling direction (RD) is also measured in the same manner using a test piece having the plate width direction (TD) as the “longitudinal direction”. This method is a well-known method called the “Truting-Read method”, and is described in, for example, the following references. Based on this method, the respective cross sections in the residual stress distribution in the plate thickness direction of the cross section perpendicular to the plate width direction of the copper alloy plate material and the residual stress distribution in the plate thickness direction of the cross section perpendicular to the rolling direction of the copper alloy plate material. The absolute value of the difference between the maximum and minimum values of residual stress was calculated. The results are shown in Table 2.
Reference: R.D. G. Truting, W.M. F. Read: J.M. App. Physics, 22 (1951) 130.

Figure 2015034336

σx:長手方向における残留応力、E:ヤング率、ν:ポアソン比、h:当比板厚、a:エッチング深さ、φx:長手方向における曲率、φy:幅方向における曲率
Figure 2015034336

σ x : residual stress in the longitudinal direction, E: Young's modulus, ν: Poisson's ratio, h: equivalent plate thickness, a: etching depth, φ x : curvature in the longitudinal direction, φ y : curvature in the width direction

(0.2%耐力)
0.2%耐力は、圧延平行方向から切り出したJIS Z 2201−13B号の試験片をJIS Z 2241に準じて3本測定しその平均値を示した。0.2%耐力の測定結果を、表2に示す。
(0.2% yield strength)
The 0.2% proof stress was obtained by measuring three test pieces of JIS Z 2201-13B cut out from the rolling parallel direction according to JIS Z 2241 and showing the average value. Table 2 shows the measurement results of 0.2% proof stress.

(導電率)
導電率は、20℃(±0.5℃)に保たれた恒温漕中で四端子法により比抵抗を計測して導電率を算出した。なお、端子間距離は100mmとした。導電率の測定結果を、表2に示す。
(conductivity)
The electrical conductivity was calculated by measuring the specific resistance by a four-terminal method in a constant temperature bath maintained at 20 ° C. (± 0.5 ° C.). In addition, the distance between terminals was 100 mm. Table 2 shows the measurement results of conductivity.

(結晶粒径)
結晶粒径は、JIS H 0501(切断法)に基づいて測定した。すべての実施例において、結晶粒径は0.1μm超50μm以下の範囲にあることを確認した。
(Crystal grain size)
The crystal grain size was measured based on JIS H 0501 (cutting method). In all Examples, it was confirmed that the crystal grain size was in the range of more than 0.1 μm and 50 μm or less.

Figure 2015034336
Figure 2015034336

Figure 2015034336
Figure 2015034336

表2に示すように、実施例1〜20では、0.2%耐力がいずれも900MPa以上であり、導電率が30%IACS以上であり、かつ、板幅方向に垂直な断面および圧延方向の垂直な断面の板厚方向の残留応力分布において、残留応力の最大値と最小値の差の絶対値がそれぞれの断面で80MPa以下である。すなわち、実施例1〜20の銅合金板材は、高強度で、かつ加工性に優れていることが分かった。一方、比較例1〜5、12〜19、32〜39の銅合金板材は、0.2%耐力が低いため、強度に劣ることが分かった。また、比較例6〜11、20〜31の銅合金板材は、何れか或いは両方の方向における残留応力の最大値と最小値の差が大きいため、加工性に劣ることが分かった。比較例40〜44の銅合金板材は、0.2%耐力が低く、かつ、残留応力の最大値と最小値の差が大きいため、強度、加工性ともに劣っていることが分かった。   As shown in Table 2, in Examples 1 to 20, the 0.2% proof stress is 900 MPa or more, the conductivity is 30% IACS or more, and the cross section perpendicular to the sheet width direction and the rolling direction In the residual stress distribution in the plate thickness direction of the vertical cross section, the absolute value of the difference between the maximum value and the minimum value of the residual stress is 80 MPa or less in each cross section. That is, it turned out that the copper alloy board | plate material of Examples 1-20 is excellent in workability with high intensity | strength. On the other hand, it was found that the copper alloy sheet materials of Comparative Examples 1 to 5, 12 to 19, and 32 to 39 were inferior in strength because the 0.2% proof stress was low. Moreover, it turned out that the copper alloy board | plate material of Comparative Examples 6-11, 20-31 is inferior to workability, since the difference of the maximum value and the minimum value of the residual stress in any or both directions is large. It was found that the copper alloy sheet materials of Comparative Examples 40 to 44 were inferior in strength and workability because the 0.2% proof stress was low and the difference between the maximum value and the minimum value of the residual stress was large.

1 銅合金板材
2、3 残留応力分布
2a、3a 曲線
2b、3b 軸
1 Copper alloy sheet 2, 3 Residual stress distribution 2a, 3a Curve 2b, 3b Axis

Claims (5)

Ni:1.5〜7.0質量%、Si:0.1〜1.9質量%を含有し、
Mg:0.00〜0.20質量%、Sn:0.00〜1.50質量%、Zn:0.0〜1.5質量%、Cr:0.000〜0.500質量%、Mn:0.00〜0.50質量%、Ag:0.000〜0.300質量%、Co:0.00〜2.00質量%から選ばれる元素を0.000〜2.000質量%含有し、残部Cuおよび不可避不純物からなる銅合金板材であって、
0.2%耐力が900MPa以上であり、
前記銅合金板材の板幅方向に垂直な断面の板厚方向の残留応力分布、および前記銅合金板材の圧延方向に垂直な断面の板厚方向の残留応力分布において、それぞれの断面の残留応力の最大値と最小値の差の絶対値が80MPa以下であることを特徴とする銅合金板材。
Ni: 1.5 to 7.0% by mass, Si: 0.1 to 1.9% by mass,
Mg: 0.00-0.20 mass%, Sn: 0.00-1.50 mass%, Zn: 0.0-1.5 mass%, Cr: 0.000-0.500 mass%, Mn: 0.000 to 2.000 mass%, Ag: 0.000 to 0.300 mass%, Co: 0.000 to 2.00 mass% of an element selected from 0.000 to 2.00 mass%, A copper alloy sheet made of the remaining Cu and inevitable impurities,
0.2% proof stress is 900 MPa or more,
In the residual stress distribution in the plate thickness direction of the cross section perpendicular to the plate width direction of the copper alloy plate material and the residual stress distribution in the plate thickness direction of the cross section perpendicular to the rolling direction of the copper alloy plate material, the residual stress of each cross section A copper alloy sheet characterized in that the absolute value of the difference between the maximum value and the minimum value is 80 MPa or less.
さらに、Mg:0.01〜0.20質量%、Sn:0.05〜1.50質量%、Zn:0.2〜1.5質量%、Cr:0.005〜0.500質量%、Mn:0.01〜0.50質量%、Ag:0.005〜0.300質量%、Co:0.05〜2.00質量%のうち、少なくとも1種を総量で0.005〜2.000質量%含有することを特徴とする、請求項1に記載の銅合金板材。   Furthermore, Mg: 0.01-0.20 mass%, Sn: 0.05-1.50 mass%, Zn: 0.2-1.5 mass%, Cr: 0.005-0.500 mass%, Mn: 0.01 to 0.50 mass%, Ag: 0.005 to 0.300 mass%, Co: 0.05 to 2.00 mass%, and at least one kind in a total amount of 0.005 to 2. It contains 000 mass%, The copper alloy board | plate material of Claim 1 characterized by the above-mentioned. 平均結晶粒径が0.1μm超50μm以下であること特徴とする、請求項1又は2に記載の銅合金板材。   The copper alloy sheet according to claim 1 or 2, wherein the average crystal grain size is more than 0.1 µm and not more than 50 µm. 厚さが5μm以上80μm以下であることを特徴とする、請求項1から3のいずれか1項に記載の銅合金板材。   The copper alloy sheet according to any one of claims 1 to 3, wherein the thickness is 5 µm or more and 80 µm or less. 請求項1から4のいずれか1項に記載の銅合金板材の製造方法であって、
鋳造、均質化熱処理、熱間加工、面削、第1の冷間加工、溶体化熱処理、時効処理、第2の冷間加工および調質焼鈍から構成される処理をこの順に施し、
前記時効処理における処理温度が400〜700℃、処理時間が5秒〜20時間であり、
前記第2の冷間加工におけるワークロール径が150mm以下、ワークロールの表面粗さRaが0.5μm以下、圧延速度が300m/min以下、1パスあたりの加工率が3〜20%、かつ、総加工率が20〜90%であり、
前記調質焼鈍における処理温度が200〜450℃、処理時間が30分〜5時間であることを特徴とする銅合金板材の製造方法。
It is a manufacturing method of the copper alloy sheet material according to any one of claims 1 to 4,
Apply in this order the process consisting of casting, homogenization heat treatment, hot working, face cutting, first cold work, solution heat treatment, aging treatment, second cold work and temper annealing,
The treatment temperature in the aging treatment is 400 to 700 ° C., the treatment time is 5 seconds to 20 hours,
The work roll diameter in the second cold working is 150 mm or less, the surface roughness Ra of the work roll is 0.5 μm or less, the rolling speed is 300 m / min or less, the working rate per pass is 3 to 20%, and The total processing rate is 20-90%,
A method for producing a copper alloy sheet material, wherein a treatment temperature in the temper annealing is 200 to 450 ° C. and a treatment time is 30 minutes to 5 hours.
JP2014108910A 2013-07-11 2014-05-27 Copper alloy sheet and method for producing the same Active JP6696720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014108910A JP6696720B2 (en) 2013-07-11 2014-05-27 Copper alloy sheet and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013145929 2013-07-11
JP2013145929 2013-07-11
JP2014108910A JP6696720B2 (en) 2013-07-11 2014-05-27 Copper alloy sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015034336A true JP2015034336A (en) 2015-02-19
JP6696720B2 JP6696720B2 (en) 2020-05-20

Family

ID=52543074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014108910A Active JP6696720B2 (en) 2013-07-11 2014-05-27 Copper alloy sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP6696720B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016180130A (en) * 2015-03-23 2016-10-13 Dowaメタルテック株式会社 Cu-Ni-Si-BASED COPPER ALLOY SHEET MATERIAL AND METHOD FOR PRODUCING THE SAME, AND LEAD FRAME
JP2016180131A (en) * 2015-03-23 2016-10-13 Dowaメタルテック株式会社 Cu-Ni-Si-BASED COPPER ALLOY SHEET MATERIAL AND METHOD FOR PRODUCING THE SAME, AND LEAD FRAME
JP2016199792A (en) * 2015-04-10 2016-12-01 古河電気工業株式会社 Copper alloy wire material for spring, manufacturing method of the copper alloy wire material for spring, spring and manufacturing method of the spring
WO2017170113A1 (en) * 2016-03-30 2017-10-05 株式会社神戸製鋼所 Copper or copper alloy strip for vapor chamber
JP2018062694A (en) * 2016-10-14 2018-04-19 Dowaメタルテック株式会社 Cu-Ni-Co-Si-BASED COPPER ALLOY SHEET MATERIAL, PRODUCTION METHOD, AND CONDUCTIVE MEMBER
JP2019007031A (en) * 2017-06-20 2019-01-17 Jx金属株式会社 Cu-Ni-Si-BASED COPPER ALLOY
JP2019167613A (en) * 2018-03-26 2019-10-03 Jx金属株式会社 Cu-Ni-Si BASED COPPER ALLOY STRIP EXCELLENT IN DIE WEAR RESISTANCE AND PRESS PUNCHABILITY
KR20190112660A (en) * 2018-03-26 2019-10-07 제이엑스금속주식회사 Cu-Ni-Si-based copper alloy strip

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07227620A (en) * 1994-02-18 1995-08-29 Kobe Steel Ltd Strip material for electric and electronic parts for half etching and their production
JP2005048262A (en) * 2003-07-31 2005-02-24 Nikko Metal Manufacturing Co Ltd Cu-Ni-Si BASED ALLOY HAVING EXCELLENT FATIGUE PROPERTY
JP2006009137A (en) * 2004-05-27 2006-01-12 Furukawa Electric Co Ltd:The Copper alloy
JP2009084592A (en) * 2007-09-27 2009-04-23 Nikko Kinzoku Kk Titanium copper for precision press working, and its manufacturing method
JP2010007174A (en) * 2008-05-29 2010-01-14 Nippon Mining & Metals Co Ltd Cu-Ni-Si-BASED ALLOY PLATE OR BAR FOR ELECTRONIC MATERIAL
JP2010222618A (en) * 2009-03-23 2010-10-07 Nippon Mining & Metals Co Ltd Cu-Ni-Si BASED COPPER ALLOY ROLLED SHEET AND ELECTRIC PART USING THE SAME
JP2011038126A (en) * 2009-08-06 2011-02-24 Jx Nippon Mining & Metals Corp Cu-Ni-Si-BASED ALLOY PLATE OR BAR FOR ELECTRONIC MATERIAL
JP2011084764A (en) * 2009-10-13 2011-04-28 Dowa Metaltech Kk High strength copper alloy plate material and method for producing the same
JP2012102398A (en) * 2010-10-15 2012-05-31 Dowa Metaltech Kk Copper alloy sheet material and method of manufacturing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07227620A (en) * 1994-02-18 1995-08-29 Kobe Steel Ltd Strip material for electric and electronic parts for half etching and their production
JP2005048262A (en) * 2003-07-31 2005-02-24 Nikko Metal Manufacturing Co Ltd Cu-Ni-Si BASED ALLOY HAVING EXCELLENT FATIGUE PROPERTY
JP2006009137A (en) * 2004-05-27 2006-01-12 Furukawa Electric Co Ltd:The Copper alloy
JP2009084592A (en) * 2007-09-27 2009-04-23 Nikko Kinzoku Kk Titanium copper for precision press working, and its manufacturing method
JP2010007174A (en) * 2008-05-29 2010-01-14 Nippon Mining & Metals Co Ltd Cu-Ni-Si-BASED ALLOY PLATE OR BAR FOR ELECTRONIC MATERIAL
JP2010222618A (en) * 2009-03-23 2010-10-07 Nippon Mining & Metals Co Ltd Cu-Ni-Si BASED COPPER ALLOY ROLLED SHEET AND ELECTRIC PART USING THE SAME
JP2011038126A (en) * 2009-08-06 2011-02-24 Jx Nippon Mining & Metals Corp Cu-Ni-Si-BASED ALLOY PLATE OR BAR FOR ELECTRONIC MATERIAL
JP2011084764A (en) * 2009-10-13 2011-04-28 Dowa Metaltech Kk High strength copper alloy plate material and method for producing the same
JP2012102398A (en) * 2010-10-15 2012-05-31 Dowa Metaltech Kk Copper alloy sheet material and method of manufacturing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016180130A (en) * 2015-03-23 2016-10-13 Dowaメタルテック株式会社 Cu-Ni-Si-BASED COPPER ALLOY SHEET MATERIAL AND METHOD FOR PRODUCING THE SAME, AND LEAD FRAME
JP2016180131A (en) * 2015-03-23 2016-10-13 Dowaメタルテック株式会社 Cu-Ni-Si-BASED COPPER ALLOY SHEET MATERIAL AND METHOD FOR PRODUCING THE SAME, AND LEAD FRAME
JP2016199792A (en) * 2015-04-10 2016-12-01 古河電気工業株式会社 Copper alloy wire material for spring, manufacturing method of the copper alloy wire material for spring, spring and manufacturing method of the spring
WO2017170113A1 (en) * 2016-03-30 2017-10-05 株式会社神戸製鋼所 Copper or copper alloy strip for vapor chamber
JP2017180967A (en) * 2016-03-30 2017-10-05 株式会社神戸製鋼所 Copper or copper alloy stripe for vapor chamber
CN112159910A (en) * 2016-03-30 2021-01-01 株式会社神户制钢所 Copper or copper alloy strip for steam chamber
JP2018062694A (en) * 2016-10-14 2018-04-19 Dowaメタルテック株式会社 Cu-Ni-Co-Si-BASED COPPER ALLOY SHEET MATERIAL, PRODUCTION METHOD, AND CONDUCTIVE MEMBER
JP2019007031A (en) * 2017-06-20 2019-01-17 Jx金属株式会社 Cu-Ni-Si-BASED COPPER ALLOY
JP2019167613A (en) * 2018-03-26 2019-10-03 Jx金属株式会社 Cu-Ni-Si BASED COPPER ALLOY STRIP EXCELLENT IN DIE WEAR RESISTANCE AND PRESS PUNCHABILITY
KR20190112660A (en) * 2018-03-26 2019-10-07 제이엑스금속주식회사 Cu-Ni-Si-based copper alloy strip
CN110358946A (en) * 2018-03-26 2019-10-22 捷客斯金属株式会社 Cu-Ni-Si series copper alloy strip
KR102221879B1 (en) 2018-03-26 2021-03-02 제이엑스금속주식회사 Cu-Ni-Si-based copper alloy strip

Also Published As

Publication number Publication date
JP6696720B2 (en) 2020-05-20

Similar Documents

Publication Publication Date Title
JP6696720B2 (en) Copper alloy sheet and method for producing the same
KR101331339B1 (en) Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor
JP5871443B1 (en) Copper alloy sheet and manufacturing method thereof
JP6385382B2 (en) Copper alloy sheet and method for producing copper alloy sheet
JP5225787B2 (en) Cu-Ni-Si alloy plate or strip for electronic materials
JP5840310B1 (en) Copper alloy sheet, connector, and method for producing copper alloy sheet
WO2011125558A1 (en) Cu-ni-si alloy with excellent bendability
JP6696769B2 (en) Copper alloy plate and connector
WO2012121109A1 (en) Cu-Ni-Si BASED ALLOY AND PROCESS FOR MANUFACTURING SAME
JP2010126783A (en) Copper alloy sheet or strip for electronic material
KR102059917B1 (en) Copper alloy material and method for producing same
TWI448569B (en) Cu-Si-Co based copper alloy for electronic materials and its manufacturing method
KR20120104548A (en) Copper alloy sheet
KR20190018661A (en) Copper alloy sheet and method for manufacturing copper alloy sheet
KR101866129B1 (en) Copper alloy for electronic materials
JP5245813B2 (en) Rolled copper foil
WO2015099098A1 (en) Copper alloy sheet material, connector, and production method for copper alloy sheet material
WO2011152104A1 (en) Cu-co-si-based alloy sheet, and process for production thereof
TWI621721B (en) Copper alloy sheet, connector, and method for manufacturing copper alloy sheet
JP2011246740A (en) Cu-Co-Si BASED ALLOY SHEET OR STRIP FOR ELECTRONIC MATERIAL
JP2016176106A (en) ELECTRONIC COMPONENT Cu-Ni-Co-Si ALLOY
JP6246173B2 (en) Cu-Co-Ni-Si alloy for electronic parts
KR102278796B1 (en) Copper alloy body with improved dimensional accuracy after press working
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP6246174B2 (en) Cu-Co-Ni-Si alloy for electronic parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181105

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20181112

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200423

R151 Written notification of patent or utility model registration

Ref document number: 6696720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350