JP2019007031A - Cu-Ni-Si-BASED COPPER ALLOY - Google Patents

Cu-Ni-Si-BASED COPPER ALLOY Download PDF

Info

Publication number
JP2019007031A
JP2019007031A JP2017120774A JP2017120774A JP2019007031A JP 2019007031 A JP2019007031 A JP 2019007031A JP 2017120774 A JP2017120774 A JP 2017120774A JP 2017120774 A JP2017120774 A JP 2017120774A JP 2019007031 A JP2019007031 A JP 2019007031A
Authority
JP
Japan
Prior art keywords
rolling
strain relief
strength
copper alloy
relief annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017120774A
Other languages
Japanese (ja)
Other versions
JP6619389B2 (en
Inventor
寛之 北川
Hiroyuki Kitagawa
寛之 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2017120774A priority Critical patent/JP6619389B2/en
Publication of JP2019007031A publication Critical patent/JP2019007031A/en
Application granted granted Critical
Publication of JP6619389B2 publication Critical patent/JP6619389B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conductive Materials (AREA)

Abstract

To provide a Cu-Ni-Si-based copper alloy having suppressed generation of deformation, while securing Young modulus and flexure processability.SOLUTION: There is provided a Cu-Ni-Si-based copper alloy containing, by mass%, at least one or more kind selected from Ni and Co of 3.0 to 5.0% as total and Si:0.6 to 1.1%, and the balance Cu with inevitable impurities, and having 0.2% bearing force in a rolling parallel direction of 1000 MPa or more, Young modulus in a rolling right angle direction of 115 GPa or more, and MBR/t, which represents flexure processability Badway in the rolling right angle direction at sheet thickness t (mm) with sheet width of 0.2 mm, of 2.5 or less.SELECTED DRAWING: Figure 1

Description

本発明は、例えばコネクタ、端子、リレ−、スイッチ等の導電性ばね材に好適なCu−Ni−Si系銅合金に関する。   The present invention relates to a Cu—Ni—Si based copper alloy suitable for conductive spring materials such as connectors, terminals, relays, switches and the like.

近年、電気・電子部品の小型化が進み、これら部品に使用される銅合金には高い強度、導電率及び曲げ加工性が要求されている。この要求に応じ、従来のりん青銅や黄銅といった固溶強化型銅合金に替わり、高い強度及び導電率を有するコルソン合金等の析出強化型銅合金の需要が増加している。コルソン合金は、Cuマトリックス中にNi−Si、Co−Si、Ni−Co−Si等の金属間化合物を析出させた合金であり、高強度、高い導電率、良好な曲げ加工性を兼ね備えている。   In recent years, miniaturization of electrical / electronic components has progressed, and copper alloys used for these components are required to have high strength, electrical conductivity, and bending workability. In response to this demand, demand for precipitation strengthened copper alloys such as Corson alloys having high strength and conductivity is increasing instead of conventional solid solution strengthened copper alloys such as phosphor bronze and brass. A Corson alloy is an alloy in which an intermetallic compound such as Ni-Si, Co-Si, Ni-Co-Si is precipitated in a Cu matrix, and has high strength, high electrical conductivity, and good bending workability. .

例えば、コネクタはメス端子及びオス端子から構成され、両端子を嵌合することにより電気的接続が得られる。電気接点では、メス端子がそのばね力によりオス端子を保持し、所望の接触力を得ている。ところが、メス端子の強度が低いと、オス端子を挿入した際にメス端子に永久変形(へたり)が発生する。へたりが生じると、電気接点部での接触力が低下し、電気抵抗が増大する。   For example, the connector is composed of a female terminal and a male terminal, and electrical connection is obtained by fitting both terminals. In the electrical contact, the female terminal holds the male terminal by its spring force and obtains a desired contact force. However, if the strength of the female terminal is low, permanent deformation (sagging) occurs in the female terminal when the male terminal is inserted. When the sagging occurs, the contact force at the electrical contact portion decreases and the electrical resistance increases.

へたりは、0.2%耐力が低いほど、又ヤング率が高いほど生じやすい。0.2%耐力を500MPa以上としばね限界値を向上させたCu−Ni−Si系銅合金が開発されている(特許文献1)。又、0.2%耐力を500MPa以上とし、圧延方向の曲げたわみ係数(ヤング率)を105GPa以下とすることで、コネクタのばね変位を大きくしたCu−Ni−Si系銅合金が開発されている(特許文献2)。又、圧延平行方向の耐力が1000MPa以上である、オートフォーカスカメラモジュール用のCu−Ni−Si系銅合金も開発されている(特許文献3)   Sag is more likely to occur as the 0.2% proof stress is lower and the Young's modulus is higher. A Cu—Ni—Si based copper alloy having a 0.2% proof stress of 500 MPa or more and an improved spring limit value has been developed (Patent Document 1). Further, Cu—Ni—Si based copper alloys have been developed in which the spring displacement of the connector is increased by setting the 0.2% proof stress to 500 MPa or more and the bending deflection coefficient (Young's modulus) in the rolling direction to 105 GPa or less. (Patent Document 2). Further, a Cu—Ni—Si based copper alloy for an autofocus camera module having a proof stress in the rolling parallel direction of 1000 MPa or more has been developed (Patent Document 3).

特開2004−131829号公報JP 2004-131829 A 国際公開第WO2011/068134号International Publication No. WO2011 / 068134 特開2017−43789号公報JP 2017-43789 A

しかしながら、特許文献2記載の技術の場合、繰り返し応力を与えた場合のへたり特性が十分とはいえなかった。そして、銅合金材料のへたり特性を向上させるためには、耐力を高くし、ヤング率を低下させることが有効である。ところが、ヤング率を低下させると、銅合金材料を端子にしたときの電気接点部での接触力が低下する。また、耐力を向上させると曲げ加工性が低下する。
特に特許文献3記載の技術の場合、時効処理に続く仕上冷間圧延後に、低温焼鈍を行って銅合金を製造するが、仕上冷間圧延後に低温焼鈍しながら強度を向上させるためには、仕上冷間圧延を強圧延で実施する必要があるため、曲げ加工性が低下するおそれがある。
However, in the case of the technique described in Patent Document 2, the sag characteristics when repeated stress is applied are not sufficient. In order to improve the sag characteristics of the copper alloy material, it is effective to increase the yield strength and decrease the Young's modulus. However, when the Young's modulus is lowered, the contact force at the electrical contact portion when the copper alloy material is used as a terminal is lowered. Further, when the proof stress is improved, the bending workability is lowered.
In particular, in the case of the technology described in Patent Document 3, a copper alloy is manufactured by performing low temperature annealing after finish cold rolling following aging treatment. To improve strength while performing low temperature annealing after finish cold rolling, Since it is necessary to perform cold rolling by strong rolling, bending workability may be reduced.

本発明は上記の課題を解決するためになされたものであり、強度及びヤング率を向上させ、曲げ加工性を確保しつつ、へたり(残留歪)の発生を抑制したCu−Ni−Si系銅合金の提供を目的とする。   The present invention has been made to solve the above-mentioned problems, and is a Cu-Ni-Si system that improves strength and Young's modulus, ensures bending workability, and suppresses occurrence of sag (residual strain). The purpose is to provide a copper alloy.

本発明者は、Cu−Ni−Si系銅合金のへたり特性を向上させるに当たり、接圧の低下を抑制する観点から、ヤング率を低下させずに耐力を向上させることを検討した。又、耐力を向上させる手法としては加工度の向上が挙げられるが、強度の上昇にともない曲げ加工性が低下する。
そこで、曲げ加工性を確保しつつ耐力を向上させる手法として、強圧延以外の方法を検討し、歪取焼鈍における低温焼鈍硬化に着目した。低温焼鈍硬化とは時効後の冷間圧延によって組織中に圧延ひずみを導入すると、その後の歪取焼鈍で固溶元素がひずみに固着し、転位を妨げることで強化される現象である。この低温焼鈍硬化は材料の強度を高め、かつ伸びを低下させる。
In order to improve the sag characteristics of the Cu—Ni—Si based copper alloy, the present inventor studied to improve the yield strength without reducing the Young's modulus from the viewpoint of suppressing the decrease in contact pressure. In addition, as a method for improving the proof stress, an improvement in the workability can be mentioned, but the bending workability decreases as the strength increases.
Therefore, as a method for improving the yield strength while ensuring the bending workability, a method other than the strong rolling was examined, and attention was paid to low-temperature annealing hardening in strain relief annealing. Low-temperature annealing hardening is a phenomenon in which when rolling strain is introduced into a structure by cold rolling after aging, solid solution elements are fixed to the strain by subsequent strain relief annealing and are strengthened by preventing dislocation. This low-temperature annealing hardening increases the strength of the material and reduces the elongation.

低温焼鈍硬化は歪取焼鈍直前の時効後冷間圧延の加工度と、その冷間圧延時の固溶元素の析出の度合によって硬化の程度が変化する。上述のように時効後冷間圧延の加工度を上昇させると曲げ加工性が悪化するため、歪取焼鈍直前の固溶元素の析出の度合に着目し、歪取焼鈍前に低温で熱処理を施し、製造時の加工度と析出の度合(導電率EC)との関係を規定することで、0.2%耐力を1000MPa以上に向上させることに成功した。   In the low-temperature annealing hardening, the degree of hardening varies depending on the degree of cold rolling after aging just before strain relief annealing and the degree of precipitation of solid solution elements during the cold rolling. As mentioned above, increasing the workability of cold rolling after aging deteriorates the bending workability, so pay attention to the degree of solid solution element precipitation just before strain relief annealing, and perform heat treatment at a low temperature before strain relief annealing. By defining the relationship between the degree of processing at the time of manufacture and the degree of precipitation (conductivity EC), we succeeded in improving the 0.2% yield strength to 1000 MPa or more.

上記の目的を達成するために、本発明のCu−Ni−Si系銅合金は、質量%で、NiとCoの群から選ばれる少なくとも1種以上を総量で3.0〜5.0%、Si:0.6〜1.1%含有し、残部がCu及び不可避不純物からなり、圧延平行方向の0.2%耐力が1000MPa以上、かつ圧延直角方向のヤング率が115GPa以上であり、板幅0.2mmで板厚t(mm)のときの圧延直角方向の曲げ加工性Badwayを表すMBR/tが2.5以下である。   In order to achieve the above object, the Cu—Ni—Si based copper alloy of the present invention is, in mass%, at least one selected from the group of Ni and Co in a total amount of 3.0 to 5.0%, Si: 0.6 to 1.1% contained, balance is Cu and inevitable impurities, 0.2% proof stress in the rolling parallel direction is 1000 MPa or more, Young's modulus in the direction perpendicular to the rolling is 115 GPa or more, MBR / t representing the bending workability Badway in the direction perpendicular to the rolling direction at 0.2 mm and a sheet thickness t (mm) is 2.5 or less.

本発明のCu−Ni−Si系銅合金は、更にMg、Mn、Sn、Zn及びCrの群から選ばれる少なくとも1種以上を総量で0.005〜1.0質量%含有することが好ましい。
本発明のCu−Ni−Si系銅合金は、更にP、B、Ti、Zr、Al、Fe及びAgの群から選ばれる少なくとも1種以上を総量で0.005〜1.0質量%含有することが好ましい。
The Cu—Ni—Si based copper alloy of the present invention preferably further contains at least one selected from the group consisting of Mg, Mn, Sn, Zn and Cr in a total amount of 0.005 to 1.0 mass%.
The Cu—Ni—Si based copper alloy of the present invention further contains at least one selected from the group of P, B, Ti, Zr, Al, Fe and Ag in a total amount of 0.005 to 1.0 mass%. It is preferable.

本発明によれば、強度及びヤング率を向上させ、曲げ加工性を確保しつつ、へたり(残留歪)の発生を抑制したCu−Ni−Si系銅合金が得られる。   According to the present invention, it is possible to obtain a Cu—Ni—Si based copper alloy that improves the strength and Young's modulus and secures bending workability while suppressing the occurrence of sag (residual strain).

歪取焼鈍前の導電率と、時効後冷間圧延の加工率REとの相関を示す図である。It is a figure which shows the correlation with the electrical conductivity before strain relief annealing, and the processing rate RE of cold rolling after aging. へたり特性の測定方法を示す図である。It is a figure which shows the measuring method of a drooping characteristic.

以下、本発明の実施形態に係るCu−Ni−Si系銅合金について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。   Hereinafter, the Cu—Ni—Si based copper alloy according to the embodiment of the present invention will be described. In the present invention, “%” means “% by mass” unless otherwise specified.

(組成)
[Ni、Co及びSi]
銅合金中のNiとCoの群から選ばれる少なくとも1種以上を総量で3.0〜5.0%、Si:0.6〜1.1%含有する。Ni、Co及びSiは、適当な熱処理を施すことにより金属間化合物を形成し,導電率を劣化させずに強度を向上させる。
Ni、Co及びSiの含有量が上記範囲未満であると、強度の向上効果が得られず、上記範囲を超えると導電性が低下すると共に熱間加工性が低下する。
また、上述の低温焼鈍硬化を発現するためには多量の固溶元素が必要であるため、本発明ではNi(Co)およびSiの含有量を多くしている
(composition)
[Ni, Co and Si]
The total amount of at least one selected from the group of Ni and Co in the copper alloy is 3.0 to 5.0%, and Si: 0.6 to 1.1%. Ni, Co, and Si form an intermetallic compound by performing an appropriate heat treatment, and improve strength without deteriorating conductivity.
When the content of Ni, Co and Si is less than the above range, the effect of improving the strength cannot be obtained, and when the content exceeds the above range, the electrical conductivity is lowered and the hot workability is lowered.
Moreover, since a large amount of solid solution elements are required to develop the above-described low-temperature annealing hardening, the contents of Ni (Co) and Si are increased in the present invention.

[他の添加元素]
合金中に、更にMg、Mn、Sn、Zn及びCrの群から選ばれる少なくとも1種以上を総量で0.005〜1.0質量%含有してもよい。
Mgは強度と耐応力緩和特性を向上させる。Mnは強度と熱間加工性を向上させる。Snは強度を向上させる。Znは半田接合部の耐熱性を向上させる。Crは、Niと同様にSiと化合物を形成するため、析出硬化により導電率を劣化させずに強度を向上させる。
又、合金中に、更にP、B、Ti、Zr、Al、Fe及びAgの群から選ばれる少なくとも1種以上を総量で0.005〜1.0質量%含有してもよい。これら元素を含有すると、導電率、強度、応力緩和特性、めっき性等の製品特性が改善される。
なお、上記した各元素の総量が上記範囲未満であると上記した効果が得られず、上記範囲を超えると導電率の低下を招く場合がある。
[Other additive elements]
The alloy may further contain 0.005 to 1.0% by mass in total of at least one selected from the group consisting of Mg, Mn, Sn, Zn and Cr.
Mg improves strength and stress relaxation resistance. Mn improves strength and hot workability. Sn improves the strength. Zn improves the heat resistance of the solder joint. Since Cr forms a compound with Si like Ni, it improves the strength without deteriorating conductivity by precipitation hardening.
Further, the alloy may further contain at least one selected from the group consisting of P, B, Ti, Zr, Al, Fe and Ag in a total amount of 0.005 to 1.0% by mass. When these elements are contained, product characteristics such as conductivity, strength, stress relaxation characteristics, and plating properties are improved.
In addition, when the total amount of each element described above is less than the above range, the above effect cannot be obtained, and when it exceeds the above range, the conductivity may be lowered.

[0.2%耐力]
Cu−Ni−Si系銅合金の圧延平行方向及び圧延直角方向の0.2%耐力YSが1000MPa以上である。YSが1000MPa以上であると、へたり特性、特に繰り返し応力を与えた場合のへたり特性が向上する。YSの上限は、例えば1300MPaである。
なお、YSは、JIS−Z2241に従い引張試験して求める。
[0.2% yield strength]
The 0.2% proof stress YS of the Cu—Ni—Si based copper alloy in the rolling parallel direction and the direction perpendicular to the rolling is 1000 MPa or more. When YS is 1000 MPa or more, the sag characteristics, particularly the sag characteristics when repeated stress is applied, are improved. The upper limit of YS is, for example, 1300 MPa.
YS is obtained by a tensile test according to JIS-Z2241.

[曲げ加工性]
曲げ加工性として、板幅0.2mmのとき、曲げ軸が圧延方向と平行になるようにW曲げ試験を行ったとき(圧延直角方向の曲げ加工性Badway)、割れの発生しない最小曲げ半径(MBR(mm))と板厚(t(mm))との比(MBR/t)が2.5以下である。(MBR/t)が2.5以下であると良好な曲げ性を確保できる。(MBR/t)の下限は制限されないが、例えば1.0である。
(MBR/t)は、JIS−H3130に従って、Badway(圧延直角方向)のW曲げ試験を行い、板厚(t)に対して割れの発生しない最小半径(MBR)を測定する。試験片は幅0.2mm×長さ30mmの短冊状とした。
[ヤング率]
Cu−Ni−Si系銅合金の圧延直角方向のヤング率が115GPa以上である。ヤング率が115GPa以上であると、接圧が向上する。ヤング率の上限は制限されないが、例えば140GPaである。
ヤング率は、日本伸銅協会(JACBA)技術標準「銅及び銅合金板条の片持ち梁による曲げたわみ係数測定方法 JCBA T312:2002」に準じて測定する。但し、上記技術標準の適用範囲の板厚と異なる場合も、上記技術標準を用いる。
試料は、板厚t(mm)、幅w(=10mm)、長さ100mmの短冊形状とし、試料の長手方向を圧延直角方向とする。この試料の片端を固定し、固定端からL(=100t)の位置にP(=0.15N)の荷重を加え、このときのたわみdから、次式を用いヤング率Eを求める。
E=4×P×(L/t)/(w×d)
[Bending workability]
As a bending workability, when a W-bending test is performed so that the bending axis is parallel to the rolling direction when the sheet width is 0.2 mm (bending workability Badway in the direction perpendicular to the rolling direction), the minimum bending radius (where no crack occurs) The ratio (MBR / t) of MBR (mm)) to the plate thickness (t (mm)) is 2.5 or less. Good bendability can be secured when (MBR / t) is 2.5 or less. The lower limit of (MBR / t) is not limited, but is, for example, 1.0.
(MBR / t) is a W-bend test in Badway (the direction perpendicular to rolling) according to JIS-H3130, and measures the minimum radius (MBR) at which no cracks occur with respect to the plate thickness (t). The test piece was strip-shaped with a width of 0.2 mm and a length of 30 mm.
[Young's modulus]
The Young's modulus in the direction perpendicular to the rolling of the Cu—Ni—Si based copper alloy is 115 GPa or more. When the Young's modulus is 115 GPa or more, the contact pressure is improved. The upper limit of the Young's modulus is not limited, but is 140 GPa, for example.
The Young's modulus is measured according to the Japan Copper and Brass Association (JACBA) technical standard “Method of measuring bending deflection coefficient by cantilever of copper and copper alloy strip JCBA T312: 2002”. However, the technical standard is also used when it is different from the thickness of the application range of the technical standard.
The sample has a strip shape with a plate thickness t (mm), a width w (= 10 mm), and a length of 100 mm, and the longitudinal direction of the sample is the direction perpendicular to the rolling. One end of this sample is fixed, a load of P (= 0.15 N) is applied to a position L (= 100 t) from the fixed end, and the Young's modulus E is obtained from the deflection d at this time using the following equation.
E = 4 × P × (L / t) 3 / (w × d)

<製造方法>
本発明のCu−Ni−Si系銅合金は、通常、インゴットを熱間圧延、冷間圧延、溶体化処理、時効処理、低温熱処理、時効後冷間圧延、歪取焼鈍の順で行って製造することができる。溶体化処理前の冷間圧延や再結晶焼鈍は必須ではなく、必要に応じて実施してもよい。
<Manufacturing method>
The Cu—Ni—Si based copper alloy of the present invention is usually produced by performing ingot in the order of hot rolling, cold rolling, solution treatment, aging treatment, low temperature heat treatment, cold rolling after aging, and strain relief annealing. can do. Cold rolling and recrystallization annealing before solution treatment are not essential, and may be performed as necessary.

<時効後冷間圧延>
Cu−Ni−Si系銅合金の強度(0.2%耐力)を向上させるためには、最終焼鈍である歪取焼鈍での強度の向上が重要である。そして、そのためには歪取焼鈍の直前の時効後冷間圧延の加工率をなるべく高くし、歪取焼鈍直前の固溶元素(Ni(Co)およびSi)の量を増やす必要がある。これは、時効後冷間圧延によって組織中に圧延歪を導入すると、その後の歪取焼鈍で、固溶元素がこの歪に固着し、転位障害となって強化される機構(低温焼鈍硬化)を生じさせるためである。
<Cold rolling after aging>
In order to improve the strength (0.2% proof stress) of the Cu—Ni—Si based copper alloy, it is important to improve the strength by strain relief annealing, which is the final annealing. For this purpose, it is necessary to increase the processing rate of post-aging cold rolling immediately before strain relief annealing and increase the amount of solid solution elements (Ni (Co) and Si) immediately before strain relief annealing. This is because when a rolling strain is introduced into the structure by cold rolling after aging, a mechanism (low temperature annealing hardening) in which solid solution elements are fixed to this strain and strengthened as dislocation obstacles by subsequent strain relief annealing. This is to cause it to occur.

上記の低温焼鈍硬化を発現するには、時効後冷間圧延の加工率REを70%以上90%未満とし、時効後冷間圧延の加工率REが式(1):Re≧−0.3074(EC)2+15.06EC−86.549を満たすと好ましい。なお、EC(%IACS)は、歪取焼鈍前(時効後冷間圧延後)の導電率である。
加工率REが70%未満であると、低温焼鈍硬化が不十分となって0.2%耐力が1000MPa未満となる。加工率REが90%以上だと曲げ加工性が低下する。
なお、加工率REは、時効後冷間圧延の前後での合金の板厚の変化の割合(%)である。
In order to develop the low temperature annealing hardening, the post-aging cold rolling processing rate RE is set to 70% or more and less than 90%, and the post-aging cold rolling processing rate RE is represented by the formula (1): Re ≧ −0.3074. It is preferable to satisfy (EC) 2 + 15.06EC-86.549. EC (% IACS) is the electrical conductivity before strain relief annealing (after aging and after cold rolling).
When the processing rate RE is less than 70%, the low-temperature annealing hardening is insufficient and the 0.2% yield strength is less than 1000 MPa. If the processing rate RE is 90% or more, the bending workability deteriorates.
The processing rate RE is the rate (%) of change in the plate thickness of the alloy before and after cold rolling after aging.

又、時効後冷間圧延時の合金の析出強化(固溶)の度合によっても必要とする最低限の加工率は変化するので、固溶の度合に応じて加工率を設定する必要がある。そして、この固溶の度合として、時効後冷間圧延後で歪取焼鈍前の圧延直角方向の導電率EC(%IACS)を指標とし、上記導電率から算出される式(1)で必要な加工率を規定することで、合金の強度を安定して向上させることができる。
ここで、上記導電率EC(%IACS)を30%以上40%未満とすることで、時効処理と歪取焼鈍の条件が共に適切となり、いずれの処理においても強度が上昇し、結果として高い強度が得られる。導電率ECが40%以上になると時効処理で強度は上昇するが、固溶量が少なくなるので、加工率REを高くしても歪取焼鈍で強度が十分に上昇せず、所望の強度が得られない場合がある。一方、導電率ECが30%未満であると歪取焼鈍で強度は上昇するが、時効処理で強度が上昇せず、所望の強度が得られない場合がある。
なお、歪取焼鈍後の最終製品の導電率EC(%IACS)は、30〜40%程度である。
Moreover, since the minimum processing rate required also changes with the degree of precipitation strengthening (solid solution) of the alloy at the time of cold rolling after aging, it is necessary to set a processing rate according to the degree of solid solution. Then, as the degree of this solid solution, the electrical conductivity EC (% IACS) in the direction perpendicular to the rolling direction after cold rolling after aging and before strain relief annealing is used as an index, and it is necessary in the formula (1) calculated from the electrical conductivity. By defining the processing rate, the strength of the alloy can be stably improved.
Here, by setting the above-described conductivity EC (% IACS) to 30% or more and less than 40%, the conditions for aging treatment and strain relief annealing are both appropriate, and the strength increases in both treatments, resulting in high strength. Is obtained. When the electrical conductivity EC is 40% or more, the strength increases by aging treatment, but the amount of solid solution decreases, so even if the processing rate RE is increased, the strength is not sufficiently increased by strain relief annealing, and the desired strength is increased. It may not be obtained. On the other hand, if the electrical conductivity EC is less than 30%, the strength is increased by strain relief annealing, but the strength is not increased by the aging treatment, and a desired strength may not be obtained.
Note that the electrical conductivity EC (% IACS) of the final product after strain relief annealing is about 30 to 40%.

そして、歪取焼鈍前の導電率ECが低いほど時効処理による強度の増加が少ないので、加工率REをより高くして圧延歪をより多数導入しないと、必要な強度の向上が図れない。そこで、式(1):Re≧−0.3074×(EC)+15.06×EC−86.549を満たすように加工率REを設定すると好ましい。この式(1)は、事前実験から表1及び図1に示すようにして求めたものである。 And, as the electrical conductivity EC before strain relief annealing is lower, the increase in strength due to the aging treatment is smaller. Therefore, unless the processing rate RE is increased and a larger number of rolling strains are introduced, the required strength cannot be improved. Therefore, it is preferable to set the processing rate RE so as to satisfy the formula (1): Re ≧ −0.3074 × (EC) 2 + 15.06 × EC−86.549. This equation (1) is obtained from a prior experiment as shown in Table 1 and FIG.

この事前実験は、表1に示す組成のインゴットを熱間圧延、冷間圧延、溶体化処理、時効処理、低温熱処理、時効後冷間圧延、歪取焼鈍の順で行って板厚0.05mmの試料を製造し、その特性を評価した。熱間圧延は1000℃で3時間行い、溶体化処理を800〜1000℃で行った。時効処理は400℃〜550℃で1〜15時間の範囲で実施した。
なお、低温熱処理は550〜650℃の範囲で行い、後述するΔECが2.0%となるように加熱時間を1〜250秒の範囲で調整した。そして、歪取焼鈍前の導電率EC、及び時効後冷間圧延の加工率REを表1に示すように変化させてそれぞれ事前実験1〜7を行った。
In this preliminary experiment, an ingot having a composition shown in Table 1 was subjected to hot rolling, cold rolling, solution treatment, aging treatment, low temperature heat treatment, cold rolling after aging, and strain relief annealing in the order of 0.05 mm thickness. The samples were manufactured and their characteristics were evaluated. Hot rolling was performed at 1000 ° C. for 3 hours, and solution treatment was performed at 800 to 1000 ° C. The aging treatment was performed at 400 ° C. to 550 ° C. for 1 to 15 hours.
The low-temperature heat treatment was performed in the range of 550 to 650 ° C., and the heating time was adjusted in the range of 1 to 250 seconds so that ΔEC described later was 2.0%. Then, prior experiments 1 to 7 were performed by changing the electrical conductivity EC before strain relief annealing and the processing rate RE of cold rolling after aging as shown in Table 1.

Figure 2019007031
Figure 2019007031

次に、表1に示す加工率REと導電率ECとの関係を図1にプロットし、0.2%耐力YSが1000MPa以上である実験1〜3につき、最小二乗法により、各プロットを通る二次曲線を求めて式(1)を得た。
一方、実験6,7は0.2%耐力YSが1000MPa未満となり、式(1)よりもREが低い領域に存在していた。また実験5,8は式(1)上又は式(1) よりもREが高い領域にあるが、実験5は加工率RE が70%未満で、0.2%耐力YSが1000MPa未満となり、実験8は加工率RE が90%以上となり曲げ加工性が悪化した。
なお、実験4は、実験1と加工率RE をほぼ同一(70%)とし、導電率EC を多くしたものであり、0.2%耐力YSが1000MPa以上であった。実験4は、式(1) よりもREが高い領域が本発明の好適な範囲であることを示すためのデータである。
以上の結果から、0.2%耐力および曲げ加工性の目標を達成するために、時効後冷間圧延の加工率REを70%以上90%未満かつ式(1)を満たす条件にする必要がある。
Next, the relationship between the processing rate RE and the electrical conductivity EC shown in Table 1 is plotted in FIG. 1, and each plot is passed by the least square method for Experiments 1 to 3 in which the 0.2% proof stress YS is 1000 MPa or more. A quadratic curve was obtained to obtain equation (1).
On the other hand, in Experiments 6 and 7, the 0.2% yield strength YS was less than 1000 MPa, and the RE was lower than that in the formula (1). Experiments 5 and 8 are on the formula (1) or in a region where the RE is higher than that of the formula (1), but the experiment 5 has a processing rate RE of less than 70% and a 0.2% proof stress YS of less than 1000 MPa. In No. 8, the processing rate RE was 90% or more, and the bending workability deteriorated.
In Experiment 4, the processing rate RE was approximately the same (70%) as in Experiment 1, the conductivity EC was increased, and the 0.2% proof stress YS was 1000 MPa or more. Experiment 4 is data for indicating that a region where the RE is higher than that of the formula (1) is a preferable range of the present invention.
From the above results, in order to achieve the target of 0.2% proof stress and bending workability, it is necessary to set the working rate RE of the cold rolling after aging to a condition satisfying the formula (1) by 70% or more and less than 90%. is there.

加工率REが式(1)を満たさない場合には、時効処理後の強度に対して加工率REが小さ過ぎ、必要な強度の向上が図れない場合がある。   When the processing rate RE does not satisfy the formula (1), the processing rate RE is too small with respect to the strength after the aging treatment, and the required strength may not be improved.

<低温熱処理>
又、歪取焼鈍直前の固溶元素量を増やすため、低温熱処理を行う。低温熱処理は、最初の溶体化温度未満で、かつ時効温度以上の温度で実施する。低温熱処理は、時効処理で析出した固溶元素を、再びマトリクス中に固溶させるので、歪取焼鈍直前の固溶元素量が増加する。
そして、歪取焼鈍直前の固溶元素の量を表す指標として、時効処理後(つまり、低温熱処理前)と、低温熱処理後の導電率の変化量ΔECを用いる。ΔEC=(時効処理後の導電率)−(低温熱処理後の導電率)で表される。ΔEC=2〜4%(IACS)となるように低温熱処理を550〜800℃で1〜250秒で行う。
歪取焼鈍直前の低温熱処理により、時効処理後に比べて固溶元素の量が増えれば、導電率が低下する。
<Low temperature heat treatment>
Further, low-temperature heat treatment is performed in order to increase the amount of dissolved elements immediately before the strain relief annealing. The low-temperature heat treatment is performed at a temperature below the initial solution temperature and above the aging temperature. In the low-temperature heat treatment, the solid solution element precipitated by the aging treatment is again dissolved in the matrix, so that the amount of the solid solution element immediately before the strain relief annealing increases.
Then, as an index representing the amount of the solid solution element immediately before the strain relief annealing, the change amount ΔEC of the conductivity after the aging treatment (that is, before the low temperature heat treatment) and after the low temperature heat treatment is used. ΔEC = (conductivity after aging treatment) − (conductivity after low-temperature heat treatment). Low temperature heat treatment is performed at 550 to 800 ° C. for 1 to 250 seconds so that ΔEC = 2 to 4% (IACS).
If the amount of the solid solution element is increased by the low-temperature heat treatment immediately before the strain relief annealing as compared with that after the aging treatment, the conductivity is lowered.

ΔECが2%IACS未満の場合、低温熱処理後(歪取焼鈍前)の材料の固溶元素の量が少ないことを示す。歪取焼鈍時に固溶元素の量が少ないと、歪取焼鈍で転位に固着する固溶元素の量が減り、低温焼鈍硬化での硬化の度合いが低減し、又は硬化しなくなる。
ΔECが4%IACSを超える場合は、低温熱処理後(歪取焼鈍前)に材料の固溶元素の量が多すぎることを示す。このため、歪取焼鈍時の低温焼鈍硬化での硬化の度合いが増加しすぎると共に、強度に寄与しない固溶元素が増えることで歪取焼鈍後の材料の0.2%耐力が低下する。
When ΔEC is less than 2% IACS, it indicates that the amount of solid solution elements in the material after low-temperature heat treatment (before strain relief annealing) is small. When the amount of the solid solution element is small during the strain relief annealing, the amount of the solid solution element fixed to the dislocation by the strain relief annealing is reduced, and the degree of curing in the low temperature annealing hardening is reduced or is not cured.
When ΔEC exceeds 4% IACS, it indicates that the amount of the solid solution element in the material is too large after the low-temperature heat treatment (before strain relief annealing). For this reason, the degree of hardening in low-temperature annealing hardening at the time of strain relief annealing increases too much, and the 0.2% proof stress of the material after strain relief annealing decreases due to an increase in solid solution elements that do not contribute to strength.

又、歪取焼鈍前の導電率EC(%IACS)を30%以上〜40%未満とする。この理由は既に述べた通りである。   Further, the electrical conductivity EC (% IACS) before strain relief annealing is set to 30% to less than 40%. The reason for this is as already described.

<歪取焼鈍>
その後、歪取焼鈍を200〜500℃で1〜1000秒間行う。歪取焼鈍の温度又は焼鈍時間が上記範囲未満であると、歪取焼鈍が不十分となり、上述の低温焼鈍硬化による強度の向上、及び歪取焼鈍後の加熱による軟化が不十分となり、0.2%耐力を1000MPa以上にすることが困難である。
歪取焼鈍の温度又は焼鈍時間が上記範囲を超えると、歪取焼鈍による上述の低温焼鈍硬化が過度となって合金が軟化し、強度(0.2%耐力)の向上が図れない。
<Strain relief annealing>
Thereafter, strain relief annealing is performed at 200 to 500 ° C. for 1 to 1000 seconds. When the temperature or annealing time of the strain relief annealing is less than the above range, the strain relief annealing is insufficient, the strength is improved by the low-temperature annealing hardening described above, and the softening by heating after the stress relief annealing is insufficient. It is difficult to make the 2% proof stress 1000 MPa or more.
When the temperature or annealing time of strain relief annealing exceeds the above range, the above-described low temperature annealing hardening by strain relief annealing becomes excessive, the alloy is softened, and the strength (0.2% proof stress) cannot be improved.

大気溶解炉中にて電気銅を溶解し、必要に応じて表2に示す添加元素を所定量投入し、溶湯を攪拌した。その後、鋳込み温度1200℃にて鋳型に出湯し、表2に示す組成の銅合金インゴットを得た。インゴットは熱間圧延し、板厚を10mmとした。その後、面削、冷間圧延、溶体化処理、時効処理、低温熱処理、時効後冷間圧延の順に行い、板厚0.05〜0.4mmの試料を得た。時効後冷間圧延の後に歪取焼鈍を行った。
なお、熱間圧延は1000℃で3時間行い、溶体化処理を800〜1000℃で行った。時効処理は400℃〜550℃で1〜15時間の範囲、低温熱処理は650℃で行い、歪取焼鈍は200〜500℃で1〜1000秒間の範囲で行った。時効処理および歪取焼鈍はそれぞれの処理後の引張強さが最大となる温度及び時間で行った。
The electrolytic copper was melted in an atmospheric melting furnace, and a predetermined amount of the additive elements shown in Table 2 was added as necessary, and the molten metal was stirred. Thereafter, the molten metal was poured into a mold at a casting temperature of 1200 ° C. to obtain a copper alloy ingot having the composition shown in Table 2. The ingot was hot rolled to a plate thickness of 10 mm. Thereafter, chamfering, cold rolling, solution treatment, aging treatment, low temperature heat treatment, and cold rolling after aging were performed in this order to obtain a sample having a thickness of 0.05 to 0.4 mm. After cold rolling after aging, strain relief annealing was performed.
In addition, hot rolling was performed at 1000 degreeC for 3 hours, and the solution treatment was performed at 800-1000 degreeC. The aging treatment was performed at 400 to 550 ° C. for 1 to 15 hours, the low temperature heat treatment was performed at 650 ° C., and the strain relief annealing was performed at 200 to 500 ° C. for 1 to 1000 seconds. The aging treatment and the strain relief annealing were performed at a temperature and a time at which the tensile strength after each treatment was maximized.

<評価>
得られた試料について以下の項目を評価した。
[導電率]
時効処理後、及び低温熱処理後の圧延平行方向の試料、及び歪取焼鈍後の最終製品の圧延平行方向の試料について、JISH0505に準拠し、ダブルブリッジ装置を用いた四端子法により求めた体積抵抗率から導電率(%IACS)を算出した。
[強度]
歪取焼鈍後の最終製品につき、引張方向が圧延方向と平行になるように、プレス機を用いてJIS13B号試験片を作製した。JIS−Z2241に従ってこの試験片の引張試験を行ない、0.2%耐力YSを測定した。
引張試験の条件は、試験片幅12.7mm、室温(15〜35℃)、引張速度5mm/min、ゲージ長さL=50mmで、銅箔の圧延方向に引張試験した。
<Evaluation>
The following items were evaluated for the obtained samples.
[conductivity]
Volume resistance obtained by a four-terminal method using a double bridge apparatus in accordance with JISH0505 for samples in the rolling parallel direction after aging treatment and after low-temperature heat treatment, and samples in the rolling parallel direction of the final product after strain relief annealing. The electrical conductivity (% IACS) was calculated from the rate.
[Strength]
About the final product after strain relief annealing, the JIS13B test piece was produced using the press so that the tension direction might become parallel to the rolling direction. The specimen was subjected to a tensile test according to JIS-Z2241, and 0.2% yield strength YS was measured.
The tensile test conditions were a test piece width of 12.7 mm, room temperature (15 to 35 ° C.), a tensile speed of 5 mm / min, a gauge length L = 50 mm, and a tensile test in the rolling direction of the copper foil.

[曲げ加工性]
板幅0.2mmの試験材につき、上述の方法で(MBR/t)を測定した。
[ヤング率]
上述の方法で測定した。
[へたり特性]
図2に示すように、幅12.7mmの短冊形状の試料の片端を固定し、水平な片持ち梁とした。この固定端から距離L=5mmの位置に、先端をナイフエッジに加工したポンチを押し当て、下方へたわみd(mm)を与えた後、ポンチを初期の位置に戻し除荷した。ポンチの移動速度は1mm/分とした。除荷後に鉛直方向に永久変形した、へたりδを求めた。0.2%耐力が1000MPa以上であれば、へたり量は0.025mm未満となる。へたり特性は圧延平行方向および圧延直角方向に測定し、へたり量が多い方の値を採用した。
なお、たわみd(mm)は、たわみ(mm)/板厚(mm)=100となるように行う。
[Bending workability]
(MBR / t) was measured by the method described above for a test material having a plate width of 0.2 mm.
[Young's modulus]
Measurement was performed by the method described above.
[Sag characteristics]
As shown in FIG. 2, one end of a strip-shaped sample having a width of 12.7 mm was fixed to form a horizontal cantilever. A punch whose tip was processed into a knife edge was pressed to a position at a distance L = 5 mm from the fixed end to give a downward deflection d (mm), and then the punch was returned to the initial position and unloaded. The moving speed of the punch was 1 mm / min. The sag δ, which was permanently deformed in the vertical direction after unloading, was determined. If the 0.2% proof stress is 1000 MPa or more, the amount of sag is less than 0.025 mm. The sag characteristics were measured in the direction parallel to the rolling and the direction perpendicular to the rolling, and the value with the larger sag amount was adopted.
The deflection d (mm) is performed so that the deflection (mm) / plate thickness (mm) = 100.

得られた結果を表2、表3に示す。表2の「0.5Zn」は、Znを0.5質量%含むことを意味する。   The obtained results are shown in Tables 2 and 3. “0.5Zn” in Table 2 means that 0.5% by mass of Zn is contained.

Figure 2019007031
Figure 2019007031

Figure 2019007031
Figure 2019007031

表2、表3から明らかなように、YSが1000MPa以上、ヤング率が115GPa以上である各実施例の場合、曲げ加工性及びへたり特性に優れていた。   As is clear from Tables 2 and 3, in each Example in which YS was 1000 MPa or more and Young's modulus was 115 GPa or more, the bending workability and sag characteristics were excellent.

一方、ΔECが2%IACS未満の比較例1の場合、圧延平行方向の0.2%耐力が1000MPa未満、ヤング率が115GPa未満となり、へたり特性が劣った。これは、低温焼鈍硬化が不十分なためと考えられる。
低温熱処理を過度に行い、ΔECが4%IACSを超えた比較例2の場合も、圧延平行方向の0.2%耐力が1000MPa未満、ヤング率が115GPa未満であり、へたり特性が劣った。
On the other hand, in Comparative Example 1 in which ΔEC was less than 2% IACS, the 0.2% proof stress in the rolling parallel direction was less than 1000 MPa, the Young's modulus was less than 115 GPa, and the sag characteristics were inferior. This is thought to be due to insufficient low-temperature annealing hardening.
In the case of Comparative Example 2 in which the low-temperature heat treatment was excessively performed and ΔEC exceeded 4% IACS, the 0.2% proof stress in the rolling parallel direction was less than 1000 MPa, the Young's modulus was less than 115 GPa, and the sag characteristics were inferior.

歪取焼鈍前の導電率が40%を超えた比較例3の場合、低温焼鈍硬化が発現せず、圧延平行方向の0.2%耐力が1000MPa未満、ヤング率が115GPa未満であったため、へたり特性が劣った。   In the case of Comparative Example 3 in which the electrical conductivity before strain relief annealing exceeded 40%, low-temperature annealing hardening did not appear, 0.2% proof stress in the rolling parallel direction was less than 1000 MPa, and Young's modulus was less than 115 GPa. The characteristics were inferior.

加工率REが式(1)を満たさない比較例4の場合も、低温焼鈍硬化が発現せず、圧延平行方向の0.2%耐力が1000MPa未満、ヤング率が115GPa未満であったため、へたり特性が劣った。
一方、歪取焼鈍前の加工率REが90%以上である比較例5の場合、へたり特性は良好であったが、曲げ性が劣った。
In the case of Comparative Example 4 in which the processing rate RE does not satisfy the formula (1), low temperature annealing hardening does not occur, the 0.2% proof stress in the rolling parallel direction is less than 1000 MPa, and the Young's modulus is less than 115 GPa. The characteristics were inferior.
On the other hand, in the case of Comparative Example 5 in which the processing rate RE before strain relief annealing was 90% or more, the sag characteristics were good, but the bendability was inferior.

ΔECが4%を超え、歪取焼鈍前の導電率が30%未満かつ加工率REが式(1)を満たさない比較例6の場合も、低温焼鈍硬化による十分な強度上昇が得られず、へたり特性が劣った。
ΔECが2%未満であり、歪取焼鈍前の導電率が40%を超える比較例7、及びΔECが2%未満であり加工率REが70%未満の比較例8の場合、いずれも低温焼鈍硬が不十分で強度が向上せず、へたり特性が劣った。
歪取焼鈍前の導電率が40%を超え、加工率REが70%未満の比較例9の場合も、低温焼鈍硬が不十分で強度が向上せず、へたり特性が劣った。
In the case of Comparative Example 6 in which ΔEC exceeds 4%, the electrical conductivity before strain relief annealing is less than 30%, and the processing rate RE does not satisfy the formula (1), sufficient strength increase due to low-temperature annealing hardening cannot be obtained, The setting characteristics were inferior.
In the case of Comparative Example 7 in which ΔEC is less than 2% and the electrical conductivity before strain relief annealing exceeds 40%, and Comparative Example 8 in which ΔEC is less than 2% and the processing rate RE is less than 70%, both are low-temperature annealing. Hardness was insufficient, strength was not improved, and sag characteristics were inferior.
In the case of Comparative Example 9 in which the electrical conductivity before strain relief annealing exceeds 40% and the processing rate RE is less than 70%, the low-temperature annealing hardness is insufficient, the strength is not improved, and the sag characteristics are inferior.

Mg、Mn、Sn、Zn、Co及びCrを総量で1.0%を超えて含有した比較例10の場合、熱間圧延で割れが発生し、合金を製造できなかった。   In the case of Comparative Example 10 containing Mg, Mn, Sn, Zn, Co, and Cr in a total amount exceeding 1.0%, cracking occurred during hot rolling, and the alloy could not be manufactured.

NiおよびCoの合計含有量が3.0%未満である比較例11の場合、析出強化の程度が小さく、これら元素による析出強化が不十分となり、十分な強度が得られず、へたり特性が劣った。   In the case of Comparative Example 11 in which the total content of Ni and Co is less than 3.0%, the degree of precipitation strengthening is small, precipitation strengthening by these elements becomes insufficient, sufficient strength cannot be obtained, and sag characteristics are obtained. inferior.

参考例1は特許文献3の実施例(1)を模擬し、鋳片加熱1030℃×3h、熱間圧延、冷間圧延を実施した後、固溶化処理(溶体化処理)を1000℃×1h、時効処理の前駆処理を700℃×20sec、時効処理を375℃×7h(ECage/ECmax:0.68)、時効後冷間圧延を90%かつ低温焼鈍を375℃×120secで実施して作製した。
参考例1の低温焼鈍は、本発明の実施形態とは、低温熱処理及び時効後冷間圧延の範囲が異なり、時効後冷間圧延の加工度が90%以上に高くなったことから、0.2%耐力は1000MPa以上、ヤング率が115GPa以上となったが、曲げ性が劣った。
Reference Example 1 simulates Example (1) of Patent Document 3, performs slab heating 1030 ° C. × 3 h, hot rolling and cold rolling, and then performs a solution treatment (solution treatment) 1000 ° C. × 1 h. , Pretreatment of aging treatment is 700 ° C. × 20 sec, aging treatment is 375 ° C. × 7 h (ECage / ECmax: 0.68), post-aging cold rolling is performed 90% and low temperature annealing is performed at 375 ° C. × 120 sec. did.
The low temperature annealing of Reference Example 1 is different from the embodiment of the present invention in the range of low temperature heat treatment and cold rolling after aging, and the degree of work of cold rolling after aging has increased to 90% or more. The 2% yield strength was 1000 MPa or more and the Young's modulus was 115 GPa or more, but the bendability was inferior.

Claims (3)

質量%で、NiとCoの群から選ばれる少なくとも1種以上を総量で3.0〜5.0%、Si:0.6〜1.1%含有し、残部がCu及び不可避不純物からなり、
圧延平行方向の0.2%耐力が1000MPa以上、かつ圧延直角方向のヤング率が115GPa以上であり、板幅0.2mmで板厚t(mm)のときの圧延直角方向の曲げ加工性Badwayを表すMBR/tが2.5以下であるCu−Ni−Si系銅合金。
Containing at least one or more selected from the group of Ni and Co by mass% in a total amount of 3.0 to 5.0%, Si: 0.6 to 1.1%, the balance consisting of Cu and inevitable impurities,
The bending workability Badway in the direction perpendicular to the rolling when the 0.2% proof stress in the rolling parallel direction is 1000 MPa or more, the Young's modulus in the direction perpendicular to the rolling is 115 GPa or more, the sheet width is 0.2 mm, and the sheet thickness is t (mm). A Cu—Ni—Si based copper alloy having an MBR / t of 2.5 or less.
更にMg、Mn、Sn、Zn及びCrの群から選ばれる少なくとも1種以上を総量で0.005〜1.0質量%含有する請求項1に記載のCu−Ni−Si系銅合金。   Furthermore, the Cu-Ni-Si type | system | group copper alloy of Claim 1 which contains 0.005-1.0 mass% of at least 1 sort (s) chosen from the group of Mg, Mn, Sn, Zn, and Cr in a total amount. 更にP、B、Ti、Zr、Al、Fe及びAgの群から選ばれる少なくとも1種以上を総量で0.005〜1.0質量%含有する請求項1又は2に記載のCu−Ni−Si系銅合金。   Furthermore, Cu-Ni-Si of Claim 1 or 2 which contains at least 1 sort (s) chosen from the group of P, B, Ti, Zr, Al, Fe, and Ag by 0.005-1.0 mass% in total amount. Copper alloy.
JP2017120774A 2017-06-20 2017-06-20 Cu-Ni-Si copper alloy Active JP6619389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017120774A JP6619389B2 (en) 2017-06-20 2017-06-20 Cu-Ni-Si copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017120774A JP6619389B2 (en) 2017-06-20 2017-06-20 Cu-Ni-Si copper alloy

Publications (2)

Publication Number Publication Date
JP2019007031A true JP2019007031A (en) 2019-01-17
JP6619389B2 JP6619389B2 (en) 2019-12-11

Family

ID=65029404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017120774A Active JP6619389B2 (en) 2017-06-20 2017-06-20 Cu-Ni-Si copper alloy

Country Status (1)

Country Link
JP (1) JP6619389B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012046810A (en) * 2010-08-30 2012-03-08 Dowa Metaltech Kk Copper alloy sheet material and manufacturing method thereof
JP2013227600A (en) * 2012-04-24 2013-11-07 Jx Nippon Mining & Metals Corp Cu-Ni-Si BASED COPPER ALLOY
JP2014173167A (en) * 2013-03-12 2014-09-22 Jx Nippon Mining & Metals Corp Cu-Ni-Si BASED COPPER ALLOY
JP2015034336A (en) * 2013-07-11 2015-02-19 古河電気工業株式会社 Copper alloy sheet material and production method thereof
JP2015036452A (en) * 2013-08-14 2015-02-23 古河電気工業株式会社 Copper alloy sheet material and connector using the same, and production method of copper alloy sheet material
WO2015099097A1 (en) * 2013-12-27 2015-07-02 古河電気工業株式会社 Copper alloy sheet material, connector, and production method for copper alloy sheet material
JP2016176106A (en) * 2015-03-19 2016-10-06 Jx金属株式会社 ELECTRONIC COMPONENT Cu-Ni-Co-Si ALLOY
JP2017043789A (en) * 2015-08-24 2017-03-02 Dowaメタルテック株式会社 Cu-Ni-Co-Si-BASED HIGH STRENGTH COPPER ALLOY THIN SHEET MATERIAL AND MANUFACTURING METHOD THEREFOR, AND CONDUCTIVE SPRING MEMBER

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012046810A (en) * 2010-08-30 2012-03-08 Dowa Metaltech Kk Copper alloy sheet material and manufacturing method thereof
JP2013227600A (en) * 2012-04-24 2013-11-07 Jx Nippon Mining & Metals Corp Cu-Ni-Si BASED COPPER ALLOY
JP2014173167A (en) * 2013-03-12 2014-09-22 Jx Nippon Mining & Metals Corp Cu-Ni-Si BASED COPPER ALLOY
JP2015034336A (en) * 2013-07-11 2015-02-19 古河電気工業株式会社 Copper alloy sheet material and production method thereof
JP2015036452A (en) * 2013-08-14 2015-02-23 古河電気工業株式会社 Copper alloy sheet material and connector using the same, and production method of copper alloy sheet material
WO2015099097A1 (en) * 2013-12-27 2015-07-02 古河電気工業株式会社 Copper alloy sheet material, connector, and production method for copper alloy sheet material
JP2016176106A (en) * 2015-03-19 2016-10-06 Jx金属株式会社 ELECTRONIC COMPONENT Cu-Ni-Co-Si ALLOY
JP2017043789A (en) * 2015-08-24 2017-03-02 Dowaメタルテック株式会社 Cu-Ni-Co-Si-BASED HIGH STRENGTH COPPER ALLOY THIN SHEET MATERIAL AND MANUFACTURING METHOD THEREFOR, AND CONDUCTIVE SPRING MEMBER

Also Published As

Publication number Publication date
JP6619389B2 (en) 2019-12-11

Similar Documents

Publication Publication Date Title
CN106460099B (en) Copper alloy sheet material, connector made of copper alloy sheet material, and method for manufacturing copper alloy sheet material
JP6126791B2 (en) Cu-Ni-Si copper alloy
US9587299B2 (en) Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, rolled copper alloy material for electronic equipment, and part for electronic equipment
WO2012004868A1 (en) Cu-ni-si copper alloy plate with excellent deep-draw characteristics and production method thereof
JP2011162848A (en) Copper alloy having small strength anisotropy and superior bendability
WO2016006053A1 (en) Copper alloy sheet material, connector, and method for producing copper alloy sheet material
WO2013018228A1 (en) Copper alloy
JP4503696B2 (en) Electronic parts made of copper alloy sheets with excellent bending workability
JP5039862B1 (en) Corson alloy and manufacturing method thereof
KR20160117210A (en) Cu-Ni-Si BASED ROLLED COPPER ALLOY AND METHOD FOR MANUFACTURING THE SAME
JP2011508081A (en) Copper-nickel-silicon alloy
JPWO2002053790A1 (en) High-strength copper alloy excellent in bending workability, method for producing the same, and terminal / connector using the same
JPWO2010016428A1 (en) Copper alloy material for electrical and electronic parts
JP3797882B2 (en) Copper alloy sheet with excellent bending workability
JP5132467B2 (en) Copper alloy and Sn-plated copper alloy material for electrical and electronic parts with excellent electrical conductivity and strength
JP6181392B2 (en) Cu-Ni-Si copper alloy
TWI763982B (en) Copper alloy plate and method for producing same
JP2006200042A (en) Electronic component composed of copper alloy sheet having excellent bending workability
JP4887868B2 (en) Cu-Ni-Sn-P-based copper alloy and method for producing the same
JP6619389B2 (en) Cu-Ni-Si copper alloy
JP2016141878A (en) Copper alloy strip and high current electronic component and heat release electronic component containing same
JP6328166B2 (en) Cu-Ni-Si rolled copper alloy and method for producing the same
WO2013121620A1 (en) Corson alloy and method for manufacturing same
JP6811199B2 (en) Cu-Ni-Si copper alloy strip with excellent mold wear resistance and press punching resistance
TWI509092B (en) Cu-Co-Si copper alloy strip and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191114

R150 Certificate of patent or registration of utility model

Ref document number: 6619389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250