JP2012046810A - Copper alloy sheet material and manufacturing method thereof - Google Patents

Copper alloy sheet material and manufacturing method thereof Download PDF

Info

Publication number
JP2012046810A
JP2012046810A JP2010192016A JP2010192016A JP2012046810A JP 2012046810 A JP2012046810 A JP 2012046810A JP 2010192016 A JP2010192016 A JP 2010192016A JP 2010192016 A JP2010192016 A JP 2010192016A JP 2012046810 A JP2012046810 A JP 2012046810A
Authority
JP
Japan
Prior art keywords
copper alloy
alloy sheet
mass
comparative example
iacs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010192016A
Other languages
Japanese (ja)
Other versions
JP5657311B2 (en
Inventor
Irin Ko
維林 高
Takahiro Hirayama
隆浩 平山
Akira Sugawara
章 菅原
Hisashi Suda
久 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2010192016A priority Critical patent/JP5657311B2/en
Publication of JP2012046810A publication Critical patent/JP2012046810A/en
Application granted granted Critical
Publication of JP5657311B2 publication Critical patent/JP5657311B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a copper alloy sheet material excellent in electrical conductivity, strength and bendability, and to provide a method for manufacturing the copper alloy sheet material in which the copper alloy sheet material can be manufactured by a simple process at low cost.SOLUTION: A cast slab obtained by melting and casting a raw material of a copper alloy having a composition containing, by mass, 1.0-4.0% Ni and 0.3-1.0% Si, and the balance being Cu and inevitable impurities, is subjected to hot rolling or homogenization, followed by aging treatment at 450-600°C for 1-20 hours, cold rolling at a rolling rate of 90% or more, and then low temperature annealing at 300-430°C for 1-48 hours.

Description

本発明は、銅合金板材およびその製造方法に関し、特に、コネクタ、リードフレーム、リレー、スイッチなどの電気電子機器の通電部品に適したCu−Ni−Si系の銅合金板材およびその製造方法に関する。   The present invention relates to a copper alloy sheet and a method for manufacturing the same, and more particularly, to a Cu—Ni—Si based copper alloy sheet suitable for a current-carrying component of an electrical and electronic device such as a connector, a lead frame, a relay, and a switch, and a method for manufacturing the same.

コネクタ、リードフレーム、リレー、スイッチなどの通電部品として電気電子部品に使用される材料には、通電によるジュール熱の発生を抑制するために良好な導電性を有することが要求されるとともに、電気電子機器の組立時や作動時に付与される応力に耐え得る高い強度を有することが要求される。また、これらの通電部品は、一般に、板材の曲げ加工などの成形加工により作製されることから、優れた加工性を有することも要求される。   Materials used for electrical and electronic parts as current-carrying parts such as connectors, lead frames, relays, and switches are required to have good conductivity in order to suppress the generation of Joule heat due to current conduction. It is required to have a high strength that can withstand the stress applied during assembly and operation of the device. In addition, since these current-carrying parts are generally produced by a forming process such as a bending process of a plate material, it is also required to have excellent workability.

しかし、一般に銅合金板材の強度と導電性の間や強度と加工性の間にはトレードオフの関係があるので、これらの特性を同時に高めることは容易ではない。   However, since there is generally a trade-off relationship between the strength and conductivity of the copper alloy sheet and between the strength and workability, it is not easy to improve these characteristics simultaneously.

銅合金板材の導電性を高く維持しながら強度を高くするために、析出強化を利用することが知られており、従来からCu−Cr(−Zr)系、Cu−Fe−P系、Cu−Mg−P系、Cu−Ni−Si系などの析出強化型合金の板材が実用化されている。近年、これらの銅合金板材の中で、Cu−Ni−Si合金(所謂コルソン合金)の板材が強度と導電率の間のバランスに優れた材料として注目されている。   In order to increase the strength while maintaining high conductivity of the copper alloy sheet, it is known to use precipitation strengthening. Conventionally, Cu—Cr (—Zr), Cu—Fe—P, Cu— Plate materials of precipitation-strengthened alloys such as Mg—P and Cu—Ni—Si have been put into practical use. In recent years, among these copper alloy sheet materials, a Cu-Ni-Si alloy (so-called Corson alloy) sheet material has attracted attention as a material having an excellent balance between strength and electrical conductivity.

しかし、析出強化型銅合金の板材は、特性を向上させるために、一般に熱間圧延、冷間圧延、溶体化処理、冷間圧延、時効処理、仕上げ圧延および低温焼鈍の多くの工程を含み且つ各工程条件の管理が非常に厳しい製造方法によって製造されており、製造コストが高くなるという問題がある。   However, the precipitation-strengthened copper alloy sheet generally includes many steps of hot rolling, cold rolling, solution treatment, cold rolling, aging treatment, finish rolling and low-temperature annealing to improve the characteristics and There is a problem that the manufacturing cost is increased because the manufacturing process is very strict in the management of each process condition.

また、析出強化型銅合金の板材の製造方法として、必要に応じて(溶体化、焼鈍、時効処理などの)熱処理を多数回行い、さらに熱処理と冷間圧延を繰り返す方法が提案されている。例えば、溶体化処理工程(すなわち、合金を固溶限界温度以上の高温域に加熱維持した後に急冷して過飽和固溶体を作る工程)では、加熱中の温度分布の均一性と急冷が必要であり、大型の専用溶体化処理炉が必要になる。また、溶体化条件の管理が非常に厳しい。溶体化温度が低いと、再結晶が発生しないか、再結晶が部分的に発生するので、均一な再結晶組織を得ることができない。また、Cuマトリックス中へのNiとSiの固溶量が少なくなり、次工程の時効処理において微細なNi−Si系析出物を十分に生成させるのが難しくなる。一方、溶体化温度が高いと、短時間で結晶粒が粗大化し易く、最終製品としての銅合金板材の曲げ加工性が低下する。すなわち、溶体化条件の管理条件の幅が狭く、少しでも逸脱すると特性のバラツキが発生し易い。   In addition, as a method for producing a precipitation-strengthened copper alloy sheet, a method is proposed in which heat treatment (such as solution treatment, annealing, aging treatment) is performed as many times as necessary, and heat treatment and cold rolling are repeated. For example, in the solution treatment process (that is, a process in which an alloy is heated and maintained in a high temperature region above the solid solution limit temperature and then rapidly cooled to form a supersaturated solid solution), uniformity of temperature distribution during heating and rapid cooling are required. A large dedicated solution treatment furnace is required. In addition, the control of solution conditions is very strict. When the solution temperature is low, recrystallization does not occur or recrystallization occurs partially, so that a uniform recrystallization structure cannot be obtained. In addition, the amount of Ni and Si dissolved in the Cu matrix decreases, and it becomes difficult to sufficiently generate fine Ni—Si based precipitates in the aging treatment of the next step. On the other hand, when the solution temperature is high, the crystal grains are likely to be coarsened in a short time, and the bending workability of the copper alloy sheet as the final product is lowered. That is, the control condition of the solution condition is narrow, and if it deviates even a little, characteristic variations are likely to occur.

また、溶体化処理と冷間圧延と時効処理を含む従来の製造方法によってCu−Ni−Si合金の板材を製造すると、板材の強度は、時効時間の経過とともに増大し、あるピーク点を過ぎた後に単調に低下する(すなわち、析出物の粗大化の過時効状態になる)。例えば、板材の引張強さを700MPa程度に高くしようとすると導電率が30〜40%IACSまで低下し、一方、導電率を50%IACS以上に高くしようとすると引張強さが600MPa以下に低下してしまう。すなわち、析出強化によって、(例えば50%IACS以上の)高い導電率を維持しながら、(例えば650MPa以上の)高い強度の銅合金板材を得るのは困難である。   In addition, when a Cu-Ni-Si alloy plate was produced by a conventional production method including solution treatment, cold rolling, and aging treatment, the strength of the plate material increased with the passage of aging time, and passed a certain peak point. Later, it decreases monotonically (that is, it becomes an overaged state of coarsening of precipitates). For example, if the tensile strength of the plate material is increased to about 700 MPa, the conductivity decreases to 30 to 40% IACS, whereas if the conductivity is increased to 50% IACS or more, the tensile strength decreases to 600 MPa or less. End up. That is, it is difficult to obtain a copper alloy sheet having high strength (for example, 650 MPa or more) while maintaining high conductivity (for example, 50% IACS or more) by precipitation strengthening.

また、時効処理後にさらに冷間圧延と低温焼鈍を行うと、引張強さを向上させることができるが、一般に、加工性(特に、圧延方向を曲げ軸とするBadWay曲げ加工性)が悪くなる。   Further, if cold rolling and low-temperature annealing are further performed after the aging treatment, the tensile strength can be improved, but generally the workability (particularly, BadWay bending workability with the rolling direction as the bending axis) is deteriorated.

Cu−Ni−Si系合金の板材の製造工程の減少による製造コストの低減を図る手法として、薄い鋳片を冷間圧延した後に時効処理して析出強化型銅合金の板材を製造する方法が提案されている(例えば、特許文献1参照)。また、Cu−Ni−Si系合金板材の導電性と強度を同時に改善する手法として、時効処理を複数回行う方法(例えば、特許文献2参照)や、冷間圧延と時効処理を繰り返す方法(例えば、特許文献3参照)が提案されている。   Proposed method to produce precipitation-strengthened copper alloy sheet by cold rolling thin slab and then aging treatment as a method to reduce production cost by reducing production process of Cu-Ni-Si alloy sheet (For example, refer to Patent Document 1). In addition, as a method for simultaneously improving the conductivity and strength of the Cu—Ni—Si based alloy sheet, a method of performing aging treatment a plurality of times (for example, see Patent Document 2), a method of repeating cold rolling and aging treatment (for example, , See Patent Document 3).

特開平9−176808号公報(段落番号0008)JP-A-9-176808 (paragraph number 0008) 特開平10−152737号公報(段落番号0007−0010)JP-A-10-152737 (paragraph number 0007-0010) 特開平7−41887号公報(段落番号0024−0030)JP-A-7-41887 (paragraph number 0024-0030)

しかし、特許文献1の方法では、銅合金板材の導電率を50〜60%IACSにすることができるものの、硬度がHv200〜140程度(推定引張強さ650〜450MPa)に止まっている。また、特許文献2および3の方法では、加工性も同時に改善することはできず、また、工程数の増加により製造コストが高くなる。   However, in the method of Patent Document 1, although the conductivity of the copper alloy sheet can be set to 50 to 60% IACS, the hardness is limited to about Hv 200 to 140 (estimated tensile strength 650 to 450 MPa). In addition, in the methods of Patent Documents 2 and 3, workability cannot be improved at the same time, and the manufacturing cost increases due to an increase in the number of steps.

また、上述したように、Cu−Ni−Si合金の板材は、特性を向上させるために、多くの工程を含み且つ各工程条件の管理が非常に厳しい製造方法によって製造されており、製造コストが高くなるという問題がある。また、従来の銅合金板材の製造方法では、工程条件を適正にしても強度と導電性と曲げ加工性を同時に向上させること、例えば、導電率を50%IACS以上にし且つ引張強さを650MPa以上にするとともに、TD(圧延方向および板厚方向に対して垂直な方向)を曲げ軸とするGoodWay曲げ(G.W.曲げ)およびLD(圧延方向)を曲げ軸とするBadWay曲げ(B.W.曲げ)のJIS H3110に準拠して90°W曲げ試験を行った後に割れが発生しない最小曲げ半径Rと銅合金板材の厚さtとの比R/tを2.0以下にすることは困難である。   In addition, as described above, the plate material of Cu—Ni—Si alloy is manufactured by a manufacturing method that includes many steps and has extremely strict management of each process condition in order to improve the characteristics, and the manufacturing cost is low. There is a problem of becoming higher. Further, in the conventional method for producing a copper alloy sheet, it is possible to simultaneously improve the strength, conductivity and bending workability even if the process conditions are appropriate. For example, the conductivity is 50% IACS or more and the tensile strength is 650 MPa or more. In addition, Good Way bending (GW bending) with TD (direction perpendicular to the rolling direction and the plate thickness direction) as a bending axis and Bad Way bending (B.W with LD (rolling direction) as a bending axis). The ratio R / t of the minimum bending radius R at which cracks do not occur and the thickness t of the copper alloy sheet material after making a 90 ° W bending test in accordance with JIS H3110 of. Have difficulty.

したがって、本発明は、このような従来の問題点に鑑み、導電性と強度と曲げ加工性が良好な銅合金板材およびその銅合金板材を簡素な工程で安価に製造することができる銅合金板材の製造方法を提供することを目的とする。   Accordingly, in view of such conventional problems, the present invention provides a copper alloy sheet material having good conductivity, strength and bending workability, and a copper alloy sheet material that can be produced at low cost by a simple process. It aims at providing the manufacturing method of.

本発明者らは、上記課題を解決するために鋭意研究した結果、1.0〜4.0質量%のNiと0.3〜1.0質量%のSiを含み、残部がCuおよび不可避不純物からなる組成を有する銅合金の原料を溶解して鋳造することにより得られた鋳片を熱間圧延または均質化処理した後、450〜600℃で1〜20時間時効処理を行い、次いで、圧延率90%以上で冷間圧延を行った後、300〜430℃で1〜48時間低温焼鈍を行うことにより、導電性と強度と曲げ加工性が良好な銅合金板材を簡素な工程で安価に製造することができることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above problems, the inventors of the present invention contain 1.0 to 4.0% by mass of Ni and 0.3 to 1.0% by mass of Si, with the balance being Cu and inevitable impurities. A slab obtained by melting and casting a copper alloy raw material having a composition comprising: hot rolling or homogenizing treatment, followed by aging treatment at 450 to 600 ° C. for 1 to 20 hours, and then rolling After performing cold rolling at a rate of 90% or more, low temperature annealing at 300 to 430 ° C. for 1 to 48 hours makes it possible to inexpensively produce a copper alloy sheet material with good conductivity, strength and bending workability The inventors have found that it can be manufactured and have completed the present invention.

すなわち、本発明による銅合金板材の製造方法は、1.0〜4.0質量%のNiと0.3〜1.0質量%のSiを含み、残部がCuおよび不可避不純物からなる組成を有する銅合金の原料を溶解して鋳造することにより得られた鋳片を熱間圧延または均質化処理した後、450〜600℃で1〜20時間時効処理を行い、次いで、圧延率90%以上で冷間圧延を行った後、300〜430℃で1〜48時間低温焼鈍を行うことを特徴とする。   That is, the method for producing a copper alloy sheet according to the present invention has a composition containing 1.0 to 4.0% by mass of Ni and 0.3 to 1.0% by mass of Si, with the balance being Cu and inevitable impurities. After hot-rolling or homogenizing the slab obtained by melting and casting the copper alloy raw material, it is subjected to aging treatment at 450 to 600 ° C. for 1 to 20 hours, and then at a rolling rate of 90% or more. After cold rolling, low temperature annealing is performed at 300 to 430 ° C. for 1 to 48 hours.

この銅合金板材の製造方法において、時効処理後に導電率が40%IACS以上でビッカース硬さがHv150以上になるように時効処理を行うのが好ましい。また、銅合金の原料の組成が、0.01〜0.3質量%のMgをさらに含んでもよく、Sn、Zn、Co、Cr、P、B、Al、Fe、Zr、TiおよびMnからなる群から選ばれる1種以上の元素を合計3質量%以下の範囲でさらに含んでもよい。   In this method for producing a copper alloy sheet, it is preferable to perform an aging treatment so that the electrical conductivity is 40% IACS or more and the Vickers hardness is Hv150 or more after the aging treatment. The composition of the raw material of the copper alloy may further include 0.01 to 0.3% by mass of Mg, and is composed of Sn, Zn, Co, Cr, P, B, Al, Fe, Zr, Ti, and Mn. One or more elements selected from the group may be further included in a total range of 3% by mass or less.

また、本発明による銅合金板材は、1.0〜4.0質量%のNiと0.3〜1.0質量%のSiを含み、残部がCuおよび不可避不純物からなる組成を有し、方位差5°以上の粒界を結晶粒界として平均結晶粒径1μm以下の微細結晶粒組織を有することを特徴とする。   Further, the copper alloy sheet according to the present invention has a composition containing 1.0 to 4.0% by mass of Ni and 0.3 to 1.0% by mass of Si, with the balance being Cu and inevitable impurities, It has a fine grain structure with an average crystal grain size of 1 μm or less with a grain boundary having a difference of 5 ° or more as a grain boundary.

この銅合金板材において、導電率が50%IACS以上、引張強さが650MPa以上であり、JIS H3110に準拠して90°W曲げ試験を行った後に割れが発生しない最小曲げ半径Rと銅合金板材の厚さtとの比R/tが2.0以下であるのが好ましい。また、導電率が55%IACS以上であるのが好ましく、60%IACS以上であるのがさらに好ましい。また、引張強さが700MPa以上であるのが好ましく、750MPa以上であるのがさらに好ましく、800MPa以上であるのがさらに好ましい。また、R/tが1.0以下であるのが好ましく、0.5以下であるのがさらに好ましい。また、銅合金板材の組成が、0.01〜0.3質量%のMgをさらに含んでもよく、Sn、Zn、Co、Cr、P、B、Al、Fe、Zr、TiおよびMnからなる群から選ばれる1種以上の元素を合計3質量%以下の範囲でさらに含んでもよい。   This copper alloy sheet has a minimum bending radius R and a copper alloy sheet that has a conductivity of 50% IACS or more, a tensile strength of 650 MPa or more, and does not crack after performing a 90 ° W bending test in accordance with JIS H3110. The ratio R / t with respect to the thickness t is preferably 2.0 or less. The conductivity is preferably 55% IACS or more, and more preferably 60% IACS or more. Further, the tensile strength is preferably 700 MPa or more, more preferably 750 MPa or more, and further preferably 800 MPa or more. Moreover, it is preferable that R / t is 1.0 or less, and it is further more preferable that it is 0.5 or less. Further, the composition of the copper alloy sheet may further include 0.01 to 0.3% by mass of Mg, and the group consisting of Sn, Zn, Co, Cr, P, B, Al, Fe, Zr, Ti, and Mn. One or more elements selected from may be further included within a total range of 3% by mass or less.

本発明によれば、導電性と強度と曲げ加工性が良好な銅合金板材を簡素な工程で安価に製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, a copper alloy board | plate material with favorable electroconductivity, intensity | strength, and bending workability can be manufactured cheaply with a simple process.

本発明者らは、Cu−Ni−Si合金などの種々の析出強化型銅合金を用いて、従来の析出強化型銅合金の板材の製造方法で必要であった溶体化処理を省略して製造工程の簡素化による生産性の向上とコストの低減を図るとともに、銅合金板材の導電性、強度および加工性のいずれも向上させることができる方法について鋭意研究を重ねてきた。その結果、所定の組成のCu−Ni−Si合金(NiとSiを添加した時効析出型の銅基合金)の鋳片を熱間加工または均質化処理した後、溶体化処理を行わず、所定の時効処理、冷間加工および低温焼鈍をこの順で行うことにより、導電性、強度および加工性のいずれも向上した銅合金板材、特に、導電率が50%IACS以上、引張強さが650MPa以上であり、JIS H3110に準拠して90°W曲げ試験を行った後に割れが発生しない最小曲げ半径Rと厚さtとの比R/tが2.0以下という優れた特性を有する銅合金板材を製造することができることがわかった。   The present inventors use various precipitation-strengthened copper alloys such as Cu-Ni-Si alloy, omitting the solution treatment that was necessary in the conventional method for producing a plate of precipitation-strengthened copper alloy. Research has been conducted on methods for improving productivity and reducing costs by simplifying the process and improving the conductivity, strength, and workability of the copper alloy sheet. As a result, a slab of a Cu—Ni—Si alloy having a predetermined composition (an aging precipitation type copper-based alloy to which Ni and Si are added) is hot-worked or homogenized, and then a solution treatment is not performed. A copper alloy sheet having improved conductivity, strength and workability by performing aging treatment, cold working and low-temperature annealing in this order, in particular, conductivity is 50% IACS or more, and tensile strength is 650 MPa or more. And a copper alloy sheet material having an excellent characteristic that the ratio R / t of the minimum bending radius R and the thickness t is 2.0 or less so that no cracks occur after performing a 90 ° W bending test in accordance with JIS H3110. It was found that can be manufactured.

一般に、銅合金を冷間加工すると、転位が導入されて加工硬化する。転位は均一な分布ではなく、転位の相互のもつれによって転位セルを形成する。導入された転位の密度が高いほど、転位セルのサイズは小さくなる。冷間加工された銅合金を加熱すると、回復によって転位セルが亜結晶粒に変化しながら、亜結晶粒間の方位差が増大する。銅合金を冷間圧延した後に再結晶焼鈍などによって生じる通常の再結晶のメカニズムでは、亜結晶粒がそれ自体を核として成長して再結晶粒になるので、この再結晶の現象は「不連続再結晶」と呼ばれ、この不連続再結晶の発生により銅合金板材の強度が低下する。銅合金を冷間圧延した後に加熱する温度が比較的低いと、回復によって転位セルが亜結晶粒に変化しながら、亜結晶粒間の方位差が増大し、亜結晶粒はその場で結晶粒になる。この場合、再結晶粒が亜結晶粒の方位差の連続的な増加によって生成するので、このような再結晶の現象は「連続再結晶」と呼ばれ、この再結晶粒は亜結晶粒と同等なサイズを有し、1μm以下の微細化が可能となる。このようにして連続再結晶の発生によって微細結晶粒組織が形成される。連続再結晶が発生する場合、銅合金板材の強度の低下が少なく、銅合金板材の方位差が一定の臨界値を超えると、その銅合金板材の延性と曲げ加工性は飛躍的に向上する。本発明者らが鋭意研究した結果、銅合金板材の方位差が5°以上になると、その銅合金板材の延性と曲げ加工性が飛躍的に向上することがわかった。   Generally, when a copper alloy is cold worked, dislocations are introduced and work hardening occurs. Dislocations are not uniformly distributed, and dislocation cells are formed by entanglement of dislocations. The higher the density of dislocations introduced, the smaller the size of the dislocation cells. When a cold-worked copper alloy is heated, dislocation cells change into subgrains due to recovery, and the orientation difference between subcrystal grains increases. In the normal recrystallization mechanism, which occurs by recrystallization annealing after cold rolling of a copper alloy, the sub-crystal grains grow with themselves as nuclei and become recrystallized grains. This is called “recrystallization” and the strength of the copper alloy sheet is lowered by the occurrence of the discontinuous recrystallization. If the heating temperature after the copper alloy is cold-rolled is relatively low, the dislocation cells change into subgrains due to recovery, and the orientation difference between the subgrains increases. become. In this case, since the recrystallized grains are generated by continuous increase in the orientation difference of the sub-crystal grains, this phenomenon of recrystallization is called “continuous recrystallization”, and the recrystallized grains are equivalent to the sub-crystal grains. Therefore, it is possible to reduce the size to 1 μm or less. In this way, a fine grain structure is formed by the occurrence of continuous recrystallization. When continuous recrystallization occurs, there is little decrease in strength of the copper alloy sheet, and if the orientation difference of the copper alloy sheet exceeds a certain critical value, the ductility and bending workability of the copper alloy sheet are dramatically improved. As a result of intensive studies by the present inventors, it has been found that when the orientation difference of a copper alloy sheet is 5 ° or more, the ductility and bending workability of the copper alloy sheet are greatly improved.

本発明による銅合金板材の製造方法の実施の形態は、1.0〜4.0質量%のNiと0.3〜1.0質量%のSiを含み、残部がCuおよび不可避不純物からなる組成を有する銅合金の原料を溶解して鋳造することにより鋳片を得る工程(溶解・鋳造工程)と、得られた鋳片を熱間圧延または均質化処理する工程(熱間圧延または均質化処理工程)と、この熱間圧延または均質化処理工程後に450〜600℃で1〜20時間時効処理を行う工程(時効処理工程)と、この時効処理工程後に圧延率90%以上で冷間圧延を行う工程(冷間圧延工程)と、この冷間圧延工程後に300〜430℃で1〜48時間低温焼鈍を行う工程(低温焼鈍工程)とを備えている。   Embodiment of the manufacturing method of the copper alloy sheet | seat material by this invention contains 1.0-4.0 mass% Ni and 0.3-1.0 mass% Si, and the remainder consists of Cu and an unavoidable impurity. A process for obtaining a slab by melting and casting a raw material of a copper alloy having melting (melting / casting process), and a process for hot rolling or homogenizing the obtained slab (hot rolling or homogenizing process) Step), a step of aging treatment at 450 to 600 ° C. for 1 to 20 hours after this hot rolling or homogenization treatment step (aging treatment step), and cold rolling at a rolling rate of 90% or more after this aging treatment step. A step of performing (cold rolling step) and a step of performing low temperature annealing at 300 to 430 ° C. for 1 to 48 hours after the cold rolling step (low temperature annealing step).

本発明による銅合金板材の製造方法の実施の形態では、まず、熱間加工または均質化処理により、鋳造過程で生じる晶出相を消失させるとともに、再結晶によって鋳造組織を破壊して均一な再結晶粒組織を生成させる。次に、析出温度域で時効処理を行うことにより、析出物の生成により導電率と強度を向上させることができる。さらに、析出物を有する状態で強冷間加工すると、銅合金板材の強度を著しく向上させることができる。この圧延組織状態では、銅合金板材の強度と導電率がともに高くなるが、一般に曲げ加工性が著しく低下する。そこで、本発明者らが鋭意研究したところ、析出物を有する状態で強加工した板材に対して低温で長時間低温焼鈍を行うことにより、銅合金板材の強度の低下が少なく、導電率を向上させることができ、特に曲げ加工性を著しく向上させることができ、その結果、導電性、強度および加工性がともに向上した組織状態を実現することができることがわかった。   In the embodiment of the method for producing a copper alloy sheet according to the present invention, first, the crystallization phase generated in the casting process is eliminated by hot working or homogenization treatment, and the cast structure is destroyed by recrystallization to obtain a uniform recrystallization. Generate a grain structure. Next, by conducting an aging treatment in the precipitation temperature range, the conductivity and strength can be improved by the formation of precipitates. Furthermore, if the cold working is performed in a state having precipitates, the strength of the copper alloy sheet can be remarkably improved. In this rolled structure state, both the strength and the conductivity of the copper alloy sheet are increased, but generally the bending workability is significantly reduced. Therefore, the present inventors have intensively studied, and by conducting a low temperature annealing for a long time at a low temperature on a plate that has been strongly processed with precipitates, the strength of the copper alloy plate is reduced and the conductivity is improved. In particular, it has been found that the bending workability can be remarkably improved, and as a result, it is possible to realize a structure state in which conductivity, strength and workability are improved.

以下、本発明による銅合金板材の製造方法の実施の形態の各工程について詳細に説明する。   Hereinafter, each process of embodiment of the manufacturing method of the copper alloy board | plate material by this invention is demonstrated in detail.

(合金組成)
銅合金板材の原料としてNiおよびSiを添加すると、NiとSiの化合物を主体とする析出物(Ni−Si系析出物)を形成してNiとSiの固溶量が減少し、高い導電率を保ちながら強度を向上させる効果を有する。Ni含有量が1.0質量%未満の場合やSi含有量が0.3質量%未満の場合には、この効果を十分に発揮させるのは困難である。一方、Ni含有量が4.0質量%を超える場合やSi含有量が1.0質量%を超える場合には、導電率が低下するとともに(析出物が粗大化し易くなるため)熱間加工性が著しく低下し易くなる。そのため、Ni含有量は、1.0〜4.0質量%であり、1.5〜3.5質量%であるのが好ましく、2.0〜3.0質量%であるのがさらに好ましい。また、Si含有量は、0.3〜1.0質量%であり、0.4〜0.8質量%であるのが好ましく、0.5〜0.7質量%であるのがさらに好ましい。また、NiとSiの質量比(Ni/Si)は、3.5〜6.0であるのが好ましい。この範囲外になると、Ni−Si系析出物の形成に利用されなかったNiまたはSiの固溶量が多くなり、導電率が低下する場合がある。
(Alloy composition)
When Ni and Si are added as raw materials for a copper alloy sheet, a precipitate mainly composed of a compound of Ni and Si (Ni-Si based precipitate) is formed, and the solid solution amount of Ni and Si is reduced, resulting in high conductivity. It has the effect of improving the strength while maintaining. When the Ni content is less than 1.0% by mass or when the Si content is less than 0.3% by mass, it is difficult to exert this effect sufficiently. On the other hand, when the Ni content exceeds 4.0% by mass or the Si content exceeds 1.0% by mass, the electrical conductivity is lowered (because precipitates are easily coarsened), and hot workability is achieved. Is significantly reduced. Therefore, Ni content is 1.0-4.0 mass%, it is preferable that it is 1.5-3.5 mass%, and it is more preferable that it is 2.0-3.0 mass%. Moreover, Si content is 0.3-1.0 mass%, it is preferable that it is 0.4-0.8 mass%, and it is more preferable that it is 0.5-0.7 mass%. Moreover, it is preferable that mass ratio (Ni / Si) of Ni and Si is 3.5-6.0. If it is out of this range, the amount of Ni or Si not dissolved in the formation of Ni—Si-based precipitates increases, and the conductivity may decrease.

また、銅合金の原料として0.01〜0.3質量%のMgをさらに添加してもよい。Mgは、Ni−Si系析出物の粗大化を防止する作用を有するとともに、銅合金板材の耐応力緩和性を向上させる作用を有する。これらの作用を十分に発揮させるためには、Mg含有量を0.01質量%以上にするのが好ましい。しかし、Mg含有量が0.3質量%を超えると、鋳造性や熱間加工性が著しく低下し、また、コスト的にも不利であるため、Mgを添加する場合には、0.3質量%以下にするのが好ましい。   Moreover, you may further add 0.01-0.3 mass% Mg as a raw material of a copper alloy. Mg has an effect of preventing the coarsening of Ni—Si based precipitates and an effect of improving the stress relaxation resistance of the copper alloy sheet. In order to sufficiently exhibit these actions, it is preferable to set the Mg content to 0.01% by mass or more. However, if the Mg content exceeds 0.3% by mass, the castability and hot workability are remarkably lowered, and the cost is disadvantageous. % Or less is preferable.

また、銅合金の原料として、Sn、Zn、Co、Cr、P、B、Al、Fe、Zr、TiおよびMnからなる群から選ばれる1種以上の元素を合計3質量%以下の範囲でさらに添加してもよい。これらの元素は、銅合金板材の強度をさらに高めるとともに、応力緩和を小さくする作用を有する。また、Co、Cr、B、Zr、Ti、Mnは、不可避的不純物として存在するSやPbなどと高融点化合物を形成し易く、熱間加工性を向上させる効果を有する。また、SnとZnは、冷間加工性を向上させる効果を有する。これらの元素を添加する場合、その作用を十分に発揮させるためには、その総量が0.01質量%以上になるように添加するのが好ましい。しかし、その総量が3質量%を超えると、熱間加工性または冷間加工性が低下する場合があり、また、コスト的にも不利であるため、その総量は3質量%以下にするのが好ましく、2質量%以下にするのがさらに好ましく、1質量%以下にするのがさらに好ましく、0.5質量%以下にするのが最も好ましい。   Further, as a raw material for the copper alloy, one or more elements selected from the group consisting of Sn, Zn, Co, Cr, P, B, Al, Fe, Zr, Ti, and Mn are further added in a total range of 3% by mass or less. It may be added. These elements have the effect of further increasing the strength of the copper alloy sheet and reducing the stress relaxation. In addition, Co, Cr, B, Zr, Ti, and Mn are easy to form a high melting point compound with S, Pb, etc. present as inevitable impurities, and have an effect of improving hot workability. Sn and Zn have the effect of improving cold workability. When these elements are added, it is preferable to add them so that the total amount is 0.01% by mass or more in order to sufficiently exert their effects. However, if the total amount exceeds 3% by mass, the hot workability or the cold workability may be lowered, and it is disadvantageous in terms of cost. Therefore, the total amount should be 3% by mass or less. It is preferably 2% by mass or less, more preferably 1% by mass or less, and most preferably 0.5% by mass or less.

(溶解・鋳造工程)
一般的な銅合金の溶製方法と同様の方法により、銅合金の原料を溶解した後、連続鋳造や半連続鋳造などにより鋳片を製造する。銅合金の原料の溶解は、大気雰囲気中で行ってもよいが、酸化防止の面から不活性ガスでシールするのが好ましい。連続鋳造方式は、縦型でも横型でもよい。
(Melting and casting process)
A slab is produced by continuous casting or semi-continuous casting after the raw material of the copper alloy is melted by the same method as a general copper alloy melting method. The melting of the copper alloy raw material may be performed in the air atmosphere, but it is preferable to seal with an inert gas from the viewpoint of oxidation prevention. The continuous casting method may be vertical or horizontal.

(熱間圧延または均質化処理工程)
縦型連続鋳造方式により鋳片を製造した場合、鋳片の熱間圧延を行う。この熱間圧延は、通常の熱間圧延条件(開始温度1000〜850℃、終了温度600℃以上)で行えばよいが、最終パス終了後に水冷するのが好ましい。一方、横型連続鋳方式により鋳片を製造した場合、鋳片の熱間圧延を行う必要がないが、代わりに通常の均質化処理(1000〜850℃で1〜20時間程度の均質化処理)を行うのが好ましい。
(Hot rolling or homogenization process)
When a slab is manufactured by the vertical continuous casting method, the slab is hot-rolled. This hot rolling may be performed under normal hot rolling conditions (starting temperature 1000 to 850 ° C., finishing temperature 600 ° C. or more), but it is preferable to perform water cooling after the final pass. On the other hand, when the slab is manufactured by the horizontal continuous casting method, it is not necessary to perform hot rolling of the slab, but instead, a normal homogenization process (homogenization process at 1000 to 850 ° C. for about 1 to 20 hours) Is preferably performed.

(時効処理工程)
時効処理では、一定の量の析出物を生成させることが必要である。その後の冷間圧延中に多量の転位を母相に蓄積させ、さらにその後の低温焼鈍中に連続再結晶を発生させて曲げ加工性の向上を図ることができる。時効処理温度が低過ぎたり、時効処時間が短過ぎると、生成する析出物の量が少なく、連続再結晶の発生が不十分である。一方、時効処理温度が高過ぎたり、時効処理時間が長過ぎると、析出物が粗大化して、不連続再結晶が発生し易く、銅合金板材が軟化する。そのため、時効処理は、好ましくは450〜600℃で1〜20時間、さらに好ましくは450〜600℃で1〜10時間行い、特に、時効処理後に導電率が40%IACS以上でビッカース硬さがHv150以上になるように時効処理の温度と時間を選択するのが好ましい。なお、必要に応じて時効処理後に板材の表面を面削してもよい。
(Aging process)
In the aging treatment, it is necessary to generate a certain amount of precipitates. It is possible to improve bending workability by accumulating a large amount of dislocations in the parent phase during the subsequent cold rolling and further generating continuous recrystallization during the subsequent low-temperature annealing. When the aging treatment temperature is too low or the aging treatment time is too short, the amount of precipitates produced is small and continuous recrystallization is insufficient. On the other hand, when the aging treatment temperature is too high or the aging treatment time is too long, the precipitates are coarsened, discontinuous recrystallization is likely to occur, and the copper alloy sheet is softened. Therefore, the aging treatment is preferably performed at 450 to 600 ° C. for 1 to 20 hours, more preferably 450 to 600 ° C. for 1 to 10 hours. In particular, the conductivity is 40% IACS or more after the aging treatment and the Vickers hardness is Hv150. It is preferable to select the temperature and time of the aging treatment so as to become the above. In addition, you may face the surface of a board | plate material after an aging treatment as needed.

(冷間圧延工程)
続いて、圧延率90%以上で冷間圧延を行う。この冷間圧延では、板材の強度を向上させるとともに、多量の転位を母相に導入することができる。この圧延率が低過ぎると、導入される転位の密度が不十分であり、その後の低温焼鈍中に発生する連続再結晶が不十分である。そのため、冷間圧延の圧延率は90%以上であるのが好ましく、95%以上であるのがさらに好ましい。
(Cold rolling process)
Subsequently, cold rolling is performed at a rolling rate of 90% or more. In this cold rolling, the strength of the plate material can be improved and a large amount of dislocations can be introduced into the parent phase. If the rolling rate is too low, the density of dislocations introduced is insufficient, and the continuous recrystallization that occurs during subsequent low-temperature annealing is insufficient. Therefore, the rolling rate of cold rolling is preferably 90% or more, and more preferably 95% or more.

(低温焼鈍工程)
最後に、300〜430℃で1〜48時間低温焼鈍を行う。通常の低温焼鈍は残留応力を除去するために数秒〜数分間の比較的短時間行っているが、低温焼鈍を300〜430℃、好ましくは330〜430℃の比較的低温域で1〜48時間、好ましくは2〜20時間の比較的長時間行うことにより、蓄積させた転位を亜結晶粒界に転換させ、所謂連続再結晶を発生させることによって、銅合金板材の強度の低下を抑制しながら、導電率と曲げ加工性、特に曲げ加工性を向上させることができる。低温焼鈍温度が高過ぎると、粒界や析出粒子のまわりに再結晶の核生成と粒成長、所謂不連続再結晶が発生し易く、銅合金板材が軟化する。一方、低温焼鈍温度が低過ぎると、連続再結晶の発生が不十分であり、あるいは必要な低温焼鈍時間が長くしなければならず、製造コストが高くなる。
(Low temperature annealing process)
Finally, low temperature annealing is performed at 300 to 430 ° C. for 1 to 48 hours. Ordinary low-temperature annealing is performed for a relatively short time of several seconds to several minutes in order to remove residual stress, but low-temperature annealing is performed at a relatively low temperature range of 300 to 430 ° C., preferably 330 to 430 ° C. for 1 to 48 hours. Preferably, by performing for a relatively long time of 2 to 20 hours, the accumulated dislocations are converted to subgrain boundaries, and so-called continuous recrystallization is generated, thereby suppressing a decrease in strength of the copper alloy sheet. The electrical conductivity and bending workability, particularly bending workability can be improved. If the low-temperature annealing temperature is too high, recrystallization nucleation and grain growth, so-called discontinuous recrystallization, are likely to occur around the grain boundaries and precipitated particles, and the copper alloy sheet is softened. On the other hand, if the low-temperature annealing temperature is too low, the occurrence of continuous recrystallization is insufficient, or the necessary low-temperature annealing time must be lengthened, resulting in an increase in manufacturing cost.

上述した銅合金板材の製造方法の実施の形態により、1.0〜4.0質量%のNiと0.3〜1.0質量%のSiを含み、残部がCuおよび不可避不純物からなる組成を有し、方位差5°以上の粒界を結晶粒界として平均結晶粒径1μm以下の微細結晶粒組織を有し、導電率が50%IACS以上、好ましくは55%IACS以上、さらに好ましくは60%IACS以上、引張強さが650MPa以上、好ましくは700MPa以上、さらに好ましくは750MPa以上、さらに好ましくは800MPa以上であり、JIS H3110に準拠して90°W曲げ試験を行った後に割れが発生しない最小曲げ半径Rと銅合金板材の厚さtとの比R/tが2.0以下、好ましくは1.5以下、さらに好ましくは1.0以下、最も好ましくは0.5以下である銅合金板材を製造することができる。この銅合金板材の組成が、0.01〜0.3質量%のMgをさらに含んでもよく、Sn、Zn、Co、Cr、P、B、Al、Fe、Zr、TiおよびMnからなる群から選ばれる1種以上の元素を合計3質量%以下の範囲でさらに含んでもよい。   According to the embodiment of the method for producing a copper alloy sheet described above, a composition comprising 1.0 to 4.0 mass% Ni and 0.3 to 1.0 mass% Si, with the balance being Cu and inevitable impurities. And having a fine grain structure with an average crystal grain size of 1 μm or less with a grain boundary having an orientation difference of 5 ° or more as a grain boundary, and an electrical conductivity of 50% IACS or more, preferably 55% IACS or more, more preferably 60 % IACS or higher, tensile strength of 650 MPa or higher, preferably 700 MPa or higher, more preferably 750 MPa or higher, more preferably 800 MPa or higher. The ratio R / t between the bending radius R and the thickness t of the copper alloy sheet is 2.0 or less, preferably 1.5 or less, more preferably 1.0 or less, most preferably 0.5 or less. Can be produced copper alloy sheet is. The composition of the copper alloy sheet may further include 0.01 to 0.3% by mass of Mg, and includes a group consisting of Sn, Zn, Co, Cr, P, B, Al, Fe, Zr, Ti, and Mn. One or more selected elements may be further included within a total range of 3% by mass or less.

以下、本発明による銅合金板材およびその製造方法の実施例について詳細に説明する。   Hereinafter, examples of the copper alloy sheet material and the manufacturing method thereof according to the present invention will be described in detail.

[実施例1〜10]
2.45質量%のNiと0.51質量%のSiを含み、残部がCuおよび不可避不純物からなる銅合金(実施例1)、2.48質量%のNiと0.50質量%のSiと0.15質量%のMgを含み、残部がCuおよび不可避不純物からなる銅合金(実施例2)、2.75質量%のNiと0.66質量%のSiと0.12質量%のMnと0.08質量%のCrを含み、残部がCuおよび不可避不純物からなる銅合金(実施例3)、3.05質量%のNiと0.73質量%のSiと0.25質量%のSnと0.80質量%のZnを含み、残部がCuおよび不可避不純物からなる銅合金(実施例4)、1.32質量%のNiと0.62質量%のSiと1.06質量%のCoと0.02質量%のPを含み、残部がCuおよび不可避不純物からなる銅合金(実施例5)、2.52質量%のNiと0.54質量%のSiと0.005質量%のBと0.16質量%のFeを含み、残部がCuおよび不可避不純物からなる銅合金(実施例6)、1.84質量%のNiと0.48質量%のSiと0.08質量%のTiを含み、残部がCuおよび不可避不純物からなる銅合金(実施例7)、2.85質量%のNiと0.68質量%のSiと0.06質量%のZrを含み、残部がCuおよび不可避不純物からなる銅合金(実施例8)、3.46質量%のNiと0.74質量%のSiを含み、残部がCuおよび不可避不純物からなる銅合金(実施例9)、2.20質量%のNiと0.44質量%のSiと0.10質量%のAlを含み、残部がCuおよび不可避不純物からなる銅合金(実施例10)をそれぞれ溶製し、縦型の小型連続鋳造機を用いて鋳造して断面寸法100mm×250mmの鋳片を得た。
[Examples 1 to 10]
A copper alloy containing 2.45 mass% Ni and 0.51 mass% Si with the balance being Cu and inevitable impurities (Example 1), 2.48 mass% Ni and 0.50 mass% Si A copper alloy containing 0.15% by mass of Mg, the balance being Cu and inevitable impurities (Example 2), 2.75% by mass of Ni, 0.66% by mass of Si, 0.12% by mass of Mn, A copper alloy (Example 3) containing 0.08% by mass of Cr and the balance being Cu and inevitable impurities, 3.05% by mass of Ni, 0.73% by mass of Si, and 0.25% by mass of Sn A copper alloy containing 0.80% by mass of Zn, the balance being Cu and inevitable impurities (Example 4), 1.32% by mass of Ni, 0.62% by mass of Si and 1.06% by mass of Co A copper compound containing 0.02% by mass of P, with the balance being Cu and inevitable impurities (Example 5), a copper alloy containing 2.52% by mass of Ni, 0.54% by mass of Si, 0.005% by mass of B, and 0.16% by mass of Fe, with the balance being Cu and inevitable impurities (Example 6), a copper alloy containing 1.84% by mass of Ni, 0.48% by mass of Si and 0.08% by mass of Ti, with the balance being Cu and inevitable impurities (Example 7); A copper alloy (Example 8) containing 85 mass% Ni, 0.68 mass% Si and 0.06 mass% Zr, with the balance being Cu and inevitable impurities. A copper alloy containing 74% by mass of Si and the balance being Cu and inevitable impurities (Example 9), containing 2.20% by mass of Ni, 0.44% by mass of Si and 0.10% by mass of Al, Remaining copper alloys (Example 10) each consisting of Cu and inevitable impurities Papermaking, to obtain a cast piece of cross-sectional dimensions 100 mm × 250 mm by casting using a vertical size continuous casting machine.

それぞれの鋳片を950℃に加熱して1時間保持し、950℃から650℃まで温度を下げながら熱間圧延を行って厚さ10mmの板材にした後、急冷した。   Each slab was heated to 950 ° C. and held for 1 hour, hot rolled while lowering the temperature from 950 ° C. to 650 ° C. to form a plate material having a thickness of 10 mm, and then rapidly cooled.

次いで、それぞれ450℃で6時間(実施例1、6)、500℃で3時間(実施例2)、550℃で2時間(実施例3)、475℃で4時間(実施例4、8)、575℃で4時間(実施例5)、525℃で5時間(実施例7)、450℃で3時間(実施例9)、500℃で5時間(実施例10)時効処理を行った。なお、この時効処理後の板材の導電率をJIS H0505の導電率測定方法に従って測定したところ、それぞれ48.8%IACS(実施例1)、49.0%IACS(実施例2)、43.8%IACS(実施例3)、41.2%IACS(実施例4)、50.2%IACS(実施例5)、48.2%IACS(実施例6)、49.0%IACS(実施例7)、44.6%IACS(実施例8)、40.3%IACS(実施例9)、49.2%IACS(実施例10)であった。また、時効処理後の板材の板面(圧延面)のビッカース硬さをJIS Z2244に準拠して求めたところ、それぞれHv190(実施例1)、Hv195(実施例2)、Hv201(実施例3)、Hv212(実施例4)、Hv165(実施例5)、Hv178(実施例6)、Hv175(実施例7)、Hv196(実施例8)、Hv228(実施例9)、Hv181(実施例10)であった。   Then, 450 ° C for 6 hours (Examples 1 and 6), 500 ° C for 3 hours (Example 2), 550 ° C for 2 hours (Example 3), and 475 ° C for 4 hours (Examples 4 and 8) An aging treatment was performed at 575 ° C. for 4 hours (Example 5), 525 ° C. for 5 hours (Example 7), 450 ° C. for 3 hours (Example 9), and 500 ° C. for 5 hours (Example 10). In addition, when the electrical conductivity of the plate material after the aging treatment was measured in accordance with the electrical conductivity measurement method of JIS H0505, 48.8% IACS (Example 1), 49.0% IACS (Example 2), and 43.8, respectively. % IACS (Example 3), 41.2% IACS (Example 4), 50.2% IACS (Example 5), 48.2% IACS (Example 6), 49.0% IACS (Example 7) ), 44.6% IACS (Example 8), 40.3% IACS (Example 9), and 49.2% IACS (Example 10). Moreover, when the Vickers hardness of the plate surface (rolled surface) of the plate material after the aging treatment was determined according to JIS Z2244, Hv190 (Example 1), Hv195 (Example 2), and Hv201 (Example 3), respectively. Hv212 (Example 4), Hv165 (Example 5), Hv178 (Example 6), Hv175 (Example 7), Hv196 (Example 8), Hv228 (Example 9), Hv181 (Example 10) there were.

次いで、それぞれ圧延率98.5%で冷間圧延を行って厚さ0.15mmの板材を得た。この冷間圧延後の板材の板面(圧延面)のビッカース硬さをJIS Z2244に準拠して求めたところ、それぞれHv234(実施例1)、Hv243(実施例2)、Hv256(実施例3)、Hv275(実施例4)、Hv232(実施例5)、Hv242(実施例6)、Hv234(実施例7)、Hv254(実施例8)、Hv276(実施例9)、Hv235(実施例10)であった。   Subsequently, cold rolling was performed at a rolling rate of 98.5% to obtain a plate material having a thickness of 0.15 mm. When the Vickers hardness of the plate surface (rolled surface) of the plate material after the cold rolling was determined according to JIS Z2244, Hv234 (Example 1), Hv243 (Example 2), and Hv256 (Example 3), respectively. Hv275 (Example 4), Hv232 (Example 5), Hv242 (Example 6), Hv234 (Example 7), Hv254 (Example 8), Hv276 (Example 9), Hv235 (Example 10) there were.

次いで、それぞれ400℃で9時間(実施例1)、425℃で3時間(実施例2)、400℃で4時間(実施例3)、375℃で9時間(実施例4)、425℃で6時間(実施例5)、400℃で5時間(実施例6、8、10)、400℃で8時間(実施例7)、350℃で12時間(実施例9)低温焼鈍を行って、実施例1〜10の銅合金板材を得た。   Then, 9 hours at 400 ° C. (Example 1), 3 hours at 425 ° C. (Example 2), 4 hours at 400 ° C. (Example 3), 9 hours at 375 ° C. (Example 4), at 425 ° C. 6 hours (Example 5), 400 ° C. for 5 hours (Examples 6, 8, 10), 400 ° C. for 8 hours (Example 7), 350 ° C. for 12 hours (Example 9) The copper alloy board | plate material of Examples 1-10 was obtained.

次に、これらの実施例で得られた銅合金板材から試料を採取し、平均結晶粒径、導電率、引張強さ、硬度、破断伸び、曲げ加工性について以下のように調べた。   Next, samples were collected from the copper alloy sheet materials obtained in these examples, and the average crystal grain size, electrical conductivity, tensile strength, hardness, elongation at break, and bending workability were examined as follows.

銅合金板材の平均結晶粒径は、試料の板面(圧延面)を#1500耐水ペーパーで研磨した後、表面に研磨ひずみが入らないように振動研磨法により仕上げ研磨し、この仕上げ研磨した面について電界放出型走査電子顕微鏡(日本電子(株)製のFESEM(Field Emission Scanning Electron Microscope))を使用してEBSP(後方散乱電子回折像(Electron Backscatter Diffraction Pattern))を測定し、方位差5°以上の粒界を(結晶粒界として)抽出して結晶粒方位分布マップ(OIM(Orientation Imaging Microscopy)像)を描き、この結晶粒方位分布マップの全面積を結晶粒の数で割って結晶粒の平均面積を得た後、各々の結晶粒を円とした場合の平均直径として求めた(このような平均結晶粒径の算出は、一般的なEBSP測定装置に付属したソフトウエアにより自動的に行うことができる)。その結果、平均結晶粒径は、それぞれ0.7μm(実施例1)、0.9μm(実施例2)、0.6μm(実施例3、5、9)、0.4μm(実施例4)、0.8μm(実施例6、7、8)、0.5μm(実施例10)であった。   The average crystal grain size of the copper alloy sheet was determined by polishing the plate surface (rolled surface) of the sample with # 1500 water-resistant paper and then finishing polishing by vibration polishing method so that polishing distortion does not enter the surface. Measured EBSP (Electron Backscatter Diffraction Pattern) by using a field emission scanning electron microscope (Field Emission Scanning Electron Microscope (FESEM) manufactured by JEOL Ltd.). The above grain boundaries are extracted (as crystal grain boundaries) to draw a grain orientation distribution map (OIM (Orientation Imaging Microscopy) image), and the total area of this grain orientation distribution map is divided by the number of crystal grains. Average of After obtaining the product, it was obtained as an average diameter when each crystal grain was a circle (calculation of such average crystal grain size should be automatically performed by software attached to a general EBSP measuring device. Can do). As a result, the average crystal grain sizes were 0.7 μm (Example 1), 0.9 μm (Example 2), 0.6 μm (Examples 3, 5, and 9), 0.4 μm (Example 4), It was 0.8 μm (Examples 6, 7, 8) and 0.5 μm (Example 10).

銅合金板材の導電率は、JIS H0505の導電率測定方法に従って測定した。その結果、導電率は、それぞれ61.2%IACS(実施例1)、55.8%IACS(実施例2)、52.4%IACS(実施例3)、51.3%IACS(実施例4)、60.6%IACS(実施例5)、53.6%IACS(実施例6)、60.8%IACS(実施例7)、55.1%IACS(実施例8)、52.8%IACS(実施例9)、55.9%IACS(実施例10)であり、いずれも導電率50%IACS以上と良好であった。   The conductivity of the copper alloy sheet was measured according to the conductivity measurement method of JIS H0505. As a result, the electrical conductivity was 61.2% IACS (Example 1), 55.8% IACS (Example 2), 52.4% IACS (Example 3), and 51.3% IACS (Example 4), respectively. ), 60.6% IACS (Example 5), 53.6% IACS (Example 6), 60.8% IACS (Example 7), 55.1% IACS (Example 8), 52.8% IACS (Example 9) and 55.9% IACS (Example 10), both having good conductivity of 50% IACS or more.

銅合金板材の引張強さおよび破断伸びの評価として、銅合金板材のLD(圧延方向)の引張試験用の試験片(JIS Z2241の5号試験片)をそれぞれ採取し、JIS Z2241に準拠した引張試験を行い、引張強さおよび破断伸びを求めた。その結果、引張強さは、それぞれ688MPa(実施例1)、726MPa(実施例2)、765MPa(実施例3)、816MPa(実施例4)、718MPa(実施例5)、731MPa(実施例6)、708MPa(実施例7)、737MPa(実施例8)、826MPa(実施例9)、716MPa(実施例10)であり、いずれも引張強さ650MPa以上の良好な銅合金板材であった。また、破断伸びは、それぞれ9.4%(実施例1)、8.1%(実施例2)、6.8%(実施例3)、5.3%(実施例4)、7.1%(実施例5)、7.8(実施例6)、8.7%(実施例7)、8.0%(実施例8)、7.7%(実施例9)、9.6%(実施例10)であり、いずれも5%以上と良好であった。   As an evaluation of the tensile strength and breaking elongation of the copper alloy sheet, specimens for tensile testing of the LD (rolling direction) of the copper alloy sheet (sample No. 5 of JIS Z2241) were collected, respectively, and tensile according to JIS Z2241 Tests were conducted to determine tensile strength and elongation at break. As a result, the tensile strengths were 688 MPa (Example 1), 726 MPa (Example 2), 765 MPa (Example 3), 816 MPa (Example 4), 718 MPa (Example 5), and 731 MPa (Example 6), respectively. 708 MPa (Example 7), 737 MPa (Example 8), 826 MPa (Example 9), and 716 MPa (Example 10), all of which were good copper alloy sheet materials having a tensile strength of 650 MPa or more. The elongation at break was 9.4% (Example 1), 8.1% (Example 2), 6.8% (Example 3), 5.3% (Example 4), 7.1, respectively. % (Example 5), 7.8 (Example 6), 8.7% (Example 7), 8.0% (Example 8), 7.7% (Example 9), 9.6% (Example 10), all of which were as good as 5% or more.

銅合金板材の硬度として、JIS Z2244に準拠して、試料の板面(圧延面)のビッカース硬さを求めた。その結果、ビッカース硬さは、それぞれHv212(実施例1)、Hv225(実施例2)、Hv239(実施例3)、Hv255(実施例4)、Hv221(実施例5)、Hv225(実施例6)、Hv219(実施例7)、Hv231(実施例8)、Hv258(実施例9)、Hv220(実施例10)であった。   As the hardness of the copper alloy plate material, the Vickers hardness of the plate surface (rolled surface) of the sample was determined in accordance with JIS Z2244. As a result, the Vickers hardness was Hv212 (Example 1), Hv225 (Example 2), Hv239 (Example 3), Hv255 (Example 4), Hv221 (Example 5), and Hv225 (Example 6), respectively. Hv219 (Example 7), Hv231 (Example 8), Hv258 (Example 9), and Hv220 (Example 10).

銅合金板材の曲げ加工性を評価するために、銅合金板材から長手方向がLD(圧延方向)の曲げ試験片(幅10mm)および長手方向がTD(圧延方向および板厚方向に対して垂直な方向)の曲げ試験片(幅10mm)をそれぞれ採取し、これらの試験片について、曲げ試験治具の曲げ半径R=0.0として、JIS H3110に準拠した90°W曲げ試験を行った。この曲げ試験後の試験片について、曲げ加工部の表面および断面を光学顕微鏡によって50倍の倍率で観察して、割れが発生しない最小曲げ半径Rを求めた後、この最小曲げ半径Rを銅合金板材の板厚t(=0.15mm)で除することによって、長手方向がLDの曲げ試験片のTDを曲げ軸とするGoodWay曲げと、長手方向がTDの曲げ試験片のLDを曲げ軸とするBadWay曲げのそれぞれのR/tの値を求めた。なお、これらのR/tの値が小さいほど、曲げ加工性が良好である。その結果、TDを曲げ軸とするGoodWay曲げとLDを曲げ軸とするBadWay曲げのR/tの値は、それぞれ0.0と0.0(実施例1)、0.0と1.0(実施例2)、0.7と1.7(実施例3)、1.0と2.0(実施例4)、0.0と1.0(実施例5)、0.7と1.0(実施例6)、0.0と0.7(実施例7)、0.0と1.0(実施例8)、1.0と2.0(実施例9)、0.0と1.0(実施例10)であり、いずれもBadWay曲げのR/tの値が2.0以下と良好な曲げ加工性を有していた。   In order to evaluate the bending workability of the copper alloy sheet, the bending test piece (width 10 mm) whose longitudinal direction is LD (rolling direction) and the longitudinal direction from the copper alloy sheet are TD (perpendicular to the rolling direction and the plate thickness direction). Direction) bending test pieces (width 10 mm) were sampled, and a 90 ° W bending test in accordance with JIS H3110 was performed on these test pieces with a bending radius R = 0.0 of the bending test jig. About the test piece after this bending test, after observing the surface and cross section of a bending process part by 50 time with an optical microscope and calculating | requiring the minimum bending radius R which a crack does not generate | occur | produce, this minimum bending radius R is made into a copper alloy. By dividing by the plate thickness t (= 0.15 mm) of the plate material, the Good Way bending with the bending direction of TD of the bending test piece whose LD is the longitudinal direction and the LD of the bending test piece of which the longitudinal direction is TD are the bending axis. Each R / t value of the Bad Way bending was determined. In addition, bending workability is so favorable that these values of R / t are small. As a result, the R / t values of GoodWay bending with TD as the bending axis and BadWay bending with LD as the bending axis are 0.0 and 0.0 (Example 1), 0.0 and 1.0 (respectively). Example 2), 0.7 and 1.7 (Example 3), 1.0 and 2.0 (Example 4), 0.0 and 1.0 (Example 5), 0.7 and 1. 0 (Example 6), 0.0 and 0.7 (Example 7), 0.0 and 1.0 (Example 8), 1.0 and 2.0 (Example 9), 0.0 1.0 (Example 10), and in all cases, the value of R / t of Bad Way bending was 2.0 or less and had good bending workability.

[実施例11〜15]
2.34質量%のNiと0.49質量%のSiを含み、残部がCuおよび不可避不純物からなる銅合金(実施例11)、2.50質量%のNiと0.50質量%のSiと0.15質量%のMgを含み、残部がCuおよび不可避不純物からなる銅合金(実施例12)、2.85質量%のNiと0.70質量%のSiを含み、残部がCuおよび不可避不純物からなる銅合金(実施例13)、1.34質量%のNiと0.41質量%のSiと1.10質量%のCoと0.05質量%のMgを含み、残部がCuおよび不可避不純物からなる銅合金(実施例14)、3.56質量%のNiと0.78質量%のSiを含み、残部がCuおよび不可避不純物からなる銅合金(実施例15)をそれぞれ溶製し、横型連続鋳造機を用いて鋳造して断面寸法14mm×450mmの鋳片を得た後、それぞれの鋳片を950℃で6時間均質化処理した。
[Examples 11 to 15]
A copper alloy (Example 11) containing 2.34% by mass of Ni and 0.49% by mass of Si, with the balance being Cu and inevitable impurities, 2.50% by mass of Ni and 0.50% by mass of Si A copper alloy containing 0.15% by mass of Mg, the balance being Cu and unavoidable impurities (Example 12), containing 2.85% by mass of Ni and 0.70% by mass of Si, with the balance being Cu and unavoidable impurities A copper alloy (Example 13) comprising 1.34% by mass of Ni, 0.41% by mass of Si, 1.10% by mass of Co and 0.05% by mass of Mg, with the balance being Cu and inevitable impurities A copper alloy (Example 14) comprising 3.56% by mass of Ni and 0.78% by mass of Si, with the balance being Cu and unavoidable impurities (Example 15). Cast using a continuous casting machine and have a cross section of 14m × After obtaining the slab of 450 mm, and the respective billet for 6 hours homogenized at 950 ° C..

次いで、それぞれ475℃で6時間(実施例11)、525℃で3時間(実施例12)、575℃で2時間(実施例13)、500℃で4時間(実施例14)、600℃で3時間(実施例15)時効処理を行った。なお、この時効処理後の板材の導電率を実施例1〜10と同様の方法により測定したところ、それぞれ50.4%IACS(実施例11)、48.4%IACS(実施例12)、49.2%IACS(実施例13)、43.4%IACS(実施例14)、41.6%IACS(実施例15)であった。また、時効処理後の板材の板面(圧延面)のビッカース硬さを実施例1〜10と同様の方法により求めたところ、それぞれHv158(実施例11)、Hv192(実施例12)、Hv182(実施例13)、Hv215(実施例14)、Hv222(実施例15)であった。   Then at 475 ° C. for 6 hours (Example 11), at 525 ° C. for 3 hours (Example 12), at 575 ° C. for 2 hours (Example 13), at 500 ° C. for 4 hours (Example 14), at 600 ° C. An aging treatment was performed for 3 hours (Example 15). In addition, when the electrical conductivity of the plate material after the aging treatment was measured by the same method as in Examples 1 to 10, 50.4% IACS (Example 11), 48.4% IACS (Example 12), and 49, respectively. 2% IACS (Example 13), 43.4% IACS (Example 14), and 41.6% IACS (Example 15). Moreover, when the Vickers hardness of the plate surface (rolled surface) of the plate material after the aging treatment was determined by the same method as in Examples 1 to 10, Hv158 (Example 11), Hv192 (Example 12), and Hv182 ( Example 13), Hv215 (Example 14), and Hv222 (Example 15).

次いで、それぞれ圧延率99.0%で冷間圧延を行って厚さ0.15mmの板材を得た。この冷間圧延後の板材の板面(圧延面)のビッカース硬さを実施例1〜10と同様の方法により求めたところ、それぞれHv218(実施例11)、Hv248(実施例12)、Hv232(実施例13)、Hv278(実施例14)、Hv286(実施例15)であった。   Subsequently, cold rolling was performed at a rolling rate of 99.0% to obtain a plate material having a thickness of 0.15 mm. When the Vickers hardness of the plate surface (rolled surface) of the plate material after cold rolling was determined by the same method as in Examples 1 to 10, Hv218 (Example 11), Hv248 (Example 12), and Hv232 ( Example 13), Hv278 (Example 14), and Hv286 (Example 15).

次いで、それぞれ400℃で12時間(実施例11)、400℃で3時間(実施例12)、400℃で7時間(実施例13)、425℃で4時間(実施例14)、400℃で2時間(実施例15)低温焼鈍を行って、実施例11〜15の銅合金板材を得た。   Then at 400 ° C. for 12 hours (Example 11), at 400 ° C. for 3 hours (Example 12), at 400 ° C. for 7 hours (Example 13), at 425 ° C. for 4 hours (Example 14), at 400 ° C. The low temperature annealing was performed for 2 hours (Example 15), and the copper alloy sheet materials of Examples 11 to 15 were obtained.

次に、これらの実施例で得られた銅合金板材から試料を採取し、実施例1〜10と同様の方法により、平均結晶粒径、導電率、引張強さ、硬度、破断伸び、曲げ加工性について調べた。   Next, samples are taken from the copper alloy sheet materials obtained in these examples, and the average crystal grain size, conductivity, tensile strength, hardness, elongation at break, bending process are performed in the same manner as in Examples 1-10. The sex was examined.

その結果、銅合金板材の平均結晶粒径は、それぞれ0.6μm(実施例11、12)、0.5μm(実施例13)、0.7μm(実施例14)、0.4μm(実施例15)であった。   As a result, the average crystal grain sizes of the copper alloy sheets were 0.6 μm (Examples 11 and 12), 0.5 μm (Example 13), 0.7 μm (Example 14), and 0.4 μm (Example 15), respectively. )Met.

銅合金板材の導電率は、それぞれ60.8%IACS(実施例11)、51.6%IACS(実施例12)、56.6%IACS(実施例13)、55.8%IACS(実施例14)、50.4%IACS(実施例15)であり、いずれも導電率50%IACS以上と良好であった。   The conductivity of the copper alloy sheet was 60.8% IACS (Example 11), 51.6% IACS (Example 12), 56.6% IACS (Example 13), and 55.8% IACS (Example), respectively. 14) 50.4% IACS (Example 15), all having good conductivity of 50% IACS or more.

銅合金板材の引張強さは、それぞれ678MPa(実施例11)、756MPa(実施例12)、708MPa(実施例13)、809MPa(実施例14)、848MPa(実施例15)であり、いずれも引張強さ650MPa以上の良好な銅合金板材であった。   The tensile strengths of the copper alloy sheet materials were 678 MPa (Example 11), 756 MPa (Example 12), 708 MPa (Example 13), 809 MPa (Example 14), and 848 MPa (Example 15), respectively, and all were tensile. It was a good copper alloy sheet material having a strength of 650 MPa or more.

銅合金板材の破断伸びは、それぞれ10.5%(実施例11)、6.3%(実施例12)、8.6%(実施例13)、7.7%(実施例14)、5.6%(実施例5)であり、いずれも5%以上と良好であった。   The elongation at break of the copper alloy sheet was 10.5% (Example 11), 6.3% (Example 12), 8.6% (Example 13), 7.7% (Example 14), 5 6% (Example 5), both of which were good at 5% or more.

銅合金板材のビッカース硬さは、それぞれHv208(実施例11)、Hv234(実施例12)、Hv222(実施例13)、Hv250(実施例14)、Hv265(実施例5)であった。   The Vickers hardness of the copper alloy sheet was Hv208 (Example 11), Hv234 (Example 12), Hv222 (Example 13), Hv250 (Example 14), and Hv265 (Example 5), respectively.

銅合金板材の曲げ加工性の評価として、TDを曲げ軸とするGoodWay曲げとLDを曲げ軸とするBadWay曲げのR/tの値は、それぞれ0.0と0.0(実施例11)、0.0と1.7(実施例12)、0.0と0.7(実施例13)、0.0と1.7(実施例14)、1.0と2.0(実施例5)であり、いずれもBadWay曲げのR/tの値が2.0以下と良好な曲げ加工性を有していた。   As an evaluation of the bending workability of the copper alloy sheet, R / t values of Good Way bending with TD as a bending axis and Bad Way bending with LD as a bending axis are 0.0 and 0.0, respectively (Example 11), 0.0 and 1.7 (Example 12), 0.0 and 0.7 (Example 13), 0.0 and 1.7 (Example 14), 1.0 and 2.0 (Example 5) In all cases, the R / t value of BadWay bending was 2.0 or less and had good bending workability.

[比較例1]
0.94質量%のNiと0.29質量%のSiと0.15質量%のMgを含み、残部がCuおよび不可避不純物からなる銅合金を溶製し、低温焼鈍を375℃で6時間行った以外は、実施例1と同様の方法により、銅合金板材を得た。なお、時効処理後の板材の導電率を実施例1〜10と同様の方法により測定したところ、50.6%IACSであり、時効処理後の板材の板面(圧延面)のビッカース硬さを実施例1〜10と同様の方法により求めたところ、Hv114であった。また、冷間圧延後の板材の板面(圧延面)のビッカース硬さを実施例1〜10と同様の方法により求めたところ、Hv193であった。
[Comparative Example 1]
A copper alloy containing 0.94% by mass of Ni, 0.29% by mass of Si and 0.15% by mass of Mg, with the balance being Cu and unavoidable impurities is melted, and low-temperature annealing is performed at 375 ° C. for 6 hours. A copper alloy sheet was obtained in the same manner as in Example 1 except that. In addition, when the electrical conductivity of the plate material after the aging treatment was measured by the same method as in Examples 1 to 10, it was 50.6% IACS, and the Vickers hardness of the plate surface (rolled surface) of the plate material after the aging treatment was It was Hv114 when calculated | required by the method similar to Examples 1-10. Moreover, it was Hv193 when the Vickers hardness of the board surface (rolling surface) of the board | plate material after cold rolling was calculated | required by the method similar to Examples 1-10.

次に、この比較例で得られた銅合金板材から試料を採取し、実施例1〜10と同様の方法により、平均結晶粒径、導電率、引張強さ、硬度、破断伸び、曲げ加工性について調べた。その結果、銅合金板材の平均結晶粒径は22μm、導電率は63.2%IACS、引張強さは588MPa、破断伸びは12.2%、ビッカース硬さはHv182であった。また、TDを曲げ軸とするGoodWay曲げとLDを曲げ軸とするBadWay曲げのR/tの値は、それぞれ0.0と2.0であった。   Next, a sample was taken from the copper alloy sheet obtained in this comparative example, and the average crystal grain size, conductivity, tensile strength, hardness, elongation at break, bending workability were obtained in the same manner as in Examples 1-10. Investigated about. As a result, the average crystal grain size of the copper alloy sheet was 22 μm, the electrical conductivity was 63.2% IACS, the tensile strength was 588 MPa, the elongation at break was 12.2%, and the Vickers hardness was Hv182. The R / t values of Good Way bending with TD as the bending axis and Bad Way bending with LD as the bending axis were 0.0 and 2.0, respectively.

この比較例では、NiとSi添加量が少なく、時効処理後に析出物が少ないので、その後の圧延中に、転位の蓄積量が少なく(加工硬化が小さく)、低温焼鈍中に連続再結晶が発生しないため、引張強さが低かった。また、このように強度が低いにもかかわらず、BadWay曲げ加工性は特に向上していなかった。   In this comparative example, the amount of addition of Ni and Si is small, and the amount of precipitates is small after aging treatment. Therefore, during the subsequent rolling, the amount of accumulated dislocations is small (work hardening is small), and continuous recrystallization occurs during low-temperature annealing. The tensile strength was low. In addition, despite the low strength, BadWay bending workability was not particularly improved.

[比較例2]
4.42質量%のNiと1.08質量%のSiを含み、残部がCuおよび不可避不純物からなる銅合金を溶製し、実施例1と同様の方法により熱間処理を行った。この比較例では、NiとSi添加量が多過ぎるため、熱間圧延中に激しい割れが発生してしまい、その後の作製を中断した。
[Comparative Example 2]
A copper alloy containing 4.42% by mass of Ni and 1.08% by mass of Si, with the balance being Cu and inevitable impurities was melted, and hot treatment was performed in the same manner as in Example 1. In this comparative example, since the addition amounts of Ni and Si were too large, severe cracks occurred during hot rolling, and subsequent production was interrupted.

[比較例3〜7]
それぞれ実施例2と同一の成分の銅合金を溶製し、比較例3では時効処理を行わなかった以外、比較例4では625℃で6時間時効処理を行った以外、比較例5では熱間圧延後に厚さ1.4mmまで冷間圧延してから時効処理を行った後に圧延率89.3%で冷間圧延を行った以外、比較例6では低温焼鈍時間を1分間とした以外、比較例7では低温焼鈍を450℃で6時間行った以外は、それぞれ実施例2と同様の方法により、銅合金板材を得た。なお、時効処理後(比較例3では熱間圧延後)の板材の導電率を実施例1〜10と同様の方法により測定したところ、それぞれ28.7%IACS(比較例3)、50.8%IACS(比較例4)、49.5%IACS(比較例5)、49.0%IACS(比較例6、7)であり、時効処理後(比較例3では熱間圧延後)の板材の板面(圧延面)のビッカース硬さを実施例1〜10と同様の方法により求めたところ、それぞれHv141(比較例3)、Hv124(比較例4)、Hv202(比較例5)、Hv195(比較例6、7)であった。また、冷間圧延後の板材の板面(圧延面)のビッカース硬さを実施例1〜10と同様の方法により求めたところ、それぞれHv212(比較例3)、Hv202(比較例4)、Hv228(比較例5)、Hv243(比較例6、7)であった。
[Comparative Examples 3 to 7]
In the comparative example 5, except that the aging treatment was performed at 625 ° C. for 6 hours in the comparative example 4 except that the aging treatment was not performed in the comparative example 3 except that the copper alloys having the same components as in the example 2 were melted. In Comparative Example 6, except that cold rolling was performed at a rolling rate of 89.3% after performing cold aging to a thickness of 1.4 mm after rolling and then performing a aging treatment, in Comparative Example 6 except that the low-temperature annealing time was 1 minute. In Example 7, a copper alloy sheet was obtained in the same manner as in Example 2 except that low temperature annealing was performed at 450 ° C. for 6 hours. In addition, when the electrical conductivity of the plate material after the aging treatment (after hot rolling in Comparative Example 3) was measured by the same method as in Examples 1 to 10, 28.7% IACS (Comparative Example 3) and 50.8 respectively. % IACS (Comparative Example 4), 49.5% IACS (Comparative Example 5), 49.0% IACS (Comparative Examples 6 and 7), and after the aging treatment (after hot rolling in Comparative Example 3), When the Vickers hardness of the plate surface (rolled surface) was determined by the same method as in Examples 1 to 10, Hv141 (Comparative Example 3), Hv124 (Comparative Example 4), Hv202 (Comparative Example 5), and Hv195 (Comparative), respectively. Example 6 and 7). Further, when the Vickers hardness of the plate surface (rolled surface) of the plate material after cold rolling was determined by the same method as in Examples 1 to 10, Hv212 (Comparative Example 3), Hv202 (Comparative Example 4), and Hv228, respectively. (Comparative Example 5) and Hv243 (Comparative Examples 6 and 7).

次に、これらの比較例で得られた銅合金板材から試料を採取し、実施例1〜10と同様の方法により、平均結晶粒径、導電率、引張強さ、硬度、破断伸び、曲げ加工性について調べた。その結果、銅合金板材の平均結晶粒径は、それぞれ8.4μm(比較例3)、6.6μm(比較例4)、5.2μm(比較例5)、20μm(比較例6)、5.8μm(比較例7)であり、導電率は、それぞれ50.9%IACS(比較例3)、62.4%IACS(比較例4)、54.4%IACS(比較例5)、46.8%IACS(比較例6)、57.9%IACS(比較例7)であった。また、引張強さは、それぞれ632MPa(比較例3)、592MPa(比較例4)、692MPa(比較例5)、766MPa(比較例6)、608MPa(比較例7)であり、破断伸びは、それぞれ8.9%(比較例3)、9.6%(比較例4)、7.6%(比較例5)、2.5%(比較例6)、8.6%(比較例7)であり、ビッカース硬さは、それぞれHv195(比較例3)、Hv184(比較例4)、Hv210(比較例5)、Hv240(比較例6)、Hv190(比較例7)であった。さらに、TDを曲げ軸とするGoodWay曲げとLDを曲げ軸とするBadWay曲げのR/tの値は、それぞれ0.0と1.7(比較例3)、0.0と1.0(比較例4)、0.0と2.7(比較例5)、1.0と6.0(比較例6)、0.0と1.0(比較例7)であった。   Next, samples were collected from the copper alloy sheet materials obtained in these comparative examples, and the average crystal grain size, conductivity, tensile strength, hardness, elongation at break, bending work were performed in the same manner as in Examples 1-10. The sex was examined. As a result, the average crystal grain size of the copper alloy sheet was 8.4 μm (Comparative Example 3), 6.6 μm (Comparative Example 4), 5.2 μm (Comparative Example 5), 20 μm (Comparative Example 6), respectively. The conductivity is 50.9% IACS (Comparative Example 3), 62.4% IACS (Comparative Example 4), 54.4% IACS (Comparative Example 5), and 46.8, respectively. % IACS (Comparative Example 6) and 57.9% IACS (Comparative Example 7). The tensile strengths are 632 MPa (Comparative Example 3), 592 MPa (Comparative Example 4), 692 MPa (Comparative Example 5), 766 MPa (Comparative Example 6), and 608 MPa (Comparative Example 7), respectively. 8.9% (Comparative Example 3), 9.6% (Comparative Example 4), 7.6% (Comparative Example 5), 2.5% (Comparative Example 6), 8.6% (Comparative Example 7) The Vickers hardness was Hv195 (Comparative Example 3), Hv184 (Comparative Example 4), Hv210 (Comparative Example 5), Hv240 (Comparative Example 6), and Hv190 (Comparative Example 7), respectively. Further, the R / t values of Good Way bending with TD as the bending axis and Bad Way bending with LD as the bending axis are 0.0 and 1.7 (Comparative Example 3), 0.0 and 1.0 (Comparison), respectively. Example 4), 0.0 and 2.7 (Comparative Example 5), 1.0 and 6.0 (Comparative Example 6), 0.0 and 1.0 (Comparative Example 7).

比較例3〜7は、実施例2と同一の成分の銅合金を溶製し、熱間圧延後の工程の条件が不適切であるため、特性が悪くなった例である。比較例3では、熱間圧延後の時効処理を行わなかったため、析出物が少なくなり(熱間圧延後の導電率28.7%IACS、硬さHv141)、そのため、冷間圧延中に転位の蓄積量が少なく、実施例2と比べて冷間圧延後のビッカース硬さが低く、低温焼鈍中に連続再結晶を十分に発生させることができず、実施例2と比べて、引張強さが低下したにもかかわらず、BadWay曲げ加工性が良好でなかった。比較例4では、時効処理温度が高過ぎて、析出物が粗大化してしまい、その後の冷間圧延中に転位の蓄積量が少なく、引張強さが低くなった。比較例5では、熱間圧延後に板厚1.4mmまで冷間圧延してから時効処理を行い、その後の冷間圧延の圧延率が89.3%となり、転位の蓄積量が少なく、BadWay曲げ加工性が良好でなかった。比較例6では、通常行われている低温焼鈍と同様に短時間の低温焼鈍を行ったため、ほとんど連続再結晶を発生させることができず、引張強さが高いものの、BadWay曲げ加工性が著しく低下した。比較例7では、低温焼鈍の温度が高く且つ時間も長かったため、不連続再結晶が発生してしまい、引張強さが低下した。   Comparative Examples 3 to 7 are examples in which characteristics were deteriorated because a copper alloy having the same components as in Example 2 was melted and the process conditions after hot rolling were inappropriate. In Comparative Example 3, since the aging treatment after hot rolling was not performed, precipitates were reduced (conductivity 28.7% IACS after hot rolling, hardness Hv141). Therefore, dislocations were generated during cold rolling. The amount of accumulation is small, the Vickers hardness after cold rolling is low compared to Example 2, the continuous recrystallization cannot be sufficiently generated during low temperature annealing, and the tensile strength is low compared to Example 2. Despite the decrease, BadWay bending workability was not good. In Comparative Example 4, the aging treatment temperature was too high and the precipitates became coarse, so that the amount of dislocation accumulated during the subsequent cold rolling was small and the tensile strength was low. In Comparative Example 5, after hot rolling, the steel sheet was cold-rolled to a thickness of 1.4 mm and then subjected to an aging treatment. The rolling rate of the subsequent cold rolling was 89.3%, the amount of dislocations was small, and Bad Way bending Workability was not good. In Comparative Example 6, since low-temperature annealing was performed for a short time in the same manner as normal low-temperature annealing, almost no continuous recrystallization could be generated, and although the tensile strength was high, BadWay bending workability was significantly reduced. did. In Comparative Example 7, since the temperature of the low-temperature annealing was high and the time was long, discontinuous recrystallization occurred and the tensile strength decreased.

[比較例8〜12]
それぞれ実施例2と同一の成分の銅合金を溶製し、実施例1〜10と同様の方法により鋳片を得た後、それぞれの鋳片を950℃に加熱して1時間保持し、950℃から650℃まで温度を下げながら熱間圧延を行って厚さ10mmの板材にした後、急冷し、その後、通常の製造方法により、すなわち、熱間圧延後にさらに厚さ0.2mmまで冷間圧延し、750℃で1分間溶体化を行って水冷した後、時効処理、冷間圧延および低温焼鈍を行って、銅合金板材を製造した。時効処理はそれぞれ450℃で3時間(比較例8)、450℃で6時間(比較例9)、450℃で20時間(比較例10〜12)行い、冷間処理はそれぞれ圧延率25.0%(比較例8〜10)、圧延率40.0%(比較例11、12)で行い、低温焼鈍はそれぞれ425℃で1分間(比較例8〜11)、425℃で3時間(比較例12)行った。
[Comparative Examples 8-12]
After melting copper alloys having the same components as in Example 2 and obtaining slabs by the same method as in Examples 1 to 10, each slab was heated to 950 ° C. and held for 1 hour, 950 A steel sheet having a thickness of 10 mm is obtained by performing hot rolling while lowering the temperature from ℃ to 650 ℃, then rapidly cooled, and then cold-cooled to a thickness of 0.2 mm by a normal manufacturing method, that is, after hot rolling. After rolling, forming a solution at 750 ° C. for 1 minute and cooling with water, aging treatment, cold rolling and low temperature annealing were performed to produce a copper alloy sheet. The aging treatment is performed at 450 ° C. for 3 hours (Comparative Example 8), 450 ° C. for 6 hours (Comparative Example 9), and 450 ° C. for 20 hours (Comparative Examples 10 to 12). % (Comparative Examples 8 to 10), rolling rate of 40.0% (Comparative Examples 11 and 12), and low temperature annealing was performed at 425 ° C. for 1 minute (Comparative Examples 8 to 11) and 425 ° C. for 3 hours (Comparative Example) 12) went.

なお、時効処理後の板材の導電率を実施例1〜10と同様の方法により測定したところ、それぞれ42.6%IACS(比較例8)、44.7%IACS(比較例9)、50.6%IACS(比較例10〜12)であり、時効処理後の板材の板面(圧延面)のビッカース硬さを実施例1〜10と同様の方法により求めたところ、それぞれHv208(比較例8)、Hv220(比較例9)、Hv182(比較例10〜12)であった。また、冷間圧延後の板材の板面(圧延面)のビッカース硬さを実施例1〜10と同様の方法により求めたところ、それぞれHv220(比較例8)、Hv238(比較例9)、Hv206(比較例10)、Hv237(比較例11、12)であった。   In addition, when the electrical conductivity of the board | plate material after an aging treatment was measured by the method similar to Examples 1-10, it was 42.6% IACS (comparative example 8), 44.7% IACS (comparative example 9), and 50.%, respectively. 6% IACS (Comparative Examples 10 to 12), and the Vickers hardness of the plate surface (rolled surface) of the plate after the aging treatment was determined by the same method as in Examples 1 to 10, and Hv208 (Comparative Example 8). ), Hv220 (Comparative Example 9), and Hv182 (Comparative Examples 10-12). Further, when the Vickers hardness of the plate surface (rolled surface) of the plate material after cold rolling was determined by the same method as in Examples 1 to 10, Hv220 (Comparative Example 8), Hv238 (Comparative Example 9), and Hv206, respectively. (Comparative Example 10) and Hv237 (Comparative Examples 11 and 12).

次に、これらの比較例で得られた銅合金板材から試料を採取し、実施例1〜10と同様の方法により、平均結晶粒径、導電率、引張強さ、硬度、破断伸び、曲げ加工性について調べた。その結果、銅合金板材の平均結晶粒径は、いずれも8.5μmであり、導電率は、それぞれ41.9%IACS(比較例8)、43.8%IACS(比較例9)、49.8%IACS(比較例10)、49.2%IACS(比較例11)、51.4%IACS(比較例12)であった。また、引張強さは、それぞれ720MPa(比較例8)、754MPa(比較例9)、674MPa(比較例10)、746MPa(比較例11)、690MPa(比較例12)であり、破断伸びは、それぞれ8.4%(比較例8)、6.6%(比較例9)、5.4%(比較例10)、3.6%(比較例11)、7.2%(比較例12)であり、ビッカース硬さは、それぞれHv222(比較例8)、Hv240(比較例9)、Hv208(比較例10)、Hv239(比較例11)、Hv215(比較例12)であった。さらに、TDを曲げ軸とするGoodWay曲げとLDを曲げ軸とするBadWay曲げのR/tの値は、それぞれ1.7と1.0(比較例8)、1.7と2.0(比較例9)、1.0と2.5(比較例10)、2.0と6.0(比較例11)、1.7と4.0(比較例12)であった。   Next, samples were collected from the copper alloy sheet materials obtained in these comparative examples, and the average crystal grain size, conductivity, tensile strength, hardness, elongation at break, bending work were performed in the same manner as in Examples 1-10. The sex was examined. As a result, the average crystal grain size of the copper alloy sheet was 8.5 μm, and the conductivity was 41.9% IACS (Comparative Example 8), 43.8% IACS (Comparative Example 9), and 49. They were 8% IACS (Comparative Example 10), 49.2% IACS (Comparative Example 11), and 51.4% IACS (Comparative Example 12). The tensile strengths are 720 MPa (Comparative Example 8), 754 MPa (Comparative Example 9), 674 MPa (Comparative Example 10), 746 MPa (Comparative Example 11), and 690 MPa (Comparative Example 12), respectively. 8.4% (Comparative Example 8), 6.6% (Comparative Example 9), 5.4% (Comparative Example 10), 3.6% (Comparative Example 11), 7.2% (Comparative Example 12) The Vickers hardness was Hv222 (Comparative Example 8), Hv240 (Comparative Example 9), Hv208 (Comparative Example 10), Hv239 (Comparative Example 11), and Hv215 (Comparative Example 12), respectively. Further, the R / t values of Good Way bending with TD as the bending axis and Bad Way bending with LD as the bending axis are 1.7 and 1.0 (Comparative Example 8), 1.7 and 2.0 (Comparison), respectively. Examples 9), 1.0 and 2.5 (Comparative Example 10), 2.0 and 6.0 (Comparative Example 11), 1.7 and 4.0 (Comparative Example 12).

比較例8、9では、比較的短時間の時効処理を行っており、引張強さと曲げ加工性が良好であったが、導電率が低かった。比較例10では、導電率を向上させるために、比較例8、9より時効処理時間を長くしたが、引張強さとBadWay曲げ加工性が低下した。比較例11では、比較例10の導電率を維持して引張強さを高くするために、時効処理後の冷間圧延の圧延率を高くしており、引張強さ強度が向上したが、BadWay曲げ加工性が著しく低下した。比較例12では、実施例2と同様に425℃で3時間の低温焼鈍を行ったが、低温焼鈍前の冷間圧延率が40%と低かったため、連続再結晶を発生させることができなかったので、BadWay曲げ加工性を回復させることができなかった。   In Comparative Examples 8 and 9, the aging treatment was performed for a relatively short time, and the tensile strength and the bending workability were good, but the electrical conductivity was low. In Comparative Example 10, the aging treatment time was made longer than Comparative Examples 8 and 9 in order to improve the electrical conductivity, but the tensile strength and BadWay bending workability were lowered. In Comparative Example 11, in order to maintain the electrical conductivity of Comparative Example 10 and increase the tensile strength, the rolling rate of cold rolling after aging treatment was increased, and the tensile strength strength was improved. Bending workability was significantly reduced. In Comparative Example 12, low-temperature annealing was performed at 425 ° C. for 3 hours in the same manner as in Example 2. However, since the cold rolling rate before low-temperature annealing was as low as 40%, continuous recrystallization could not be generated. Therefore, BadWay bending workability could not be recovered.

これらの実施例1〜15および比較例1〜12の銅合金板材に使用した銅合金の組成を表1に示し、製造条件および製造中の板材の導電率とビッカース硬さを表2に示し、製造した銅合金板材の特性を表3に示す。   Table 1 shows the compositions of the copper alloys used in the copper alloy sheet materials of Examples 1 to 15 and Comparative Examples 1 to 12, and Table 2 shows the manufacturing conditions and the conductivity and Vickers hardness of the sheet material being manufactured. Table 3 shows the characteristics of the produced copper alloy sheet.

Figure 2012046810
Figure 2012046810

Figure 2012046810
Figure 2012046810

Figure 2012046810
Figure 2012046810

[比較例13〜16]
比較例13〜16として、それぞれ実施例2とほぼ同じ成分を有する板厚0.15mmの市販の銅合金の工程材C7025−TM02、C7025−TM03、C7025−TM04、C7025−TR02を用意し、成分分析と特性評価を行った。なお、TM工程材は、一般に、熱間圧延後に、冷間圧延、溶体化処理および時効処理を行って製造した板材であり、曲げ加工性が比較的良く、曲げ加工性に対する要求が比較的高いコネクタなどの電気電子機器の通電部品用の板材として使用されている。一方、TR工程材は、一般に、熱間圧延後に、溶体化処理を行わず、冷間圧延と時効処理を繰返して製造した板材であり、導電率は比較的高いが、曲げ加工性が比較的悪く、曲げ加工性を対する要求が比較的低いリードフレームなどの電気電子機器の通電部品用の板材として使用されている。
[Comparative Examples 13 to 16]
As Comparative Examples 13 to 16, commercially available copper alloy process materials C7025-TM02, C7025-TM03, C7025-TM04, and C7025-TR02 having a thickness of 0.15 mm each having substantially the same components as in Example 2 were prepared. Analysis and characterization were performed. In addition, TM process material is generally a plate material manufactured by performing cold rolling, solution treatment and aging treatment after hot rolling, and has relatively good bending workability and relatively high demand for bending workability. It is used as a plate material for current-carrying parts of electrical and electronic equipment such as connectors. On the other hand, the TR process material is generally a plate material manufactured by repeating cold rolling and aging treatment without performing a solution treatment after hot rolling, and has a relatively high conductivity, but a relatively high bending workability. Unfortunately, it is used as a plate material for current-carrying parts of electrical and electronic equipment such as lead frames that have a relatively low demand for bending workability.

その結果、これらの板材は、それぞれ2.52質量%のNiと0.52質量%のSiと0.16質量%のMgを含み、残部がCuおよび不可避不純物からなる銅合金(比較例13)、2.49質量%のNiと0.50質量%のSiと0.14質量%のMgを含み、残部がCuおよび不可避不純物からなる銅合金(比較例14)、2.48質量%のNiと0.49質量%のSiと0.15質量%のMgを含み、残部がCuおよび不可避不純物からなる銅合金(比較例15)、2.53質量%のNiと0.53質量%のSiと0.15質量%のMgを含み、残部がCuおよび不可避不純物からなる銅合金(比較例16)の板材であった。また、板材の平均結晶粒径は、それぞれ8.4μm(比較例13)、8.6μm(比較例14)、9.0μm(比較例15)、6.2μm(比較例16)であり、導電率は、それぞれ45.2%IACS(比較例13)、43.8%IACS(比較例14)、42.2%IACS(比較例15)、51.3%IACS(比較例16)であった。また、引張強さは、それぞれ724MPa(比較例13)、742MPa(比較例14)、815MPa(比較例15)、655MPa(比較例16)であり、破断伸びは、それぞれ9.4%(比較例13)、8.6%(比較例14)、2.8%(比較例15)、4.3%(比較例16)であり、ビッカース硬さは、それぞれHv218(比較例13)、Hv232(比較例14)、Hv249(比較例15)、Hv203(比較例16)であった。さらに、TDを曲げ軸とするGoodWay曲げとLDを曲げ軸とするBadWay曲げのR/tの値は、それぞれ1.5と1.0(比較例13)、1.5と1.5(比較例14)、2.0と6.0(比較例15)、1.5と4.0(比較例16)であった。   As a result, these plate materials each contain 2.52% by mass of Ni, 0.52% by mass of Si and 0.16% by mass of Mg, with the balance being Cu and inevitable impurities (Comparative Example 13). A copper alloy containing 2.49% by mass of Ni, 0.50% by mass of Si and 0.14% by mass of Mg, the balance being Cu and inevitable impurities (Comparative Example 14), 2.48% by mass of Ni And 0.49% by mass of Si and 0.15% by mass of Mg, with the balance being Cu and inevitable impurities (Comparative Example 15), 2.53% by mass of Ni and 0.53% by mass of Si And 0.15% by mass of Mg, with the balance being a copper alloy plate (Comparative Example 16) made of Cu and inevitable impurities. In addition, the average crystal grain sizes of the plate materials are 8.4 μm (Comparative Example 13), 8.6 μm (Comparative Example 14), 9.0 μm (Comparative Example 15), and 6.2 μm (Comparative Example 16), respectively. The rates were 45.2% IACS (Comparative Example 13), 43.8% IACS (Comparative Example 14), 42.2% IACS (Comparative Example 15), and 51.3% IACS (Comparative Example 16), respectively. . The tensile strengths were 724 MPa (Comparative Example 13), 742 MPa (Comparative Example 14), 815 MPa (Comparative Example 15), and 655 MPa (Comparative Example 16), respectively, and the elongation at break was 9.4% (Comparative Example). 13), 8.6% (Comparative Example 14), 2.8% (Comparative Example 15), 4.3% (Comparative Example 16), and the Vickers hardness is Hv218 (Comparative Example 13) and Hv232 (respectively). Comparative Example 14), Hv249 (Comparative Example 15), and Hv203 (Comparative Example 16). Further, R / t values of Good Way bending with TD as the bending axis and Bad Way bending with LD as the bending axis are 1.5 and 1.0 (Comparative Example 13), 1.5 and 1.5 (Comparison, respectively). Examples 14), 2.0 and 6.0 (Comparative Example 15), 1.5 and 4.0 (Comparative Example 16).

このように、比較例13〜15の市販のC7025−TM工程材は、引張強さ700MPa以上を維持するために、導電率が45%IACS程度に止まっている。一方、比較例16の市販のC7025−TR工程材は、導電率が50%IACSを超えているが、引張強さが低くなり、曲げ加工性が著しく悪くなっている。   Thus, the commercially available C7025-TM process materials of Comparative Examples 13 to 15 have an electrical conductivity of about 45% IACS in order to maintain a tensile strength of 700 MPa or more. On the other hand, the commercially available C7025-TR process material of Comparative Example 16 has a conductivity exceeding 50% IACS, but the tensile strength is low and the bending workability is remarkably deteriorated.

これらの比較例13〜16の板材の組成を表4に示し、特性評価結果を表5に示す。   The compositions of the plate materials of Comparative Examples 13 to 16 are shown in Table 4, and the property evaluation results are shown in Table 5.

Figure 2012046810
Figure 2012046810

Figure 2012046810
Figure 2012046810

Claims (15)

1.0〜4.0質量%のNiと0.3〜1.0質量%のSiを含み、残部がCuおよび不可避不純物からなる組成を有する銅合金の原料を溶解して鋳造することにより得られた鋳片を熱間圧延または均質化処理した後、450〜600℃で1〜20時間時効処理を行い、次いで、圧延率90%以上で冷間圧延を行った後、300〜430℃で1〜48時間低温焼鈍を行うことを特徴とする、銅合金板材の製造方法。 Obtained by melting and casting a raw material of a copper alloy containing 1.0 to 4.0% by mass of Ni and 0.3 to 1.0% by mass of Si, with the balance consisting of Cu and inevitable impurities. The obtained slab was hot-rolled or homogenized, then subjected to aging treatment at 450 to 600 ° C. for 1 to 20 hours, and then cold rolling at a rolling rate of 90% or more, and then at 300 to 430 ° C. A method for producing a copper alloy sheet, comprising performing low-temperature annealing for 1 to 48 hours. 前記時効処理後に導電率が40%IACS以上でビッカース硬さがHv150以上になるように前記時効処理を行うことを特徴とする、請求項1に記載の銅合金板材の製造方法。 2. The method for producing a copper alloy sheet according to claim 1, wherein the aging treatment is performed so that the electrical conductivity is 40% IACS or more and the Vickers hardness is Hv 150 or more after the aging treatment. 前記銅合金の原料の組成が、0.01〜0.3質量%のMgをさらに含むことを特徴とする、請求項1または2に記載する銅合金板材の製造方法。 The method for producing a copper alloy sheet according to claim 1 or 2, wherein the composition of the raw material of the copper alloy further contains 0.01 to 0.3% by mass of Mg. 前記銅合金の原料の組成が、Sn、Zn、Co、Cr、P、B、Al、Fe、Zr、TiおよびMnからなる群から選ばれる1種以上の元素を合計3質量%以下の範囲でさらに含むことを特徴とする、請求項1乃至3のいずれかに記載の銅合金板材の製造方法。 The composition of the raw material of the copper alloy is one or more elements selected from the group consisting of Sn, Zn, Co, Cr, P, B, Al, Fe, Zr, Ti, and Mn in a range of 3 mass% or less in total. It further contains, The manufacturing method of the copper alloy board | plate material in any one of the Claims 1 thru | or 3 characterized by the above-mentioned. 1.0〜4.0質量%のNiと0.3〜1.0質量%のSiを含み、残部がCuおよび不可避不純物からなる組成を有し、方位差5°以上の粒界を結晶粒界として平均結晶粒径1μm以下の微細結晶粒組織を有することを特徴とする、銅合金板材。 It has a composition comprising 1.0 to 4.0% by mass of Ni and 0.3 to 1.0% by mass of Si, with the balance being Cu and inevitable impurities. A copper alloy sheet having a fine grain structure with an average grain size of 1 μm or less as a boundary. 導電率が50%IACS以上、引張強さが650MPa以上であり、JIS H3110に準拠して90°W曲げ試験を行った後に割れが発生しない最小曲げ半径Rと銅合金板材の厚さtとの比R/tが2.0以下であることを特徴とする、請求項5に記載の銅合金板材。 The minimum bend radius R and the thickness t of the copper alloy sheet are such that the conductivity is 50% IACS or more, the tensile strength is 650 MPa or more, and a 90 ° W bend test is performed in accordance with JIS H3110, and cracks do not occur. Ratio R / t is 2.0 or less, The copper alloy board | plate material of Claim 5 characterized by the above-mentioned. 前記導電率が55%IACS以上であることを特徴とする、請求項6に記載の銅合金板材。 The copper alloy sheet according to claim 6, wherein the conductivity is 55% IACS or more. 前記導電率が60%IACS以上であることを特徴とする、請求項6に記載の銅合金板材。 The copper alloy sheet according to claim 6, wherein the conductivity is 60% IACS or more. 前記引張強さが700MPa以上であることを特徴とする、請求項6乃至8のいずれかに記載の銅合金板材。 The copper alloy sheet according to any one of claims 6 to 8, wherein the tensile strength is 700 MPa or more. 前記引張強さが750MPa以上であることを特徴とする、請求項6または7に記載の銅合金板材。 The copper alloy sheet according to claim 6 or 7, wherein the tensile strength is 750 MPa or more. 前記引張強さが800MPa以上であることを特徴とする、請求項6または7に記載の銅合金板材。 The copper alloy sheet according to claim 6 or 7, wherein the tensile strength is 800 MPa or more. 前記R/tが1.0以下であることを特徴とする、請求項6乃至9に記載の銅合金板材。 The copper alloy sheet according to claim 6, wherein the R / t is 1.0 or less. 前記R/tが0.5以下であることを特徴とする、請求項6乃至8に記載の銅合金板材。 9. The copper alloy sheet according to claim 6, wherein the R / t is 0.5 or less. 前記銅合金板材の組成が、0.01〜0.3質量%のMgをさらに含むことを特徴とする、請求項5乃至13のいずれかに記載する銅合金板材。 The composition of the said copper alloy board | plate material further contains 0.01-0.3 mass% Mg, The copper alloy board | plate material in any one of the Claims 5 thru | or 13 characterized by the above-mentioned. 前記銅合金板材の組成が、Sn、Zn、Co、Cr、P、B、Al、Fe、Zr、TiおよびMnからなる群から選ばれる1種以上の元素を合計3質量%以下の範囲でさらに含むことを特徴とする、請求項5乃至14のいずれかに記載の銅合金板材。
The composition of the copper alloy sheet further includes at least one element selected from the group consisting of Sn, Zn, Co, Cr, P, B, Al, Fe, Zr, Ti, and Mn in a range of 3% by mass or less in total. The copper alloy sheet material according to claim 5, wherein the copper alloy sheet material is included.
JP2010192016A 2010-08-30 2010-08-30 Copper alloy sheet and manufacturing method thereof Active JP5657311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010192016A JP5657311B2 (en) 2010-08-30 2010-08-30 Copper alloy sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010192016A JP5657311B2 (en) 2010-08-30 2010-08-30 Copper alloy sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012046810A true JP2012046810A (en) 2012-03-08
JP5657311B2 JP5657311B2 (en) 2015-01-21

Family

ID=45901985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010192016A Active JP5657311B2 (en) 2010-08-30 2010-08-30 Copper alloy sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5657311B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014080670A (en) * 2012-10-18 2014-05-08 Jx Nippon Mining & Metals Corp High strength titanium copper foil
KR101472347B1 (en) * 2012-11-05 2014-12-15 주식회사 풍산 Copper alloy materials for brassware and method for production same
JP2015036452A (en) * 2013-08-14 2015-02-23 古河電気工業株式会社 Copper alloy sheet material and connector using the same, and production method of copper alloy sheet material
KR101502060B1 (en) * 2013-07-12 2015-03-11 신원금속 주식회사 Surface-treating method of nickel-silver
JP2018141231A (en) * 2017-02-25 2018-09-13 ヴィーラント ウェルケ アクチーエン ゲゼルシャフトWieland−Werke Aktiengesellschaft Slide member composed of copper alloy
JP2019007031A (en) * 2017-06-20 2019-01-17 Jx金属株式会社 Cu-Ni-Si-BASED COPPER ALLOY
CN110306077A (en) * 2019-07-24 2019-10-08 宁波兴业盛泰集团有限公司 A kind of electric connector Vulcan metal and preparation method thereof
CN111020283A (en) * 2019-12-06 2020-04-17 宁波金田铜业(集团)股份有限公司 Copper alloy strip for plug-in and preparation method thereof
CN114752810A (en) * 2022-03-24 2022-07-15 江苏恒盈电子科技有限公司 High-strength semiconductor lead frame for circuit board and preparation method thereof
CN114807672A (en) * 2022-03-23 2022-07-29 中南大学 Cu-Zn-Cr-Zr-Fe-Si alloy and preparation method thereof
CN115896512A (en) * 2022-12-25 2023-04-04 中国兵器科学研究院宁波分院 Preparation method of copper alloy material for high-precision etched lead frame
KR20230077876A (en) * 2021-11-26 2023-06-02 한국재료연구원 Copper-Nickel-Silicon-Manganese alloy comprising G-Phase and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5846346A (en) * 1995-12-08 1998-12-08 Poongsan Corporation High strength high conductivity Cu-alloy of precipitate growth suppression type and production process
JP2001049369A (en) * 1999-08-05 2001-02-20 Nippon Mining & Metals Co Ltd Copper alloy for electronic material and its production
JP2006089763A (en) * 2004-09-21 2006-04-06 Dowa Mining Co Ltd Copper alloy and its production method
JP2006274416A (en) * 2005-03-30 2006-10-12 Kobe Steel Ltd Copper alloy material for electric and electronic components
JP2009007625A (en) * 2007-06-28 2009-01-15 Hitachi Cable Ltd Method for producing high strength copper alloy for electric/electronic component
JP2009074125A (en) * 2007-09-20 2009-04-09 Hitachi Cable Ltd Copper alloy for electrical-electronic parts having excellent plating property, and method for producing the same
JP2011038126A (en) * 2009-08-06 2011-02-24 Jx Nippon Mining & Metals Corp Cu-Ni-Si-BASED ALLOY PLATE OR BAR FOR ELECTRONIC MATERIAL

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5846346A (en) * 1995-12-08 1998-12-08 Poongsan Corporation High strength high conductivity Cu-alloy of precipitate growth suppression type and production process
JP2001049369A (en) * 1999-08-05 2001-02-20 Nippon Mining & Metals Co Ltd Copper alloy for electronic material and its production
JP2006089763A (en) * 2004-09-21 2006-04-06 Dowa Mining Co Ltd Copper alloy and its production method
JP2006274416A (en) * 2005-03-30 2006-10-12 Kobe Steel Ltd Copper alloy material for electric and electronic components
JP2009007625A (en) * 2007-06-28 2009-01-15 Hitachi Cable Ltd Method for producing high strength copper alloy for electric/electronic component
JP2009074125A (en) * 2007-09-20 2009-04-09 Hitachi Cable Ltd Copper alloy for electrical-electronic parts having excellent plating property, and method for producing the same
JP2011038126A (en) * 2009-08-06 2011-02-24 Jx Nippon Mining & Metals Corp Cu-Ni-Si-BASED ALLOY PLATE OR BAR FOR ELECTRONIC MATERIAL

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014080670A (en) * 2012-10-18 2014-05-08 Jx Nippon Mining & Metals Corp High strength titanium copper foil
KR101472347B1 (en) * 2012-11-05 2014-12-15 주식회사 풍산 Copper alloy materials for brassware and method for production same
KR101502060B1 (en) * 2013-07-12 2015-03-11 신원금속 주식회사 Surface-treating method of nickel-silver
JP2015036452A (en) * 2013-08-14 2015-02-23 古河電気工業株式会社 Copper alloy sheet material and connector using the same, and production method of copper alloy sheet material
JP2018141231A (en) * 2017-02-25 2018-09-13 ヴィーラント ウェルケ アクチーエン ゲゼルシャフトWieland−Werke Aktiengesellschaft Slide member composed of copper alloy
JP2019007031A (en) * 2017-06-20 2019-01-17 Jx金属株式会社 Cu-Ni-Si-BASED COPPER ALLOY
CN110306077A (en) * 2019-07-24 2019-10-08 宁波兴业盛泰集团有限公司 A kind of electric connector Vulcan metal and preparation method thereof
CN111020283B (en) * 2019-12-06 2021-07-20 宁波金田铜业(集团)股份有限公司 Copper alloy strip for plug-in and preparation method thereof
CN111020283A (en) * 2019-12-06 2020-04-17 宁波金田铜业(集团)股份有限公司 Copper alloy strip for plug-in and preparation method thereof
KR20230077876A (en) * 2021-11-26 2023-06-02 한국재료연구원 Copper-Nickel-Silicon-Manganese alloy comprising G-Phase and manufacturing method thereof
KR102609594B1 (en) * 2021-11-26 2023-12-05 한국재료연구원 Copper-Nickel-Silicon-Manganese alloy comprising G-Phase and manufacturing method thereof
CN114807672A (en) * 2022-03-23 2022-07-29 中南大学 Cu-Zn-Cr-Zr-Fe-Si alloy and preparation method thereof
CN114807672B (en) * 2022-03-23 2023-09-08 中南大学 Cu-Zn-Cr-Zr-Fe-Si alloy and method for producing same
CN114752810A (en) * 2022-03-24 2022-07-15 江苏恒盈电子科技有限公司 High-strength semiconductor lead frame for circuit board and preparation method thereof
CN114752810B (en) * 2022-03-24 2023-04-11 江苏恒盈电子科技有限公司 High-strength semiconductor lead frame for circuit board and preparation method thereof
CN115896512A (en) * 2022-12-25 2023-04-04 中国兵器科学研究院宁波分院 Preparation method of copper alloy material for high-precision etched lead frame

Also Published As

Publication number Publication date
JP5657311B2 (en) 2015-01-21

Similar Documents

Publication Publication Date Title
JP5657311B2 (en) Copper alloy sheet and manufacturing method thereof
JP5961335B2 (en) Copper alloy sheet and electrical / electronic components
EP2728025B1 (en) Cu-ni-co-si based copper alloy sheet material and method for producing the same
JP4596493B2 (en) Cu-Ni-Si alloy used for conductive spring material
JP4837697B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5506806B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
KR20120043773A (en) Copper alloy sheet for electrical and electronic parts excelling in strength and formability
JP2011162848A (en) Copper alloy having small strength anisotropy and superior bendability
WO2013018228A1 (en) Copper alloy
WO2012132765A1 (en) Cu-si-co-base copper alloy for electronic materials and method for producing same
TWI429764B (en) Cu-Co-Si alloy for electronic materials
JP2015127438A (en) Titanium copper for electronic component
JP2013104068A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP5555154B2 (en) Copper alloy for electrical and electronic parts and method for producing the same
WO2013125623A1 (en) Copper alloy
JP2010121166A (en) Copper alloy having high strength and high electric conductivity
JP4210706B1 (en) Copper alloy sheet with excellent stress relaxation resistance
JP4904455B2 (en) Copper alloy and manufacturing method thereof
JP5952726B2 (en) Copper alloy
JP4779100B2 (en) Manufacturing method of copper alloy material
JP6045635B2 (en) Method for producing copper alloy sheet
JP7213086B2 (en) Copper alloy sheet material and manufacturing method thereof
JP2012229468A (en) Cu-Ni-Si-Co BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
TW201714185A (en) Cu-Co-Ni-Si Alloy for Electronic Components
JP6165071B2 (en) Titanium copper for electronic parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141126

R150 Certificate of patent or registration of utility model

Ref document number: 5657311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250