JP2010126783A - Copper alloy sheet or strip for electronic material - Google Patents

Copper alloy sheet or strip for electronic material Download PDF

Info

Publication number
JP2010126783A
JP2010126783A JP2008304275A JP2008304275A JP2010126783A JP 2010126783 A JP2010126783 A JP 2010126783A JP 2008304275 A JP2008304275 A JP 2008304275A JP 2008304275 A JP2008304275 A JP 2008304275A JP 2010126783 A JP2010126783 A JP 2010126783A
Authority
JP
Japan
Prior art keywords
copper alloy
mass
strip
mpa
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008304275A
Other languages
Japanese (ja)
Other versions
JP5312920B2 (en
Inventor
Mitsuhiro Okubo
光浩 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Eneos Corp
Original Assignee
Nippon Mining and Metals Co Ltd
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd, Nippon Mining Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2008304275A priority Critical patent/JP5312920B2/en
Publication of JP2010126783A publication Critical patent/JP2010126783A/en
Application granted granted Critical
Publication of JP5312920B2 publication Critical patent/JP5312920B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper alloy sheet or strip, which hardly causes a deformation of a lead in a lead frame and requires a short period of time for stress relief annealing after press working. <P>SOLUTION: The copper alloy sheet or strip for an electronic material has a composition including 0.02-3.0 mass% in total of one or more additive elements selected from the group consisting of Cr, Zn, Sn, Zr, Fe, P, Mg, Mn, Al and Co, and the balance Cu with unavoidable impurities. The residual stress of the sheet or strip at a position 1 &mu;m deep from the surface is 50 MPa or lower by the absolute value, and the tensile strength is lowered by 40 MPa or more by the heat treatment of heating the sheet or strip at a temperature of 500&deg;C for one minute. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は電子材料用銅合金板又は条に関し、とりわけリードフレーム材として適したCu−Cr系又はCu−Fe−P系合金板又は条に関する。   The present invention relates to a copper alloy plate or strip for electronic materials, and more particularly to a Cu-Cr-based or Cu-Fe-P-based alloy plate or strip suitable as a lead frame material.

リードフレームは半導体デバイスの内部配線として使われる金属の薄板である。リードフレームの材料としては、導電性と熱放散性の観点から従来のFe系素材(Fe−42%Niなど)に代わり銅合金が多用されている。リードフレームに使用される銅合金には、高強度及び高導電率という基本的特性に加えて、繰り返し曲げ性、プレス加工性、エッチング性、半田付け性、平坦性及びめっき性等に優れていることが要求される。   The lead frame is a thin metal plate used as an internal wiring of a semiconductor device. As a lead frame material, a copper alloy is often used instead of a conventional Fe-based material (Fe-42% Ni or the like) from the viewpoint of conductivity and heat dissipation. Copper alloys used in lead frames are excellent in repeated bendability, press workability, etching properties, solderability, flatness, plating properties, etc. in addition to the basic properties of high strength and high electrical conductivity. Is required.

リードフレーム用の銅合金として代表的なものとして、Cu−Cr系合金及びCu−Fe−P系合金があり、以下にその例を挙げる。   Typical examples of copper alloys for lead frames include Cu-Cr alloys and Cu-Fe-P alloys, examples of which are given below.

特開昭52−85920号公報(特許文献1)には、FeとPとの共存により強度が向上し、しかも耐応力腐蝕割れ性が向上することが記載されており、具体的には、Fe:0.02〜0.50wt%、P:0.01〜0.1wt%を含み、残部が本質的にCuで成る耐応力腐蝕割れ性に優れ、且つ強度が高いことを特徴とする銅合金が記載されている(請求項1)。
該文献の請求項2には、上記銅合金の製造方法として、Fe:0.02〜0.50wt%、P:0.01〜0.1wt%を含み、残部が本質的にCuで成る鋳塊を熱間圧延後した後、700℃以上から常温まで冷却(ただし、700℃から450℃の間の冷却速度は25℃/分以上とする)し、更に冷間加工した後、350〜550℃で5分〜180分最終焼鈍することを特徴とする方法が記載されている。
Japanese Patent Application Laid-Open No. 52-85920 (Patent Document 1) describes that the coexistence of Fe and P improves the strength, and further improves the stress corrosion cracking resistance. : A copper alloy containing 0.02 to 0.50 wt%, P: 0.01 to 0.1 wt%, with the balance being essentially Cu, having excellent stress corrosion cracking resistance and high strength (Claim 1).
According to claim 2 of the document, as a method for producing the copper alloy, a casting containing Fe: 0.02 to 0.50 wt%, P: 0.01 to 0.1 wt%, and the balance being essentially Cu. After the ingot is hot-rolled, it is cooled from 700 ° C. to room temperature (however, the cooling rate between 700 ° C. and 450 ° C. is 25 ° C./min or more), and further cold worked, then 350 to 550 It describes a method characterized in that the final annealing is carried out at 5 ° C. for 5 minutes to 180 minutes.

特開2007−177274号公報(特許文献2)には、Cu−Fe−P系合金に対し、Mgを更に含有させて強度を向上させた上で、曲げ加工性を劣化させないために、銅合金組織の結晶粒を微細化するとともに、個々の結晶粒径のバラツキを抑制したことが記載されている。具体的には、質量%で、Fe:0.01〜3.0%、P:0.01〜0.4%、Mg:0.1〜1.0%を各々含有し、残部銅および不可避的不純物からなる銅合金であって、電界放出型走査電子顕微鏡に後方散乱電子回折像システムを搭載した結晶方位解析法により測定した結晶粒径において、下記平均結晶粒径が5μm以下、下記平均結晶粒径の標準偏差が1.5μm以下であることを特徴とする高強度および優れた曲げ加工性を備えた銅合金が記載されている(請求項1)。
該文献の請求項9には、上記銅合金の製造方法として、銅合金の鋳造、熱間圧延、冷間圧延、再結晶焼鈍、析出焼鈍、冷間圧延を含む工程により銅合金板を得るに際し、熱間圧延の終了温度を550℃〜850℃とし、続く冷間圧延における冷延率を70〜98%とし、その後の再結晶焼鈍における平均昇温速度を50℃/s以上、再結晶焼鈍後の平均冷却速度を100℃/s以上と各々し、その後の最終の冷間圧延における冷延率を10〜30%の範囲とすることを特徴とする方法が記載されている。
Japanese Patent Laid-Open No. 2007-177274 (Patent Document 2) discloses a copper alloy in which Mg is further added to a Cu—Fe—P alloy to improve the strength and the bending workability is not deteriorated. It is described that the crystal grains of the structure are refined and the variation of the individual crystal grain sizes is suppressed. Specifically, in mass%, Fe: 0.01-3.0%, P: 0.01-0.4%, Mg: 0.1-1.0%, respectively, the balance copper and unavoidable Alloy consisting of mechanical impurities, the crystal grain size measured by the crystal orientation analysis method with a backscattered electron diffraction image system mounted on a field emission scanning electron microscope, the following average crystal grain size is 5 μm or less, and the following average crystal A copper alloy having high strength and excellent bending workability, characterized in that the standard deviation of the particle diameter is 1.5 μm or less is described (claim 1).
In claim 9 of this document, as a method for producing the copper alloy, a copper alloy sheet is obtained by a process including copper alloy casting, hot rolling, cold rolling, recrystallization annealing, precipitation annealing, and cold rolling. The end temperature of the hot rolling is 550 ° C. to 850 ° C., the cold rolling rate in the subsequent cold rolling is 70 to 98%, and the average temperature increase rate in the subsequent recrystallization annealing is 50 ° C./s or more. A method is described in which the subsequent average cooling rate is set to 100 ° C./s or more, and the cold rolling rate in the subsequent cold rolling is set to a range of 10 to 30%.

特開平10−287939号公報(特許文献3)には、所定の合金元素を適量含有させ、晶出物または析出物の大きさ、および結晶粒度を適正に制御することで、リードフレーム材や端子材などの電気電子機器用材料に必要な強度や導電性などの特性を維持し、かつ打抜加工性を改善した電気電子機器用銅合金が記載されている。
具体的には、Crを0.1〜0.4wt%、Zrを0.2wt%未満(0wt%を含む)、希土類元素を0.002〜0.2wt%含み、Pb、Biのうちの一種以上を総計で0.002〜0.2wt%含み、残部がCuおよび不可避不純物からなり、晶出物および析出物の大きさが3μm未満、結晶粒度が20μm未満であることを特徴とする打抜加工性に優れた電気電子機器用銅合金が記載されている(請求項1)。
該文献の段落0014には、上記銅合金の製造方法として、所定成分に調整した銅合金溶湯を5℃/秒以上の冷却速度で鋳造して鋳塊とし、これを800〜1000℃の温度で熱間加工し、得られた熱間加工材を10℃/秒以上の冷却速度で急冷し、その後冷間加工と350〜600℃の温度で30秒〜6時間加熱する焼鈍処理を1回以上繰返し施したのち、60%以下の加工率で冷間加工する方法が記載されている。
In JP-A-10-287939 (Patent Document 3), an appropriate amount of a predetermined alloy element is contained, and the size of crystallized matter or precipitate and the crystal grain size are appropriately controlled, whereby lead frame materials and terminals are provided. A copper alloy for electrical and electronic equipment has been described that maintains properties such as strength and conductivity required for electrical and electronic equipment materials such as materials and improved punchability.
Specifically, it contains 0.1 to 0.4 wt% of Cr, less than 0.2 wt% (including 0 wt%) of Zr, 0.002 to 0.2 wt% of rare earth elements, and one of Pb and Bi A total of 0.002 to 0.2 wt% of the above, the balance being made of Cu and inevitable impurities, the size of crystallized substances and precipitates is less than 3 μm, and the grain size is less than 20 μm A copper alloy for electrical and electronic equipment having excellent workability is described (claim 1).
In paragraph 0014 of the document, as a method for producing the copper alloy, a molten copper alloy adjusted to a predetermined component is cast at a cooling rate of 5 ° C./second or more to obtain an ingot, which is heated at a temperature of 800 to 1000 ° C. Hot working, the obtained hot work material is rapidly cooled at a cooling rate of 10 ° C./second or more, and then subjected to cold working and annealing treatment at a temperature of 350 to 600 ° C. for 30 seconds to 6 hours at least once. A method is described in which after repeated application, cold working is performed at a working rate of 60% or less.

特開2001−181757号公報(特許文献4)には、Cuマトリックス中にCrまたはCr化合物の粗大な析出相Aと微細な析出相Bを共存させることによって打抜加工性を改善させたことが記載されている。
具体的には、Crを0.2〜0.35wt%、Snを0.1〜0.5wt%、Znを0.1〜0.5wt%含み、残部がCuおよび不可避的不純物からなる銅合金において、Cuマトリックス中に、各々の最大径が0.1〜10μmのCrまたはCr化合物の析出相Aが1×103〜3×105個/mm2の個数密度で存在し、且つ各々の最大径が0.001〜0.030μmのCrまたはCr化合物の析出相Bが析出相Aの個数密度の10倍以上の個数密度で存在することを特徴とする打抜加工性に優れた銅合金が記載されている。
Japanese Patent Laid-Open No. 2001-181757 (Patent Document 4) discloses that the punching workability is improved by coexisting a coarse precipitate phase A and a fine precipitate phase B of Cr or Cr compound in a Cu matrix. Are listed.
Specifically, a copper alloy containing 0.2 to 0.35 wt% of Cr, 0.1 to 0.5 wt% of Sn, 0.1 to 0.5 wt% of Zn, and the balance being Cu and inevitable impurities In the Cu matrix, the precipitated phase A of Cr or Cr compound having a maximum diameter of 0.1 to 10 μm is present at a number density of 1 × 10 3 to 3 × 10 5 pieces / mm 2 , and A copper alloy having excellent punchability, wherein the precipitation phase B of Cr or Cr compound having a maximum diameter of 0.001 to 0.030 μm is present at a number density of 10 times or more the number density of the precipitation phase A Is described.

該文献の請求項5には、上記銅合金の製造方法として、少なくとも熱間加工および冷間加工を施し、前記熱間加工前に880〜980℃の温度で熱処理を施し、前記冷間加工前または後に360〜470℃の温度で時効処理を施すことを特徴とする方法が記載されている。   In claim 5 of this document, at least hot working and cold working are performed as a method for producing the copper alloy, heat treatment is performed at a temperature of 880 to 980 ° C. before the hot working, and before the cold working. Or the method characterized by performing an aging treatment at the temperature of 360-470 degreeC later is described.

特開2005−113180号公報(特許文献5)には、Cuマトリックス中に、プレス打抜き加工性を改善しながら、エッチング加工性を確保するために、所定の大きさ及び個数密度を有するCrSi化合物を微細に析出させること及びCrSi以外のCr化合物の大きさを制限することが記載されている。
具体的には、Crを0.1〜0.25wt%、Siを0.005〜0.1wt%、Znを0.1〜0.5wt%、Snを0.05〜0.5wt%含み、CrとSiの重量比Cr/Siが3〜25の範囲で、残部銅及び不可避的不純物からなる銅合金において、銅母相中に、0.05μm〜10μmの大きさを有するCrSi化合物が1×103〜5×105個/mm2の個数密度で存在し、且つ、CrSi化合物以外のCr化合物の大きさを10μm以下とすることを特徴とするエッチング加工性及び打ち抜き加工性に優れた電子機器用銅合金が記載されている(請求項1)。
JP-A-2005-113180 (Patent Document 5) discloses a CrSi compound having a predetermined size and number density in a Cu matrix in order to ensure etching processability while improving press punching processability. It is described that it is finely precipitated and limits the size of Cr compounds other than CrSi.
Specifically, Cr includes 0.1 to 0.25 wt%, Si includes 0.005 to 0.1 wt%, Zn includes 0.1 to 0.5 wt%, Sn includes 0.05 to 0.5 wt%, In a copper alloy consisting of the balance copper and unavoidable impurities in a Cr / Si weight ratio of Cr / Si in the range of 3-25, a CrSi compound having a size of 0.05 μm to 10 μm is 1 × in the copper matrix. An electron excellent in etching workability and punching workability, characterized by having a number density of 10 3 to 5 × 10 5 pieces / mm 2 and having a Cr compound other than the CrSi compound having a size of 10 μm or less. A copper alloy for equipment is described (claim 1).

該文献の請求項3には、上記銅合金の製造方法として、Cu−Cr−Si−Zn−Sn合金鋳塊、又は前記Cu−Cr−Si−Zn−Sn−Zr合金鋳塊を850〜980℃の温度で加熱した後に熱間加工を施し、次に冷間圧延と400〜600℃の温度での熱処理を繰返し行うことを特徴とする方法が記載されている。   In claim 3 of the document, as a method for producing the copper alloy, a Cu—Cr—Si—Zn—Sn alloy ingot, or the Cu—Cr—Si—Zn—Sn—Zr alloy ingot is added to 850 to 980. A method is described in which a hot working is performed after heating at a temperature of ° C., and then cold rolling and a heat treatment at a temperature of 400 to 600 ° C. are repeated.

特開平7−258805号公報(特許文献6)には、Cu−Cr−Zr合金にTi及びFeを添加するか、更にはZn,Sn,In,Mn,P,MgあるいはSiの1種又は2種以上をも添加すると共に、それら各成分の含有量割合を厳密に調整した銅合金を素材とし、その溶体化処理条件を規制して結晶粒径を制御した上で、更に特定条件での冷間加工,時効,最終冷間加工及び最終焼鈍を施すと、強度,導電率,曲げ加工性,ばね特性,Agめっき性,半田接合部の信頼性等の諸性質が一段と改善された材料を得ることができることが記載されている(段落0009)。
そして、その請求項1には、重量割合にてCr:0.05〜0.40%,Zr:0.03〜0.25%,Fe:0.10〜1.80%,Ti:0.10〜0.80%を含有すると共に、「0.10%≦Ti≦0.60%」ではFe/Ti重量比が0.66〜2.6を満足し、また「0.60%<Ti≦0.80%」ではFe/Ti重量比が1.1〜2.6を満足していて残部がCu及び不可避的不純物から成る銅合金の素材に、1)950℃未満の温度での溶体化処理,2)50〜90%の加工度での冷間加工,3)300〜580℃の温度での時効処理,4)16〜83%の加工度での冷間加工,5)350〜700℃の温度での焼鈍をこの順に順次施すことを特徴とする、電子機器用高力高導電性銅合金材の製造方法が記載されている。5)は歪取り焼鈍であり、最終冷間加工の後、ばね性を向上させると共に延性を回復させることが記載されている。
In JP-A-7-258805 (Patent Document 6), Ti and Fe are added to a Cu—Cr—Zr alloy, or one or two of Zn, Sn, In, Mn, P, Mg, or Si are added. In addition to adding more than seeds, the raw material is a copper alloy in which the content ratio of each component is strictly adjusted, and the crystal grain size is controlled by regulating the solution treatment conditions, and further cooling under specific conditions is performed. When cold working, aging, final cold working and final annealing are performed, materials with improved properties such as strength, electrical conductivity, bending workability, spring characteristics, Ag plating properties, and solder joint reliability are obtained. (Paragraph 0009).
In the first aspect, Cr: 0.05 to 0.40%, Zr: 0.03 to 0.25%, Fe: 0.10 to 1.80%, Ti: 0.00. 10 to 0.80%, and “0.10% ≦ Ti ≦ 0.60%” satisfies the Fe / Ti weight ratio of 0.66 to 2.6, and “0.60% <Ti ≦ 0.80% ”, a copper alloy material satisfying an Fe / Ti weight ratio of 1.1 to 2.6 with the balance being Cu and inevitable impurities. 1) Solution at a temperature below 950 ° C. 2) Cold working at a working degree of 50-90%, 3) Aging treatment at a temperature of 300-580 ° C., 4) Cold working at a working degree of 16-83%, 5) 350- A method for producing a high-strength, high-conductivity copper alloy material for electronic equipment is described, which is characterized by sequentially performing annealing at a temperature of 700 ° C. in this order. 5) is strain relief annealing, and it is described that after the final cold working, the spring property is improved and the ductility is restored.

特開2003−286527号公報(特許文献7)は、十分な寸法精度と形状特性を兼ね備えた銅又は銅合金を提供することを目的として、銅又は銅合金をその焼鈍温度で加熱処理したときの、該加熱処理の前後における収縮率が0.01%以下であり、且つ板形状であって急峻度(平坦度を表すパラメータ)が0.5%以下であることを特徴とする銅又は銅合金を開示している(請求項1)。
該銅又は銅合金の製造工程として、一般の銅及び銅基合金と同様にして最終板厚まで圧延後、必要に応じてテンションレベラー等による形状矯正を行い、その後連続焼鈍炉による低温焼鈍を行うが、その際の炉内張力が連続焼鈍炉通板前の材料の0.2%耐力の1.0〜8.5%の範囲で設定し、通板を行うことが記載されている(段落0020)。
特開昭52−85920号公報 特開2007−177274号公報 特開平10−287939号公報 特開2001−181757号公報 特開2005−113180号公報 特開平7−258805号公報 特開2003−286527号公報
JP 2003-286527 A (Patent Document 7) has a purpose of providing copper or a copper alloy having sufficient dimensional accuracy and shape characteristics when the copper or copper alloy is heat-treated at its annealing temperature. The copper or copper alloy is characterized by having a shrinkage ratio of 0.01% or less before and after the heat treatment, and having a plate shape and a steepness (parameter indicating flatness) of 0.5% or less. (Claim 1).
As a manufacturing process of the copper or copper alloy, after rolling to the final plate thickness in the same manner as general copper and copper-based alloys, if necessary, correct the shape with a tension leveler, etc., and then perform low-temperature annealing with a continuous annealing furnace However, it is described that the in-furnace tension is set in the range of 1.0 to 8.5% of the 0.2% proof stress of the material before passing through the continuous annealing furnace (paragraph 0020). ).
JP 52-85920 A JP 2007-177274 A Japanese Patent Laid-Open No. 10-287939 JP 2001-181757 A JP-A-2005-113180 JP 7-258805 A JP 2003-286527 A

半導体デバイスの高集積化や小型化の進展に伴い、リードフレームの材料として使用される銅合金に対する要求レベルが高度化している。ファインピッチ(例えば200ピン程度の多ピン)のリードフレームを成形する場合、インナーリード部の幅及びピッチが極めて狭いためプレス加工(打ち抜き加工)時に残留応力の影響を受けやすく、リード変形が生じやすい。そこで従来は、銅合金板又は条をプレス加工した後に、インナーリードの平坦性を確保する目的で残留応力を除去する歪取り焼鈍が行われていた。
しかしながら、このプレス加工後の歪取り焼鈍はリードフレームのリードタイムにおいて大きな比率を占めていることから、歪取り焼鈍に要する時間の短い素材が望ましい。
With the progress of high integration and miniaturization of semiconductor devices, the level of demand for copper alloys used as materials for lead frames is becoming higher. When forming a lead frame with a fine pitch (for example, about 200 pins), the width and pitch of the inner lead part are extremely narrow, so that they are easily affected by residual stress during press working (punching) and lead deformation is likely to occur. . Therefore, conventionally, after the copper alloy plate or strip is pressed, strain relief annealing for removing the residual stress has been performed for the purpose of ensuring the flatness of the inner lead.
However, since the strain relief annealing after the press working occupies a large proportion in the lead frame lead time, a material having a short time required for the strain relief annealing is desirable.

そこで、本発明はリードフレームのリード変形が生じにくく、且つ、プレス加工後の歪取り焼鈍に要する時間の短い銅合金板又は条を提供することを課題とする。   Accordingly, it is an object of the present invention to provide a copper alloy plate or strip that does not easily cause lead deformation of a lead frame and that requires a short time for strain relief annealing after press working.

本発明者は上記課題を解決するために鋭意検討を重ねたところ、銅合金板又は条の最終製造段階で行われる歪取り焼鈍によって表面の残留応力を除去した後にも、一定程度の強度を有する素材が上記課題の解決に有利であることを見出した。この素材を用いてリードフレームを製造した場合、リード変形が生じにくく、また、プレス加工後の歪取り焼鈍も短時間で実施できることが分かった。   The present inventor has made extensive studies to solve the above problems, and has a certain degree of strength even after the residual stress on the surface is removed by strain relief annealing performed in the final manufacturing stage of the copper alloy plate or strip. The present inventors have found that the material is advantageous for solving the above problems. It has been found that when a lead frame is manufactured using this material, lead deformation is unlikely to occur, and strain relief annealing after press working can be performed in a short time.

上記知見を基に完成した本発明は一側面において、Cr、Zn、Sn、Zr、Fe、P、Mg、Mn、Al及びCoよりなる群から選ばれる1種又は2種以上の添加元素を合計で0.02〜3.0質量%含有し、残部Cuおよび不可避的不純物からなる組成を有する電子材料用銅合金板又は条であって、表面から1μmの深さにおける残留応力の絶対値が50MPa以下であり、且つ、500℃の温度で1分間加熱する熱処理によって引張強さが40MPa以上低下する銅合金板又は条である。   In one aspect, the present invention completed based on the above knowledge is a total of one or more additive elements selected from the group consisting of Cr, Zn, Sn, Zr, Fe, P, Mg, Mn, Al, and Co. A copper alloy plate or strip for an electronic material having a composition comprising 0.02 to 3.0% by mass and the balance being Cu and inevitable impurities, and the absolute value of the residual stress at a depth of 1 μm from the surface is 50 MPa. It is a copper alloy plate or strip that has a tensile strength that is reduced by 40 MPa or more by a heat treatment that is performed at a temperature of 500 ° C. for 1 minute.

本発明に係る銅合金板又は条は一実施形態において、下記の1)から4)の何れかに示される組成を有する電子材料用銅合金板又は条であって、表面から1μmの深さにおける残留応力の絶対値が50MPa以下であり、且つ、500℃の温度で1分間加熱する熱処理によって引張強さが40MPa以上低下する銅合金板又は条である。
1)Cr:0.1〜0.5質量%を含有し、残部Cuおよび不可避的不純物からなる組成
2)Cr:0.1〜0.5質量%を含有し、更に、Si、Zn、Sn及びZrよりなる群から選択される1種又は2種以上を合計で1.0質量%まで含有し、残部Cuおよび不可避的不純物からなる組成
3)Fe:0.02〜3.0質量%、P:0.02〜0.15質量%を含有し、残部Cuおよび不可避的不純物からなる組成
4)Fe:0.02〜3.0質量%、P:0.02〜0.15質量%を含有し、更に、Ni、Mg、Mn、Zn及びSnよりなる群から選択される1種又は2種以上を合計で1.0質量%まで含有し、残部Cuおよび不可避的不純物からなる組成
In one embodiment, a copper alloy plate or strip according to the present invention is a copper alloy plate or strip for electronic materials having a composition shown in any one of 1) to 4) below, at a depth of 1 μm from the surface: It is a copper alloy plate or strip whose absolute value of residual stress is 50 MPa or less and whose tensile strength is reduced by 40 MPa or more by heat treatment heated at a temperature of 500 ° C. for 1 minute.
1) Cr: 0.1 to 0.5% by mass, balance Cu and unavoidable impurities 2) Cr: 0.1 to 0.5% by mass, Si, Zn, Sn And one or more selected from the group consisting of Zr up to a total of 1.0% by mass, a composition consisting of the balance Cu and inevitable impurities 3) Fe: 0.02-3.0% by mass, 4: Fe: 0.02-3.0 mass%, P: 0.02-0.15 mass% containing P: 0.02-0.15 mass% and consisting of remainder Cu and inevitable impurities And further containing one or more selected from the group consisting of Ni, Mg, Mn, Zn and Sn up to 1.0% by mass in total, and the composition consisting of the balance Cu and inevitable impurities

本発明に係る銅合金板又は条の別の一実施形態においては、500℃の温度で1分間加熱する熱処理前後の引張強さの差が40〜100MPaである。   In another embodiment of the copper alloy sheet or strip according to the present invention, the difference in tensile strength before and after the heat treatment heated at a temperature of 500 ° C. for 1 minute is 40 to 100 MPa.

本発明に係る銅合金板又は条の更に別の一実施形態においては、粒径が10〜1000nmの範囲にある第二相粒子の平均粒径が20〜200nmである。   In still another embodiment of the copper alloy plate or strip according to the present invention, the average particle size of the second phase particles having a particle size in the range of 10 to 1000 nm is 20 to 200 nm.

本発明に係る銅合金板又は条の更に別の一実施形態においては、引張強さ(TS)が400〜650MPa、好ましくは500〜650MPaである。   In still another embodiment of the copper alloy plate or strip according to the present invention, the tensile strength (TS) is 400 to 650 MPa, preferably 500 to 650 MPa.

本発明に係る銅合金板又は条の更に別の一実施形態においては、0.2%耐力が350〜600MPa、好ましくは450〜600MPaである上記記載の銅合金板又は条である。   In still another embodiment of the copper alloy plate or strip according to the present invention, the copper alloy plate or strip described above has a 0.2% proof stress of 350 to 600 MPa, preferably 450 to 600 MPa.

本発明に係る銅合金板又は条の更に別の一実施形態においては、電子材料がリードフレームである。   In yet another embodiment of the copper alloy plate or strip according to the present invention, the electronic material is a lead frame.

従来の素材では、銅合金板又は条の製造工程の最終段階で行われる歪取り焼鈍によって残留応力を除去すると、平坦性等の特性は向上するものの強度が落ち込んでしまい、この状態でプレス加工を行うとリード部分にねじれなどの変形が生じやすかった。しかしながら、今回開発した素材では、プレス加工時にも高い強度が保持されるために良好な打ち抜き性を有する。   In the case of conventional materials, when residual stress is removed by strain relief annealing performed at the final stage of the copper alloy sheet or strip manufacturing process, the flatness and other properties are improved, but the strength falls, and in this state, pressing is performed. As a result, deformation such as twisting was likely to occur in the lead portion. However, the newly developed material has good punchability because it retains high strength even during press working.

また、今回開発した素材は、従来の素材に比べてプレス加工後のリードフレームの平坦化のために実施される歪取り焼鈍に要する時間を短縮することができる。換言すれば、同一の条件で歪取り焼鈍を行ったときの強度低下の度合いが大きくなる。   In addition, the newly developed material can shorten the time required for strain relief annealing performed for flattening the lead frame after press working, compared to the conventional material. In other words, the degree of strength reduction when the strain relief annealing is performed under the same conditions increases.

本発明に係る銅合金は、一側面において、Cr、Zn、Sn、Zr、Fe、P、Mg、Mn、Al及びCoよりなる群から選ばれる1種又は2種以上の添加元素を合計で0.02〜3.0質量%含有し、残部Cuおよび不可避的不純物からなる組成を有する。
Cr、Zn、Sn、Zr、Fe、P、Mg、Mn、Al及びCoは、これらの合計含量が少なすぎると所望の強度が得られない一方で、合計含量が多すぎると高強度は図れるが導電率が不充分となる。従って、これらの添加元素の合計含量は0.02〜3.0質量%であり、好ましくは0.02〜2.0質量%であり、より好ましくは0.02〜1.5質量%である。
In one aspect, the copper alloy according to the present invention includes one or more additive elements selected from the group consisting of Cr, Zn, Sn, Zr, Fe, P, Mg, Mn, Al, and Co in a total of 0. 0.02 to 3.0% by mass, and the composition consists of the balance Cu and inevitable impurities.
Cr, Zn, Sn, Zr, Fe, P, Mg, Mn, Al, and Co cannot obtain a desired strength if their total content is too low, while high strength can be achieved if their total content is too high. The conductivity is insufficient. Therefore, the total content of these additive elements is 0.02 to 3.0 mass%, preferably 0.02 to 2.0 mass%, more preferably 0.02 to 1.5 mass%. .

上記元素に応じて強化機構が異なる。Sn、Zn、Mg、P、Mn及びAlは固溶型であり、Cr、Zr、Fe及びCoは時効析出型である。固溶型の場合は、結晶中に溶質原子が固溶することにより周囲の原子配列が乱れ、弾性的なひずみ場や電子の分布状態に乱れが生じることで転移の運動が困難となり、結晶が強化される。時効析出型の場合は、溶体化処理された過飽和固溶体を時効処理することにより、各添加元素の微細な金属間化合物粒子を均一に分散し、合金の強度が高くなると同時に、銅中の固溶元素量が減少し電気伝導性が向上する。このため、強度、ばね性などの機械的性質に優れ、しかも電気伝導性、熱伝導性が良好な材料が得られる。   The strengthening mechanism varies depending on the above elements. Sn, Zn, Mg, P, Mn and Al are solid solution types, and Cr, Zr, Fe and Co are aging precipitation types. In the solid solution type, the solute atoms dissolve in the crystal and the surrounding atomic arrangement is disturbed, and the elastic strain field and the electron distribution state are disturbed. Strengthened. In the case of the aging precipitation type, by aging the supersaturated solid solution that has been subjected to solution treatment, fine intermetallic compound particles of each additive element are uniformly dispersed, the strength of the alloy is increased, and at the same time, the solid solution in copper The amount of elements is reduced and electrical conductivity is improved. For this reason, a material excellent in mechanical properties such as strength and spring property and having good electrical conductivity and thermal conductivity can be obtained.

本発明に係る銅合金板又は条の特徴である、表面から1μmの深さにおける残留応力の絶対値が50MPa以下であり、且つ、500℃の温度で1分間加熱する熱処理によって引張強さが40MPa以上低下するという特性は、時効析出型であると固溶型であるとに関わらず発現可能であり、特に組成は問わないが、Cu−Cr系合金及びCu−Fe−P系合金は本発明の典型的な実施態様であり、以下に詳細に説明する。   The absolute value of the residual stress at a depth of 1 μm from the surface, which is a feature of the copper alloy plate or strip according to the present invention, is 50 MPa or less, and the tensile strength is 40 MPa by heat treatment heated at a temperature of 500 ° C. for 1 minute. The characteristic of lowering can be expressed regardless of whether it is an aging precipitation type or a solid solution type, and the composition is not particularly limited. However, Cu—Cr alloys and Cu—Fe—P alloys are not limited to the present invention. This is an exemplary embodiment and will be described in detail below.

Cu−Cr系及びCu−Fe−P系合金は析出硬化型銅合金の一種であり、溶体化処理された過飽和固溶体を時効処理することにより、それぞれCr系、Fe系及びP系の微細な金属間化合物粒子を均一に分散し、合金の強度が高くなると同時に、銅中の固溶元素量が減少し電気伝導性が向上する。このため、強度、ばね性などの機械的性質に優れ、しかも電気伝導性、熱伝導性が良好な材料が得られる。   Cu-Cr-based and Cu-Fe-P-based alloys are a kind of precipitation-hardening type copper alloys, and by aging treatment of solution-treated supersaturated solid solutions, Cr-based, Fe-based and P-based fine metals, respectively. The intermetallic particles are uniformly dispersed, the strength of the alloy is increased, and at the same time, the amount of the solid solution element in the copper is reduced and the electrical conductivity is improved. For this reason, a material excellent in mechanical properties such as strength and spring property and having good electrical conductivity and thermal conductivity can be obtained.

Cu−Cr系合金の組成
(Cr)
CrはCu中に固溶し、溶体化処理時の結晶粒の粗大化を抑制する。また合金強度が底上げされる。時効処理時にはCr単体もしくはSiを添加した場合はシリサイドを形成して析出し、強度及び導電率の改善に寄与することもできる。ただし、Crの添加量が少なすぎると所望の強度が得られず、多すぎると高強度は図れるが導電率が著しく低下し、また熱間加工性が低下する。また、Crは添加量が多いと、溶解温度が高くなり、銅中に固溶しなかったCrはピンホールやAgめっき時の表面欠陥の原因になって好ましくない。そこで、Crの含量は0.1〜0.5質量%とする。Crの含量は好ましくは0.15〜0.4質量%であり、より好ましくは0.2〜0.4質量%である。
Composition of Cu-Cr alloy (Cr)
Cr dissolves in Cu and suppresses the coarsening of crystal grains during solution treatment. Also, the alloy strength is raised. When Cr alone or Si is added during the aging treatment, silicide is formed and deposited, which can contribute to improvement in strength and conductivity. However, if the added amount of Cr is too small, the desired strength cannot be obtained, and if it is too large, a high strength can be achieved, but the electrical conductivity is remarkably lowered, and the hot workability is also lowered. Further, when Cr is added in a large amount, the melting temperature becomes high, and Cr that is not solid-solved in copper is not preferable because it causes surface defects during pin holes and Ag plating. Therefore, the Cr content is 0.1 to 0.5% by mass. The content of Cr is preferably 0.15 to 0.4 mass%, more preferably 0.2 to 0.4 mass%.

(Si、Zn、Sn及びZr)
Cu−Cr系合金には、更に、Si、Zn、Sn及びZrよりなる群から選択される1種又は2種以上を合計で1.0質量%まで、好ましくは0.5質量%まで含有させることができる。
(Si, Zn, Sn and Zr)
The Cu-Cr alloy further contains one or more selected from the group consisting of Si, Zn, Sn, and Zr up to 1.0% by mass, preferably up to 0.5% by mass. be able to.

Siは、Crと結合してCr−Si系金属化合物粒子を形成する。微細なCr−Si系金属化合物粒子はプレス加工性を向上させる。ただし、添加量が少ないと効果が得られない一方で、添加量が多いとCu母相中に固溶するSiが増加して導電率が低下するので、0.1質量%まで添加するのが好ましく、0.005〜0.1質量%添加するのがより好ましく、0.01〜0.1質量%添加するのが更により好ましい。
Znは、はんだ脆化を抑制する効果がある。ただし、添加量が多いと導電率が低下するので、0.5質量%まで添加するのが好ましく、0.1〜0.5質量%添加するのがより好ましく、0.2〜0.5質量%添加するのが更により好ましい。
Snは、強度の向上に寄与する。しかしながら、その量が増えれば導電率は著しく低下する。よって、Snは0.5質量%まで添加するのが好ましく、0.05〜0.5質量%添加するのがより好ましく、0.1〜0.5質量%添加するのが更により好ましい。
Zrは、時効処理時に析出して、導電率の低下を抑制しながら強度を向上させる働きがある。ただし、その量が増えれば導電率が著しく低下する。よって、Zrは0.2質量%まで添加するのが好ましく、0.005〜0.2質量%添加するのがより好ましく、0.005〜0.1質量%添加するのが更により好ましい。
Si combines with Cr to form Cr—Si based metal compound particles. Fine Cr—Si-based metal compound particles improve press workability. However, if the addition amount is small, the effect cannot be obtained. On the other hand, if the addition amount is large, Si dissolved in the Cu matrix increases and the conductivity decreases, so it is necessary to add up to 0.1% by mass. Preferably, 0.005 to 0.1% by mass is added, more preferably 0.01 to 0.1% by mass.
Zn has an effect of suppressing solder embrittlement. However, since the electrical conductivity decreases when the addition amount is large, it is preferable to add up to 0.5% by mass, more preferably 0.1 to 0.5% by mass, and 0.2 to 0.5% by mass. It is even more preferable to add%.
Sn contributes to improvement in strength. However, the conductivity decreases significantly as the amount increases. Therefore, Sn is preferably added up to 0.5% by mass, more preferably 0.05 to 0.5% by mass, and even more preferably 0.1 to 0.5% by mass.
Zr precipitates during the aging treatment and has a function of improving strength while suppressing a decrease in conductivity. However, if the amount is increased, the conductivity is significantly lowered. Therefore, Zr is preferably added up to 0.2% by mass, more preferably 0.005 to 0.2% by mass, and even more preferably 0.005 to 0.1% by mass.

Cu−Fe−P系合金の組成
(Fe)
Feは、適当な熱処理を施すことによりFe単体又はFe−P系金属化合物粒子を形成し、導電率を劣化させずに高強度化を図ることができる。特に、Pと結合してできるFe−P系金属化合物粒子は強度向上効果が高い。ただし、Feの添加量が少なすぎると所望の強度が得られず、多すぎると高強度は測れるが導電率が著しく低下し、また熱間加工性が低下する。従って、Feの含量は0.02〜3.0質量%とする。Feの含量は好ましくは0.02〜2.0質量%であり、より好ましくは0.05〜2.0質量%である。
Composition of Cu-Fe-P alloy (Fe)
Fe is subjected to an appropriate heat treatment to form single Fe or Fe—P-based metal compound particles, and can be increased in strength without deteriorating conductivity. In particular, Fe—P-based metal compound particles formed by bonding with P have a high strength improving effect. However, if the added amount of Fe is too small, the desired strength cannot be obtained, and if it is too large, high strength can be measured, but the electrical conductivity is remarkably lowered, and the hot workability is also lowered. Therefore, the Fe content is 0.02 to 3.0 mass%. The content of Fe is preferably 0.02 to 2.0 mass%, more preferably 0.05 to 2.0 mass%.

(P)
Pは、脱酸作用を有する他、Feと結合してFe−P系金属化合物粒子を形成し、導電率を劣化させずに高強度化を図ることができる。ただし、Pの添加量は多すぎても少なすぎても所望の強度が得られないことから、Pの含量は0.02〜0.15質量%とする。Pの含量は好ましくは0.02〜0.08質量%であり、より好ましくは0.02〜0.05質量%である。
(P)
In addition to having a deoxidizing action, P combines with Fe to form Fe—P-based metal compound particles, and can increase the strength without deteriorating the electrical conductivity. However, since the desired strength cannot be obtained if the amount of P is too large or too small, the P content is 0.02 to 0.15% by mass. The content of P is preferably 0.02 to 0.08% by mass, more preferably 0.02 to 0.05% by mass.

Fe−P系金属化合物には幾つか種類があり、Fe:P=3:1もしくは2:1(原子比)と言われている。従って、好ましくは原子比でFe/P=2〜3として添加することにより良好な電気伝導性が得られる。上記比率よりも高くなると導電率が低下しやすく、上記比率よりも低くなると粗大な粒子が晶出しやすくなり、熱間加工性が劣化しやすい。   There are several types of Fe—P-based metal compounds, and it is said that Fe: P = 3: 1 or 2: 1 (atomic ratio). Therefore, favorable electrical conductivity can be obtained preferably by adding Fe / P = 2 to 3 in atomic ratio. If the ratio is higher than the above ratio, the conductivity tends to decrease, and if the ratio is lower than the above ratio, coarse particles are likely to crystallize, and hot workability tends to deteriorate.

(Ni、Mg、Mn、Zn及びSn)
Cu−Fe−P系合金には、更に、Ni、Mg、Mn、Zn及びSnよりなる群から選択される1種又は2種以上を合計で1.0質量%まで、好ましくは0.5質量%まで含有させることができる。
(Ni, Mg, Mn, Zn and Sn)
The Cu-Fe-P alloy further contains one or more selected from the group consisting of Ni, Mg, Mn, Zn and Sn up to 1.0% by mass, preferably 0.5% by mass. % Can be contained.

Niは、適当な熱処理を施すことによりNi−P系金属化合物粒子を形成し、導電率を劣化させずに高強度化を図ることができる。ただし、Niの添加量が少なすぎると所望の強度が得られず、多すぎると高強度は測れるが導電率が著しく低下し、また熱間加工性が低下する。従って、Niの含量は0.1〜1.0質量%とする。Niの含量は好ましくは0.2〜1.0質量%であり、より好ましくは0.2〜0.8質量%である。   Ni forms Ni—P-based metal compound particles by performing an appropriate heat treatment, and can increase the strength without deteriorating the electrical conductivity. However, if the amount of Ni added is too small, the desired strength cannot be obtained. If it is too large, high strength can be measured, but the electrical conductivity is remarkably lowered, and the hot workability is lowered. Therefore, the Ni content is 0.1 to 1.0% by mass. The content of Ni is preferably 0.2 to 1.0 mass%, more preferably 0.2 to 0.8 mass%.

Ni−P系金属化合物には幾つか種類があり、Ni:P=3:1、5:2又は12:5(原子比)と言われている。従って、好ましくは原子比でNi/P=2〜3とすることにより良好な電気伝導性が得られる。これらの比率よりも高くなると導電率が低下しやすく、低いと粗大な粒子が晶出しやすくなり熱間加工性が劣化しやすい。   There are several types of Ni-P-based metal compounds, and it is said that Ni: P = 3: 1, 5: 2, or 12: 5 (atomic ratio). Therefore, preferable electrical conductivity can be obtained by setting Ni / P = 2 to 3 in atomic ratio. If it is higher than these ratios, the conductivity tends to decrease, and if it is lower, coarse particles tend to crystallize and the hot workability tends to deteriorate.

Mg及びMnは、Oと反応するため溶湯の脱酸効果が得られる。また、一般的に合金強度を向上させる元素として添加される元素である。最も有名な効果としては応力緩和特性の向上であり、いわゆる耐クリープ特性である。近年、電子機器の高集積化にともない、高電流が流れ、またBGAタイプのような熱放散性が低い半導体パッケージにおいては、熱により素材が劣化する恐れがあり、故障の原因となる。特に、車載する場合はエンジンまわりの熱による劣化が懸念され、耐熱性は重要な課題である。これらの理由で積極的に添加しても良い元素である。ただし、添加量が多すぎると曲げ加工性への悪影響が無視できなくなる。そこで、Mg及びMnは一方又は両方を合計で1.0質量%まで添加するのが好ましく、0.01〜1.0質量%添加するのがより好ましく、0.01〜0.5質量%添加するのが更により好ましい。   Since Mg and Mn react with O, the deoxidizing effect of the molten metal is obtained. In general, it is an element added as an element for improving the alloy strength. The most famous effect is the improvement of stress relaxation characteristics, so-called creep resistance. In recent years, with the high integration of electronic devices, a high current flows, and in a semiconductor package with low heat dissipation such as a BGA type, the material may be deteriorated by heat, which causes a failure. In particular, when mounted on a vehicle, there is a concern about deterioration due to heat around the engine, and heat resistance is an important issue. For these reasons, it is an element that may be positively added. However, if the amount added is too large, the adverse effect on bending workability cannot be ignored. Therefore, it is preferable to add one or both of Mg and Mn to 1.0% by mass in total, more preferably 0.01 to 1.0% by mass, and 0.01 to 0.5% by mass added. Even more preferably.

Znははんだ脆化を抑制する効果がある。ただし、添加量が多いと導電率が低下するので、1.0質量%まで添加するのが好ましく、0.01〜1.0質量%添加するのがより好ましく、0.01〜0.8質量%添加するのが更により好ましい。   Zn has an effect of suppressing solder embrittlement. However, since the electrical conductivity decreases when the addition amount is large, it is preferable to add up to 1.0% by mass, more preferably 0.01 to 1.0% by mass, and 0.01 to 0.8% by mass. It is even more preferable to add%.

SnはMgと同様の効果がある。しかしMgと異なり、Cu中に固溶する量が多いため、より耐熱性が必要な場合に添加される。しかしながら、量が増えれば導電率は著しく低下する。よって、Snは0.5質量%まで添加するのが好ましく、0.05〜0.5質量%添加するのがより好ましく、0.05〜0.3質量%添加するのが更により好ましい。   Sn has the same effect as Mg. However, unlike Mg, the amount dissolved in Cu is large, so it is added when more heat resistance is required. However, the conductivity decreases significantly as the amount increases. Therefore, Sn is preferably added up to 0.5% by mass, more preferably 0.05-0.5% by mass, and even more preferably 0.05-0.3% by mass.

残留応力
本発明では銅合金の残留応力を規定する。残留応力は外力や熱勾配のない状態で素材の内部に存在している応力である。残留応力は熱処理や冷間加工などによる不均一な変形の結果発生する。残留応力が残っていると、平坦な条や板を得ることが困難となる。平坦性が損なわれるとプレス加工したときの寸法精度に悪影響を与える。一般的には圧延材の内部に広く残留応力が分布しており、圧延材の場合はごく表層付近の残留応力の勾配が高いことが多い。
そこで、本発明では表面から1μmの深さにおける残留応力の絶対値を50MPa以下に規定している。残留応力の絶対値は好ましくは30MPa以下であり、より好ましくは20MPa以下である。従って、本発明に係る銅合金は、例えば0〜50、典型的には5〜50MPaの残留応力の絶対値を有する。絶対値としたのは、残留応力は引張りと圧縮の二つがあるためであり、その絶対値が小さいほど平坦性が向上する。
Residual stress In the present invention, the residual stress of the copper alloy is defined. Residual stress is the stress that exists in the material without external force or thermal gradient. Residual stress occurs as a result of non-uniform deformation due to heat treatment or cold working. If residual stress remains, it becomes difficult to obtain a flat strip or plate. If the flatness is impaired, the dimensional accuracy when pressed is adversely affected. In general, the residual stress is widely distributed inside the rolled material, and in the case of the rolled material, the gradient of the residual stress in the vicinity of the surface layer is often high.
Therefore, in the present invention, the absolute value of the residual stress at a depth of 1 μm from the surface is regulated to 50 MPa or less. The absolute value of the residual stress is preferably 30 MPa or less, more preferably 20 MPa or less. Therefore, the copper alloy according to the present invention has an absolute value of residual stress of, for example, 0 to 50, typically 5 to 50 MPa. The absolute value is used because there are two types of residual stress: tension and compression. The smaller the absolute value, the better the flatness.

本発明において、「表面から1μmの深さにおける残留応力の絶対値」とは以下の方法で測定したものをいうこととする。まず、銅合金板又は条から大きさ幅20mm×長さ200mmの試験板を切り出す。圧延方向を長手方向にする。試験片の片面の表層をエッチング液を用いて徐々に除去しながら、各深さにおける残部試験片の長さ方向(x)及び幅方向(y)の曲率φx、φyを測定する。これを板厚が半分になるまで繰り返し実施する。曲率は試験片の反りを測定することで求める。試験片の反りを円周の一部と考え、この円に相当する半径の逆数を曲率とする。曲率は弦の長さと高さを測定すれば数学的に容易に求められる。その後、エッチング深さaと曲率の関係を図にプロットし、以下の式によって表面からa=1μmのエッチング深さにおける圧延方向(x)の残留応力の絶対値σx(a)を測定する。本方法はTreuting−Read法と呼ばれるよく知られた方法であり、例えば下記の参考文献に記載されている。
参考文献:米谷茂、「残留応力の発生と対策」、株式会社養賢堂、p.54−56、1975年
In the present invention, the “absolute value of residual stress at a depth of 1 μm from the surface” means that measured by the following method. First, a test plate having a size of width 20 mm × length 200 mm is cut out from a copper alloy plate or strip. The rolling direction is the longitudinal direction. While gradually removing the surface layer on one side of the test piece using an etching solution, the curvatures φ x and φ y in the length direction (x) and the width direction (y) of the remaining test piece at each depth are measured. This is repeated until the plate thickness is halved. The curvature is obtained by measuring the warpage of the specimen. The curvature of the test piece is considered as a part of the circumference, and the reciprocal of the radius corresponding to this circle is the curvature. The curvature can be easily obtained mathematically by measuring the length and height of the strings. Thereafter, the relationship between the etching depth a and the curvature is plotted in the figure, and the absolute value σ x (a) of the residual stress in the rolling direction (x) at the etching depth a = 1 μm from the surface is measured by the following formula. This method is a well-known method called the “Truting-Read method”, and is described in, for example, the following references.
References: Shigeru Yoneya, “Generation and Countermeasures for Residual Stress”, Yokendo Co., Ltd., p. 54-56, 1975

Figure 2010126783
Figure 2010126783

熱処理による強度の低下
本発明では更に、500℃の温度で1分間加熱する熱処理によって引張強さが40MPa以上低下することを規定する。「500℃の温度で1分間加熱する熱処理」とはプレス加工後の歪取り焼鈍を想定した熱処理条件である。この熱処理は、本発明では、試験対象となる銅合金板又は条を500℃に加熱されたアルゴン雰囲気の炉に1分間放置し、その後、炉から取り出して空冷する方法で行うこととする。本発明において引張強さ(TS)とは、圧延平行方向での引っ張り試験をJIS Z 2241に準拠して行ったときの値である。
Strength reduction by heat treatment In the present invention, it is further specified that the tensile strength is reduced by 40 MPa or more by heat treatment heated at a temperature of 500 ° C. for 1 minute. “Heat treatment that is heated at a temperature of 500 ° C. for 1 minute” is a heat treatment condition that assumes strain relief annealing after press working. In the present invention, this heat treatment is performed by a method in which a copper alloy plate or strip to be tested is left in an argon atmosphere furnace heated to 500 ° C. for 1 minute, and then removed from the furnace and air-cooled. In the present invention, the tensile strength (TS) is a value obtained when a tensile test in the rolling parallel direction is performed according to JIS Z 2241.

残留応力の絶対値が50MPa以下にまで低減されている場合、従来の銅合金であれば歪み硬化によって得られた強度の大部分は失われて軟化しており、更に500℃の温度で1分間加熱する熱処理を行っても、それほど強度は低下せず、しかも強度が低下するときの速度(℃/s)が遅い。一方、プレス加工に有利な強度を残した場合、従来の銅合金であれば残留応力もかなりの大きさで残存してしまうため、所望の平坦性が確保できない。   When the absolute value of the residual stress is reduced to 50 MPa or less, if it is a conventional copper alloy, most of the strength obtained by strain hardening is lost and softened, and further at a temperature of 500 ° C. for 1 minute. Even if heat treatment is performed, the strength does not decrease so much, and the rate at which the strength decreases (° C./s) is slow. On the other hand, if strength that is advantageous for press working is left, a conventional copper alloy will have a residual stress with a considerable magnitude, so that the desired flatness cannot be ensured.

ところが、本発明に係る銅合金では後述するように、製造条件に工夫を施したことによって、残留応力の絶対値が50MPa以下と小さい状態にありながら、更に500℃の温度で1分間加熱する熱処理を行うと、40MPa以上も強度が低下するという特性を有する。残留応力除去後にも歪み硬化による強度が残留しているということであり、プレス加工時の剪断性を向上させる。500℃の温度で1分間加熱する熱処理前後の強度の低下は好ましくは50MPa以上であり、より好ましくは55MPa以上であり、更により好ましくは60MPa以上である。但し、強度低下の差を大きくしようとすると、熱処理前の内部の歪も大きくしなければならず、この場合、残留応力も高くなってしまう。そこで、強度の低下は100MPa以下とするのが好ましく、70MPa以下とするのがより好ましい。   However, in the copper alloy according to the present invention, as will be described later, by devising the manufacturing conditions, heat treatment is further performed at a temperature of 500 ° C. for 1 minute while the absolute value of the residual stress is as small as 50 MPa or less. When it performs, it has the characteristic that intensity | strength falls 40 MPa or more. This means that the strength due to strain hardening remains even after the residual stress is removed, which improves the shearability during press working. The decrease in strength before and after the heat treatment heated at a temperature of 500 ° C. for 1 minute is preferably 50 MPa or more, more preferably 55 MPa or more, and even more preferably 60 MPa or more. However, if the difference in strength reduction is to be increased, the internal strain before the heat treatment must also be increased, and in this case, the residual stress also increases. Therefore, the decrease in strength is preferably 100 MPa or less, and more preferably 70 MPa or less.

プレス加工後の歪取り焼鈍における強度の低下が大きい、すなわち歪みが低減される程度が大きいということは、プレス加工後のリードフレームが平坦化しやすいことを意味する。また、本発明に係る銅合金において、歪取り焼鈍における強度の低下が大きいにも拘わらずこれが短時間で達成されるというのは驚くべき結果といえる。理論によって本発明が限定されることを意図しないが、これは以下の理由によると考えられる。
プレス加工後の材料中には、プレス加工による残留応力が発生している。このため、熱処理によって残留応力を除去しない限り、材料には反りが発生してしまう。熱処理による残留応力の除去は、熱処理前の歪の程度が大きければ大きいほど短時間で除去される。なぜならば、熱処理による転位の移動、合体及び消滅は、転位密度が高いほど効率よく行われると考えられるからである。単純に言えば、転位が移動する際に別の転位と遭遇する率が高いからと考えられる。従って、プレス加工に導入される転位の他に、プレス加工前の歪(転位)が存在することによって熱処理による残留応力の除去が効果的になる。本発明においては、残留応力を除去しつつも、強度低下を抑制したことによって、プレス加工前の歪(転位)が従来と比較して大きく、従ってプレス加工後の熱処理による歪み除去が極めて短時間になされたと考えられる。歪みが除去されることによって内部応力は低減し、平坦な素材が得られる。
A large decrease in strength in the strain relief annealing after press working, that is, a large degree of reduction in strain means that the lead frame after press working is easily flattened. In addition, in the copper alloy according to the present invention, it can be said that it is a surprising result that this is achieved in a short time despite the great decrease in strength in the strain relief annealing. Although it is not intended that the present invention be limited by theory, it is believed that this is due to the following reasons.
Residual stress is generated by pressing in the material after pressing. For this reason, unless the residual stress is removed by heat treatment, the material is warped. The residual stress is removed by heat treatment in a shorter time as the degree of strain before heat treatment is larger. This is because the movement, coalescence, and annihilation of dislocations due to heat treatment are considered to be performed more efficiently as the dislocation density is higher. Simply put, it is thought that the rate of encountering another dislocation is high when the dislocation moves. Therefore, in addition to the dislocations introduced into the press work, the presence of distortion (dislocations) before the press work effectively removes the residual stress by heat treatment. In the present invention, since the strength reduction is suppressed while removing the residual stress, the strain (dislocation) before the press working is larger than the conventional one, so that the strain removal by the heat treatment after the press working is extremely short. It is thought that it was made. By removing the strain, the internal stress is reduced and a flat material is obtained.

第二相粒子
本発明に係る銅合金板又は条の一実施形態においては、粒径が10〜1000nmの範囲にある第二相粒子の平均粒径が20〜200nmである。第二相粒子の平均粒径を斯かる範囲に設定することによって、析出硬化による強度向上の効果を十分に享受することができる。また、斯かる粒径範囲の第二相粒子は転移の移動を抑制することができるので、銅合金板又は条を製造する最終段階で行われる歪取り焼鈍における強度低下を抑制する効果がある。但し、粒径が小さい析出物があまり多くなるとプレス加工後に行う歪取り焼鈍での時間短縮効果が低下しやすいので、粒径が10〜1000nmの範囲にある第二相粒子の平均粒径は好ましくは100〜200nmである。
Second Phase Particles In one embodiment of the copper alloy plate or strip according to the present invention, the average particle size of the second phase particles having a particle size in the range of 10 to 1000 nm is 20 to 200 nm. By setting the average particle size of the second phase particles in such a range, the effect of improving the strength by precipitation hardening can be fully enjoyed. In addition, since the second phase particles having such a particle size range can suppress the movement of the transition, there is an effect of suppressing the strength reduction in the strain relief annealing performed at the final stage of manufacturing the copper alloy plate or strip. However, the average particle size of the second phase particles having a particle size in the range of 10 to 1000 nm is preferred because the effect of shortening the time in the strain relief annealing performed after the press working tends to be reduced when the precipitate having a small particle size is excessive. Is 100-200 nm.

本発明において、第二相粒子とは主に金属間化合物粒子を指すが、これに限られるものではなく、溶解鋳造の凝固過程に生ずる晶出物及びその後の冷却過程で生ずる析出物、熱間圧延後の冷却過程で生ずる析出物、溶体化処理後の冷却過程で生ずる析出物、及び時効処理過程で生ずる析出物のことを言う。平均粒径を算出する際に使用する第二相粒子の粒径の範囲を10〜1000nmに限定したのは、10nm未満の粒子はカウントするのが困難であり、また、1000nm(1μm)を超える粗大な晶出物や析出物は数が少なく、析出による強度向上効果も小さく、また、偶然混入した粗大な外来物までカウントしかねないからである。   In the present invention, the second-phase particles mainly refer to intermetallic compound particles, but are not limited to this. Crystallized substances generated in the solidification process of melt casting, precipitates generated in the subsequent cooling process, hot It refers to precipitates generated during the cooling process after rolling, precipitates generated during the cooling process after solution treatment, and precipitates generated during the aging process. The reason why the range of the particle size of the second phase particles used for calculating the average particle size is limited to 10 to 1000 nm is that it is difficult to count particles less than 10 nm, and more than 1000 nm (1 μm). This is because the number of coarse crystallized substances and precipitates is small, the effect of improving the strength by precipitation is small, and even coarse foreign substances mixed by chance may be counted.

第二相粒子の粒径や個数は、材料の圧延方向に対して平行な断面をエッチング後、SEM観察により測定することができる。本発明において第二相粒子の粒径とは、かかる条件でSEM観察したときの、該粒子を取り囲む最小円の直径のことを指す。   The particle size and number of the second phase particles can be measured by SEM observation after etching a cross section parallel to the rolling direction of the material. In the present invention, the particle size of the second phase particles refers to the diameter of the smallest circle surrounding the particles when observed by SEM under such conditions.

引張強さ(TS)
引張強さ(TS)を大きくし過ぎると残留応力を所望のレベルに抑えることが困難となる。この場合、銅合金板又は条の製造工程の最終段階で行われる歪取り焼鈍において残留応力が除去しきれず、平坦な素材が得られにくくなる。一方、引張強さを小さくし過ぎると残留応力は低いものの、打ち抜きによる変形が大きく、寸法精度が劣り、プレス加工性が悪くなる。本発明に係る銅合金板又は条の一実施形態においては、引張強さ(TS)が400〜650MPaである。この程度の引張強さ(TS)があれば、プレス加工時に良好な打ち抜き性を示すことができる。
また、本発明に係る銅合金板又は条の一実施形態においては、0.2%耐力が350〜600MPaである。
Tensile strength (TS)
If the tensile strength (TS) is increased too much, it becomes difficult to suppress the residual stress to a desired level. In this case, the residual stress cannot be removed in the strain relief annealing performed at the final stage of the manufacturing process of the copper alloy sheet or strip, and it becomes difficult to obtain a flat material. On the other hand, if the tensile strength is too small, the residual stress is low, but the deformation due to punching is large, the dimensional accuracy is inferior, and the press workability is deteriorated. In one embodiment of the copper alloy plate or strip according to the present invention, the tensile strength (TS) is 400 to 650 MPa. If there is this level of tensile strength (TS), good punchability can be exhibited during press working.
Moreover, in one embodiment of the copper alloy plate or strip according to the present invention, the 0.2% proof stress is 350 to 600 MPa.

製造方法
次に本発明に係る銅合金板又は条の製造方法に関して説明する。
本発明に係る銅合金板又は条は一部の工程に工夫を加える他は、一般的な時効析出型銅合金系の慣例の製造工程を採用することで製造可能である。
Manufacturing Method Next, a method for manufacturing a copper alloy plate or strip according to the present invention will be described.
The copper alloy sheet or strip according to the present invention can be manufactured by adopting a conventional manufacturing process of a general aging precipitation type copper alloy system, except that some processes are devised.

時効析出型銅合金板又は条の慣例的な製造工程を概説する。まず大気溶解炉を用い、電気銅、Cr、Fe、Ni、P等の原料を溶解し、所望の組成の溶湯を得る。そして、この溶湯をインゴットに鋳造する。その後、熱間圧延を行い、冷間圧延と熱処理を繰り返して、所望の厚み及び特性を有する条や箔に仕上げる。熱処理には溶体化処理と時効処理がある。溶体化処理では、合金組成に応じた金属間化合物をCu母地中に固溶させ、同時にCu母地を再結晶させる。溶体化処理を、熱間圧延で兼ねることもある。時効処理では溶体化処理で固溶させた金属間化合物を微細粒子として析出させる。この時効処理で強度と導電率が上昇する。時効後に冷間圧延を行ない、その後、歪取り焼鈍を行なう。上記各工程の合間には適宜、表面の酸化スケール除去のための研削、研磨、ショットブラスト酸洗等が適宜行なわれる。   The conventional manufacturing process of an aging precipitation type copper alloy sheet or strip will be outlined. First, using an atmospheric melting furnace, raw materials such as electrolytic copper, Cr, Fe, Ni, and P are melted to obtain a molten metal having a desired composition. Then, this molten metal is cast into an ingot. Thereafter, hot rolling is performed, and cold rolling and heat treatment are repeated to finish a strip or foil having a desired thickness and characteristics. Heat treatment includes solution treatment and aging treatment. In the solution treatment, an intermetallic compound corresponding to the alloy composition is dissolved in the Cu matrix, and at the same time, the Cu matrix is recrystallized. The solution treatment may be combined with hot rolling. In the aging treatment, the intermetallic compound dissolved in the solution treatment is precipitated as fine particles. This aging treatment increases strength and conductivity. Cold rolling is performed after aging, and then strain relief annealing is performed. Between the above steps, grinding, polishing, shot blast pickling and the like for removing oxide scale on the surface are appropriately performed.

本発明に係る銅合金板又は条を製造する上では、最終段階で行われる歪取り焼鈍の前段階において、高い強度を作り込みながら残留応力の原因となる操作をできるだけ回避することが重要である。こうすることで、歪取り焼鈍時には僅かの残留応力を除去するだけでよいので歪取り焼鈍後にも所望の強度を残存させることができる。歪取り焼鈍の前段階で所望の強度を確保しながら残留応力の発生を抑えるためには、例えば、歪取り焼鈍前の冷間圧延は1パス毎の圧下率をできるだけ小さくするのがよい。1パス毎の圧下率30%以下とするのが好ましく、より好ましくは25%以下である。圧下率を小さくすることで、発生する残留応力の分布が均一化するという効果もある。ただし、1パス毎の圧下率をあまり小さくすると生産性が悪化するので、発生する残留応力との関係で適宜調節するのがよい。歪取り焼鈍前の冷間圧延全体の圧下率は、時効処理条件との兼ね合いにもよるが、十分な強度を得るには25%以上とするのが好ましく、30%以上とするのがより好ましい。   In producing a copper alloy sheet or strip according to the present invention, it is important to avoid operations that cause residual stress as much as possible while creating high strength in the pre-stage of strain relief annealing performed in the final stage. . By doing so, it is only necessary to remove a slight residual stress at the time of the strain relief annealing, so that a desired strength can be left even after the strain relief annealing. In order to suppress the occurrence of residual stress while ensuring a desired strength in the pre-stage of strain relief annealing, for example, in cold rolling before strain relief annealing, the rolling reduction per pass is preferably as small as possible. The rolling reduction per pass is preferably 30% or less, more preferably 25% or less. By reducing the rolling reduction, there is also an effect that the distribution of the generated residual stress becomes uniform. However, if the rolling reduction per pass is too small, the productivity will deteriorate, so it is preferable to adjust it appropriately in relation to the residual stress generated. Although the reduction ratio of the entire cold rolling before the stress relief annealing depends on the balance with the aging treatment conditions, it is preferably 25% or more, more preferably 30% or more in order to obtain sufficient strength. .

また、最終段階で行われる歪取り焼鈍は昇温速度を遅くし、冷却速度を高くすることが有利である。これによって、表面の残留応力が均一に低減され、残留応力の偏在が防止される。その結果、平坦性も向上する。また、昇温速度が高すぎる場合には、残留応力の低減には有効であるが、材料中の転位が容易に移動して強度の低下が大きくなる。冷却速度が低すぎる場合にも、冷却中の転位の移動が抑制できず、強度が低下してしまう。
よって、材料温度が25℃から400℃まで上昇する際の平均昇温速度を80〜200℃/秒とするのが好ましく、80〜100℃/秒とするのがより好ましい。また、材料温度が500℃から200℃まで冷却する際の平均冷却速度を10℃/秒以上とするのが好ましく、15℃/秒とするのがより好ましい。
このような冷却速度は板厚が0.3mm以下程度であれば空冷で達成できるが、水冷するのがなお良い。ただし、あまり冷却速度を高くしても製品の形状が悪くなるので30℃/秒以下とするのが好ましく、20℃/秒以下とするのがより好ましい。歪取り焼鈍の保持温度は、高すぎる場合は材料の表面が酸化してしまい、エッチング特性やめっき特性に悪影響を及ぼす一方で、低すぎる場合は残留応力が除去できない。そこで、保持温度は好ましくは400〜600℃、より好ましくは450〜550℃である。保持温度における保持時間は、あまり短いと残留応力を除去できない一方で、あまり長くなると強度の低下が大きくなることから、好ましくは5〜30秒、より好ましくは5〜20秒である。
Further, in the strain relief annealing performed in the final stage, it is advantageous to slow the temperature increase rate and increase the cooling rate. Thereby, the residual stress on the surface is uniformly reduced, and uneven distribution of the residual stress is prevented. As a result, flatness is also improved. In addition, when the rate of temperature increase is too high, it is effective for reducing the residual stress, but dislocations in the material easily move and the strength decreases greatly. Even when the cooling rate is too low, the movement of dislocations during cooling cannot be suppressed, and the strength decreases.
Therefore, the average rate of temperature rise when the material temperature rises from 25 ° C. to 400 ° C. is preferably 80 to 200 ° C./second, and more preferably 80 to 100 ° C./second. Further, the average cooling rate when the material temperature is cooled from 500 ° C. to 200 ° C. is preferably 10 ° C./second or more, and more preferably 15 ° C./second.
Such a cooling rate can be achieved by air cooling if the plate thickness is about 0.3 mm or less, but water cooling is still better. However, even if the cooling rate is increased too much, the shape of the product is deteriorated, so that it is preferably 30 ° C./second or less, and more preferably 20 ° C./second or less. If the holding temperature of the strain relief annealing is too high, the surface of the material is oxidized, which adversely affects the etching characteristics and plating characteristics, whereas if it is too low, the residual stress cannot be removed. Therefore, the holding temperature is preferably 400 to 600 ° C, more preferably 450 to 550 ° C. The holding time at the holding temperature is preferably 5 to 30 seconds, more preferably 5 to 20 seconds because the residual stress cannot be removed if the holding time is too short, but the strength decreases greatly if it is too long.

本発明に係る銅合金板又は条においては、第二相粒子の平均粒径も規定しているが、第二相粒子の微細化手段については当業者に知られた各種の方法を採用すれば達成可能である。以下に例示的な制御方法を記載する。   In the copper alloy plate or strip according to the present invention, the average particle size of the second phase particles is also defined, but various means known to those skilled in the art can be adopted as means for refining the second phase particles. Achievable. An exemplary control method is described below.

第二相粒子の粗大化を防止するためには熱間圧延と溶体化処理の条件を制御することが重要である。鋳造時の凝固過程では粗大な晶出物が、その冷却過程では粗大な析出物が不可避的に生成する。そのため、その後の工程においてこれらの第二相粒子を母相中に固溶する必要がある。   In order to prevent the coarsening of the second phase particles, it is important to control the conditions of hot rolling and solution treatment. Coarse crystals are inevitably produced during the solidification process during casting, and coarse precipitates are inevitably produced during the cooling process. Therefore, in the subsequent process, it is necessary to dissolve these second phase particles in the matrix phase.

熱間圧延は850℃以上で1時間以上保持後に行うのがよい。固溶しにくいCrを添加した場合にはより高い温度を設定すればよいが、1050℃を超えると材料が溶解する可能性がある。熱間圧延終了時の温度は600℃以上の高い温度で終了してもよいが、後の工程において溶体化が困難となる場合は、より低い温度で終了する方が有効である。熱間圧延終了後の冷却過程では冷却速度をできるだけ速くし、第二相粒子の析出を抑制するのがよい。冷却を速くする方法としては水冷が最も効果的である。   Hot rolling is preferably performed after holding at 850 ° C. or higher for 1 hour or longer. When Cr that does not dissolve easily is added, a higher temperature may be set, but if it exceeds 1050 ° C., the material may be dissolved. The temperature at the end of hot rolling may end at a high temperature of 600 ° C. or higher. However, when it is difficult to form a solution in a later step, it is more effective to end at a lower temperature. In the cooling process after completion of hot rolling, it is preferable to suppress the precipitation of the second phase particles by increasing the cooling rate as much as possible. Water cooling is the most effective method for speeding up the cooling.

溶体化処理においても同様に、溶体化処理温度を850℃〜1050℃にすることで第二相粒子を固溶することができる。溶体化処理後の冷却も速くするのがよい。   Similarly, in the solution treatment, the second phase particles can be dissolved by setting the solution treatment temperature to 850 ° C. to 1050 ° C. Cooling after the solution treatment should be fast.

時効処理の条件は析出物の微細化に有用であるとして慣用的に行われている条件で構わないが、析出物が粗大化しないように温度及び時間を設定することに留意する。時効処理の条件の一例を挙げると、375〜625℃の温度範囲で0.5〜50時間であり、より好ましくは400〜600℃の温度範囲で1〜40時間である。なお、時効処理後の冷却速度は析出物の大小にほとんど影響を与えない。   The conditions for the aging treatment may be those conventionally used as useful for refining the precipitates, but note that the temperature and time are set so that the precipitates do not become coarse. If an example of the conditions of an aging treatment is given, it will be 0.5 to 50 hours in the temperature range of 375-625 degreeC, More preferably, it is 1 to 40 hours in the temperature range of 400-600 degreeC. The cooling rate after the aging treatment hardly affects the size of the precipitates.

本発明に係る銅合金板又は条はリードフレームの他にも、高い強度及び高い電気伝導性(又は熱伝導性)を両立させることが要求されるコネクタ、ピン、端子、リレー、スイッチ、二次電池用箔材等の電子機器部品に使用することができる。   In addition to the lead frame, the copper alloy plate or strip according to the present invention requires connectors having high strength and high electrical conductivity (or thermal conductivity), pins, terminals, relays, switches, secondary It can be used for electronic equipment parts such as battery foil materials.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。   Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.

例1
表1に記載の合金組成を有する各銅合金を、高周波溶解炉において1300℃で溶製し、厚さ30mmのインゴットに鋳造した。次いで、このインゴットを1000℃で1時間加熱後、板厚10mmまで熱間圧延し(熱間圧延終了時の材料温度は500℃)、速やかに水中冷却を行った。表面のスケール除去のため厚さ8mmまで面削を施した後、中間の冷間圧延を行った。次に溶体化処理を800℃×1時間の条件で実施した後、室温まで水中冷却した。次に表2に示す各条件でアルゴン雰囲気中において時効処理を施し、厚さ0.15mmまで冷間圧延した。このとき、1パスの圧下率が残留応力へ与える影響を調査するため、試験板によってパス毎の最大圧下率を変化させ、それぞれの総圧下率は30%以上とした(表2)。
最後に歪取り焼鈍を実施した。アルゴン雰囲気中で対流型熱処理炉を用いて実施した。この際、試験板温度が25℃から400℃まで上昇する際の平均昇温速度、保持温度、保持温度での保持時間、試験板温度が500から200℃まで下降する際の平均冷却速度を試験板によって変化させた(表2)。
Example 1
Each copper alloy having the alloy composition shown in Table 1 was melted at 1300 ° C. in a high-frequency melting furnace, and cast into an ingot having a thickness of 30 mm. Next, the ingot was heated at 1000 ° C. for 1 hour, and then hot-rolled to a plate thickness of 10 mm (the material temperature at the end of hot rolling was 500 ° C.) and rapidly cooled in water. After surface chamfering to a thickness of 8 mm for removing scale on the surface, intermediate cold rolling was performed. Next, solution treatment was performed under conditions of 800 ° C. × 1 hour, and then cooled to room temperature in water. Next, an aging treatment was performed in an argon atmosphere under each condition shown in Table 2, and cold rolled to a thickness of 0.15 mm. At this time, in order to investigate the influence of the reduction ratio of one pass on the residual stress, the maximum reduction ratio for each pass was changed by the test plate, and the total reduction ratio was 30% or more (Table 2).
Finally, strain relief annealing was performed. It implemented using the convection type heat processing furnace in argon atmosphere. At this time, the average heating rate when the test plate temperature is raised from 25 ° C. to 400 ° C., the holding temperature, the holding time at the holding temperature, and the average cooling rate when the test plate temperature is lowered from 500 to 200 ° C. are tested. Varies with the plate (Table 2).

特性評価は以下の方法で行い、結果を表3に示した。
強度については圧延平行方向での引っ張り試験をJIS Z 2241に準拠して行い、引張強さ(TS)及び0.2%耐力を測定した。
導電率(%IACS)についてはダブルブリッジによる体積抵抗率測定により求めた。
第二相粒子の平均粒径は、圧延方向に平行な断面に対して、透過型電子顕微鏡(HITACHI−H−9000)により10視野観察して粒径が10〜1000nmの範囲にある第二相粒子について、その数及び粒径を求めて算出した。
残留応力は、先述した方法により求めた。
500℃の温度で1分間加熱する熱処理前後の引張強さの低下は、先述した方法により求めた。
The characteristic evaluation was performed by the following method, and the results are shown in Table 3.
Regarding the strength, a tensile test in the rolling parallel direction was performed according to JIS Z 2241, and the tensile strength (TS) and 0.2% proof stress were measured.
The electrical conductivity (% IACS) was determined by volume resistivity measurement using a double bridge.
The average particle size of the second phase particles is a second phase in which the particle size is in the range of 10 to 1000 nm by observing 10 fields of view with a transmission electron microscope (HITACHI-H-9000) on a cross section parallel to the rolling direction. The number and particle size of the particles were calculated.
The residual stress was determined by the method described above.
The decrease in the tensile strength before and after the heat treatment heated at 500 ° C. for 1 minute was determined by the method described above.

Figure 2010126783
Figure 2010126783

Figure 2010126783
Figure 2010126783

Figure 2010126783
Figure 2010126783

例2(比較)
表4に記載の合金組成を有する各銅合金を、高周波溶解炉において1300℃で溶製し、厚さ30mmのインゴットに鋳造した。次いで、このインゴットを1000℃で1時間加熱後、板厚10mmまで熱間圧延し(熱間圧延終了時の材料温度は500℃)、速やかに水中冷却を行った。表面のスケール除去のため厚さ8mmまで面削を施した後、中間の冷間圧延を行った。次に溶体化処理を800℃×1時間の条件で実施した後、室温まで水中冷却した。次に表5に示す各条件でアルゴン雰囲気中において時効処理を施し、厚さ0.15mmまで冷間圧延した。このとき、1パスの圧下率が残留応力へ与える影響を調査するため、試験板によってパス毎の最大圧下率を変化させ、それぞれの総圧下率は30%以上とした(表5)。
最後に歪取り焼鈍を実施した。アルゴン雰囲気中で対流型熱処理炉を用いて実施した。この際、試験板温度が25℃から400℃まで上昇する際の平均昇温速度、保持温度、保持温度での保持時間、試験板温度が500から200℃まで下降する際の平均冷却速度を試験板によって変化させた(表5)。
Example 2 (comparison)
Each copper alloy having the alloy composition shown in Table 4 was melted at 1300 ° C. in a high-frequency melting furnace, and cast into an ingot having a thickness of 30 mm. Next, the ingot was heated at 1000 ° C. for 1 hour, and then hot-rolled to a plate thickness of 10 mm (the material temperature at the end of hot rolling was 500 ° C.) and rapidly cooled in water. After surface chamfering to a thickness of 8 mm for removing scale on the surface, intermediate cold rolling was performed. Next, solution treatment was performed under conditions of 800 ° C. × 1 hour, and then cooled to room temperature in water. Next, an aging treatment was performed in an argon atmosphere under each condition shown in Table 5, and cold-rolled to a thickness of 0.15 mm. At this time, in order to investigate the effect of the rolling reduction of one pass on the residual stress, the maximum rolling reduction for each pass was changed by the test plate, and the total rolling reduction was set to 30% or more (Table 5).
Finally, strain relief annealing was performed. It implemented using the convection type heat processing furnace in argon atmosphere. At this time, the average heating rate when the test plate temperature is raised from 25 ° C. to 400 ° C., the holding temperature, the holding time at the holding temperature, and the average cooling rate when the test plate temperature is lowered from 500 to 200 ° C. are tested. Varies with the plate (Table 5).

特性評価は例1と同様の方法で行い、結果を表6に示した。   The characteristic evaluation was performed in the same manner as in Example 1, and the results are shown in Table 6.

No.19〜36の組成はそれぞれNo.1〜18の組成と同一である。   No. The compositions of 19 to 36 are No. It is the same as the composition of 1-18.

Figure 2010126783
Figure 2010126783

Figure 2010126783
Figure 2010126783

Figure 2010126783
Figure 2010126783

考察
No.1〜18は、冷間圧延及び歪取り焼鈍の条件が共に適切であったため、残留応力が50MPa以下であり、且つ、500℃の温度で1分間加熱する熱処理前後の引張強さの差が40MPa以上となった。
No.19、20、29、30は、冷間圧延のパス毎の最大圧下率が高く、歪取り焼鈍後の残留応力が高くなってしまった。No.19及び29では更に、500℃×1分の熱処理における強度差も不十分となった。
No.21及び31は、歪取り焼鈍時の昇温速度が高すぎたため、それぞれ強度が低下した。そのため、500℃×1分の熱処理における強度差が不十分となった。
No.22及び32は、冷却速度が低すぎたため、それぞれ強度が低下した。そのため、500℃×1分の熱処理における強度差が不十分となった。
No.23及び33は、歪取り焼鈍時の保持時間が長すぎたため、それぞれ強度が低下した。そのため、500℃×1分の熱処理における強度差が不十分となった。
No.24及び34は、保持時間が短すぎたため、歪取り焼鈍後の残留応力が高くなってしまった。
No.25、28及び35は、保持時間が高すぎた。そのため、保持されている間に回復が促進されて強度が低下してしまい、500℃×1分の熱処理における強度差が不十分となった。
No.26、27、36は、保持温度が低すぎたため、歪取り焼鈍後の残留応力が高くなってしまった。更に、No.27は、冷間圧延のパス毎の最大圧下率が高いことも歪取り焼鈍後の残留応力を押し上げた。
Discussion No. In Nos. 1 to 18, since the conditions of cold rolling and stress relief annealing were both appropriate, the residual stress was 50 MPa or less, and the difference in tensile strength before and after heat treatment heated at a temperature of 500 ° C. for 1 minute was 40 MPa. That's it.
No. Nos. 19, 20, 29, and 30 had a high maximum rolling reduction for each pass of cold rolling, and the residual stress after strain relief annealing was high. No. In 19 and 29, the difference in strength in the heat treatment at 500 ° C. for 1 minute was also insufficient.
No. Nos. 21 and 31 were reduced in strength because the rate of temperature increase during strain relief annealing was too high. Therefore, the difference in strength in the heat treatment at 500 ° C. for 1 minute became insufficient.
No. Since 22 and 32 had the cooling rate too low, the intensity | strength fell, respectively. Therefore, the difference in strength in the heat treatment at 500 ° C. for 1 minute became insufficient.
No. Since the holding time at the time of strain relief annealing was too long, No. 23 and 33 each had reduced strength. Therefore, the difference in strength in the heat treatment at 500 ° C. for 1 minute became insufficient.
No. Since 24 and 34 had too short holding time, the residual stress after strain relief annealing became high.
No. 25, 28 and 35 were too high in retention time. Therefore, recovery was promoted while being held, and the strength was lowered, and the strength difference in the heat treatment at 500 ° C. × 1 minute became insufficient.
No. In Nos. 26, 27 and 36, since the holding temperature was too low, the residual stress after the strain relief annealing became high. Furthermore, no. No. 27 also increased the residual stress after strain relief annealing because the maximum rolling reduction for each pass of cold rolling was high.

Claims (7)

Cr、Zn、Sn、Zr、Fe、P、Mg、Mn、Al及びCoよりなる群から選ばれる1種又は2種以上の添加元素を合計で0.02〜3.0質量%含有し、残部Cuおよび不可避的不純物からなる組成を有する電子材料用銅合金板又は条であって、表面から1μmの深さにおける残留応力の絶対値が50MPa以下であり、且つ、500℃の温度で1分間加熱する熱処理によって引張強さが40MPa以上低下する銅合金板又は条。   Contains 0.02 to 3.0% by mass in total of one or more additive elements selected from the group consisting of Cr, Zn, Sn, Zr, Fe, P, Mg, Mn, Al and Co, and the balance A copper alloy plate or strip for electronic materials having a composition comprising Cu and inevitable impurities, the absolute value of residual stress at a depth of 1 μm from the surface being 50 MPa or less, and heating at a temperature of 500 ° C. for 1 minute A copper alloy sheet or strip whose tensile strength is reduced by 40 MPa or more by heat treatment. 下記の1)から4)の何れかに示される組成を有する電子材料用銅合金板又は条であって、表面から1μmの深さにおける残留応力の絶対値が50MPa以下であり、且つ、500℃の温度で1分間加熱する熱処理によって引張強さが40MPa以上低下する銅合金板又は条。
1)Cr:0.1〜0.5質量%を含有し、残部Cuおよび不可避的不純物からなる組成
2)Cr:0.1〜0.5質量%を含有し、更に、Si、Zn、Sn及びZrよりなる群から選択される1種又は2種以上を合計で1.0質量%まで含有し、残部Cuおよび不可避的不純物からなる組成
3)Fe:0.02〜3.0質量%、P:0.02〜0.15質量%を含有し、残部Cuおよび不可避的不純物からなる組成
4)Fe:0.02〜3.0質量%、P:0.02〜0.15質量%を含有し、更に、Ni、Mg、Mn、Zn及びSnよりなる群から選択される1種又は2種以上を合計で1.0質量%まで含有し、残部Cuおよび不可避的不純物からなる組成。
A copper alloy plate or strip for electronic materials having the composition shown in any one of 1) to 4) below, wherein the absolute value of residual stress at a depth of 1 μm from the surface is 50 MPa or less, and 500 ° C. A copper alloy plate or strip whose tensile strength is reduced by 40 MPa or more by heat treatment heated at a temperature of 1 min.
1) Cr: 0.1 to 0.5% by mass, balance Cu and unavoidable impurities 2) Cr: 0.1 to 0.5% by mass, Si, Zn, Sn And one or more selected from the group consisting of Zr up to a total of 1.0% by mass, a composition consisting of the balance Cu and inevitable impurities 3) Fe: 0.02-3.0% by mass, 4: Fe: 0.02-3.0 mass%, P: 0.02-0.15 mass% containing P: 0.02-0.15 mass% and consisting of remainder Cu and inevitable impurities A composition comprising one or more selected from the group consisting of Ni, Mg, Mn, Zn, and Sn up to 1.0% by mass in total, the balance being Cu and inevitable impurities.
500℃の温度で1分間加熱する熱処理前後の引張強さの差が40〜100MPaである請求項2記載の銅合金板又は条。   The copper alloy sheet or strip according to claim 2, wherein the difference in tensile strength before and after the heat treatment heated at 500 ° C for 1 minute is 40 to 100 MPa. 粒径が10〜1000nmの範囲にある第二相粒子の平均粒径が20〜200nmである請求項2又は3記載の銅合金板又は条。   The copper alloy plate or strip according to claim 2 or 3, wherein the second phase particles having a particle size in the range of 10 to 1000 nm have an average particle size of 20 to 200 nm. 引張強さ(TS)が400〜650MPaである請求項2〜4何れか一項記載の銅合金板又は条。   The copper alloy sheet or strip according to any one of claims 2 to 4, wherein the tensile strength (TS) is 400 to 650 MPa. 0.2%耐力が350〜600MPaである請求項2〜5何れか一項記載の銅合金板又は条。   The copper alloy sheet or strip according to any one of claims 2 to 5, having a 0.2% proof stress of 350 to 600 MPa. 電子材料がリードフレームである請求項2〜6何れか一項記載の銅合金板又は条。   The copper alloy plate or strip according to any one of claims 2 to 6, wherein the electronic material is a lead frame.
JP2008304275A 2008-11-28 2008-11-28 Copper alloy plate or strip for electronic materials Active JP5312920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008304275A JP5312920B2 (en) 2008-11-28 2008-11-28 Copper alloy plate or strip for electronic materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008304275A JP5312920B2 (en) 2008-11-28 2008-11-28 Copper alloy plate or strip for electronic materials

Publications (2)

Publication Number Publication Date
JP2010126783A true JP2010126783A (en) 2010-06-10
JP5312920B2 JP5312920B2 (en) 2013-10-09

Family

ID=42327373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008304275A Active JP5312920B2 (en) 2008-11-28 2008-11-28 Copper alloy plate or strip for electronic materials

Country Status (1)

Country Link
JP (1) JP5312920B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136746A (en) * 2010-12-27 2012-07-19 Hitachi Cable Ltd Copper alloy for electric and electronic parts, and method for manufacturing the same
JP2013185232A (en) * 2012-03-09 2013-09-19 Hitachi Cable Ltd Copper alloy material and method for manufacturing copper alloy material
JP2013194268A (en) * 2012-03-16 2013-09-30 Furukawa Electric Co Ltd:The Copper alloy material excellent in die wear resistance during press, and method of manufacturing the same
JP5380621B1 (en) * 2013-03-25 2014-01-08 Jx日鉱日石金属株式会社 Copper alloy sheet with excellent conductivity and stress relaxation properties
JP5470497B1 (en) * 2013-09-03 2014-04-16 Jx日鉱日石金属株式会社 Copper alloy sheet with excellent stress relaxation properties
JP2014080677A (en) * 2012-09-28 2014-05-08 Jx Nippon Mining & Metals Corp Copper alloy sheet having excellent heat dissipation and repeated bendability
JP2014080678A (en) * 2012-09-28 2014-05-08 Jx Nippon Mining & Metals Corp Copper alloy sheet having excellent heat dissipation and repeated bendability
JP2014080681A (en) * 2012-09-28 2014-05-08 Jx Nippon Mining & Metals Corp Copper alloy sheet having excellent heat dissipation and repeated bendability
WO2014157248A1 (en) * 2013-03-25 2014-10-02 Jx日鉱日石金属株式会社 Copper alloy sheet having outstanding electro-conductivity and
JP2014198894A (en) * 2013-03-14 2014-10-23 Jx日鉱日石金属株式会社 Copper alloy sheet excellent in conductivity and stress relief property
WO2015020187A1 (en) * 2013-08-09 2015-02-12 三菱マテリアル株式会社 Copper alloy, copper alloy thin sheet and copper alloy manufacturing method
WO2015020189A1 (en) * 2013-08-09 2015-02-12 三菱マテリアル株式会社 Copper alloy, copper alloy thin sheet and copper alloy manufacturing method
JP2015101773A (en) * 2013-11-26 2015-06-04 Jx日鉱日石金属株式会社 Copper alloy sheet excellent in conductivity and stress relaxation property
JP2015203127A (en) * 2014-04-11 2015-11-16 三菱伸銅株式会社 Cu-Fe-P BASED COPPER ALLOY SHEET EXCELLENT IN HALF ETCHING PROPERTY AND METHOD FOR PRODUCING THE SAME
JP2016157887A (en) * 2015-02-26 2016-09-01 京セラ株式会社 Method of manufacturing electrode member for pressure-welding semiconductor device
JP2016188406A (en) * 2015-03-30 2016-11-04 株式会社神戸製鋼所 Copper alloy sheet for heat radiation component
KR101786411B1 (en) 2013-11-08 2017-10-17 제이엑스금속주식회사 Copper alloy plate, and electronic part for heat dissipation use which is equipped with same
KR101788497B1 (en) 2013-11-19 2017-10-19 제이엑스금속주식회사 Copper alloy plate, and electronic component for large current applications and electronic component for heat dissipation applications each provided with same
KR101789956B1 (en) 2013-11-25 2017-10-25 제이엑스금속주식회사 Copper alloy plate having excellent electroconductivity, moldability, and stress relaxation properties
KR20180077164A (en) 2015-09-18 2018-07-06 도와 메탈테크 가부시키가이샤 Copper alloy sheet and manufacturing method thereof
JP2018154910A (en) * 2017-03-21 2018-10-04 Jx金属株式会社 Copper alloy sheet having excellent strength and electric conductivity
JP2018159104A (en) * 2017-03-22 2018-10-11 Jx金属株式会社 Copper alloy sheet having excellent strength and conductivity
RU2709909C1 (en) * 2018-11-26 2019-12-23 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Low-alloyed copper alloy
WO2021145043A1 (en) * 2020-01-14 2021-07-22 古河電気工業株式会社 Copper alloy plate, method for manufacturing same, and electrical/electronic component member
CN114959349A (en) * 2022-04-06 2022-08-30 中南大学 Ultrahigh-strength high-conductivity copper-iron alloy wire and preparation method thereof
CN115044846A (en) * 2022-06-23 2022-09-13 中国科学院宁波材料技术与工程研究所 CuCrSn alloy and deformation heat treatment method thereof
CN115232945A (en) * 2022-07-08 2022-10-25 华天科技(宝鸡)有限公司 Heat treatment method for integrated circuit lead frame and lead frame

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000104131A (en) * 1998-09-28 2000-04-11 Kobe Steel Ltd High strength and high conductivity copper alloy and its production
JP2002294368A (en) * 2001-03-30 2002-10-09 Kobe Steel Ltd Copper alloy for terminal and connector and production method therefor
JP2004256902A (en) * 2003-02-27 2004-09-16 Nikko Metal Manufacturing Co Ltd Cu-Cr-Zr ALLOY, AND PRODUCTION METHOD THEREFOR
JP2005139501A (en) * 2003-11-05 2005-06-02 Kobe Steel Ltd Copper alloy having excellent heat resistance, and its production method
JP2005213611A (en) * 2004-01-30 2005-08-11 Nikko Metal Manufacturing Co Ltd Material for electronic parts with excellent press blanking property
JP2006200036A (en) * 2004-12-24 2006-08-03 Kobe Steel Ltd Copper alloy having bendability and stress relaxation property
JP2010007174A (en) * 2008-05-29 2010-01-14 Nippon Mining & Metals Co Ltd Cu-Ni-Si-BASED ALLOY PLATE OR BAR FOR ELECTRONIC MATERIAL

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000104131A (en) * 1998-09-28 2000-04-11 Kobe Steel Ltd High strength and high conductivity copper alloy and its production
JP2002294368A (en) * 2001-03-30 2002-10-09 Kobe Steel Ltd Copper alloy for terminal and connector and production method therefor
JP2004256902A (en) * 2003-02-27 2004-09-16 Nikko Metal Manufacturing Co Ltd Cu-Cr-Zr ALLOY, AND PRODUCTION METHOD THEREFOR
JP2005139501A (en) * 2003-11-05 2005-06-02 Kobe Steel Ltd Copper alloy having excellent heat resistance, and its production method
JP2005213611A (en) * 2004-01-30 2005-08-11 Nikko Metal Manufacturing Co Ltd Material for electronic parts with excellent press blanking property
JP2006200036A (en) * 2004-12-24 2006-08-03 Kobe Steel Ltd Copper alloy having bendability and stress relaxation property
JP2010007174A (en) * 2008-05-29 2010-01-14 Nippon Mining & Metals Co Ltd Cu-Ni-Si-BASED ALLOY PLATE OR BAR FOR ELECTRONIC MATERIAL

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136746A (en) * 2010-12-27 2012-07-19 Hitachi Cable Ltd Copper alloy for electric and electronic parts, and method for manufacturing the same
JP2013185232A (en) * 2012-03-09 2013-09-19 Hitachi Cable Ltd Copper alloy material and method for manufacturing copper alloy material
JP2013194268A (en) * 2012-03-16 2013-09-30 Furukawa Electric Co Ltd:The Copper alloy material excellent in die wear resistance during press, and method of manufacturing the same
JP2014080677A (en) * 2012-09-28 2014-05-08 Jx Nippon Mining & Metals Corp Copper alloy sheet having excellent heat dissipation and repeated bendability
JP2014080678A (en) * 2012-09-28 2014-05-08 Jx Nippon Mining & Metals Corp Copper alloy sheet having excellent heat dissipation and repeated bendability
JP2014080681A (en) * 2012-09-28 2014-05-08 Jx Nippon Mining & Metals Corp Copper alloy sheet having excellent heat dissipation and repeated bendability
JP2014198894A (en) * 2013-03-14 2014-10-23 Jx日鉱日石金属株式会社 Copper alloy sheet excellent in conductivity and stress relief property
JP5380621B1 (en) * 2013-03-25 2014-01-08 Jx日鉱日石金属株式会社 Copper alloy sheet with excellent conductivity and stress relaxation properties
WO2014157249A1 (en) * 2013-03-25 2014-10-02 Jx日鉱日石金属株式会社 Copper alloy sheet having outstanding electro-conductivity and stress release characteristics
WO2014157248A1 (en) * 2013-03-25 2014-10-02 Jx日鉱日石金属株式会社 Copper alloy sheet having outstanding electro-conductivity and
JP2014208858A (en) * 2013-03-25 2014-11-06 Jx日鉱日石金属株式会社 Copper alloy sheet having excellent conductivity and bending deflection coefficient
JP2014208860A (en) * 2013-03-25 2014-11-06 Jx日鉱日石金属株式会社 Copper alloy sheet having excellent conductivity and stress relaxation characteristic
KR20140148462A (en) * 2013-03-25 2014-12-31 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Copper alloy sheet having outstanding electro-conductivity and stress release characteristics
CN104302794A (en) * 2013-03-25 2015-01-21 Jx日矿日石金属株式会社 Copper alloy sheet having outstanding electro-conductivity and stress release characteristics
CN104334759A (en) * 2013-03-25 2015-02-04 Jx日矿日石金属株式会社 Copper Alloy Sheet Having Outstanding Electro-Conductivity And
CN104302794B (en) * 2013-03-25 2016-08-31 Jx日矿日石金属株式会社 Electric conductivity and the copper alloy plate of stress relaxation characteristics excellence
KR101631786B1 (en) 2013-03-25 2016-06-17 제이엑스금속주식회사 Copper alloy sheet having outstanding electro-conductivity and stress release characteristics
CN105452501A (en) * 2013-08-09 2016-03-30 三菱综合材料株式会社 Copper alloy, copper alloy thin sheet and copper alloy manufacturing method
JP2015057512A (en) * 2013-08-09 2015-03-26 三菱マテリアル株式会社 Copper alloy, copper alloy thin sheet and method for producing copper alloy
EP3031937A4 (en) * 2013-08-09 2017-07-05 Mitsubishi Materials Corporation Copper alloy, copper alloy thin sheet and copper alloy manufacturing method
EP3031936A4 (en) * 2013-08-09 2017-06-28 Mitsubishi Materials Corporation Copper alloy, copper alloy thin sheet and copper alloy manufacturing method
KR102213955B1 (en) 2013-08-09 2021-02-09 미쓰비시 마테리알 가부시키가이샤 Copper alloy, copper alloy thin sheet and copper alloy manufacturing method
CN105452501B (en) * 2013-08-09 2018-03-06 三菱综合材料株式会社 The manufacture method of copper alloy, copper alloy thin plate and copper alloy
CN105452500A (en) * 2013-08-09 2016-03-30 三菱综合材料株式会社 Copper alloy, copper alloy thin sheet and copper alloy manufacturing method
JP2015057511A (en) * 2013-08-09 2015-03-26 三菱マテリアル株式会社 Copper alloy, copper alloy thin sheet and method for producing copper alloy
KR20160041914A (en) * 2013-08-09 2016-04-18 미쓰비시 마테리알 가부시키가이샤 Copper alloy, copper alloy thin sheet and copper alloy manufacturing method
WO2015020189A1 (en) * 2013-08-09 2015-02-12 三菱マテリアル株式会社 Copper alloy, copper alloy thin sheet and copper alloy manufacturing method
WO2015020187A1 (en) * 2013-08-09 2015-02-12 三菱マテリアル株式会社 Copper alloy, copper alloy thin sheet and copper alloy manufacturing method
JP2015048523A (en) * 2013-09-03 2015-03-16 Jx日鉱日石金属株式会社 Copper alloy sheet excellent in stress relaxation characteristic
JP5470497B1 (en) * 2013-09-03 2014-04-16 Jx日鉱日石金属株式会社 Copper alloy sheet with excellent stress relaxation properties
KR101786411B1 (en) 2013-11-08 2017-10-17 제이엑스금속주식회사 Copper alloy plate, and electronic part for heat dissipation use which is equipped with same
KR101788497B1 (en) 2013-11-19 2017-10-19 제이엑스금속주식회사 Copper alloy plate, and electronic component for large current applications and electronic component for heat dissipation applications each provided with same
KR101789956B1 (en) 2013-11-25 2017-10-25 제이엑스금속주식회사 Copper alloy plate having excellent electroconductivity, moldability, and stress relaxation properties
JP2015101773A (en) * 2013-11-26 2015-06-04 Jx日鉱日石金属株式会社 Copper alloy sheet excellent in conductivity and stress relaxation property
JP2015203127A (en) * 2014-04-11 2015-11-16 三菱伸銅株式会社 Cu-Fe-P BASED COPPER ALLOY SHEET EXCELLENT IN HALF ETCHING PROPERTY AND METHOD FOR PRODUCING THE SAME
JP2016157887A (en) * 2015-02-26 2016-09-01 京セラ株式会社 Method of manufacturing electrode member for pressure-welding semiconductor device
JP2016188406A (en) * 2015-03-30 2016-11-04 株式会社神戸製鋼所 Copper alloy sheet for heat radiation component
US10745787B2 (en) 2015-09-18 2020-08-18 Dowa Metaltech Co., Ltd. Copper alloy sheet material
KR20180077164A (en) 2015-09-18 2018-07-06 도와 메탈테크 가부시키가이샤 Copper alloy sheet and manufacturing method thereof
JP2018154910A (en) * 2017-03-21 2018-10-04 Jx金属株式会社 Copper alloy sheet having excellent strength and electric conductivity
JP2018159104A (en) * 2017-03-22 2018-10-11 Jx金属株式会社 Copper alloy sheet having excellent strength and conductivity
RU2709909C1 (en) * 2018-11-26 2019-12-23 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Low-alloyed copper alloy
WO2021145043A1 (en) * 2020-01-14 2021-07-22 古河電気工業株式会社 Copper alloy plate, method for manufacturing same, and electrical/electronic component member
JP2021110015A (en) * 2020-01-14 2021-08-02 古河電気工業株式会社 Copper alloy sheet material, method for production thereof, and member for electric or electronic component
JP2021143428A (en) * 2020-01-14 2021-09-24 古河電気工業株式会社 Copper alloy sheet material and manufacturing method thereof, as well as electric/electronic component member
JP7178454B2 (en) 2020-01-14 2022-11-25 古河電気工業株式会社 Copper alloy sheet material, its manufacturing method, and members for electrical and electronic parts
CN114959349A (en) * 2022-04-06 2022-08-30 中南大学 Ultrahigh-strength high-conductivity copper-iron alloy wire and preparation method thereof
CN114959349B (en) * 2022-04-06 2023-02-10 中南大学 Ultrahigh-strength high-conductivity copper-iron alloy wire and preparation method thereof
CN115044846A (en) * 2022-06-23 2022-09-13 中国科学院宁波材料技术与工程研究所 CuCrSn alloy and deformation heat treatment method thereof
CN115232945A (en) * 2022-07-08 2022-10-25 华天科技(宝鸡)有限公司 Heat treatment method for integrated circuit lead frame and lead frame

Also Published As

Publication number Publication date
JP5312920B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
JP5312920B2 (en) Copper alloy plate or strip for electronic materials
JP5225787B2 (en) Cu-Ni-Si alloy plate or strip for electronic materials
KR101331339B1 (en) Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor
KR101161597B1 (en) Cu-ni-si-co-base copper alloy for electronic material and process for producing the copper alloy
JP4937815B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4494258B2 (en) Copper alloy and manufacturing method thereof
JP4418028B2 (en) Cu-Ni-Si alloy for electronic materials
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
JP4596490B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5140045B2 (en) Cu-Ni-Si alloy plate or strip for electronic materials
JP5506806B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
KR101297485B1 (en) Cu-ni-si-co-cr alloy for electronic material
KR20120130344A (en) Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING SAME
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP7038823B2 (en) Cu-Co-Si-Fe-P copper alloy with excellent bending workability and its manufacturing method
KR20130109209A (en) Cu-si-co-base copper alloy for electronic materials and method for producing same
JP4834781B1 (en) Cu-Co-Si alloy for electronic materials
JP2010059543A (en) Copper alloy material
JP2013104068A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2018162510A (en) Copper alloy for electronic material, and electronic component
JP5291494B2 (en) High strength high heat resistance copper alloy sheet
JP2011246740A (en) Cu-Co-Si BASED ALLOY SHEET OR STRIP FOR ELECTRONIC MATERIAL
JP4175920B2 (en) High strength copper alloy
US20170096725A1 (en) Cu-Co-Ni-Si Alloy for Electronic Components
JP2021046590A (en) Copper alloy, drawn copper article and electronic apparatus component

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100903

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130703

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5312920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250