JP6822889B2 - Copper alloy material, manufacturing method of copper alloy material and cage rotor - Google Patents

Copper alloy material, manufacturing method of copper alloy material and cage rotor Download PDF

Info

Publication number
JP6822889B2
JP6822889B2 JP2017079510A JP2017079510A JP6822889B2 JP 6822889 B2 JP6822889 B2 JP 6822889B2 JP 2017079510 A JP2017079510 A JP 2017079510A JP 2017079510 A JP2017079510 A JP 2017079510A JP 6822889 B2 JP6822889 B2 JP 6822889B2
Authority
JP
Japan
Prior art keywords
copper alloy
alloy material
stretched
temperature
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017079510A
Other languages
Japanese (ja)
Other versions
JP2018178189A (en
Inventor
外木 達也
達也 外木
小林 隆一
隆一 小林
直樹 嶋崎
直樹 嶋崎
浩一 古徳
浩一 古徳
Original Assignee
株式会社Shカッパープロダクツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Shカッパープロダクツ filed Critical 株式会社Shカッパープロダクツ
Priority to JP2017079510A priority Critical patent/JP6822889B2/en
Priority to KR1020170176749A priority patent/KR102384384B1/en
Priority to CN201711443977.0A priority patent/CN108728686B/en
Publication of JP2018178189A publication Critical patent/JP2018178189A/en
Application granted granted Critical
Publication of JP6822889B2 publication Critical patent/JP6822889B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Conductive Materials (AREA)
  • Induction Machinery (AREA)

Description

本発明は、銅合金材、銅合金材の製造方法およびかご型回転子に関する。 The present invention relates to a copper alloy material, a method for producing a copper alloy material, and a cage rotor.

従来より、ロータバーと、エンドリング(ロータコア)と、を有するかご型回転子(かご型モータ)において、かご型モータの高効率化の観点から、ロータバー、エンドリングを、銅合金材で形成する検討が進められている。このような銅合金材として、例えば、銅(Cu)にジルコニウム(Zr)等を添加した銅合金からなる銅合金材(例えば特許文献1,2参照)が用いられることがある。 Conventionally, in a squirrel-cage rotor (squirrel-cage motor) having a rotor bar and an end ring (rotor core), from the viewpoint of improving the efficiency of the squirrel-cage motor, the study of forming the rotor bar and the end ring from a copper alloy material. Is underway. As such a copper alloy material, for example, a copper alloy material made of a copper alloy obtained by adding zirconium (Zr) or the like to copper (Cu) (see, for example, Patent Documents 1 and 2) may be used.

特開2011−94175号公報Japanese Unexamined Patent Publication No. 2011-94175 特開2014−173156号公報Japanese Unexamined Patent Publication No. 2014-173156

ロータバー、エンドリングを銅合金材で形成する場合、これらは通常ロウ付け法等により接着される。しかしながら、上述の銅合金材は、Zrの含有量が少ないことから、ロウ付け等のため高温加熱されると強度が低下する。その結果、かご型モータの回転中に働く遠心力のため、ロータバーやエンドリングが変形することがある。また、上述の銅合金材は、Zrの他に、アルミニウム(Al)、スズ(Sn)、リン(P)等が多量に含有されてCu中に固溶しているため、導電率が低く、大電流を流すモータ等に用いられると、電気抵抗による損失が大きくなるという課題もある。 When the rotor bar and the end ring are made of a copper alloy material, they are usually bonded by a brazing method or the like. However, since the above-mentioned copper alloy material has a low Zr content, its strength decreases when it is heated at a high temperature for brazing or the like. As a result, the rotor bar and end ring may be deformed due to the centrifugal force acting during the rotation of the cage motor. Further, the above-mentioned copper alloy material has low conductivity because it contains a large amount of aluminum (Al), tin (Sn), phosphorus (P) and the like in addition to Zr and is solid-solved in Cu. When used in a motor or the like that flows a large current, there is also a problem that the loss due to electric resistance becomes large.

本発明は、高温加熱された場合であっても、高い強度と高い導電率とを維持できる銅合金材およびその関連技術を提供することを目的とする。 An object of the present invention is to provide a copper alloy material capable of maintaining high strength and high conductivity even when heated at a high temperature, and related techniques thereof.

本発明の一態様によれば、
0.1質量%以上0.2質量%以下のZrを含み、残部がCuおよび不可避不純物からなる銅合金で形成され、
母相中にZrとCuとの化合物であるCuZrの析出物が析出しており、
伸延方向と直交する方向における断面を観察したとき、直径が0.2μm以上である前記析出物が5000個/mm以上存在している銅合金材、およびこの銅合金材がエンドリングとロータバーとに用いられてなるかご型回転子が提供される。
According to one aspect of the invention
It contains Zr of 0.1% by mass or more and 0.2% by mass or less, and the balance is formed of a copper alloy composed of Cu and unavoidable impurities.
A precipitate of Cu 5 Zr, which is a compound of Zr and Cu, is precipitated in the matrix phase.
When observing the cross section in the direction orthogonal to the stretching direction, the copper alloy material having 5000 pieces / mm 2 or more of the precipitates having a diameter of 0.2 μm or more, and the copper alloy material are the end ring and the rotor bar. A cage-type rotor used in the above is provided.

本発明の他の態様によれば、
0.1質量%以上0.2質量%以下のZrを含有し、残部がCuおよび不可避不純物からなる鋳塊を鋳造する工程と、
加熱した前記鋳塊に対して熱間伸延を行って伸延材を形成する工程と、
前記伸延材の形成が完了した後60秒以内に水冷を開始して前記伸延材を冷却するか、又は、前記伸延材の温度が前記伸延材を形成する工程における前記鋳塊の加熱温度以上の温度となるように前記伸延材を加熱した後60秒以内に水冷を開始して前記伸延材を冷却する工程と、
冷却した前記伸延材を、350℃以上550℃以下の温度下で30分以上加熱する時効熱処理を行う工程と、を有する銅合金材の製造方法が提供される。
According to another aspect of the invention
A step of casting an ingot containing Zr of 0.1% by mass or more and 0.2% by mass or less and the balance of which is Cu and unavoidable impurities.
A step of hot-stretching the heated ingot to form a stretched material, and
Water cooling is started within 60 seconds after the formation of the stretched material is completed to cool the stretched material, or the temperature of the stretched material is equal to or higher than the heating temperature of the ingot in the step of forming the stretched material. A step of cooling the stretched material by starting water cooling within 60 seconds after heating the stretched material to a temperature.
Provided is a method for producing a copper alloy material, which comprises a step of performing an aging heat treatment in which the cooled stretched material is heated at a temperature of 350 ° C. or higher and 550 ° C. or lower for 30 minutes or longer.

本発明によれば、銅合金材がロウ付け等のため高温加熱された場合であっても、高い強度と高い導電率とを維持できる。 According to the present invention, high strength and high conductivity can be maintained even when the copper alloy material is heated to a high temperature for brazing or the like.

<発明者等の得た知見>
本発明の実施形態の説明に先立ち、本発明者が得た知見について説明する。
<Knowledge obtained by inventors>
Prior to the description of the embodiment of the present invention, the findings obtained by the present inventor will be described.

従来より、上述のロータバー、エンドリング(以下、ロータバー等とも称する)の形成材料として、アルミニウム材やアルミニウム合金材(以下、アルミニウム合金材等とも称する)が用いられている。しかしながら、近年、かご型モータの高効率化の観点から、ロータバー等を上述のように銅合金材で形成する検討が進められている。CuはAlよりも電気抵抗が低いことから、ロータバー等を銅合金材で形成する方が、アルミニウム合金材等で形成する場合よりも、モータの効率が数%アップすると言われている。 Conventionally, an aluminum material or an aluminum alloy material (hereinafter, also referred to as an aluminum alloy material) has been used as a material for forming the above-mentioned rotor bar and end ring (hereinafter, also referred to as a rotor bar or the like). However, in recent years, from the viewpoint of improving the efficiency of the squirrel-cage motor, studies on forming a rotor bar or the like with a copper alloy material as described above have been advanced. Since Cu has a lower electrical resistance than Al, it is said that the efficiency of the motor is improved by several percent when the rotor bar or the like is formed of a copper alloy material or the like as compared with the case where the rotor bar or the like is formed of an aluminum alloy material or the like.

ロータバー等をアルミニウム合金材等で形成する場合、Alの融点が約660℃と比較的低いことから、アルミニウムやアルミニウム合金を所定の金型内に流し込み、ロータバーとエンドリングとを一度に成形する方法(ダイキャスト法)が用いられている。 When the rotor bar or the like is formed of an aluminum alloy material or the like, the melting point of Al is relatively low at about 660 ° C. Therefore, a method of pouring aluminum or an aluminum alloy into a predetermined mold and forming the rotor bar and the end ring at once. (Die casting method) is used.

これに対し、ロータバー等を銅合金材で形成する場合、上述のダイキャスト法を用いることが難しい。というのも、Cuの融点が約1085℃と高く、金型の寿命が短くなる等の課題があるからである。このため、この場合、ロータバーと、複数のスロットを形成したエンドリングと、を用意し、エンドリングのスロットにロータバーを差し込んだ後、この差し込み箇所に対して例えばロウ付けや溶接(ロウ付け等)を行ってロータバーとエンドリングとを一体化させる方法が用いられる。 On the other hand, when the rotor bar or the like is formed of a copper alloy material, it is difficult to use the above-mentioned die casting method. This is because the melting point of Cu is as high as about 1085 ° C., and there are problems such as shortening the life of the mold. Therefore, in this case, a rotor bar and an end ring having a plurality of slots formed are prepared, and after inserting the rotor bar into the slot of the end ring, for example, brazing or welding (brazing, etc.) is performed on this insertion point. Is used to integrate the rotor bar and the endling.

モータの回転によりロータバー等に強い遠心力が働いた場合であってもロータバー等の変形を防止する観点から、ロータバー等には高い強度を有することが要求されている。このため、ロータバー等を形成する材料として、加工硬化させた銅合金材(加工硬化材)が用いられる。加工硬化材は、引抜き等の塑性加工を行うことで、歪みを蓄積させて加工硬化させた銅合金材である。このため、加工硬化材は、例えば焼き鈍し材よりも、その強度が高くなる。例えば、無酸素銅の焼き鈍し材(O材)の引張強さは230N/mmであるのに対し、加工硬化材(H材)の引張強さは360N/mmであり、H材の方がO材よりも強度が高くなる。 From the viewpoint of preventing deformation of the rotor bar or the like even when a strong centrifugal force acts on the rotor bar or the like due to the rotation of the motor, the rotor bar or the like is required to have high strength. Therefore, a work-hardened copper alloy material (work-hardened material) is used as a material for forming the rotor bar and the like. The work-hardened material is a copper alloy material that is work-hardened by accumulating strain by performing plastic working such as drawing. For this reason, the work-hardened material has a higher strength than, for example, an annealed material. For example, the tensile strength of the oxygen-free copper annealing material (O material) is 230 N / mm 2 , whereas the tensile strength of the work-hardened material (H material) is 360 N / mm 2, which means that the H material is better. Is stronger than O material.

しかしながら、上述の加工硬化材は、高温に曝されると、加工硬化させた銅の結晶が再結晶を起こして歪を開放するため、強度が低下してしまう。例えば銀ロウを用いたロウ付けによりロータバーとエンドリングとを一体化させる場合、ロータバー等は800℃以上の高温に曝される。このため、ロータバー等を加工硬化材で形成した場合であっても、ロウ付けの際の高温加熱によりロータバー等の強度が低下し、上述の遠心力によってロータバー等が変形することがある。 However, when the work-hardened material described above is exposed to a high temperature, the work-hardened copper crystals recrystallize and release the strain, so that the strength is lowered. For example, when the rotor bar and the endling are integrated by brazing with silver wax, the rotor bar and the like are exposed to a high temperature of 800 ° C. or higher. Therefore, even when the rotor bar or the like is formed of a work-hardened material, the strength of the rotor bar or the like may decrease due to high-temperature heating during brazing, and the rotor bar or the like may be deformed by the above-mentioned centrifugal force.

そこで、高温加熱による強度の低下を抑制するために、CuにZr等を添加し、銅母相(母相)中にZr析出物を析出させて形成した銅合金材(Cu−Zrを主成分とする銅合金材、Cu−Zr系合金材)を、ロータバー等に用いることが考えられている。Zr析出物とは、CuとZrとが反応することで生成された析出物を意味する。また、Cu−Zr系合金材は、Zrの固溶限が極めて低いため、ロウ付けの際の高温加熱によって母相中に固溶するZrの量は極めて少ない。このため、Cu−Zr系合金材は、Cu−Zr以外の成分を主成分とする銅合金材に比べて、加熱による導電率の低下が著しく小さい。このことから、Cu−Zr系合金材は、ロータバー等の形成材料に好適な材料であるといえる。 Therefore, in order to suppress the decrease in strength due to high-temperature heating, a copper alloy material (mainly Cu-Zr) formed by adding Zr or the like to Cu and precipitating Zr precipitates in the copper matrix (matrix). It is considered to use a copper alloy material (Cu—Zr-based alloy material) as used for a rotor bar or the like. The Zr precipitate means a precipitate produced by the reaction of Cu and Zr. Further, since the Cu—Zr-based alloy material has an extremely low solid solution limit of Zr, the amount of Zr that is solid-solved in the matrix phase by high-temperature heating during brazing is extremely small. Therefore, the Cu-Zr-based alloy material has a significantly smaller decrease in conductivity due to heating than the copper alloy material whose main component is a component other than Cu-Zr. From this, it can be said that the Cu—Zr-based alloy material is a suitable material for forming a rotor bar or the like.

しかしながら、Cu−Zr系合金材であっても、Zrの含有量が多すぎると、高温加熱により母相中に固溶するZrの量が増え、導電率の低下が大きくなる。一方、Cu−Zr系合金材において、Zrの含有量が少ないと、ロウ付けの際の高温加熱による強度の低下を充分に抑制できない。これは、高温加熱による強度低下を抑制するために必要な上述のZr析出物の数が少なかったり、Zr析出物の数は充分であっても、その大きさが不充分であったりするためと考えられる。 However, even in the case of Cu—Zr-based alloy materials, if the Zr content is too large, the amount of Zr that is solid-dissolved in the matrix due to high-temperature heating increases, and the decrease in conductivity becomes large. On the other hand, if the content of Zr in the Cu—Zr alloy material is small, the decrease in strength due to high temperature heating during brazing cannot be sufficiently suppressed. It is considered that this is because the number of the above-mentioned Zr precipitates required for suppressing the decrease in strength due to high-temperature heating is small, or even if the number of Zr precipitates is sufficient, the size is insufficient.

そこで、本発明者等は、Cu−Zr系合金からなる銅合金材において、高温加熱による強度の低下、導電率の低下を抑制すべく鋭意研究を行った。その結果、この銅合金材において、母相中に析出するZr析出物のうち、特にCuZr析出物の大きさと数とを適正に調整することで、上記課題を解決することができることを見出した。本発明は、本発明者等が見出した上記知見に基づくものである。 Therefore, the present inventors have conducted diligent research in order to suppress a decrease in strength and a decrease in conductivity due to high-temperature heating in a copper alloy material made of a Cu—Zr-based alloy. As a result, it has been found that the above-mentioned problems can be solved by appropriately adjusting the size and number of Cu 5 Zr precipitates among the Zr precipitates precipitated in the matrix in this copper alloy material. It was. The present invention is based on the above findings found by the present inventors.

<本発明の一実施形態>
(1)かご型回転子の構成
まず、本発明の一実施形態に係るかご型回転子(かご型誘導電動機、かご型モータ)の構成について説明する。
<One Embodiment of the present invention>
(1) Configuration of Squirrel-Cage Rotor First, a configuration of a squirrel-cage rotor (cage-type induction motor, squirrel-cage motor) according to an embodiment of the present invention will be described.

本実施形態に係るかご型回転子は、2つの円環状のエンドリングと、複数のロータバーと、を備えている。各ロータバーの両端部にはそれぞれ、エンドリングが設けられている。エンドリングにはそれぞれ、ロータバーの端部を差し込み可能な複数のスロットが設けられており、各スロットにロータバーの端部をそれぞれ差し込むことで、ロータバーとエンドリングとが接合されている。そして、この接合部に対してロウ付けや溶接等を行い、ロータバーとエンドリングとが一体化されている。このロータバー、エンドリングは、銅合金材により形成されている。 The cage rotor according to the present embodiment includes two annular endlings and a plurality of rotor bars. End rings are provided at both ends of each rotor bar. Each end ring is provided with a plurality of slots into which the end portion of the rotor bar can be inserted, and the rotor bar and the end ring are joined by inserting the end portion of the rotor bar into each slot. Then, the joint portion is brazed, welded, or the like, and the rotor bar and the endling are integrated. The rotor bar and end ring are made of a copper alloy material.

(2)銅合金材の構成
以下に、上述のかご型回転子が有するロータバー、エンドリングに好適に用いられる銅合金材の構成について説明する。
(2) Composition of Copper Alloy Material The composition of the copper alloy material preferably used for the rotor bar and end ring of the above-mentioned cage rotor will be described below.

本実施形態にかかる銅合金材は、所定量のジルコニウム(Zr)を含み、残部が銅(Cu)及び不可避不純物からなっている。銅合金材は、例えば伸延加工を行うことで所定方向に伸延されて棒状に形成されている。 The copper alloy material according to this embodiment contains a predetermined amount of zirconium (Zr), and the balance is composed of copper (Cu) and unavoidable impurities. The copper alloy material is stretched in a predetermined direction and formed into a rod shape by, for example, stretching.

銅合金材の母材であるCuとしては、導電率(導電性)の低下を抑制する等の観点から、例えば酸素(O)濃度が0.0005質量%以下の無酸素銅(OFC:Oxygen Free Copper)等を用いることが好ましい。 As Cu, which is the base material of the copper alloy material, oxygen-free copper (OFC: Oxygen Free) having an oxygen (O) concentration of 0.0005% by mass or less, for example, from the viewpoint of suppressing a decrease in conductivity (conductivity). It is preferable to use Copper) or the like.

銅合金材にZrを含有させることで、ZrがCuと反応し、その結果、ZrとCuとの化合物のうちの一つであるCuZrの析出物が銅合金材(母相)中に析出する。銅合金材中のZrの含有量によって、母相中に析出するCuZr析出物(以下、単に「CuZr」とも称する)の大きさや、数(析出数)が変化するとともに、高温加熱後の銅合金材の母相中に固溶するZrの量が変化する。このため、銅合金材中のZrの含有量は、例えば0.1質量%以上0.2質量%以下、好ましくは0.12質量%以上0.16質量%以下であるのが望ましい。 By containing Zr in the copper alloy material, Zr reacts with Cu, and as a result, a precipitate of Cu 5 Zr, which is one of the compounds of Zr and Cu, is contained in the copper alloy material (matrix). Precipitate. Depending on the content of Zr in the copper alloy material, the size and number (number of precipitates) of Cu 5 Zr precipitates (hereinafter, also simply referred to as “Cu 5 Zr”) precipitated in the matrix change, and high temperature heating is performed. The amount of Zr that dissolves in the matrix of the subsequent copper alloy material changes. Therefore, it is desirable that the content of Zr in the copper alloy material is, for example, 0.1% by mass or more and 0.2% by mass or less, preferably 0.12% by mass or more and 0.16% by mass or less.

Zrの含有量が0.1質量%未満であると、銅合金材の母相中に析出するCuZrの大きさが小さかったり、析出数が少なかったりすることがある。Zrの含有量を0.1質量%以上にすることで、この課題を解決でき、所定の大きさ、所定数のCuZrを母相中に析出させることができる。例えば、銅合金材の伸延方向と直交する方向における断面(以下、「銅合金材の横断面」とも称する)において、直径(差し渡し最小幅)が0.2μm以上のCuZrが5000個/mm以上存在するように、CuZrを析出させることができる。Zrの含有量を0.12質量%以上にすることで、所定の大きさ、所定数のCuZrを確実に析出させることができる。 If the Zr content is less than 0.1% by mass, the size of Cu 5 Zr precipitated in the matrix phase of the copper alloy material may be small, or the number of precipitates may be small. By setting the Zr content to 0.1% by mass or more, this problem can be solved, and a predetermined size and a predetermined number of Cu 5 Zr can be precipitated in the matrix phase. For example, in a cross section in a direction orthogonal to the stretching direction of the copper alloy material (hereinafter, also referred to as “cross section of the copper alloy material”), 5000 Cu 5 Zr having a diameter (minimum width across the board) of 0.2 μm or more is 5000 pieces / mm. Cu 5 Zr can be precipitated so that there are two or more. By setting the Zr content to 0.12% by mass or more, a predetermined size and a predetermined number of Cu 5 Zr can be reliably precipitated.

Zrの含有量が0.2質量%を超えると、高温加熱後(例えば830℃の温度条件下で10分間加熱した後)の銅合金材の母相中に固溶するZrの量が増加する。これは、銅合金材が高温で加熱されることにより銅合金材中に析出したCuZrが母相中に固溶するためである。Zrの含有量を0.2質量%以下にすることで、この課題を解決でき、Zrの含有量を0.16質量%以下にすることで、この課題を確実に解決できる。その結果、高温加熱後の銅合金材の導電率の低下を抑制することができる。 When the Zr content exceeds 0.2% by mass, the amount of Zr that dissolves in the matrix of the copper alloy material after high-temperature heating (for example, after heating for 10 minutes under a temperature condition of 830 ° C.) increases. .. This is because Cu 5 Zr precipitated in the copper alloy material is solid-solved in the matrix phase when the copper alloy material is heated at a high temperature. By setting the Zr content to 0.2% by mass or less, this problem can be solved, and by setting the Zr content to 0.16% by mass or less, this problem can be surely solved. As a result, it is possible to suppress a decrease in the conductivity of the copper alloy material after heating at a high temperature.

銅合金材には、上述のZrに加え、マグネシウム(Mg)、チタン(Ti)、亜鉛(Zn)、鉄(Fe)、コバルト(Co)、マンガン(Mn)、銀(Ag)、シリコン(Si)、クロム(Cr)およびスズ(Sn)からなる群より選択した1種以上の成分(副成分)が、例えば0.1質量%以下の範囲内で含有されてなることが好ましい。なお、上述のMg等からなる群より選択した2種以上を銅合金材中に含有させる場合は、2種以上の成分の総量(合計含有量)が上記の範囲内であることが好ましい。 In addition to the above-mentioned Zr, the copper alloy material includes magnesium (Mg), titanium (Ti), zinc (Zn), iron (Fe), cobalt (Co), manganese (Mn), silver (Ag), and silicon (Si). ), Chromium (Cr) and tin (Sn), one or more components (subcomponents) selected from the group are preferably contained in the range of, for example, 0.1% by mass or less. When two or more kinds selected from the above-mentioned group consisting of Mg and the like are contained in the copper alloy material, the total amount (total content) of the two or more kinds of components is preferably within the above range.

上述のMg等は、銅合金材の強度を向上させる特性を有しているため、Mg等を銅合金材中に含有させることで、銅合金材(高温加熱前の銅合金材)の強度を向上させることができ、その結果、高温加熱後の銅合金材の強度も高くなる。例えば、母相中に析出しているCuZrの数が同じ銅合金材である場合、Mg等を含有させた銅合金材の方が、Mg等を含有させていない銅合金材よりも、高温加熱後の銅合金材の強度が高くなる。 Since the above-mentioned Mg and the like have the property of improving the strength of the copper alloy material, the strength of the copper alloy material (copper alloy material before high-temperature heating) can be increased by containing Mg and the like in the copper alloy material. It can be improved, and as a result, the strength of the copper alloy material after high temperature heating is also increased. For example, in the case of a copper alloy material having the same number of Cu 5 Zr precipitated in the matrix phase, the copper alloy material containing Mg or the like is more than the copper alloy material containing no Mg or the like. The strength of the copper alloy material after high-temperature heating increases.

Mg等の含有量が0.1質量%を超えると、ZrとMg等とが反応して生成される化合物の量が増える。その結果、ZrとMg等との化合物の生成に消費されるZrの量が増えるため、Zrの含有量を増やさなければ、所定数のCuZrを母相中に析出させることができない。また、Mg等の含有量を増やしすぎると、銅合金材(高温加熱後の銅合金材)の導電率を低下させる要因の一つとなることもある。 When the content of Mg or the like exceeds 0.1% by mass, the amount of the compound produced by the reaction of Zr and Mg or the like increases. As a result, the amount of Zr consumed in the formation of the compound of Zr and Mg or the like increases, so that a predetermined number of Cu 5 Zr cannot be precipitated in the matrix unless the Zr content is increased. Further, if the content of Mg or the like is increased too much, it may become one of the factors for lowering the conductivity of the copper alloy material (copper alloy material after high temperature heating).

(3)銅合金材の製造方法
次に、本実施形態にかかる銅合金材の製造方法について、連続鋳造法を例示して説明する。
(3) Method for Producing Copper Alloy Material Next, the method for producing the copper alloy material according to the present embodiment will be described by exemplifying a continuous casting method.

(鋳造工程)
高周波溶解炉等を用いて原料としての電気銅を溶解して銅の溶解液を生成する。このとき、電気銅の表面、あるいは生成される銅の溶解液の表面を、木炭(カーボン)で被覆しながら行うことが好ましい。これにより、木炭に含まれる炭素(C)と、電気銅(銅の溶解液)中の酸素(O)と、を反応させ、OをCOガスにして溶解液中から除去することができる。すなわち、銅の溶解液の脱酸を行うことができる。これにより、O濃度が0.0005質量%以下の銅(無酸素銅)の溶湯が得られる。
(Casting process)
An electrolytic copper as a raw material is melted using a high-frequency melting furnace or the like to produce a copper solution. At this time, it is preferable to coat the surface of the electrolytic copper or the surface of the generated copper solution with charcoal (carbon). As a result, carbon (C) contained in charcoal and oxygen (O) in electrolytic copper (copper solution) can be reacted to convert O into CO gas and remove it from the solution. That is, the copper solution can be deoxidized. As a result, a molten copper (oxygen-free copper) having an O concentration of 0.0005% by mass or less can be obtained.

この無酸素銅の溶湯中に、所定量のZrを添加して銅合金(銅合金の溶湯)を溶製する。このとき、最終的に形成される銅合金材中のZrの含有量が0.1〜0.2質量%、好ましくは0.12〜0.16質量%になるように、Zrの添加量を調整する。また、必要に応じて、銅合金の溶湯(無酸素銅の溶湯)中に上述のMg等を添加してもよく、この場合、最終的に形成される銅合金材中のMg等の含有量が0.1質量%以下になるように、Mg等の添加量を調整する。このように生成した銅合金の溶湯を鋳型に注いで(出湯して)冷却することで凝固させ、所定組成であって所定形状を有する鋳塊を鋳造する。本実施形態では、鋳塊として、幅方向における断面形状が円形であって所定の直径を有するビレットを作製する例について説明する。 A predetermined amount of Zr is added to the molten metal of oxygen-free copper to melt a copper alloy (melted copper alloy). At this time, the amount of Zr added is adjusted so that the content of Zr in the finally formed copper alloy material is 0.1 to 0.2% by mass, preferably 0.12 to 0.16% by mass. adjust. Further, if necessary, the above-mentioned Mg or the like may be added to the molten copper alloy (melted oxygen-free copper), and in this case, the content of Mg or the like in the finally formed copper alloy material. Adjust the amount of Mg or the like added so that is 0.1% by mass or less. The molten copper alloy thus produced is poured into a mold (out of hot water) and cooled to solidify, and an ingot having a predetermined composition and a predetermined shape is cast. In the present embodiment, an example of producing a billet having a circular cross-sectional shape in the width direction and a predetermined diameter as an ingot will be described.

なお、鋳造直後のビレットには、銅合金の溶湯を凝固させる過程で銅合金中に晶出した粗大な晶出物(CuZr)が多数存在している。 In the billet immediately after casting, a large number of coarse crystallized products (Cu 5 Zr) crystallized in the copper alloy in the process of solidifying the molten copper alloy are present.

(伸延工程)
鋳造工程が終了した後、押出機や引抜機等の伸延機を用いて、鋳造材の伸延(熱間加工、熱間押出し)を行う。本実施形態では、伸延機として、押出機の一種である押出ダイスを用いる場合を例示する。すなわち、ここでは、押出ダイスを用いてビレットに対して熱間伸延(熱間押出し)を行い、伸延材(押出材)を形成する。熱間伸延を行うことで、ビレット中に存在する粗大なCuZrを分断し、CuZrの微細化を図ることができる。
(Extending process)
After the casting process is completed, the casting material is stretched (hot working, hot extrusion) using a stretching machine such as an extruder or a drawing machine. In this embodiment, a case where an extrusion die, which is a kind of extruder, is used as the extruder is illustrated. That is, here, the billet is hot-stretched (hot-extruded) using an extruded die to form a stretched material (extruded material). By performing hot stretching, the coarse Cu 5 Zr existing in the billet can be divided and the Cu 5 Zr can be miniaturized.

この伸延工程では、ビレットの温度が所定温度(例えば850℃以上)になるようにビレットを加熱した後、減面率が例えば60%以上、好ましくは80%以上となるように、ビレットに対して熱間伸延を行う。これにより、ビレットが伸延されて所定形状(例えば棒状)の伸延材となる。なお、減面率は下記(式1)で表される。
(式1)
減面率(%)={(ビレットの断面積−伸延材の断面積)/ビレットの断面積}×100
In this stretching step, after heating the billet so that the temperature of the billet becomes a predetermined temperature (for example, 850 ° C. or higher), the reduction rate is, for example, 60% or more, preferably 80% or more, with respect to the billet. Perform hot extension. As a result, the billet is stretched to become a stretched material having a predetermined shape (for example, a rod shape). The surface reduction rate is represented by the following (Equation 1).
(Equation 1)
Surface reduction rate (%) = {(cross-sectional area of billet-cross-sectional area of stretched material) / cross-sectional area of billet} x 100

上記(式1)中「ビレットの断面積」とは、伸延を行う前のビレットの幅方向における断面積を意味する。また、「伸延材の断面積」とは、伸延により得られた伸延材の幅方向(伸延(押出)方向と直交する方向)における断面積を意味する。 In the above (Equation 1), the "cross-sectional area of the billet" means the cross-sectional area of the billet in the width direction before stretching. Further, the "cross-sectional area of the stretched material" means the cross-sectional area of the stretched material obtained by stretching in the width direction (direction orthogonal to the stretching (extruding) direction).

減面率が60%以上となるように伸延を行ってCuZrを分断することで、最終的に形成される銅合金材中に析出するCuZrを、所定の大きさ、所定数にすることができる。例えば、銅合金材の横断面において、直径が0.2μm以上のCuZrを5000個/mm以上存在させることができる。減面率が80%以上となるように伸延を行うことで、CuZrを充分に分断することができ、上記効果をより確実に得ることができる。これに対し、伸延の減面率が60%未満であると、CuZrの分断が不充分となり、最終的に形成される銅合金材中に析出しているCuZrの大きさ、数を所定の大きさ、所定数にできないことがある。 By stretching Cu 5 Zr so that the surface reduction rate is 60% or more and dividing Cu 5 Zr, Cu 5 Zr precipitated in the finally formed copper alloy material is reduced to a predetermined size and a predetermined number. can do. For example, in the cross section of the copper alloy material, 5000 pieces / mm 2 or more of Cu 5 Zr having a diameter of 0.2 μm or more can be present. By stretching so that the surface reduction rate is 80% or more, Cu 5 Zr can be sufficiently divided, and the above effect can be obtained more reliably. On the other hand, if the reduction rate of elongation is less than 60%, the division of Cu 5 Zr becomes insufficient, and the size and number of Cu 5 Zr precipitated in the finally formed copper alloy material. May not be the specified size and number.

(冷却工程)
伸延工程が終了した後、伸延材が少なくとも例えば100℃以下になるまで、水冷により冷却する。この水冷は、伸延材を形成した後(押出ダイスから伸延材を押し出した後)60秒以内、好ましくは10秒以内、より好ましくは伸延材を形成した直後(押出ダイスから伸延材を押し出した直後(押出直後すなわち伸延直後))に開始することが望ましい。
(Cooling process)
After the stretching step is completed, the stretched material is cooled by water cooling until it reaches at least 100 ° C. or lower. This water cooling is performed within 60 seconds (after extruding the extruded material from the extruded die), preferably within 10 seconds, and more preferably immediately after forming the extruded material (immediately after extruding the extruded material from the extruded die). It is desirable to start (immediately after extrusion, that is, immediately after stretching)).

伸延材を形成した後(以下、単に「伸延後」とも称する)60秒以内に水冷を開始して伸延材を冷却することで、上述の伸延工程で分断したCuZrが、余熱により凝集して再び粗大化することを防止することができる。伸延後10秒以内、より好ましくは伸延直後に、伸延材の水冷を開始することで、余熱によるCuZrの凝集、粗大化を確実に防止できる。これにより、冷却終了後の伸延材の母相(銅)中に固溶するZrの量を増加させることができる。 By starting water cooling within 60 seconds after forming the stretched material (hereinafter, also simply referred to as “after stretching”) to cool the stretched material, Cu 5 Zr divided in the above-mentioned stretching step is aggregated by residual heat. It is possible to prevent it from becoming coarse again. By starting water cooling of the stretched material within 10 seconds after stretching, more preferably immediately after stretching, aggregation and coarsening of Cu 5 Zr due to residual heat can be reliably prevented. This makes it possible to increase the amount of Zr that dissolves in the matrix (copper) of the stretched material after cooling is completed.

なお、伸延後60秒以内に伸延材の水冷を開始することができない場合は、伸延材に対して所定の溶体化処理(溶体化熱処理)を行えばよい。具体的には、伸延材の温度が上述の伸延工程における鋳塊の加熱温度(例えば850℃)以上の温度となるように、伸延材を加熱(再加熱)する処理と、伸延材の温度が低下する前に、伸延材を水冷により冷却する処理と、を行う溶体化処理を行えばよい。 If it is not possible to start water cooling of the stretched material within 60 seconds after stretching, the stretched material may be subjected to a predetermined solution heat treatment (solution heat treatment). Specifically, the process of heating (reheating) the stretched material and the temperature of the stretched material so that the temperature of the stretched material becomes higher than the heating temperature of the ingot (for example, 850 ° C.) in the above-mentioned stretching step. Before the temperature is lowered, the stretched material may be cooled by water cooling and a solution treatment may be performed.

このような溶体化処理においても、伸延材を水冷により冷却する際、伸延材を加熱後60秒以内、好ましくは10秒以内、より好ましくは加熱直後に、伸延材の水冷を開始する。これにより、伸延工程が終了した後、余熱により凝集して粗大化したCuZrを分解し、上述の場合と同様に、冷却終了後の伸延材の母相中に固溶するZrの量を増加させることができる。 Even in such a solution treatment, when the stretched material is cooled by water cooling, water cooling of the stretched material is started within 60 seconds, preferably within 10 seconds, more preferably immediately after heating the stretched material. As a result, after the stretching process is completed, the Cu 5 Zr that has aggregated and coarsened due to the residual heat is decomposed, and the amount of Zr that is solid-solved in the matrix phase of the stretched material after the completion of cooling is determined as in the above case. Can be increased.

(時効熱処理工程)
冷却工程が終了した後、伸延材を所定温度で所定時間加熱する時効熱処理を行い、母相中にCuZrを析出させる。時効熱処理の処理温度(加熱温度)は例えば350℃以上550℃以下とし、時効熱処理の処理時間(加熱時間)は例えば30分以上とする。
(Aging heat treatment process)
After the cooling step is completed, the stretched material is subjected to aging heat treatment by heating it at a predetermined temperature for a predetermined time to precipitate Cu 5 Zr in the matrix phase. The treatment temperature (heating temperature) of the aging heat treatment is, for example, 350 ° C. or higher and 550 ° C. or lower, and the treatment time (heating time) of the aging heat treatment is, for example, 30 minutes or more.

上述の加熱温度が350℃未満であると、CuZrの析出速度が遅くなるため、上述の加熱時間を長くしなければ、所定数のCuZrを析出させることができないことがある。このため、生産性低下、製造コスト増加等の課題があり、工業的な適用が難しくなる。上述の加熱温度を350℃以上にすることで、この課題を解決し、所定の大きさ、所定数のCuZrを母相中に析出させることができる。 If the above-mentioned heating temperature is less than 350 ° C., the precipitation rate of Cu 5 Zr becomes slow, so that a predetermined number of Cu 5 Zr may not be precipitated unless the above-mentioned heating time is lengthened. For this reason, there are problems such as a decrease in productivity and an increase in manufacturing cost, which makes industrial application difficult. By setting the heating temperature to 350 ° C. or higher, this problem can be solved and Cu 5 Zr having a predetermined size and a predetermined number can be precipitated in the matrix phase.

上述の加熱温度が550℃を超えると、母相中に析出したCuZrが凝集して粗大化するため、CuZrの大きさを所定の大きさとすることはできるが、所定数のCuZrを母相中に析出させることができない。上述の加熱温度を550℃以下にすることで、この課題を解決し、所定の大きさ、所定数のCuZrを母相中に析出させることができる。 When the above-mentioned heating temperature exceeds 550 ° C., Cu 5 Zr precipitated in the matrix aggregates and becomes coarse, so that the size of Cu 5 Zr can be set to a predetermined size, but a predetermined number of Cu 5 Zr cannot be deposited in the matrix. By setting the heating temperature to 550 ° C. or lower, this problem can be solved, and a predetermined size and a predetermined number of Cu 5 Zr can be precipitated in the matrix phase.

また、上述の加熱時間が30分未満であると、時効熱処理の加熱温度を上述の範囲内にした場合であっても、CuZrを充分に析出させることができず、その結果、所定数のCuZrを母相中に析出させることができない。上述の加熱時間を30分以上とすることで、この課題を解決し、母相中に所定数のCuZrを析出させることができる。 Further, if the above-mentioned heating time is less than 30 minutes, Cu 5 Zr cannot be sufficiently precipitated even when the heating temperature of the aging heat treatment is within the above-mentioned range, and as a result, a predetermined number Cu 5 Zr cannot be precipitated in the matrix. By setting the heating time to 30 minutes or more, this problem can be solved and a predetermined number of Cu 5 Zr can be precipitated in the matrix phase.

(冷間加工工程)
時効熱処理工程が終了した後、伸延材に対して、引抜きや圧延等の冷間加工(塑性加工、冷間塑性加工)を行う。これにより、伸延材は所定の寸法まで加工され(引き延ばされ)て、所定形状の銅合金材が得られる。このように伸延材に対して塑性加工を行うことで、被加工材(伸延材)に歪が蓄積して被加工材が加工硬化し、銅合金材の強度を高めることができる。
(Cold processing process)
After the aging heat treatment process is completed, the stretched material is subjected to cold working (plastic working, cold plastic working) such as drawing and rolling. As a result, the stretched material is processed (stretched) to a predetermined size, and a copper alloy material having a predetermined shape is obtained. By performing plastic working on the stretched material in this way, strain is accumulated in the work material (stretched material), the work material is work-hardened, and the strength of the copper alloy material can be increased.

なお、上述の冷却工程を行った後であれば、この冷間加工工程は、上述の時効熱処理工程を行う前に実施してもよく、これによっても、所定の大きさ、所定数のCuZrを母相中に析出させることができる。時効熱処理工程と、冷間加工工程と、の実施順番は不問とすることができる。 Incidentally, if after the above cooling step, the cold working step may be performed before performing the above aging heat treatment step, which also, predetermined size, a predetermined number of Cu 5 Zr can be precipitated in the matrix. The order of execution of the aging heat treatment step and the cold working step can be arbitrary.

(4)本実施形態にかかる効果
本実施形態によれば、以下に示す1つまたは複数の効果を奏する。
(4) Effects of the present embodiment According to the present embodiment, one or more of the following effects are exhibited.

(a)本実施形態のように、所定量(0.1〜0.2質量%)のZrを含有させることで、銅合金材が高温で加熱された(銅合金材が高温に曝された)場合であっても、強度の低下、導電率の低下を抑制でき、高い強度と、高い導電性と、を兼ね備える銅合金材とすることができる。というのも、所定量のZrを含有させることで、所定の大きさ、所定数のCuZrを銅合金材(の母相)中に析出させるとともに、高温加熱された銅合金材の母相中に固溶するZrの量の増加を抑制することができるためである。 (A) The copper alloy material was heated at a high temperature by containing a predetermined amount (0.1 to 0.2% by mass) of Zr as in the present embodiment (the copper alloy material was exposed to a high temperature). ) Even in this case, a decrease in strength and a decrease in conductivity can be suppressed, and a copper alloy material having both high strength and high conductivity can be obtained. This is because, by containing a predetermined amount of Zr, a predetermined size and a predetermined number of Cu 5 Zr are precipitated in (mother phase) of the copper alloy material, and the parent phase of the copper alloy material heated at a high temperature. This is because it is possible to suppress an increase in the amount of Zr that dissolves in the solid solution.

(b)具体的には、本実施形態によれば、銅合金材の横断面において、直径が0.2μm以上であるCuZrが5000個/mm以上存在するようにCuZrを析出させている。このように、所定の大きさ、所定数のCuZrを銅合金材中に析出させることで、このCuZrが加熱による歪の開放を抑制するように機能する。すなわち、CuZrが、加熱による銅合金材の塑性変形を抑制するピンのように機能する。その結果、銅合金材が高温加熱された場合であっても、その強度の低下を抑制することができる。例えば、銅合金材を830℃の温度下で10分加熱した場合であっても、加熱後の銅合金材の0.2%耐力を80N/mm以上に維持することができる。 (B) Specifically, according to the present embodiment, Cu 5 Zr is precipitated so that 5000 Cu 5 Zr having a diameter of 0.2 μm or more is present at 5000 pieces / mm 2 or more in the cross section of the copper alloy material. I'm letting you. In this way, by precipitating a predetermined size and a predetermined number of Cu 5 Zr in the copper alloy material, the Cu 5 Zr functions to suppress the release of strain due to heating. That is, Cu 5 Zr functions like a pin that suppresses plastic deformation of the copper alloy material due to heating. As a result, even when the copper alloy material is heated at a high temperature, it is possible to suppress a decrease in its strength. For example, even when the copper alloy material is heated at a temperature of 830 ° C. for 10 minutes, the 0.2% proof stress of the heated copper alloy material can be maintained at 80 N / mm 2 or more.

(c)また、上述のように、高温加熱された銅合金材の母相中に固溶するZrの量の増加を抑制することで、銅合金材が高温加熱された場合であっても、その導電率が低下することを抑制することができる。例えば、銅合金材を830℃の温度下で10分加熱した場合であっても、加熱後の銅合金材の導電率を80%IACS以上に維持することができる。 (C) Further, as described above, by suppressing an increase in the amount of Zr that dissolves in the matrix phase of the copper alloy material heated at a high temperature, even when the copper alloy material is heated at a high temperature, It is possible to suppress the decrease in the conductivity. For example, even when the copper alloy material is heated at a temperature of 830 ° C. for 10 minutes, the conductivity of the heated copper alloy material can be maintained at 80% IACS or more.

(d)Mg等を合計含有量が0.1質量%以下の範囲内で銅合金材中に含有させることで、所定の大きさ、所定数のCuZrを母相中に確実に析出させつつ、(高温加熱される前の)銅合金材の強度を高めることができる。また、Mg等の添加による銅合金材の導電率(導電性)への影響も最低限に抑えることができる。 (D) By containing Mg or the like in the copper alloy material within a range of 0.1% by mass or less, a predetermined size and a predetermined number of Cu 5 Zr can be reliably precipitated in the matrix phase. At the same time, the strength of the copper alloy material (before being heated to a high temperature) can be increased. In addition, the influence of the addition of Mg or the like on the conductivity (conductivity) of the copper alloy material can be minimized.

(e)本実施形態では、伸延後(押出ダイスから伸延材を押出した後)60秒以内に伸延材の水冷を開始することで、冷却終了後であって時効熱処理を行う前の伸延材の母相中に固溶するZrの量を増加させている。このような伸延材に対して時効熱処理を行うと、所定の大きさ、所定数のCuZrを銅合金材の母相中に確実に析出させることができる。伸延後10秒以内、好ましくは伸延直後に伸延材の水冷を開始することで、この効果を確実に得ることができる。これは、本発明者等により見出された知見である。 (E) In the present embodiment, by starting the water cooling of the stretched material within 60 seconds after the stretching (after extruding the stretched material from the extruded die), the stretched material is subjected to the cooling process and before the aging heat treatment. The amount of Zr that dissolves in the matrix is increased. When such a stretched material is subjected to aging heat treatment, a predetermined size and a predetermined number of Cu 5 Zr can be reliably precipitated in the matrix phase of the copper alloy material. This effect can be surely obtained by starting water cooling of the stretched material within 10 seconds after stretching, preferably immediately after stretching. This is a finding found by the present inventors and the like.

これに対し、伸延後60秒を超えた後に伸延材の水冷が開始されると、余熱によりCuZrが凝集して粗大化し、冷却終了後の伸延材の母相中に固溶するZrの量を充分に増加させることができない。その結果、所定の大きさ、所定数のCuZrを銅合金材の母相中に析出させることができないことがある。 On the other hand, when water cooling of the stretched material is started after 60 seconds have passed after the stretching, Cu 5 Zr aggregates due to the residual heat and becomes coarse, and Zr solid-solves in the matrix of the stretched material after the cooling is completed. The amount cannot be increased sufficiently. As a result, it may not be possible to deposit a predetermined size and a predetermined number of Cu 5 Zr in the matrix phase of the copper alloy material.

(f)上述の条件範囲内の時効熱処理を行うことで、生産性低下、製造コスト増加等を生じさせることなく、所定の大きさ、所定数のCuZrを銅合金材の母相中に確実に析出させることができる。 (F) By performing the aging heat treatment within the above-mentioned condition range, a predetermined size and a predetermined number of Cu 5 Zr can be put into the matrix phase of the copper alloy material without causing a decrease in productivity and an increase in production cost. It can be reliably deposited.

(g)上述のように本実施形態にかかる銅合金材は、高温加熱された場合であっても、高い強度及び高い導電性を維持することができるため、かご型回転子を構成するロータバーやエンドリングに用いられる場合に特に有効である。本実施形態にかかる銅合金材をロータバー等に用いることで、かご型回転子を形成する際に、ロータバーとエンドリングとの接合部に対してロウ付け等が行われた場合であっても、ロウ付け等のために加熱された銅合金材の箇所の強度低下を抑制することができる。その結果、かご型回転子の回転により遠心力がロータバー等に働いた場合であっても、ロータバー等が変形したり、折れたりすることを抑制できる。 (G) As described above, the copper alloy material according to the present embodiment can maintain high strength and high conductivity even when heated at a high temperature, so that the rotor bar constituting the cage rotor and the rotor bar It is especially effective when used for end rings. By using the copper alloy material according to this embodiment for the rotor bar or the like, even when brazing or the like is performed on the joint portion between the rotor bar and the end ring when forming the cage rotor. It is possible to suppress a decrease in strength at a portion of the copper alloy material heated for brazing or the like. As a result, even when a centrifugal force acts on the rotor bar or the like due to the rotation of the cage rotor, it is possible to prevent the rotor bar or the like from being deformed or broken.

(本発明の他の実施形態)
以上、本発明の一実施形態を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で適宜変更可能である。
(Other Embodiments of the present invention)
Although one embodiment of the present invention has been specifically described above, the present invention is not limited to the above-described embodiment and can be appropriately modified without departing from the gist thereof.

上述の実施形態では、伸延工程において、伸延機として押出ダイスを用いる場合を例に説明したが、これに限定されない。例えば、伸延工程では、鍛造プレス機械等を用いた熱間鍛造(鍛造プレス)により、ビレット中に存在する粗大なCuZrを分断し、CuZrの微細化を図った伸延材を形成してもよい。なお、伸延工程において、鍛造プレス機械を用いる場合も、押出ダイスを用いる場合と同様に、鍛造プレス後(伸延後)60秒以内、好ましくは10秒以内、より好ましくは伸延材を鍛造プレスした直後(伸延直後)に、水冷を開始することが望ましい。これによっても、押出ダイスを用いた場合と同様に、CuZrを所定の大きさ、所定数にすることができ、上述の実施形態と同様の効果を得ることができる。 In the above-described embodiment, the case where an extrusion die is used as the stretching machine in the stretching step has been described as an example, but the present invention is not limited to this. For example, in the stretching process, hot forging (forging press) using a forging press machine or the like divides the coarse Cu 5 Zr existing in the billet to form a stretched material in which the Cu 5 Zr is made finer. You may. In the stretching step, when a forging press machine is used, as in the case of using an extrusion die, within 60 seconds after the forging press (after stretching), preferably within 10 seconds, and more preferably immediately after the forging press is performed. It is desirable to start water cooling immediately (immediately after stretching). Also by this, the Cu 5 Zr can be made into a predetermined size and a predetermined number as in the case of using the extrusion die, and the same effect as that of the above-described embodiment can be obtained.

上述の実施形態では、高周波溶解炉を用いて溶湯(銅の溶湯、銅合金の溶湯)を生成したが、これに限定されない。例えば、原料を加熱して溶解して溶湯を生成することが可能な種々の溶解炉を用いることができる。 In the above-described embodiment, a molten metal (melted copper, molten copper alloy) is produced using a high-frequency melting furnace, but the present invention is not limited to this. For example, various melting furnaces capable of heating and melting the raw material to produce a molten metal can be used.

上述の実施形態では、上述の銅合金材が、かご型回転子が有するロータバー、エンドリングに用いられる場合について説明したが、これに限定されない。 In the above-described embodiment, the case where the above-mentioned copper alloy material is used for the rotor bar and the end ring of the squirrel-cage rotor has been described, but the present invention is not limited thereto.

次に、本発明の実施例を説明するが、本発明はこれらに限定されるものではない。 Next, examples of the present invention will be described, but the present invention is not limited thereto.

<試料の作製>
(試料1)
まず、連続鋳造法により所定形状のビレットを鋳造した。具体的には、溶解炉を用いて原料としての電気銅を溶解して銅の溶解液を生成した。このとき、電気銅、あるいは銅の溶解液の表面をカーボンで被覆しながら行い、銅の溶解液の脱酸を行った。脱酸が充分に行われた銅の溶解液、すなわち無酸素銅の溶湯中に、最終的に形成される銅合金材中のZrの含有量が0.15質量%となるように、所定量のZrを添加して銅合金の溶湯を溶製した。この銅合金の溶湯を所定形状の鋳型に注いで直径が200mm、長さが600mmのビレットを鋳造した。
<Preparation of sample>
(Sample 1)
First, a billet having a predetermined shape was cast by a continuous casting method. Specifically, an electrolytic copper as a raw material was melted using a melting furnace to produce a copper solution. At this time, the surface of the electrolytic copper or the copper solution was covered with carbon to deoxidize the copper solution. A predetermined amount so that the content of Zr in the copper alloy material finally formed in the dissolved copper solution that has been sufficiently deoxidized, that is, the molten metal of oxygen-free copper, is 0.15% by mass. Zr was added to melt the molten copper alloy. The molten copper alloy was poured into a mold having a predetermined shape to cast a billet having a diameter of 200 mm and a length of 600 mm.

得られたビレットに対して伸延加工(熱間加工)を行った。具体的には、ビレットを950℃に加熱した後、降温する前のビレットを押出ダイス内に挿入して押出ダイスを通過させた。なお、押出ダイスを用いたビレットの伸延(押出し)は油圧プレスにより加圧して行った。これにより直径が20mmの伸延材を得た。 The obtained billet was stretched (hot processed). Specifically, after the billet was heated to 950 ° C., the billet before the temperature was lowered was inserted into the extrusion die and passed through the extrusion die. The billet was stretched (extruded) using an extrusion die by pressurizing it with a hydraulic press. As a result, a stretched material having a diameter of 20 mm was obtained.

押出ダイスから押し出された伸延材を、押出ダイスの下流側に用意され、冷却水が収容された水槽内に入れて(運び)、水冷(冷却)する。伸延材が押出ダイスから押し出された後(伸延後、熱間加工後)、水冷が開始されるまでに要した時間は10秒であった。 The extruded material extruded from the extruded die is prepared on the downstream side of the extruded die and placed (carried) in a water tank containing cooling water for water cooling (cooling). After the extruded material was extruded from the extruded die (after stretching and hot working), it took 10 seconds to start water cooling.

伸延材の温度が所定温度になるまで伸延材を冷却した後、伸延材を水槽から取り出す。続いて、電気炉を用い、不活性ガス雰囲気中で450℃の温度条件下で1時間加熱する時効熱処理(450℃×1時間の熱処理)を、冷却後の伸延材に対して行った。時効熱処理が終了した後、引抜き法により冷間塑性加工を行い、直径が16mmの銅合金材を作製した。この銅合金材を試料1とした。 After cooling the stretched material until the temperature of the stretched material reaches a predetermined temperature, the stretched material is taken out from the water tank. Subsequently, using an electric furnace, aging heat treatment (heat treatment at 450 ° C. × 1 hour) of heating under the temperature condition of 450 ° C. for 1 hour in an inert gas atmosphere was performed on the stretched material after cooling. After the aging heat treatment was completed, cold plastic working was performed by a drawing method to prepare a copper alloy material having a diameter of 16 mm. This copper alloy material was used as sample 1.

試料1および後述の試料2〜18の銅合金材の組成、試料1および後述の試料2〜18の製法、条件を、下記の表1にまとめて示す。 The composition of the copper alloy material of Sample 1 and Samples 2 to 18 described later, the production method and conditions of Sample 1 and Samples 2 to 18 described later are summarized in Table 1 below.

Figure 0006822889
Figure 0006822889

(試料2〜11)
試料2〜11では、銅合金材の組成が表1に示す通りとなるように、Mg、Ti、Zn、Fe、Co、Mn、Ag、Si、Cr、Snの副成分の添加量を調整した。その他は、上述の試料1と同様の製法、条件で銅合金材を作製した。これらをそれぞれ試料2〜11とした。
(Samples 2-11)
In Samples 2 to 11, the addition amounts of the sub-components of Mg, Ti, Zn, Fe, Co, Mn, Ag, Si, Cr, and Sn were adjusted so that the composition of the copper alloy material was as shown in Table 1. .. Other than that, a copper alloy material was prepared under the same manufacturing method and conditions as in Sample 1 described above. These were used as samples 2 to 11, respectively.

(試料12)
試料12では、押出ダイスから押し出された伸延材を、水槽に入れることなく120秒放置した。120秒経過後、伸延材を水槽に入れて伸延材の水冷を行い、伸延材を所定温度まで降温させた。その後、電気炉にて伸延材の温度が950℃となるまで伸延材を再加熱した後、伸延材を電気炉から取り出し、その後10秒以内に伸延材を冷却水が収容された水槽内に入れて伸延材を水冷する溶体化処理(溶体化熱処理)を行った。その他は、上述の試料1と同様の組成、製法及び条件で銅合金材を作製した。これを試料12とした。なお、上記表1における熱間加工後、水冷までの時間とは、試料12では、溶体化処理における再加熱後水冷までの時間を表すものとする。
(Sample 12)
In sample 12, the extruded material extruded from the extruded die was left for 120 seconds without being placed in a water tank. After 120 seconds had passed, the stretched material was placed in a water tank and the stretched material was water-cooled to lower the temperature of the stretched material to a predetermined temperature. Then, after reheating the stretched material in an electric furnace until the temperature of the stretched material reaches 950 ° C., the stretched material is taken out from the electric furnace, and then the stretched material is placed in a water tank containing cooling water within 10 seconds. A solution treatment (solution heat treatment) was performed to cool the stretched material with water. Other than that, a copper alloy material was prepared under the same composition, manufacturing method and conditions as in Sample 1 described above. This was used as sample 12. The time from hot working to water cooling in Table 1 above represents the time from reheating to water cooling in the solution treatment in Sample 12.

(試料13,14)
試料13,14は、銅合金材の組成が表1に示す通りとなるようにZrの添加量を調整した。その他は、上述の試料1と同様の製法、条件で銅合金材を作製した。これらをそれぞれ試料13,14とした。
(Samples 13 and 14)
In Samples 13 and 14, the amount of Zr added was adjusted so that the composition of the copper alloy material was as shown in Table 1. Other than that, a copper alloy material was prepared under the same manufacturing method and conditions as in Sample 1 described above. These were used as samples 13 and 14, respectively.

(試料15)
試料15では、押出ダイスから押し出された伸延材を、水槽に入れることなく120秒放置し、その後、伸延材を水槽に入れて水冷を行った。その他は、上述の試料1と同様の組成、製法及び条件で銅合金材を作製した。これを試料15とした。
(Sample 15)
In sample 15, the stretched material extruded from the extruded die was left for 120 seconds without being put in the water tank, and then the stretched material was put in the water tank and water-cooled. Other than that, a copper alloy material was prepared under the same composition, manufacturing method and conditions as in Sample 1 described above. This was used as sample 15.

(試料16,17)
試料16,17では、時効熱処理時の温度条件を下記の表1に示す通りに変更した。銅合金材の組成、製法、及び時効熱処理時の温度条件以外の条件は、上述の試料1と同様とした。
(Samples 16 and 17)
In the samples 16 and 17, the temperature conditions during the aging heat treatment were changed as shown in Table 1 below. The conditions other than the composition of the copper alloy material, the manufacturing method, and the temperature conditions at the time of the aging heat treatment were the same as those of Sample 1 described above.

(試料18)
試料18では、銅合金材の組成が表1に示す通りとなるようにMgの添加量を調整した。その他は、上述の試料1と同様の製法、条件で銅合金材を作製した。これを試料18とした。
(Sample 18)
In Sample 18, the amount of Mg added was adjusted so that the composition of the copper alloy material was as shown in Table 1. Other than that, a copper alloy material was prepared under the same manufacturing method and conditions as in Sample 1 described above. This was used as sample 18.

<評価>
試料1〜18についてそれぞれ、直径が0.2μm以上のCuZrの数、高温加熱後の強度の評価、高温加熱後の導電性の評価を行った。
<Evaluation>
For each of Samples 1 to 18, the number of Cu 5 Zr having a diameter of 0.2 μm or more, the strength after high-temperature heating, and the conductivity after high-temperature heating were evaluated.

(直径が0.2μm以上のCuZrの数)
「直径が0.2μm以上のCuZrの数」とは、各試料の押出(伸延)方向と直交する方向における断面(横断面)に析出した、直径が0.2μm以上のCuZrの数である。このCuZrの数(析出数)の計測は以下の手順で行った。まず、各試料の横断面を研磨した後、過酸化水素を加えたアンモニア水でエッチングを行って銅のみ溶解し、横断面にCuZrを露出させた。そして、この横断面をSEM(走査型電子顕微鏡)で600倍の倍率で観察し、1.7mm×2.2mmの範囲で観察される直径が0.2μm以上のCuZrの個数を数え、計算によって1mmの範囲内に存在する直径が0.2μm以上のCuZrの数を求めた。
(Number of Cu 5 Zr with a diameter of 0.2 μm or more)
The "number of diameter 0.2 [mu] m or more Cu 5 Zr", and deposited in cross section (cross section) in the direction orthogonal to the extrusion (distraction) direction of each sample, the diameter is more than 0.2 [mu] m Cu 5 Zr of It is a number. The number of Cu 5 Zr (precipitation number) was measured by the following procedure. First, after polishing the cross section of each sample, etching was performed with aqueous ammonia containing hydrogen peroxide to dissolve only copper, and Cu 5 Zr was exposed on the cross section. Then, this cross section is observed with an SEM (scanning electron microscope) at a magnification of 600 times, and the number of Cu 5 Zr having a diameter of 0.2 μm or more observed in a range of 1.7 mm × 2.2 mm is counted. By calculation, the number of Cu 5 Zr having a diameter of 0.2 μm or more existing in the range of 1 mm 2 was determined.

(高温加熱後の強度の評価)
高温加熱後の強度の評価は、以下の手順で行った。まず、各試料を、ロウ付け条件を模擬した加熱条件で加熱した。すなわち、各試料を830℃の温度下で10分間加熱した。その後(830℃×10分の熱処理後)、各試料の0.2%耐力をJIS Z2214に準拠した引張試験を行うことで測定した。なお、高温加熱後の銅合金材の強度の評価値として、0.2%耐力の値を用いたのは、銅合金材が塑性変形を開始する強度を正確に把握することができるためである。
(Evaluation of strength after high temperature heating)
The strength after heating at high temperature was evaluated by the following procedure. First, each sample was heated under heating conditions simulating brazing conditions. That is, each sample was heated at a temperature of 830 ° C. for 10 minutes. After that (after heat treatment at 830 ° C. × 10 minutes), the 0.2% proof stress of each sample was measured by performing a tensile test in accordance with JIS Z2214. The 0.2% proof stress value was used as the evaluation value of the strength of the copper alloy material after high-temperature heating because the strength at which the copper alloy material starts plastic deformation can be accurately grasped. ..

(高温加熱後の導電性の評価)
高温加熱後の導電性の評価は、以下の手順で行った。まず、各試料を、上述と同様に、830℃の温度下で10分間加熱した。その後(830℃×10分の熱処理後)、JIS H0505に準拠した導電率測定方法により、導電率を測定した。
(Evaluation of conductivity after high temperature heating)
The conductivity after high temperature heating was evaluated by the following procedure. First, each sample was heated at a temperature of 830 ° C. for 10 minutes in the same manner as described above. After that (after heat treatment at 830 ° C. for 10 minutes), the conductivity was measured by a conductivity measuring method based on JIS H0505.

試料1〜18の直径が0.2μm以上のCuZrの数、830℃×10分の熱処理後の0.2%耐力、830℃×10分の熱処理後の導電率の評価結果を、下記の表2にまとめて示す。 The evaluation results of the number of Cu 5 Zr with a diameter of samples 1 to 18 of 0.2 μm or more, 0.2% proof stress after heat treatment at 830 ° C. × 10 minutes, and conductivity after heat treatment at 830 ° C. × 10 minutes are as follows. It is summarized in Table 2 of.

Figure 0006822889
Figure 0006822889

<評価結果>
試料1〜12から、銅合金材中に所定量のZrを含有させることで、所定の大きさ、所定数のCuZrを銅合金材中に析出させることができることを確認した。具体的には、銅合金材の横断面において、直径が0.2μm以上のCuZrが5000個/mm以上存在するように、銅合金材中にCuZrを析出させることができることを確認した。また、このように所定の大きさ、所定数のCuZrを銅合金材中に析出させることで、高温加熱後の銅合金材であっても、高い強度と、高い導電性と、を兼ね備えていることを確認した。すなわち、試料1〜12では、830℃×10分の熱処理後であっても、0.2%耐力を80N/mm以上、導電率を80%IACS以上に維持することができることを確認した。
<Evaluation result>
From Samples 1 to 12, it was confirmed that by containing a predetermined amount of Zr in the copper alloy material, a predetermined size and a predetermined number of Cu 5 Zr can be precipitated in the copper alloy material. Specifically, it is possible to deposit Cu 5 Zr in the copper alloy material so that 5000 pieces / mm 2 or more of Cu 5 Zr having a diameter of 0.2 μm or more are present in the cross section of the copper alloy material. confirmed. Further, by precipitating a predetermined size and a predetermined number of Cu 5 Zr in the copper alloy material in this way, even the copper alloy material after high temperature heating has both high strength and high conductivity. I confirmed that. That is, it was confirmed that the samples 1 to 12 can maintain a 0.2% proof stress of 80 N / mm 2 or more and a conductivity of 80% IACS or more even after the heat treatment at 830 ° C. × 10 minutes.

また、試料12から、伸延後60秒以内に伸延材の水冷を行うことができない場合、所定の溶体化処理を行うことで、所定の大きさ、所定数のCuZrを銅合金材中に析出させることができることを確認した。 If the stretched material cannot be water-cooled from the sample 12 within 60 seconds after stretching, a predetermined size and a predetermined number of Cu 5 Zr can be put into the copper alloy material by performing a predetermined solution treatment. It was confirmed that it could be precipitated.

また、試料13から、銅合金材中のZrの含有量が所定量未満であると、所定の大きさ、所定数のCuZrを銅合金材中に析出させることができない、すなわち、直径が0.2μm以上のCuZrの数が5000個/mm未満となることがあることを確認した。 Further, from the sample 13, if the content of Zr in the copper alloy material is less than a predetermined amount, a predetermined size and a predetermined number of Cu 5 Zr cannot be deposited in the copper alloy material, that is, the diameter is large. It was confirmed that the number of Cu 5 Zr of 0.2 μm or more may be less than 5000 pieces / mm 2 .

試料14から、銅合金材中のZrの含有量が所定量を超えると、高温加熱後の銅合金材の導電率が80%IACSを超え、導電性が低下することがあることを確認した。 From Sample 14, it was confirmed that when the content of Zr in the copper alloy material exceeds a predetermined amount, the conductivity of the copper alloy material after high-temperature heating exceeds 80% IACS, and the conductivity may decrease.

また、試料15から、伸延後60秒以内に伸延材の水冷を行わない場合、溶体化処理を行わないと、所定の大きさ、所定数のCuZrが銅合金材中に析出しないことがあることを確認した。 Further, if the stretched material is not water-cooled from the sample 15 within 60 seconds after stretching, a predetermined size and a predetermined number of Cu 5 Zr may not be deposited in the copper alloy material unless the solution treatment is performed. I confirmed that there was.

また、試料16から、時効熱処理の加熱温度が低すぎると、時効処理の加熱時間が1時間では、所定の大きさ、所定数のCuZrが銅合金材中に析出しないこがあることを確認した。 Further, from the sample 16, if the heating temperature of the aging heat treatment is too low, a predetermined size and a predetermined number of Cu 5 Zr may not be precipitated in the copper alloy material even if the heating time of the aging treatment is 1 hour. confirmed.

試料17から、時効熱処理の加熱温度が高すぎた場合も、上述の試料16の場合と同様に、所定の大きさ、所定数のCuZrが銅合金材中に析出しないことがあることを確認した。 From the sample 17, even if the heating temperature of the aging heat treatment is too high, the predetermined size and the predetermined number of Cu 5 Zr may not be precipitated in the copper alloy material as in the case of the above-mentioned sample 16. confirmed.

試料18から、Mgの含有量が所定量を超えると、所定の大きさ、所定数のCuZrが銅合金材中に析出しないことがあることを確認した。なお、Mg以外のTi等の副成分の含有量が所定量を超える場合も、同様に、所定の大きさ、所定数のCuZrが銅合金材中に析出しないことがあることを本願発明者は確認している。 From Sample 18, it was confirmed that when the Mg content exceeds a predetermined amount, a predetermined size and a predetermined number of Cu 5 Zr may not be precipitated in the copper alloy material. It should be noted that even when the content of auxiliary components such as Ti other than Mg exceeds a predetermined amount, similarly, a predetermined size and a predetermined number of Cu 5 Zr may not be precipitated in the copper alloy material. Has confirmed.

試料13,15〜18から、所定の大きさ、所定数のCuZrが銅合金材中に析出していない場合、銅合金材が高温加熱されると、銅合金材の強度が低下することがあることを確認した。すなわち、試料13,15〜18では、830℃×10分の熱処理を行うと、0.2%耐力を80N/mm以上に維持することができないことを確認した。 When a predetermined size and a predetermined number of Cu 5 Zr are not deposited in the copper alloy material from the samples 13, 15 to 18, the strength of the copper alloy material decreases when the copper alloy material is heated at a high temperature. I confirmed that there is. That is, it was confirmed that the 0.2% proof stress of the samples 13, 15 to 18 could not be maintained at 80 N / mm 2 or more by performing the heat treatment at 830 ° C. × 10 minutes.

<好ましい態様>
以下に、本発明の好ましい態様について付記する。
<Preferable aspect>
Hereinafter, preferred embodiments of the present invention will be added.

[付記1]
本発明の一態様によれば、
0.1質量%以上0.2質量%以下のZrを含み、残部がCuおよび不可避不純物からなる銅合金が伸延されてなり、
母相中にZrとCuとの化合物であるCuZrの析出物が析出しており、
伸延方向と直交する方向における断面を観察したとき、直径が0.2μm以上である前記析出物が5000個/mm以上存在している銅合金材が提供される。
[Appendix 1]
According to one aspect of the invention
A copper alloy containing Zr of 0.1% by mass or more and 0.2% by mass or less and the balance of which is composed of Cu and unavoidable impurities is stretched.
A precipitate of Cu 5 Zr, which is a compound of Zr and Cu, is precipitated in the matrix phase.
Provided is a copper alloy material in which 5000 pieces / mm 2 or more of the precipitates having a diameter of 0.2 μm or more are present when observing a cross section in a direction orthogonal to the stretching direction.

[付記2]
付記1の銅合金材であって、好ましくは、
Mg、Ti、Zn、Fe、Co、Mn、Ag、Si、CrおよびSnからなる群より選択した1種以上を総量で0.1質量%以下含んでなる。
[Appendix 2]
The copper alloy material of Appendix 1, preferably
It contains 0.1% by mass or less in total of one or more selected from the group consisting of Mg, Ti, Zn, Fe, Co, Mn, Ag, Si, Cr and Sn.

[付記3]
付記1または2の銅合金材であって、好ましくは、
830℃の温度下で10分加熱した後の0.2%耐力が80N/mm以上であり、
830℃の温度下で10分加熱した後の導電率が80%IACS以上である。
[Appendix 3]
The copper alloy material of Appendix 1 or 2, preferably
The 0.2% proof stress after heating at a temperature of 830 ° C. for 10 minutes is 80 N / mm 2 or more.
The conductivity after heating at a temperature of 830 ° C. for 10 minutes is 80% IACS or more.

[付記4]
本発明の他の態様によれば、
0.1質量%以上0.2質量%以下のZrを含有し、残部がCuおよび不可避不純物からなる鋳塊を鋳造する工程と、
加熱した前記鋳塊に対して熱間伸延を行って伸延材を形成する工程と、
前記伸延材を形成した後60秒以内に水冷を開始して前記伸延材を冷却するか、又は、前記伸延材の温度が前記伸延材を形成する工程における前記鋳塊の加熱温度以上の温度となるように前記伸延材を加熱した後60秒以内に水冷を開始して前記伸延材を冷却する工程と、
冷却した前記伸延材を、350℃以上550℃以下の温度下で30分以上加熱する時効熱処理を行う工程と、を有する銅合金材の製造方法が提供される。
[Appendix 4]
According to another aspect of the invention
A step of casting an ingot containing Zr of 0.1% by mass or more and 0.2% by mass or less and the balance of which is Cu and unavoidable impurities.
A step of hot-stretching the heated ingot to form a stretched material, and
Water cooling is started within 60 seconds after the stretched material is formed to cool the stretched material, or the temperature of the stretched material is equal to or higher than the heating temperature of the ingot in the step of forming the stretched material. A step of starting water cooling within 60 seconds after heating the stretched material so as to cool the stretched material, and
Provided is a method for producing a copper alloy material, which comprises a step of performing an aging heat treatment in which the cooled stretched material is heated at a temperature of 350 ° C. or higher and 550 ° C. or lower for 30 minutes or longer.

[付記5]
付記4の方法であって、好ましくは、
前記伸延材を形成する工程では、減面率が60%以上となるように熱間伸延を行う。
[Appendix 5]
The method of Appendix 4, preferably
In the step of forming the stretched material, hot stretching is performed so that the surface reduction rate is 60% or more.

[付記6]
付記4または5の方法であって、好ましくは、
前記伸延材を形成する工程では、減面率が80%以上となるように熱間伸延を行う。
[Appendix 6]
The method of Appendix 4 or 5, preferably
In the step of forming the stretched material, hot stretching is performed so that the surface reduction rate is 80% or more.

[付記7]
付記4〜6のいずれかの方法であって、好ましくは、
前記伸延材を冷却する工程では、前記伸延材を形成した後10秒以内、又は、前記伸延材の温度が前記鋳塊の加熱温度以上の温度(例えば850℃以上)となるように前記伸延材を加熱した後10秒以内に、前記伸延材の水冷を開始する。より好ましくは、前記伸延材を形成した直後、又は、前記伸延材の温度が前記鋳塊の加熱温度以上の温度(例えば850℃以上)となるように前記伸延材を加熱した直後に、前記伸延材の水冷を開始する。
[Appendix 7]
Any of the methods of Appendix 4 to 6, preferably.
In the step of cooling the stretched material, the stretched material is set to a temperature within 10 seconds after the stretched material is formed, or the temperature of the stretched material is equal to or higher than the heating temperature of the ingot (for example, 850 ° C. or higher). Within 10 seconds after heating, water cooling of the stretched material is started. More preferably, the stretched material is formed immediately after the stretched material is formed, or immediately after the stretched material is heated so that the temperature of the stretched material becomes equal to or higher than the heating temperature of the ingot (for example, 850 ° C. or higher). Start water cooling of the material.

[付記8]
付記4〜7のいずれかの方法であって、好ましくは、
前記時効熱処理を行う工程を実施する前、又は、前記時効熱処理を行う工程を実施した後に、前記伸延材に対して冷間(塑性)加工を行う工程をさらに有する。
[Appendix 8]
Any of the methods of Appendix 4 to 7, preferably.
It further has a step of performing cold (plastic) working on the stretched material before the step of performing the aging heat treatment or after performing the step of performing the aging heat treatment.

[付記9]
本発明のさらに他の態様によれば、
0.1質量%以上0.2質量%以下のZrを含み、残部がCuおよび不可避不純物からなる銅合金が伸延されて形成され、母相中にZrとCuとの化合物であるCuZrの析出物が析出しており、伸延方向と直交する方向における断面を観察したとき、直径が0.2μm以上である前記析出物が5000個/mm以上存在している銅合金材がエンドリングおよびロータバーに用いられてなる、かご型回転子が提供される。
[Appendix 9]
According to yet another aspect of the invention.
A copper alloy containing 0.1% by mass or more and 0.2% by mass or less of Zr and the balance of which is composed of Cu and unavoidable impurities is stretched and formed, and Cu 5 Zr, which is a compound of Zr and Cu, is formed in the matrix phase. Precipitates are precipitated, and when observing the cross section in the direction orthogonal to the elongation direction, the end ring and the copper alloy material in which 5000 pieces / mm 2 or more of the precipitates having a diameter of 0.2 μm or more are present are present. A cage-type rotor used for a rotor bar is provided.

Claims (5)

0.1質量%以上0.2質量%以下のZrを含み、残部がCuおよび不可避不純物からなる銅合金で伸延されてなり、
母相中にZrとCuとの化合物であるCuZrの析出物が析出しており、
伸延方向と直交する方向における断面を観察したとき、直径が0.2μm以上である前記析出物が5000個/mm以上存在している
銅合金材。
It contains Zr of 0.1% by mass or more and 0.2% by mass or less, and the balance is stretched with a copper alloy composed of Cu and unavoidable impurities.
A precipitate of Cu 5 Zr, which is a compound of Zr and Cu, is precipitated in the matrix phase.
A copper alloy material in which 5000 pieces / mm 2 or more of the precipitates having a diameter of 0.2 μm or more are present when observing a cross section in a direction orthogonal to the stretching direction.
Mg、Ti、Zn、Fe、Co、Mn、Ag、Si、CrおよびSnからなる群より選択した1種以上を総量で0.1質量%以下含んでなる請求項1に記載の銅合金材。 The copper alloy material according to claim 1, wherein one or more selected from the group consisting of Mg, Ti, Zn, Fe, Co, Mn, Ag, Si, Cr and Sn is contained in an amount of 0.1% by mass or less in total. 830℃の温度下で10分加熱した後の0.2%耐力が80N/mm以上であり、
830℃の温度下で10分加熱した後の導電率が80%IACS以上である
請求項1または2に記載の銅合金材。
The 0.2% proof stress after heating at a temperature of 830 ° C. for 10 minutes is 80 N / mm 2 or more.
The copper alloy material according to claim 1 or 2, wherein the conductivity after heating at a temperature of 830 ° C. for 10 minutes is 80% IACS or more.
0.1質量%以上0.2質量%以下のZrを含有し、残部がCuおよび不可避不純物からなる鋳塊を鋳造する工程と、
加熱した前記鋳塊に対して熱間伸延を行って伸延材を形成する工程と、
前記伸延材の形成が完了した後60秒以内に水冷を開始して前記伸延材を冷却するか、又は、前記伸延材の温度が前記伸延材を形成する工程における前記鋳塊の加熱温度以上の温度となるように前記伸延材を加熱した後60秒以内に水冷を開始して前記伸延材を冷却する工程と、
冷却した前記伸延材を350℃以上550℃以下の温度下で30分以上加熱する時効熱処理を行い、直径が0.2μm以上であるZrとCuとの化合物であるCu Zrの析出物を、伸延方向と直交する方向の断面において5000個/mm 以上存在するように母相中に析出させる工程と、
を有する銅合金材の製造方法。
A step of casting an ingot containing Zr of 0.1% by mass or more and 0.2% by mass or less and the balance of which is Cu and unavoidable impurities.
A step of hot-stretching the heated ingot to form a stretched material, and
Water cooling is started within 60 seconds after the formation of the stretched material is completed to cool the stretched material, or the temperature of the stretched material is equal to or higher than the heating temperature of the ingot in the step of forming the stretched material. A step of cooling the stretched material by starting water cooling within 60 seconds after heating the stretched material to a temperature.
There rows aging for heating the cooled the distraction member 3 50 ° C. or higher 550 ° C. 30 minutes or more under a temperature below precipitate Cu 5 Zr which is a compound of Zr and Cu is diameter 0.2μm or more In the matrix phase so that 5000 pieces / mm 2 or more are present in the cross section in the direction orthogonal to the stretching direction .
A method for manufacturing a copper alloy material having.
0.1質量%以上0.2質量%以下のZrを含み、残部がCuおよび不可避不純物からなる銅合金が伸延されて形成され、母相中にZrとCuとの化合物であるCuZrの析出物が析出しており、伸延方向と直交する方向における断面を観察したとき、直径が0.2μm以上である前記析出物が5000個/mm以上存在している銅合金材がエンドリングおよびロータバーに用いられてなる、かご型回転子。 A copper alloy containing 0.1% by mass or more and 0.2% by mass or less of Zr and the balance of which is composed of Cu and unavoidable impurities is stretched and formed, and Cu 5 Zr, which is a compound of Zr and Cu, is formed in the matrix phase. Precipitates are precipitated, and when observing the cross section in the direction orthogonal to the elongation direction, the end ring and the copper alloy material in which 5000 pieces / mm 2 or more of the precipitates having a diameter of 0.2 μm or more are present are present. A cage-type rotor used for rotor bars.
JP2017079510A 2017-04-13 2017-04-13 Copper alloy material, manufacturing method of copper alloy material and cage rotor Active JP6822889B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017079510A JP6822889B2 (en) 2017-04-13 2017-04-13 Copper alloy material, manufacturing method of copper alloy material and cage rotor
KR1020170176749A KR102384384B1 (en) 2017-04-13 2017-12-21 Copper alloy material, manufacturing method of copper alloy material, and cage type rotor
CN201711443977.0A CN108728686B (en) 2017-04-13 2017-12-27 Copper alloy material, method for producing copper alloy material, and cage rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017079510A JP6822889B2 (en) 2017-04-13 2017-04-13 Copper alloy material, manufacturing method of copper alloy material and cage rotor

Publications (2)

Publication Number Publication Date
JP2018178189A JP2018178189A (en) 2018-11-15
JP6822889B2 true JP6822889B2 (en) 2021-01-27

Family

ID=63940903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017079510A Active JP6822889B2 (en) 2017-04-13 2017-04-13 Copper alloy material, manufacturing method of copper alloy material and cage rotor

Country Status (3)

Country Link
JP (1) JP6822889B2 (en)
KR (1) KR102384384B1 (en)
CN (1) CN108728686B (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094175A (en) 2009-10-28 2011-05-12 Sumitomo Light Metal Ind Ltd Copper alloy seamless tube
CN102690971B (en) * 2012-01-10 2014-01-29 河南科技大学 High-strength copper alloy strip and preparation method thereof
EP2908318A4 (en) * 2012-10-10 2016-07-06 Ngk Insulators Ltd Voltage nonlinear resistance element
JP5560475B2 (en) * 2013-01-09 2014-07-30 三菱マテリアル株式会社 Copper alloys for electronic and electrical equipment, electronic and electrical equipment parts and terminals
JP6244588B2 (en) 2013-03-11 2017-12-13 株式会社Uacj Copper alloy seamless pipe for heat transfer tubes
JP5858961B2 (en) * 2013-09-03 2016-02-10 Jx日鉱日石金属株式会社 Copper alloy sheet with excellent stress relaxation properties
JP6230341B2 (en) * 2013-09-03 2017-11-15 Jx金属株式会社 Copper alloy sheet with excellent stress relaxation properties
JP6614806B2 (en) * 2015-05-25 2019-12-04 三菱伸銅株式会社 Copper alloy plate and method for producing copper alloy plate
CN106350698B (en) * 2016-09-09 2018-03-27 宁波博威合金板带有限公司 Anti-softening copper alloy, preparation method and applications

Also Published As

Publication number Publication date
CN108728686B (en) 2021-05-04
KR102384384B1 (en) 2022-04-06
KR20180115608A (en) 2018-10-23
JP2018178189A (en) 2018-11-15
CN108728686A (en) 2018-11-02

Similar Documents

Publication Publication Date Title
JP4674483B2 (en) Copper material manufacturing method and copper material
TWI599666B (en) High strength cu-ni-co-si copper alloy sheet and method of manufacture, and conductive components
TWI547571B (en) Copper alloy and wrought copper alloy products
TWI422692B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP5555135B2 (en) Copper alloy with improved hot and cold workability, method for producing the same, and copper alloy strip or alloy foil obtained from the copper alloy
JP2008255417A (en) Method for producing copper material, and copper material
JP2008031525A (en) Copper alloy having high strength and high softening resistance
WO2017043551A1 (en) Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
JP5910790B1 (en) Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars
JP2006274383A (en) Method for manufacturing copper material, and copper material
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
CN103228804A (en) Copper alloy for electronic devices, method for producing copper alloy for electronic devices, and copper alloy rolled material for electronic devices
JP4834781B1 (en) Cu-Co-Si alloy for electronic materials
JP6693092B2 (en) Copper alloy material
JP6529346B2 (en) High bending fatigue resistance copper based alloy wire
JP2007126739A (en) Copper alloy for electronic material
JP2009167450A (en) Copper alloy and producing method therefor
KR102486303B1 (en) Mold materials for casting, and copper alloy materials
JP6736869B2 (en) Copper alloy material
JP2016060951A (en) Copper alloy for electronic and electrical machine, copper alloy thin sheet for electronic and electrical machine, component for electronic and electrical machine, terminal and bus bar
JP2008255416A (en) Method for manufacturing copper material, and copper material
JP6822889B2 (en) Copper alloy material, manufacturing method of copper alloy material and cage rotor
JP3763234B2 (en) Method for producing high-strength, high-conductivity, high-heat-resistant copper-based alloy
JP5252722B2 (en) High strength and high conductivity copper alloy and method for producing the same
JP2006272422A (en) Manufacturing method of copper material and copper material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210107

R150 Certificate of patent or registration of utility model

Ref document number: 6822889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150