JP2008255416A - Method for manufacturing copper material, and copper material - Google Patents

Method for manufacturing copper material, and copper material Download PDF

Info

Publication number
JP2008255416A
JP2008255416A JP2007098961A JP2007098961A JP2008255416A JP 2008255416 A JP2008255416 A JP 2008255416A JP 2007098961 A JP2007098961 A JP 2007098961A JP 2007098961 A JP2007098961 A JP 2007098961A JP 2008255416 A JP2008255416 A JP 2008255416A
Authority
JP
Japan
Prior art keywords
copper
oxygen
copper material
metal
softening temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007098961A
Other languages
Japanese (ja)
Inventor
Hiromitsu Kuroda
洋光 黒田
Masayoshi Aoyama
正義 青山
Hiroshi Okikawa
寛 沖川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2007098961A priority Critical patent/JP2008255416A/en
Publication of JP2008255416A publication Critical patent/JP2008255416A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an inexpensive oxygen-free copper material having low softening temperature and high electric conductivity and also to provide a copper material. <P>SOLUTION: In a method for directly manufacturing a copper material from molten oxygen-free copper using an up-drawing continuous casting machine, at least one metal or alloy selected from Ti, Zr, V, Ta, Fe, Ca, Mg and Ni or alloys thereof is added to the molten oxygen-free copper stored in a molten metal storing means of the up-drawing continuous casting machine to regulate the proportion of the metal or alloy contained in the molten oxygen-free copper to 0.0004 to 0.055 wt.%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、銅材の製造方法に係り、特に、無酸素銅材の製造方法に関するものである。   The present invention relates to a method for producing a copper material, and more particularly to a method for producing an oxygen-free copper material.

現在、銅線を含む各種線材の多くは、連続鋳造圧延法により形成される。先ず、シャフト炉で溶解させた溶湯がSCR方式、又はコンチロッド(登録商標)方式の連続鋳造手段に供給され、鋳造バーが得られる。次に、その鋳造バーは連続鋳造手段に連結された熱間圧延手段に供給され、所定の外径に圧延される。その後、圧延材が冷却され、荒引き線が得られる(例えば、特許文献1参照)。   At present, most of various types of wires including copper wires are formed by a continuous casting and rolling method. First, the molten metal melted in the shaft furnace is supplied to an SCR-type or continuous rod (registered trademark) type continuous casting means to obtain a casting bar. Next, the casting bar is supplied to a hot rolling means connected to the continuous casting means and rolled to a predetermined outer diameter. Thereafter, the rolled material is cooled, and a rough drawing line is obtained (for example, see Patent Document 1).

連続鋳造圧延法は、溶解工程、鋳造工程、及び熱間圧延工程の各ラインが連続しており、荒引き線の製造法としては効率的で、生産性に優れた方法である。得られた荒引き線は、その後、冷間伸線工程、焼きなまし工程に供され、最終製品(例えば銅線)が得られる。この銅線の構成材の一つにタフピッチ銅がある。タフピッチ銅は、スクラップ銅と電気銅を混ぜたものを利用することができるため、原料コストが安価である。また、タフピッチ銅は、無酸素銅と比べて酸素含有量が多いため、必然的に、無酸素銅と比べて酸化した不純物の含有量が多くなるという特徴がある。また、無酸素銅の製法として、溶銅湯面に配した鋳型内で溶銅を凝固させて上方に連続的に引上げる上方引上連続鋳造法(アップキャスト法)などがある。この無酸素銅は、近年モータ用のマグネットワイヤにも使用されるようになってきた。   In the continuous casting and rolling method, each line of the melting step, the casting step, and the hot rolling step is continuous, which is an efficient method for producing the roughing wire and is an excellent method for productivity. The rough drawing wire thus obtained is then subjected to a cold drawing step and an annealing step to obtain a final product (for example, a copper wire). One component of this copper wire is tough pitch copper. Since tough pitch copper can use a mixture of scrap copper and electric copper, the raw material cost is low. Moreover, since tough pitch copper has a higher oxygen content than oxygen-free copper, it inevitably has a feature that the content of oxidized impurities is higher than oxygen-free copper. Further, as a method for producing oxygen-free copper, there is an upward pulling continuous casting method (upcasting method) in which molten copper is solidified in a mold disposed on the surface of the molten copper and continuously pulled upward. In recent years, this oxygen-free copper has been used for magnet wires for motors.

特開平6−240426号公報JP-A-6-240426

ところで、銅線製造の焼きなまし工程において、連続焼きなましを行う(冷間伸線工程と焼きなまし工程を連続的に行う)ことで、工業生産性を向上させることができる。しかし、この場合、被焼きなまし材の軟化温度が高いと、焼きなまし工程に時間がかかると共に、焼きなまし工程の生産速度に冷間伸線工程の生産速度を合わせる必要があり、銅線の生産性が阻害される。また、被焼きなまし材の軟化温度が高いと、焼きなましに要する熱エネルギーが増大し、製品コストの上昇を招いてしまう。よって、被焼きなまし材の軟化温度の低下が図られている。   By the way, industrial productivity can be improved by performing continuous annealing in the annealing process of copper wire manufacture (a cold wire drawing process and an annealing process are performed continuously). However, in this case, if the softening temperature of the annealed material is high, the annealing process takes time, and it is necessary to match the production speed of the cold drawing process with the production speed of the annealing process, which hinders the productivity of copper wire. Is done. Moreover, when the softening temperature of the material to be annealed is high, the thermal energy required for annealing increases, leading to an increase in product cost. Therefore, the softening temperature of the material to be annealed is lowered.

銅材の軟化温度を低下させるには、銅母材中に含まれる不純物元素を除去し、Cu純度を高めることが必要とされる。不純物元素を除去する方法としては、例えば、溶湯原料の選定(高純度のものを使用)、溶湯の酸化精錬、還元精錬などがある。しかしながら、この不純物元素を除去する方法は、コストが非常にかさむ方法である。このため、溶湯原料にタフピッチ銅を用いた場合、この方法は経済的に極めて不利であり、工業的に適した方法とは言えなかった。さらに、近年では、マグネットワイヤなどの接続溶接時にガスのボイドが生じ難い無酸素銅の要求があり、この点ではタフピッチ銅は適さない。   In order to lower the softening temperature of the copper material, it is necessary to remove the impurity elements contained in the copper base material and increase the Cu purity. As a method for removing the impurity element, there are, for example, selection of a molten metal raw material (using a high-purity material), oxidation refining of the molten metal, reduction refining, and the like. However, this method of removing the impurity element is a method that is very expensive. For this reason, when tough pitch copper is used for the molten metal raw material, this method is extremely disadvantageous economically and cannot be said to be an industrially suitable method. Furthermore, in recent years, there has been a demand for oxygen-free copper that hardly causes gas voids during connection welding of a magnet wire or the like, and tough pitch copper is not suitable in this respect.

一方、銅材の軟化温度を低下させる他の方法として、銅母材中に含まれる不純物元素の内、ある元素の濃度をより低くすればよいことが知られている。ここで言うある元素の1つとして、Cuに固溶した状態で存在する硫黄(S)や鉛(Pb)などがある。このCu中に固溶したSやPbの濃度を低減させるべく、銅の溶湯に真空脱ガス処理を施したり、鋳造後の銅バーに特定温度で熱処理を施すなどの方策が試みられている。しかし、従来のこれらの方策では、SやPbの濃度を十分に低減させることができないため、銅材の軟化温度を十分に低下させることができなかった。さらに、近年HEV車の普及により、モータの高効率化の点からマグネットワイヤの導体には、高い導電率が求められている。   On the other hand, as another method for lowering the softening temperature of the copper material, it is known that the concentration of a certain element among impurity elements contained in the copper base material may be lowered. One of the elements mentioned here includes sulfur (S) and lead (Pb) that are present in a solid solution state in Cu. In order to reduce the concentration of S and Pb solid-dissolved in Cu, measures such as vacuum degassing of the molten copper and heat treatment at a specific temperature on the copper bar after casting have been attempted. However, since these conventional measures cannot sufficiently reduce the concentration of S and Pb, the softening temperature of the copper material cannot be sufficiently lowered. Furthermore, with the spread of HEV cars in recent years, high conductivity is required for the conductor of the magnet wire from the viewpoint of increasing the efficiency of the motor.

以上の事情を考慮して創案された本発明の目的は、安価で、軟化温度の低く、導電率の高い無酸素銅材の製造方法及び銅材を提供することにある。   An object of the present invention created in view of the above circumstances is to provide an oxygen-free copper material manufacturing method and a copper material that are inexpensive, have a low softening temperature, and have a high electrical conductivity.

上記目的を達成すべく本発明に係る銅材の製造方法は、上方引上連続鋳造装置を用いて無酸素銅溶湯から直接、銅材を製造する方法において、上記上方引上連続鋳造装置の溶湯貯溜手段に貯溜された無酸素銅溶湯に、Ti、Zr、V、Ta、Fe、Ca、Mg、又はNiから選択される少なくとも1種の金属又は合金を添加し、無酸素銅溶湯中に含まれる該金属又は合金の割合を0.0004〜0.055重量%に調整するものである。   In order to achieve the above object, a method for producing a copper material according to the present invention is a method for producing a copper material directly from an oxygen free molten copper using an upward pulling continuous casting apparatus. At least one metal or alloy selected from Ti, Zr, V, Ta, Fe, Ca, Mg, or Ni is added to the oxygen-free copper melt stored in the storage means and included in the oxygen-free copper melt The ratio of the metal or alloy to be adjusted is adjusted to 0.0004 to 0.055% by weight.

一方、本発明に係る銅材は、前述した銅材の製造方法を用いて製造された銅材であって、半軟化温度が110℃以下のものである。   On the other hand, the copper material which concerns on this invention is a copper material manufactured using the manufacturing method of the copper material mentioned above, Comprising: A semi-softening temperature is 110 degrees C or less.

本発明によれば、安価で、軟化温度の低く、かつ導電率の高い無酸素銅材を得ることができるという優れた効果を発揮する。   According to the present invention, it is possible to obtain an excellent effect that an oxygen-free copper material that is inexpensive, has a low softening temperature, and has high conductivity can be obtained.

以下、本発明の好適一実施の形態を説明する。   Hereinafter, a preferred embodiment of the present invention will be described.

本発明の好適一実施の形態に係る銅材の製造方法は、上方引上連続鋳造装置を用いて無酸素銅溶湯から直接、銅材を製造するものである。   The manufacturing method of the copper material which concerns on one preferred embodiment of this invention manufactures a copper material directly from an oxygen free molten copper using an upward pulling continuous casting apparatus.

具体的には、先ず、上方引上連続鋳造装置の溶湯貯溜手段(例えば、溶解炉など)に貯溜された無酸素銅溶湯に、Ti、Zr、V、Ta、Fe、Ca、Mg、又はNiから選択される少なくとも1種の金属又は合金を添加する。この時、無酸素銅溶湯中に含まれる金属又は合金の割合が0.0004〜0.055重量%となるように、その添加量を調整する。これらの金属(又は合金)は、いずれもSとの親和力が大きな金属(以下、硫黄親和性金属という)である。ここで言う硫黄親和性金属とは、金属元素の単体又は混合体や、合金の単体又は混合体のいずれであってもよい。   Specifically, first, Ti, Zr, V, Ta, Fe, Ca, Mg, or Ni are added to the oxygen-free copper molten metal stored in the molten metal storage means (for example, a melting furnace) of the upward pulling continuous casting apparatus. At least one metal or alloy selected from is added. At this time, the addition amount is adjusted so that the ratio of the metal or alloy contained in the oxygen-free copper melt is 0.0004 to 0.055 wt%. These metals (or alloys) are all metals having a high affinity with S (hereinafter referred to as sulfur-affinity metals). The sulfur-affinity metal mentioned here may be either a simple substance or a mixture of metal elements, or a simple substance or a mixture of alloys.

また、ここに無酸素銅とは、10ppm以下の酸素含有量で、かつ不可避的不純物を含む純銅のことを意味する。   The oxygen-free copper herein means pure copper having an oxygen content of 10 ppm or less and containing inevitable impurities.

次に、硫黄親和性金属を含む無酸素銅溶湯を、溶銅の湯面に配した鋳型から上方に引上げ、無酸素銅の荒引き材(例えば、荒引き線)を連続的に製造する。その後、荒引き材に、適宜、冷間減面加工を施して最終線径とし、半軟化温度が110℃以下の銅材(例えば、銅線)が得られる。この銅材に焼きなまし処理を施したものが、最終製品となる。ここで言う半軟化温度とは、60分間加熱した後の銅材の引張強度が加熱前の銅材の引張強度の半分になる時の温度のことである。   Next, an oxygen-free copper molten metal containing a sulfur-affinity metal is pulled upward from a mold placed on the surface of the molten copper, and an oxygen-free copper roughing material (for example, a roughing wire) is continuously produced. Thereafter, the roughing material is appropriately subjected to cold surface reduction to obtain a final wire diameter, and a copper material (for example, copper wire) having a semi-softening temperature of 110 ° C. or less is obtained. A product obtained by subjecting this copper material to annealing treatment is the final product. The semi-softening temperature mentioned here is a temperature at which the tensile strength of the copper material after heating for 60 minutes becomes half the tensile strength of the copper material before heating.

硫黄親和性金属の含有量を0.0004〜0.055重量%、好ましくは0.0005〜0.045重量%、より好ましくは0.001〜0.045重量%と規定したのは、含有量が0.0004重量%未満だと、硫黄親和性金属と銅母材に固溶しているSが十分に反応せず、軟化温度を低下させる効果が十分に得られないためである。一方、含有量が0.055重量%を超えると、銅材に固溶する硫黄親和性金属の固溶量が多くなりすぎて、銅材の軟化温度が逆に上昇するためである。   The content of the sulfur-affinity metal is defined as 0.0004 to 0.055% by weight, preferably 0.0005 to 0.045% by weight, more preferably 0.001 to 0.045% by weight. Is less than 0.0004% by weight, the sulfur-soluble metal and S dissolved in the copper base material do not sufficiently react, and the effect of lowering the softening temperature cannot be sufficiently obtained. On the other hand, when the content exceeds 0.055% by weight, the amount of the sulfur-affinity metal that dissolves in the copper material increases so much that the softening temperature of the copper material increases conversely.

また、半軟化温度を110℃以下、好ましくは100℃以下と規定したのは、半軟化温度が110℃以上だと、銅材の軟化温度の低減効果が十分でないためである。   The reason why the semi-softening temperature is defined as 110 ° C. or lower, preferably 100 ° C. or lower is that when the semi-softening temperature is 110 ° C. or higher, the effect of reducing the softening temperature of the copper material is not sufficient.

ここで、本実施の形態に係る銅材の軟化温度が大幅に低下する理由は、次のように考えられる。   Here, the reason why the softening temperature of the copper material according to the present embodiment is greatly reduced is considered as follows.

通常の無酸素銅には10ppm前後のSが固溶しており、このSが銅材の軟化温度を上昇させる大きな因子といわれている。そこで、本実施の形態に係る製造方法では、鋳造直前の無酸素銅溶湯に硫黄親和性金属を所定の割合で添加している。この硫黄親和性金属(例えば、Ti)が無酸素銅溶湯に固溶しているSと反応することで、Sが硫化物(例えば、TiS)として析出し、Sの固溶量が減少される。また、硫黄親和性金属は、無酸素銅溶湯が凝固、再結晶する際の核となることから、これによって、無酸素銅の再結晶生成エネルギーを低くすることができる。これらの複合効果により、銅材の軟化温度を大幅に低下させることができると考えられる。   Ordinary oxygen-free copper has about 10 ppm of S dissolved therein, and this S is said to be a major factor that raises the softening temperature of the copper material. Therefore, in the manufacturing method according to the present embodiment, a sulfur-affinity metal is added at a predetermined ratio to the oxygen-free molten copper just before casting. The sulfur-affinity metal (for example, Ti) reacts with S dissolved in the oxygen-free copper melt, so that S is precipitated as a sulfide (for example, TiS), and the solid solution amount of S is reduced. . Further, since the sulfur-affinity metal becomes a nucleus when the oxygen-free copper melt is solidified and recrystallized, it is possible to reduce the recrystallization energy of oxygen-free copper. It is considered that the softening temperature of the copper material can be greatly reduced by these combined effects.

本実施の形態に係る製造方法に用いる荒引き材及び最終的に得られる銅材の形態は、減面加工によって形成可能なものであれば特に限定するものではなく、例えば、線状、板状、又は条状などのいずれであってもよい。   The form of the roughing material used in the manufacturing method according to the present embodiment and the finally obtained copper material is not particularly limited as long as it can be formed by surface reduction processing. For example, the shape is linear or plate-like. Or any of the stripes.

次に、本実施の形態に係る銅材の作用を説明する。   Next, the operation of the copper material according to the present embodiment will be described.

通常、荒引き材に冷間減面加工を施し、伸延、伸線させてなる銅線は、加工硬化によって高硬度な線材(例えば、硬銅線)となっている。このため、通常の硬銅線に焼きなましを行う際、特にアニーラー焼きなましを行う際は、高温、長時間の熱処理が必要となる。   Usually, a copper wire obtained by subjecting a rough drawn material to cold surface reduction, drawing, and drawing is a high-hardness wire (for example, hard copper wire) by work hardening. For this reason, when annealing normal copper wire, particularly when annealing annealing, high temperature and long time heat treatment is required.

しかしながら、本実施の形態に係る製造方法により得られた無酸素銅材は、銅材の原料となる無酸素銅溶湯に、Ti、Zr、V、Ta、Fe、Ca、Mg、又はNiから選択される少なくとも1種の硫黄親和性金属を、その含有量が0.0004〜0.055重量%となるように添加している。   However, the oxygen-free copper material obtained by the manufacturing method according to the present embodiment is selected from Ti, Zr, V, Ta, Fe, Ca, Mg, or Ni as the oxygen-free copper melt as a raw material for the copper material. The at least one sulfur-affinity metal is added so that the content thereof is 0.0004 to 0.055% by weight.

ここで、硫黄親和性金属は、酸素との反応性が強い金属であるため、大気中の酸素と容易に反応して酸化する。よって、無酸素銅溶湯に硫黄親和性金属を添加してから実際に鋳造に供するまでの時間が長いと、硫黄親和性金属が大気に晒される時間が長くなり、硫黄親和性金属が多量に酸化されて添加ロスとなる。そこで、硫黄親和性金属と大気中の酸素との反応を抑制することが重要となる。本実施の形態に係る製造方法において、硫黄親和性金属を銅溶湯中に添加する望ましいタイミングは鋳造直前である。また、硫黄親和性金属の添加形態は、硫黄親和性金属の単体を、直接、添加してもよいが、銅母材と合金化させたものを添加することが好ましい。これによって、前述したように硫黄親和性金属の酸化を抑制することができる。また、添加量の秤量ばらつきを抑制することができ、延いては硫黄親和性金属の含有量の精度を高めることができる。   Here, since the sulfur affinity metal is a metal having a strong reactivity with oxygen, it easily reacts with oxygen in the atmosphere and oxidizes. Therefore, if it takes a long time to add the sulfur-affinity metal to the oxygen-free copper melt and actually put it into the casting, it takes longer time for the sulfur-affinity metal to be exposed to the atmosphere. It becomes an addition loss. Therefore, it is important to suppress the reaction between the sulfur affinity metal and oxygen in the atmosphere. In the manufacturing method according to the present embodiment, a desirable timing for adding the sulfur affinity metal to the molten copper is immediately before casting. Moreover, the addition form of a sulfur affinity metal may add the simple substance of a sulfur affinity metal directly, However, It is preferable to add what was alloyed with the copper base material. Thereby, as described above, oxidation of the sulfur affinity metal can be suppressed. In addition, variation in the amount of addition can be suppressed, and as a result, the accuracy of the content of sulfur-affinity metal can be increased.

以上のような製造方法によって得られた銅材は、無酸素銅を用い、従来の方法で製造した無酸素銅材(以下、従来の銅材という)と比較して軟化温度が低くなる(例えば、半軟化温度が110℃以下となる)。このため、本実施の形態の銅材は、より低い温度で十分な焼きなましを行うことができる。よって、アニーラー焼きなましを行う際、本実施の形態の銅材は、従来の銅材と比較して、より低い温度で、かつ、短時間で焼きなましを行うことが可能となる。その結果、銅材の生産性が向上すると共に、銅材製造に要するエネルギーの削減も可能となる。   The copper material obtained by the above manufacturing method uses oxygen-free copper and has a softening temperature lower than that of an oxygen-free copper material manufactured by a conventional method (hereinafter referred to as a conventional copper material) (for example, Semi-softening temperature becomes 110 ° C. or lower). For this reason, the copper material of the present embodiment can be sufficiently annealed at a lower temperature. Therefore, when performing annealing annealing, the copper material of the present embodiment can be annealed at a lower temperature and in a shorter time than a conventional copper material. As a result, productivity of the copper material is improved, and energy required for manufacturing the copper material can be reduced.

本実施の形態の銅材は、接続溶接性に優れた無酸素銅で構成されており、かつ、その軟化温度が従来の銅材よりも大幅に低いことから、最終製品の原料コスト及び製造コストが安価となり、その工業的価値が非常に高い銅材である。   The copper material of the present embodiment is made of oxygen-free copper having excellent connection weldability, and its softening temperature is significantly lower than that of conventional copper materials. Is a copper material that is inexpensive and has a very high industrial value.

以上、本発明は、上述した実施の形態に限定されるものではなく、他にも種々のものが想定されることは言うまでもない。   As described above, the present invention is not limited to the above-described embodiment, and it goes without saying that various other things are assumed.

次に、本発明を実施例に基づいて説明するが、本発明はこの実施例に限定されるものではない。   Next, although this invention is demonstrated based on an Example, this invention is not limited to this Example.

アップキャスト方式の上方引上連続鋳造装置を用い、無酸素銅からなる直径φ8mmの荒引き線を製造した。荒引き線の構成材は、無酸素銅溶湯に硫黄親和性金属を所定の割合で添加したものである。この荒引き線に冷間減面加工、焼きなまし処理を適宜繰り返して施し、直径φ0.5mmの銅線を作製した(試料1〜試料18)。   Using an upcast continuous up-drawing continuous casting apparatus, a rough drawn wire made of oxygen-free copper and having a diameter of 8 mm was produced. The constituent material of the rough drawn wire is obtained by adding a sulfur-affinity metal at a predetermined ratio to an oxygen-free molten copper. The rough drawing wire was repeatedly subjected to cold surface reduction and annealing treatments as appropriate, and copper wires having a diameter of 0.5 mm were prepared (Sample 1 to Sample 18).

試料1は、硫黄親和性金属を無添加とした。   In Sample 1, no sulfur-affinity metal was added.

試料2〜4については、硫黄親和性金属としてそれぞれTiを添加した。Tiを0.003重量%含有させたものを(実施例1)、Tiを0.0003重量%含有させたものを(比較例2)、Tiを0.06重量%含有させたものを(比較例3)とした。   About samples 2-4, Ti was added as a sulfur affinity metal, respectively. Example 1 containing 0.003% by weight of Ti (Example 1), one containing 0.0003% by weight of Ti (Comparative Example 2), and one containing 0.06% by weight of Ti (Comparative) Example 3).

試料5〜7については、硫黄親和性金属として、Zrを0.003重量%含有させたものを(実施例2)、Feを0.003重量%含有させたものを(実施例3)、Mgを0.003重量%含有させたものを(実施例4)とした。   For Samples 5 to 7, as a sulfur-affinity metal, a sample containing 0.003% by weight of Zr (Example 2), a sample containing 0.003% by weight of Fe (Example 3), Mg (Example 4) was obtained by adding 0.003% by weight.

試料8,9については、硫黄親和性金属としてそれぞれTaを添加した。Taを0.006重量%含有させたものを(実施例5)、Taを0.04重量%含有させたものを(実施例6)とした。   For samples 8 and 9, Ta was added as a sulfur-affinity metal. A sample containing 0.006% by weight of Ta was designated as (Example 5), and a product containing 0.04% by weight of Ta was designated as (Example 6).

試料10〜13については、硫黄親和性金属としてそれぞれNiを添加した。Niを0.0005重量%含有させたものを(実施例7)、Niを0.005重量%含有させたものを(実施例8)、Niを0.01重量%含有させたものを(実施例9)、Niを0.05重量%含有させたものを(実施例10)とした。   About samples 10-13, Ni was added as a sulfur affinity metal, respectively. A sample containing 0.0005% by weight of Ni (Example 7), a sample containing 0.005% by weight of Ni (Example 8), and a sample containing 0.01% by weight of Ni (implemented) Example 9), 0.05% by weight of Ni was designated as (Example 10).

試料14〜17については、硫黄親和性金属としてそれぞれNi+αの計2種を添加した。0.01Ni+0.001Ti(重量%)含有させたものを(実施例11)、0.01Ni+0.001V(重量%)含有させたものを(実施例12)、0.01Ni+0.0005Ca(重量%)含有させたものを(実施例13)、0.01Ni+0.001Mn(重量%)含有させたものを(実施例14)とした。   For Samples 14 to 17, a total of 2 types of Ni + α were added as sulfur-affinity metals. Example 11 containing 0.01Ni + 0.001Ti (% by weight), Example 12 containing 0.01Ni + 0.001V (% by weight), and containing 0.01Ni + 0.0005Ca (% by weight) What was made into (Example 13) and what made 0.01Ni + 0.001Mn (weight%) contain were made into (Example 14).

試料18は、連続鋳造圧延方式(SCR方式)を用いてタフピッチ銅からなる荒引線φ8mmを製造した。荒引き線の構成材は、無酸素銅溶湯に硫黄親和性金属であるTiを0.003重量%添加したものである。この荒引き線に冷間伸線加工、焼きなまし処理を適宜繰り返して施し、直径φ0.5mmの銅線を作製したものである(従来例1)。   Sample 18 produced a rough drawn wire φ8 mm made of tough pitch copper using a continuous casting and rolling method (SCR method). The constituent material of the rough drawn wire is obtained by adding 0.003% by weight of Ti, which is a sulfur-affinity metal, to the oxygen-free molten copper. This rough drawing wire is subjected to cold wire drawing and annealing treatment as appropriate to produce a copper wire having a diameter of 0.5 mm (conventional example 1).

実施例1〜14、比較例1〜3及び従来例1の各銅線を用いて軟化試験を行い、軟化特性の評価を行った。その結果を表1に示す。ここで、軟化特性の評価は、半軟化温度を用いて行った。また、各銅線については、完全焼きなまし処理(銅線の強度がそれ以上に低下しないところまで軟化させる処理)を行い、導電率の測定も実施した。   A softening test was performed using the copper wires of Examples 1 to 14, Comparative Examples 1 to 3, and Conventional Example 1, and the softening characteristics were evaluated. The results are shown in Table 1. Here, the evaluation of the softening characteristics was performed using the semi-softening temperature. Moreover, about each copper wire, the complete annealing process (process which softens until the intensity | strength of a copper wire does not fall any more) was performed, and the electrical conductivity measurement was also implemented.

Figure 2008255416
Figure 2008255416

表1に示すように、実施例1〜14の各銅線は、いずれも硫黄親和性金属の含有量が0.0004〜0.055重量%の範囲であり、本発明に係る銅線の製造方法を満足していた。実施例1〜14の各銅線の半軟化温度はいずれも110℃以下(66〜108℃)であり、硫黄親和性金属が無添加の比較例1の各銅線の半軟化温度(135℃)と比較すると、25℃以上(約27〜69℃)も半軟化温度が低下していた。実施例9,11〜14の各銅線を比較すると、硫黄親和性金属としてNiの他に更に1種加えると、実施例13(Ca添加)を除いて半軟化温度が更に低下した。しかし、実施例9,13を比較すると、半軟化温度の大幅な上昇はないことから、少量であれば、耐熱性の向上効果が望めるCaを添加してもよい。   As shown in Table 1, each of the copper wires of Examples 1 to 14 has a sulfur-affinity metal content in the range of 0.0004 to 0.055% by weight, and the production of the copper wire according to the present invention. I was satisfied with the method. The semi-softening temperature of each copper wire of Examples 1 to 14 is 110 ° C. or less (66 to 108 ° C.), and the semi-softening temperature (135 ° C.) of each copper wire of Comparative Example 1 to which no sulfur-affinity metal is added. ), The semi-softening temperature also decreased at 25 ° C. or higher (about 27 to 69 ° C.). When the copper wires of Examples 9 and 11 to 14 were compared with each other, one semi-softening temperature was further reduced except for Example 13 (Ca addition) when Ni was added as a sulfur-affinity metal in addition to Ni. However, when Examples 9 and 13 are compared, there is no significant increase in the semi-softening temperature. Therefore, if it is a small amount, Ca that can be expected to improve the heat resistance may be added.

これに対して、比較例2の銅線は、硫黄親和性金属の含有量が0.0003重量%と少なすぎるため、銅線の軟化温度を低下させる効果が全く得られず、半軟化温度は比較例1の銅線と全く同じ135℃であった。   On the other hand, the copper wire of Comparative Example 2 has a sulfur-affinity metal content of too low, 0.0003% by weight, so that no effect of lowering the softening temperature of the copper wire can be obtained, and the semi-softening temperature is It was 135 ° C. exactly the same as the copper wire of Comparative Example 1.

また、比較例3の銅線は、硫黄親和性金属の含有量が0.06重量%と多すぎるため、銅線の軟化温度を逆に上昇させてしまい、半軟化温度は硫黄親和性金属無添加の場合(比較例1の銅線)より約100℃も高温の231℃であった。   Further, the copper wire of Comparative Example 3 has a sulfur-affinity metal content of 0.06% by weight, so that the softening temperature of the copper wire is raised conversely, and the semi-softening temperature is no sulfur-affinity metal. The temperature was about 231 ° C., which was about 100 ° C. higher than the case of addition (copper wire of Comparative Example 1).

各銅線の完全焼きなまし処理後の導電率は、半軟化温度の低い本実施例1〜14は、101.5%IACS以上であったが、半軟化温度の高い比較例1〜3は、101.5%IACS未満であった。また、試料である銅線と銅線の先端同士を突合わせしTIG溶接したところ、従来例の銅線の場合には銅中にボイドが形成されたが、本発明の実施例1〜14及び比較例1〜3にはボイドが認められなかった。   The electrical conductivity of each copper wire after the complete annealing treatment was 101.5% IACS or higher in Examples 1 to 14 having a low semi-softening temperature, but Comparative Examples 1 to 3 having a high semi-softening temperature were 101 Less than 5% IACS. Moreover, when the copper wire which is a sample and the front-end | tips of a copper wire were faced | matched and TIG-welded, in the case of the copper wire of a prior art example, the void was formed in copper, Examples 1-14 of this invention, and In Comparative Examples 1 to 3, no void was observed.

以上より、荒引き線の構成材である無酸素銅溶湯に硫黄親和性金属を所定の割合で添加し、その無酸素銅溶湯を上方引上連続鋳造装置に供給して銅線を製造することで、銅線の軟化温度を大幅に低下させることができることが確認された。さらに、溶接時に導体中のボイドは発生せず、接続信頼性が大幅に向上した。   From the above, a sulfur-affinity metal is added to the oxygen-free copper melt, which is a constituent material of the rough drawing wire, at a predetermined ratio, and the oxygen-free copper melt is supplied to the upward pulling continuous casting apparatus to produce a copper wire. Thus, it was confirmed that the softening temperature of the copper wire can be greatly reduced. Furthermore, no voids were generated in the conductor during welding, and connection reliability was greatly improved.

Claims (2)

上方引上連続鋳造装置を用いて無酸素銅溶湯から直接、銅材を製造する方法において、
上記上方引上連続鋳造装置の溶湯貯溜手段に貯溜された無酸素銅溶湯に、Ti、Zr、V、Ta、Fe、Ca、Mg、又はNiから選択される少なくとも1種の金属又は合金を添加し、無酸素銅溶湯中に含まれる該金属又は合金の割合を0.0004〜0.055重量%に調整することを特徴とする銅材の製造方法。
In a method for producing a copper material directly from an oxygen-free copper melt using an upward pulling continuous casting apparatus,
At least one metal or alloy selected from Ti, Zr, V, Ta, Fe, Ca, Mg, or Ni is added to the oxygen-free copper molten metal stored in the molten metal storage means of the upward pulling continuous casting apparatus. And the ratio of this metal or alloy contained in an oxygen free molten copper is adjusted to 0.0004 to 0.055 weight%, The manufacturing method of the copper material characterized by the above-mentioned.
請求項1記載の製造方法を用いて製造された銅材であって、半軟化温度が110℃以下であることを特徴とする銅材。   The copper material manufactured using the manufacturing method of Claim 1, Comprising: Semi-softening temperature is 110 degrees C or less, The copper material characterized by the above-mentioned.
JP2007098961A 2007-04-05 2007-04-05 Method for manufacturing copper material, and copper material Pending JP2008255416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007098961A JP2008255416A (en) 2007-04-05 2007-04-05 Method for manufacturing copper material, and copper material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007098961A JP2008255416A (en) 2007-04-05 2007-04-05 Method for manufacturing copper material, and copper material

Publications (1)

Publication Number Publication Date
JP2008255416A true JP2008255416A (en) 2008-10-23

Family

ID=39979292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007098961A Pending JP2008255416A (en) 2007-04-05 2007-04-05 Method for manufacturing copper material, and copper material

Country Status (1)

Country Link
JP (1) JP2008255416A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010201505A (en) * 2009-02-03 2010-09-16 Hitachi Cable Ltd Casting material, method for producing the same, copper wire for magnet wire using the same, magnet wire and method for producing the same
JP2012087381A (en) * 2010-10-20 2012-05-10 Hitachi Cable Ltd Extrusion article and method for manufacturing the same
JP2013049893A (en) * 2011-08-31 2013-03-14 Mitsubishi Materials Corp Conductor for solar cell interconnector, and solar cell interconnector
WO2022004779A1 (en) * 2020-06-30 2022-01-06 三菱マテリアル株式会社 Copper alloy, copper alloy plastic working material, component for electronic/electrical device, terminal, bus bar, lead frame, and heat dissipation substrate
WO2022004794A1 (en) * 2020-06-30 2022-01-06 三菱マテリアル株式会社 Copper alloy, plastically worked copper alloy material, component for electronic/electrical equipment, terminal, and heat dissipation substrate
JP2022072356A (en) * 2020-10-29 2022-05-17 三菱マテリアル株式会社 Copper alloy, copper alloy plastic working material, component for electronic/electric apparatus, terminal, bus bar, lead frame and heat dissipation substrate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010201505A (en) * 2009-02-03 2010-09-16 Hitachi Cable Ltd Casting material, method for producing the same, copper wire for magnet wire using the same, magnet wire and method for producing the same
JP2012087381A (en) * 2010-10-20 2012-05-10 Hitachi Cable Ltd Extrusion article and method for manufacturing the same
JP2013049893A (en) * 2011-08-31 2013-03-14 Mitsubishi Materials Corp Conductor for solar cell interconnector, and solar cell interconnector
WO2022004779A1 (en) * 2020-06-30 2022-01-06 三菱マテリアル株式会社 Copper alloy, copper alloy plastic working material, component for electronic/electrical device, terminal, bus bar, lead frame, and heat dissipation substrate
WO2022004794A1 (en) * 2020-06-30 2022-01-06 三菱マテリアル株式会社 Copper alloy, plastically worked copper alloy material, component for electronic/electrical equipment, terminal, and heat dissipation substrate
JP2022022629A (en) * 2020-06-30 2022-02-07 三菱マテリアル株式会社 Copper alloy, plastic processed material of copper alloy, component for electronic or electrical equipment, and terminal
JP7136157B2 (en) 2020-06-30 2022-09-13 三菱マテリアル株式会社 Copper alloys, copper alloy plastic working materials, parts for electronic and electrical equipment, terminals
JP2022072356A (en) * 2020-10-29 2022-05-17 三菱マテリアル株式会社 Copper alloy, copper alloy plastic working material, component for electronic/electric apparatus, terminal, bus bar, lead frame and heat dissipation substrate
JP7446975B2 (en) 2020-10-29 2024-03-11 三菱マテリアル株式会社 Copper alloys, plastic processed copper alloy materials, parts for electronic and electrical equipment, terminals, bus bars, lead frames, heat dissipation boards

Similar Documents

Publication Publication Date Title
JP4674483B2 (en) Copper material manufacturing method and copper material
JP2006274383A (en) Method for manufacturing copper material, and copper material
JP2008255417A (en) Method for producing copper material, and copper material
JP3999676B2 (en) Copper-based alloy and method for producing the same
JP5051647B2 (en) High-strength and high-conductivity Cu-Ag alloy wire and method for producing the same
WO2009119222A1 (en) High-strength and high-electroconductivity copper alloy pipe, bar, and wire rod
JP5555135B2 (en) Copper alloy with improved hot and cold workability, method for producing the same, and copper alloy strip or alloy foil obtained from the copper alloy
JP5604882B2 (en) Manufacturing method of copper rough drawing wire having low semi-softening temperature, manufacturing method of copper wire, and copper wire
JP5040140B2 (en) Cu-Ni-Si-Zn-based copper alloy
CN108431256A (en) Electronic electric equipment copper alloy, electronic electric equipment copper alloy plate web, electronic electric equipment component, terminal, busbar and relay movable plate
JP2008255416A (en) Method for manufacturing copper material, and copper material
JP2007126739A (en) Copper alloy for electronic material
JP2009167450A (en) Copper alloy and producing method therefor
JP5696972B2 (en) Aluminum alloy wire, coil, and manufacturing method of aluminum alloy wire
JP2006272422A (en) Manufacturing method of copper material and copper material
JP5562749B2 (en) Cu-Mn brazing wire fine wire and method for producing the same
JP6278812B2 (en) Copper alloy material, distribution member for electric vehicle and distribution member for hybrid vehicle
JP2008254023A (en) Method for producing copper material, and copper material
JP6009145B2 (en) Aluminum electric wire and method for manufacturing the same
CN108728686B (en) Copper alloy material, method for producing copper alloy material, and cage rotor
JP2008255418A (en) Method for producing copper material, and copper material
JP4171907B2 (en) Trolley wire and its manufacturing method
JP7120389B1 (en) Copper alloy plastic working materials, copper alloy wire rods, parts for electronic and electrical equipment, terminals
JP6853872B2 (en) Manufacturing method of aluminum alloy conductive wire, aluminum alloy conductive wire, electric wire and wire harness using this
JP2008264823A (en) Method for manufacturing copper rough-drawing wire and copper wire