JP2008254023A - Method for producing copper material, and copper material - Google Patents

Method for producing copper material, and copper material Download PDF

Info

Publication number
JP2008254023A
JP2008254023A JP2007098963A JP2007098963A JP2008254023A JP 2008254023 A JP2008254023 A JP 2008254023A JP 2007098963 A JP2007098963 A JP 2007098963A JP 2007098963 A JP2007098963 A JP 2007098963A JP 2008254023 A JP2008254023 A JP 2008254023A
Authority
JP
Japan
Prior art keywords
copper
copper material
oxygen
metal
softening temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007098963A
Other languages
Japanese (ja)
Inventor
Hiromitsu Kuroda
洋光 黒田
Masayoshi Aoyama
正義 青山
Hiroshi Okikawa
寛 沖川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2007098963A priority Critical patent/JP2008254023A/en
Publication of JP2008254023A publication Critical patent/JP2008254023A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an inexpensive oxygen free copper material having a low softening temperature and a high electric conductivity, and to provide a copper material. <P>SOLUTION: As for this method for producing the copper material, in a method for directly producing the copper material from the molten metal of oxygen free copper using an upper drawing continuous casting apparatus, Nb is added to the molten metal of oxygen free copper stored by a molten metal storing means in the upper drawing continuous casting apparatus, and the ratio of Nb included in the molten metal of oxygen free copper is controlled to 0.0006 to 0.06 wt.%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、銅材の製造方法に係り、特に、無酸素銅材の製造方法に関するものである。   The present invention relates to a method for producing a copper material, and more particularly to a method for producing an oxygen-free copper material.

現在、銅線を含む各種線材の多くは、連続鋳造圧延法により形成される。先ず、シャフト炉で溶解させた溶湯がSCR方式、又はコンチロッド(登録商標)方式の連続鋳造手段に供給され、鋳造バーが得られる。次に、その鋳造バーは連続鋳造手段に連結された熱間圧延手段に供給され、所定の外径に圧延される。その後、圧延材が冷却され、荒引き線が得られる(例えば、特許文献1参照)。   At present, most of various types of wires including copper wires are formed by a continuous casting and rolling method. First, the molten metal melted in the shaft furnace is supplied to an SCR-type or continuous rod (registered trademark) type continuous casting means to obtain a casting bar. Next, the casting bar is supplied to a hot rolling means connected to the continuous casting means and rolled to a predetermined outer diameter. Thereafter, the rolled material is cooled, and a rough drawing line is obtained (for example, see Patent Document 1).

連続鋳造圧延法は、溶解工程、鋳造工程、及び熱間圧延工程の各ラインが連続しており、荒引き線の製造法としては効率的で、生産性に優れた方法である。得られた荒引き線は、その後、冷間伸線工程、焼きなまし工程に供され、最終製品(例えば銅線)が得られる。この銅線の構成材の一つにタフピッチ銅がある。タフピッチ銅は、スクラップ銅と電気銅を混ぜたものを利用することができるため、原料コストが安価である。また、タフピッチ銅は、無酸素銅と比べて酸素含有量が多いため、必然的に、無酸素銅と比べて酸化した不純物の含有量が多くなるという特徴がある。また、無酸素銅の製法として、溶銅湯面に配した鋳型内で溶銅を凝固させて上方に連続的に引上げる上方引上連続鋳造法(アップキャスト法)などがある。この無酸素銅は、近年モータ用のマグネットワイヤにも使用されるようになってきた。   In the continuous casting and rolling method, each line of the melting step, the casting step, and the hot rolling step is continuous, which is an efficient method for producing the roughing wire and is an excellent method for productivity. The rough drawing wire thus obtained is then subjected to a cold drawing step and an annealing step to obtain a final product (for example, a copper wire). One component of this copper wire is tough pitch copper. Since tough pitch copper can use a mixture of scrap copper and electric copper, the raw material cost is low. Moreover, since tough pitch copper has a higher oxygen content than oxygen-free copper, it inevitably has a feature that the content of oxidized impurities is higher than oxygen-free copper. Further, as a method for producing oxygen-free copper, there is an upward pulling continuous casting method (upcasting method) in which molten copper is solidified in a mold disposed on the surface of the molten copper and continuously pulled upward. In recent years, this oxygen-free copper has been used for magnet wires for motors.

特開平6−240426号公報JP-A-6-240426

ところで、銅線製造の焼きなまし工程において、連続焼きなましを行う(冷間伸線工程と焼きなまし工程を連続的に行う)ことで、工業生産性を向上させることができる。しかし、この場合、被焼きなまし材の軟化温度が高いと、焼きなまし工程に時間がかかると共に、焼きなまし工程の生産速度に冷間伸線工程の生産速度を合わせる必要があり、銅線の生産性が阻害される。また、被焼きなまし材の軟化温度が高いと、焼きなましに要する熱エネルギーが増大し、製品コストの上昇を招いてしまう。よって、被焼きなまし材の軟化温度の低下が図られている。   By the way, industrial productivity can be improved by performing continuous annealing in the annealing process of copper wire manufacture (a cold wire drawing process and an annealing process are performed continuously). However, in this case, if the softening temperature of the annealed material is high, the annealing process takes time, and it is necessary to match the production speed of the cold drawing process with the production speed of the annealing process, which hinders the productivity of copper wire. Is done. Moreover, when the softening temperature of the material to be annealed is high, the thermal energy required for annealing increases, leading to an increase in product cost. Therefore, the softening temperature of the material to be annealed is lowered.

銅材の軟化温度を低下させるには、銅母材中に含まれる不純物元素を除去し、Cu純度を高めることが必要とされる。不純物元素を除去する方法としては、例えば、溶湯原料の選定(高純度のものを使用)、溶湯の酸化精錬、還元精錬などがある。しかしながら、この不純物元素を除去する方法は、コストが非常にかさむ方法である。このため、溶湯原料にタフピッチ銅を用いた場合、この方法は経済的に極めて不利であり、工業的に適した方法とは言えなかった。さらに、近年では、マグネットワイヤの接続溶接時にガスのボイドが生じ難い無酸素銅の要求があり、この点ではタフピッチ銅は適さない。   In order to lower the softening temperature of the copper material, it is necessary to remove the impurity elements contained in the copper base material and increase the Cu purity. As a method for removing the impurity element, there are, for example, selection of a molten metal raw material (using a high-purity material), oxidation refining of the molten metal, reduction refining, and the like. However, this method of removing the impurity element is a method that is very expensive. For this reason, when tough pitch copper is used for the molten metal raw material, this method is extremely disadvantageous economically and cannot be said to be an industrially suitable method. Furthermore, in recent years, there has been a demand for oxygen-free copper that hardly causes gas voids during connection welding of magnet wires, and tough pitch copper is not suitable in this respect.

一方、銅材の軟化温度を低下させる他の方法として、銅母材中に含まれる不純物元素の内、ある元素の濃度をより低くすればよいことが知られている。ここで言うある元素の1つとして、Cuに固溶した状態で存在する硫黄(S)や鉛(Pb)などがある。このCu中に固溶したSやPbの濃度を低減させるべく、銅の溶湯に真空脱ガス処理を施したり、鋳造後の銅バーに特定温度で熱処理を施すなどの方策が試みられている。しかし、従来のこれらの方策では、SやPbの濃度を十分に低減させることができないため、銅材の軟化温度を十分に低下させることができなかった。さらに、近年HEV車の普及により、モータの高効率化の点から、マグネットワイヤの導体には高い導電率が求められている。   On the other hand, as another method for lowering the softening temperature of the copper material, it is known that the concentration of a certain element among impurity elements contained in the copper base material may be lowered. One of the elements mentioned here includes sulfur (S) and lead (Pb) that are present in a solid solution state in Cu. In order to reduce the concentration of S and Pb solid-dissolved in Cu, measures such as vacuum degassing of the molten copper and heat treatment at a specific temperature on the copper bar after casting have been attempted. However, since these conventional measures cannot sufficiently reduce the concentration of S and Pb, the softening temperature of the copper material cannot be sufficiently lowered. Furthermore, with the spread of HEV vehicles in recent years, high conductivity is required for the conductor of the magnet wire from the viewpoint of increasing the efficiency of the motor.

以上の事情を考慮して創案された本発明の目的は、安価で、軟化温度の低く、かつ導電率の高い無酸素銅材の製造方法及び銅材を提供することにある。   An object of the present invention, which was created in view of the above circumstances, is to provide an oxygen-free copper material manufacturing method and a copper material that are inexpensive, have a low softening temperature, and have high electrical conductivity.

上記目的を達成すべく本発明に係る銅材の製造方法は、上方引上連続鋳造装置を用いて無酸素銅溶湯から直接、銅材を製造する方法において、上記上方引上連続鋳造装置の溶湯貯溜手段に貯溜された無酸素銅溶湯にNbを添加し、無酸素銅溶湯中に含まれるNbの割合を0.0006〜0.06重量%に調整するものである。   In order to achieve the above object, a method for producing a copper material according to the present invention is a method for producing a copper material directly from an oxygen free molten copper using an upward pulling continuous casting apparatus. Nb is added to the oxygen-free copper melt stored in the storage means, and the ratio of Nb contained in the oxygen-free copper melt is adjusted to 0.0006 to 0.06% by weight.

また、本発明に係る銅材の製造方法は、上方引上連続鋳造装置を用いて無酸素銅溶湯から直接、銅材を製造する方法において、上記上方引上連続鋳造装置の溶湯貯溜手段に貯溜された無酸素銅溶湯に、NbとTi、Zr、Hf、V、Ta、Fe、B、Ca、Mg、又はミッシュメタルから選択される少なくとも1種の金属又は合金とを添加し、無酸素銅溶湯中に含まれる各金属又は合金の割合を0.0006〜0.06重量%に調整するものである。   Further, the method for producing a copper material according to the present invention is a method for producing a copper material directly from an oxygen free copper melt using an upward pulling continuous casting apparatus, wherein the copper material is stored in the molten metal storage means of the upward pulling continuous casting apparatus. Nb and at least one metal or alloy selected from Ti, Zr, Hf, V, Ta, Fe, B, Ca, Mg, or misch metal are added to the molten oxygen-free copper, and oxygen-free copper The ratio of each metal or alloy contained in the molten metal is adjusted to 0.0006 to 0.06% by weight.

一方、本発明に係る銅材は、前述した各銅材の製造方法を用いて製造された銅材であって、半軟化温度が115℃以下のものである。   On the other hand, the copper material which concerns on this invention is a copper material manufactured using the manufacturing method of each copper material mentioned above, Comprising: A semi-softening temperature is 115 degrees C or less.

本発明によれば、安価で、軟化温度の低く、かつ導電率の高い無酸素銅材を得ることができるという優れた効果を発揮する。   According to the present invention, it is possible to obtain an excellent effect that an oxygen-free copper material that is inexpensive, has a low softening temperature, and has high conductivity can be obtained.

以下、本発明の好適一実施の形態を説明する。   Hereinafter, a preferred embodiment of the present invention will be described.

本発明の好適一実施の形態に係る銅材の製造方法は、上方引上連続鋳造装置を用いて無酸素銅溶湯から直接、銅材を製造するものである。   The manufacturing method of the copper material which concerns on one preferred embodiment of this invention manufactures a copper material directly from an oxygen free molten copper using an upward pulling continuous casting apparatus.

具体的には、先ず、上方引上連続鋳造装置の溶湯貯溜手段(例えば、溶解炉など)に貯溜された無酸素銅溶湯に、Nbが添加される。この時、無酸素銅溶湯中に含まれるNbの割合が0.0006〜0.06重量%となるように、その添加量が調整される。このNbは、Sとの親和力が大きな金属(以下、硫黄親和性金属という)である。添加されるNbは、Nbの単体又はそのNbを含む合金の単体のいずれであってもよい。   Specifically, first, Nb is added to the oxygen-free molten copper stored in the molten metal storage means (for example, a melting furnace) of the upward pulling continuous casting apparatus. At this time, the addition amount is adjusted so that the proportion of Nb contained in the oxygen-free copper melt is 0.0006 to 0.06 wt%. Nb is a metal having a large affinity for S (hereinafter referred to as a sulfur affinity metal). Nb to be added may be either a simple substance of Nb or a simple substance of an alloy containing Nb.

次に、Nbを含む無酸素銅溶湯を、溶銅湯面に配した鋳型から上方に引上げて凝固させ、無酸素銅の荒引き材(例えば、荒引き線)を連続的に製造する。その後、荒引き材に、適宜、冷間減面加工を施して最終線径とし、半軟化温度が115℃以下の銅材(例えば、銅線)が得られる。この銅材に焼きなまし処理を施したものが、最終製品となる。ここで言う半軟化温度とは、60分間加熱した後の銅材の引張強度が加熱前の銅材の引張強度の半分になる時の温度のことである。   Next, the oxygen-free copper molten metal containing Nb is pulled upward from the mold disposed on the surface of the molten copper and solidified to continuously produce an oxygen-free copper roughing material (for example, roughing wire). Thereafter, the roughing material is appropriately subjected to cold surface reduction to obtain a final wire diameter, and a copper material (for example, copper wire) having a semi-softening temperature of 115 ° C. or lower is obtained. A product obtained by subjecting this copper material to annealing treatment is the final product. The semi-softening temperature mentioned here is a temperature at which the tensile strength of the copper material after heating for 60 minutes becomes half the tensile strength of the copper material before heating.

また、ここで言う無酸素銅とは、10ppm以下の酸素含有量で、かつ不可避的不純物を含む純銅のことを意味する。   The oxygen-free copper referred to here means pure copper having an oxygen content of 10 ppm or less and containing inevitable impurities.

硫黄親和性金属含有量(Nb含有量)を0.0006〜0.06重量%、好ましくは0.0006〜0.055重量%、より好ましくは0.001〜0.05重量%と規定したのは、Nb含有量が0.0006重量%未満だと、銅母材に固溶しているSとNbが十分に反応せず、軟化温度を低下させる効果が十分に得られないためである。一方、Nb含有量が0.06重量%を超えると、銅材に固溶するNbの固溶量が多くなりすぎて、銅材の軟化温度が逆に上昇し、所望の半軟化温度が得られないためである。   Sulfur affinity metal content (Nb content) is defined as 0.0006 to 0.06 wt%, preferably 0.0006 to 0.055 wt%, more preferably 0.001 to 0.05 wt%. This is because when the Nb content is less than 0.0006% by weight, S and Nb dissolved in the copper base material do not sufficiently react and the effect of lowering the softening temperature cannot be obtained sufficiently. On the other hand, if the Nb content exceeds 0.06% by weight, the solid solution amount of Nb dissolved in the copper material increases too much, and the softening temperature of the copper material rises conversely to obtain a desired semi-softening temperature. It is because it is not possible.

また、半軟化温度を115℃以下、好ましくは100℃以下、より好ましくは95℃以下と規定したのは、半軟化温度が115℃以上だと、銅材の軟化温度の低減効果が十分でないためである。   Also, the semi-softening temperature is defined as 115 ° C. or lower, preferably 100 ° C. or lower, more preferably 95 ° C. or lower because the effect of reducing the softening temperature of the copper material is not sufficient when the semi-softening temperature is 115 ° C. or higher. It is.

ここで、本実施の形態に係る銅材の軟化温度が大幅に低下する理由は、次のように考えられる。   Here, the reason why the softening temperature of the copper material according to the present embodiment is greatly reduced is considered as follows.

通常の無酸素銅には10ppm前後のSが固溶しており、このSが銅材の軟化温度を上昇させる大きな因子といわれている。そこで、本実施の形態に係る製造方法では、鋳造直前の無酸素銅溶湯にNbを所定の割合で添加している。このNbが無酸素銅溶湯に固溶しているSと反応することで、Sが硫化物(例えば、NbS)として析出し、Sの固溶量が減少される。また、Nbは、無酸素銅溶湯が凝固、再結晶する際の核となることから、これによって、無酸素銅の再結晶生成エネルギーを低くすることができる。これらの複合効果により、銅材の軟化温度を大幅に低下させることができると考えられる。   Ordinary oxygen-free copper has about 10 ppm of S dissolved therein, and this S is said to be a major factor that raises the softening temperature of the copper material. Therefore, in the manufacturing method according to the present embodiment, Nb is added to the molten oxygen-free copper immediately before casting at a predetermined ratio. When this Nb reacts with S that is dissolved in the oxygen-free copper melt, S precipitates as a sulfide (for example, NbS), and the solid solution amount of S is reduced. In addition, Nb serves as a nucleus when the oxygen-free molten copper is solidified and recrystallized, so that the recrystallization generation energy of oxygen-free copper can be lowered. It is considered that the softening temperature of the copper material can be greatly reduced by these combined effects.

本実施の形態に係る製造方法に用いる荒引き材及び最終的に得られる銅材の形態は、減面加工によって形成可能なものであれば特に限定するものではなく、例えば、線状、板状、又は条状などのいずれであってもよい。   The form of the roughing material used in the manufacturing method according to the present embodiment and the finally obtained copper material is not particularly limited as long as it can be formed by surface reduction processing. For example, the shape is linear or plate-like. Or any of the stripes.

次に、本実施の形態に係る銅材の作用を説明する。   Next, the operation of the copper material according to the present embodiment will be described.

通常、荒引き材に冷間減面加工を施し、伸延、伸線させてなる銅線は、加工硬化によって高硬度な線材(例えば、硬銅線)となっている。このため、通常の硬銅線に焼きなましを行う際、特にアニーラー焼きなましを行う際は、高温、長時間の熱処理が必要となる。   Usually, a copper wire obtained by subjecting a rough drawn material to cold surface reduction, drawing, and drawing is a high-hardness wire (for example, hard copper wire) by work hardening. For this reason, when annealing normal copper wire, particularly when annealing annealing, high temperature and long time heat treatment is required.

しかしながら、本実施の形態に係る製造方法により得られた銅材は、銅材の原料となる無酸素銅溶湯にNbを、その含有量が0.0006〜0.06重量%となるように添加している。   However, the copper material obtained by the manufacturing method according to the present embodiment adds Nb to the oxygen-free molten copper used as a raw material for the copper material so that the content thereof is 0.0006 to 0.06% by weight. is doing.

ここで、硫黄親和性金属であるNbは、酸素との反応性が強い金属であるため、大気中の酸素と容易に反応して酸化する。よって、タフピッチ銅溶湯にNbを添加してから実際に鋳造に供するまでの時間が長いと、Nbが大気に晒される時間が長くなり、Nbが多量に酸化されて添加ロスとなる。そこで、Nbと大気中の酸素との反応を抑制することが重要となる。本実施の形態に係る製造方法において、Nbを銅溶湯中に添加する望ましいタイミングは鋳造直前である。また、Nbの添加形態は、Nb金属の単体を、直接、添加してもよいが、銅母材と合金化させたものを添加することが好ましい。これによって、前述したようにNbの酸化を抑制することができる。また、添加量の秤量ばらつきを抑制することができ、延いてはNb含有量の精度を高めることができる。   Here, since Nb which is a sulfur affinity metal is a metal with strong reactivity with oxygen, it reacts with oxygen in air | atmosphere and oxidizes easily. Therefore, if the time from adding Nb to the tough pitch copper molten metal until it is actually used for casting is long, the time for Nb to be exposed to the air becomes long, and Nb is oxidized in a large amount, resulting in an addition loss. Therefore, it is important to suppress the reaction between Nb and oxygen in the atmosphere. In the manufacturing method according to the present embodiment, the desirable timing for adding Nb to the molten copper is immediately before casting. The Nb addition form may be a direct addition of Nb metal, but it is preferable to add an alloy with a copper base material. As a result, the oxidation of Nb can be suppressed as described above. Moreover, the variation in weighing of the added amount can be suppressed, and as a result, the accuracy of the Nb content can be increased.

以上のような製造方法によって得られた銅材は、タフピッチ銅を用い、従来の方法で製造した無酸素銅材(以下、従来の銅材という)と比較して軟化温度が低くなる(例えば、半軟化温度が110℃以下となる)。このため、本実施の形態の銅材は、より低い温度で十分な焼きなましを行うことができる。よって、アニーラー焼きなましを行う際、本実施の形態の銅材は、従来の銅材と比較して、より低い温度で、かつ、短時間で焼きなましを行うことが可能となる。その結果、銅材の生産性が向上すると共に、銅材製造に要するエネルギーの削減も可能となる。   The copper material obtained by the manufacturing method as described above uses tough pitch copper and has a lower softening temperature than an oxygen-free copper material manufactured by a conventional method (hereinafter referred to as a conventional copper material) (for example, Semi-softening temperature is 110 ° C. or lower). For this reason, the copper material of the present embodiment can be sufficiently annealed at a lower temperature. Therefore, when performing annealing annealing, the copper material of the present embodiment can be annealed at a lower temperature and in a shorter time than a conventional copper material. As a result, productivity of the copper material is improved, and energy required for manufacturing the copper material can be reduced.

本実施の形態の銅材は、接続溶接性に優れる無酸素銅で構成されており、かつ、その軟化温度が従来の銅材よりも大幅に低いことから、最終製品の製造コストが安価となり、その工業的価値が非常に高い銅材である。   The copper material of the present embodiment is made of oxygen-free copper excellent in connection weldability, and since its softening temperature is significantly lower than that of conventional copper materials, the production cost of the final product becomes low, It is a copper material with very high industrial value.

次に、本発明の他の実施の形態を説明する。   Next, another embodiment of the present invention will be described.

前実施の形態に係る銅材の製造方法においては、硫黄親和性金属としてNbのみを用いるものであった。   In the method for producing a copper material according to the previous embodiment, only Nb is used as the sulfur affinity metal.

これに対して、本発明の他の好適一実施の形態に係る銅材の製造方法は、硫黄親和性金属として、Nbの他に少なくとも1種の金属を用いるものである。言い換えると、本実施の形態に係る銅材の製造方法は、前実施の形態に係る銅材の製造方法において硫黄親和性金属として添加されるNbの一部を、他の金属で置き換えたものである。この本実施の形態に係る銅材の製造方法は、無酸素銅溶湯中に添加する硫黄親和性金属が複種類であることを除けば、前実施の形態に係る銅材の製造方法と同じである。よって、前実施の形態に係る製造方法と相違する点のみを、以下に述べる。   On the other hand, the method for producing a copper material according to another preferred embodiment of the present invention uses at least one metal other than Nb as the sulfur affinity metal. In other words, the copper material manufacturing method according to the present embodiment is a method in which a part of Nb added as a sulfur-affinity metal in the copper material manufacturing method according to the previous embodiment is replaced with another metal. is there. The method for producing a copper material according to this embodiment is the same as the method for producing a copper material according to the previous embodiment, except that there are multiple types of sulfur-affinity metals added to the oxygen-free molten copper. is there. Therefore, only the differences from the manufacturing method according to the previous embodiment will be described below.

本実施の形態に係る銅材の製造方法では、上方引上連続鋳造装置の溶湯貯溜手段(例えば、溶解炉など)に貯溜された無酸素銅溶湯に、NbとTi、Zr、Hf、V、Ta、Fe、B、Ca、Mg、又はミッシュメタルから選択される少なくとも1種の金属(又は合金)とが添加される。この時、無酸素銅溶湯中に含まれるNbと少なくとも1種の金属(又は合金)の割合が0.0006〜0.06重量%となるように、その添加量が調整される。この少なくとも1種の金属(又は合金)も、Nbと同様に硫黄親和性金属である。添加されるNbと少なくとも1種の金属(又は合金)は、Nb単体と少なくとも1種の金属単体の混合体や、Nbを含む合金と少なくとも1種の金属を含む合金の混合体のいずれであってもよい。   In the method for producing a copper material according to the present embodiment, Nb and Ti, Zr, Hf, V, Nb, Ti, Zr, Hf, V, At least one metal (or alloy) selected from Ta, Fe, B, Ca, Mg, or Misch metal is added. At this time, the addition amount is adjusted so that the ratio of Nb and at least one metal (or alloy) contained in the oxygen-free copper melt is 0.0006 to 0.06 wt%. This at least one metal (or alloy) is also a sulfur-affinity metal like Nb. The added Nb and at least one metal (or alloy) are either a mixture of simple Nb and at least one simple metal, or a mixture of an alloy containing Nb and an alloy containing at least one metal. May be.

本実施の形態に係る製造方法で得られた銅材においても、前実施の形態に係る製造方法で得られた銅材と同様の作用効果が得られる。   Also in the copper material obtained by the manufacturing method according to the present embodiment, the same effects as the copper material obtained by the manufacturing method according to the previous embodiment can be obtained.

また、本実施の形態の銅材と前実施の形態の銅材において、Nbの含有量が同じ場合、硫黄親和性金属の添加量がやや多くなる分、本実施の形態の銅材の方が、前実施の形態の銅材よりも軟化温度がやや高くなる。しかし、銅材の耐熱性については、本実施の形態の銅材の方が、前実施の形態の銅材よりも良好となる。これは、Nbと共に添加される少なくとも1種の金属が、無酸素銅溶湯に固溶しているSと反応し、銅材の軟化温度を低くすることに寄与すると共に、銅材の耐熱性を高めることにも寄与するためである。   In addition, in the copper material of the present embodiment and the copper material of the previous embodiment, if the content of Nb is the same, the amount of the sulfur-affinity metal added is slightly increased, so the copper material of the present embodiment is more The softening temperature is slightly higher than that of the copper material of the previous embodiment. However, regarding the heat resistance of the copper material, the copper material of the present embodiment is better than the copper material of the previous embodiment. This is because at least one kind of metal added together with Nb reacts with S dissolved in the oxygen-free copper molten metal to contribute to lowering the softening temperature of the copper material, and to improve the heat resistance of the copper material. It is because it contributes to raising.

以上、本発明は、上述した実施の形態に限定されるものではなく、他にも種々のものが想定されることは言うまでもない。   As described above, the present invention is not limited to the above-described embodiment, and it goes without saying that various other things are assumed.

次に、本発明を実施例に基づいて説明するが、本発明はこの実施例に限定されるものではない。   Next, although this invention is demonstrated based on an Example, this invention is not limited to this Example.

アップキャスト方式の上方引上連続鋳造装置を用い、無酸素銅からなる直径φ8mmの荒引き線を製造した。荒引き線の構成材は、無酸素銅溶湯に硫黄親和性金属を所定の割合で添加したものである。この荒引き線に冷間減面加工、焼きなまし処理を適宜繰り返して施し、直径φ0.5mmの銅線を作製した(試料1〜試料17)。   Using an upcast continuous up-drawing continuous casting apparatus, a rough drawn wire made of oxygen-free copper and having a diameter of 8 mm was produced. The constituent material of the rough drawn wire is obtained by adding a sulfur-affinity metal at a predetermined ratio to an oxygen-free molten copper. The rough drawing wire was repeatedly subjected to cold surface reduction processing and annealing treatment as appropriate, and copper wires having a diameter of 0.5 mm were prepared (Sample 1 to Sample 17).

試料1については、硫黄親和性金属を無添加とした(比較例1)。   For sample 1, no sulfur-affinity metal was added (Comparative Example 1).

試料2〜6については、硫黄親和性金属としてそれぞれNbのみを添加した。
Nbを0.006重量%含有させたものを(実施例1)、
Nbを0.012重量%含有させたものを(実施例2)、
Nbを0.04重量%含有させたものを(実施例3)、
Nbを0.06重量%含有させたものを(実施例4)、
Nbを0.0005重量%含有させたものを(比較例2)とした。
About samples 2-6, only Nb was added as a sulfur affinity metal, respectively.
What contains 0.006% by weight of Nb (Example 1),
What contained 0.012% by weight of Nb (Example 2),
What contained 0.04% by weight of Nb (Example 3),
What contains 0.06% by weight of Nb (Example 4),
A sample containing 0.0005% by weight of Nb was defined as (Comparative Example 2).

試料7〜16については、硫黄親和性金属としてそれぞれNb+αの計2種を添加した。
0.012Nb+0.003Ti(2種合計が0.015重量%)含有させたものを(実施例5)、
0.012Nb+0.006Zr(2種合計が0.018重量%)含有させたものを(実施例6)、
0.012Nb+0.01Hf(2種合計が0.022重量%)含有させたものを(実施例7)、
0.012Nb+0.03V(2種合計が0.042重量%)含有させたものを(実施例8)、
0.012Nb+0.02Ta(2種合計が0.032重量%)含有させたものを(実施例9)、
0.012Nb+0.003Fe(2種合計が0.015重量%)含有させたものを(実施例10)、
0.012Nb+0.002B(2種合計が0.014重量%)含有させたものを(実施例11)、
0.012Nb+0.002Ca(2種合計が0.014重量%)含有させたものを(実施例12)、
0.012Nb+0.002Mg(2種合計が0.014重量%)含有させたものを(実施例13)、
0.012Nb+0.002MM(ミッシュメタル;2種合計が0.014重量%)含有させたものを(実施例14)とした。
For Samples 7 to 16, a total of two Nb + α species were added as sulfur-affinity metals.
What contained 0.012Nb + 0.003Ti (the total of the two types was 0.015% by weight) (Example 5),
What contained 0.012Nb + 0.006Zr (the total of the two types was 0.018% by weight) (Example 6),
What contained 0.012Nb + 0.01Hf (2 types total is 0.022 weight%) (Example 7),
What contained 0.012Nb + 0.03V (2 types total is 0.042 weight%) (Example 8),
What contained 0.012Nb + 0.02Ta (the total of the two types was 0.032 wt%) (Example 9),
What contains 0.012Nb + 0.003Fe (the total of the two types is 0.015% by weight) (Example 10),
What contained 0.012Nb + 0.002B (two types total is 0.014 weight%) (Example 11),
What contains 0.012Nb + 0.002Ca (the total of the two types is 0.014% by weight) (Example 12),
What contains 0.012Nb + 0.002Mg (total of two types is 0.014% by weight) (Example 13),
A product containing 0.012Nb + 0.002MM (Misch metal; the total of the two types was 0.014% by weight) was defined as (Example 14).

試料17は、連続鋳造圧延方式(SCR方式)を用いてタフピッチ銅からなる荒引線φ8mmを製造した。荒引き線の構成材は、無酸素銅溶湯に硫黄親和性金属であるTiを0.003重量%添加したものである。この荒引き線に冷間伸線加工、焼きなまし処理を適宜繰り返して施し、直径φ0.5mmの銅線を製作したものである(従来例1)。   Sample 17 produced a drawn wire of φ8 mm made of tough pitch copper using a continuous casting and rolling method (SCR method). The constituent material of the rough drawn wire is obtained by adding 0.003% by weight of Ti, which is a sulfur-affinity metal, to the oxygen-free molten copper. This rough drawing wire was subjected to cold drawing and annealing treatments as appropriate to produce a copper wire having a diameter of 0.5 mm (conventional example 1).

実施例1〜14、比較例1、2及び従来例1の各銅線を用いて軟化試験を行い、軟化特性の評価を行った。その結果を表1に示す。ここで、軟化特性の評価は、半軟化温度を用いて行った。また、各銅線については、完全焼きなまし処理(銅線の強度がそれ以上に低下しないところまで軟化させる処理)を行い、導電率の測定も実施した。   Softening tests were performed using the copper wires of Examples 1 to 14, Comparative Examples 1 and 2, and Conventional Example 1, and the softening characteristics were evaluated. The results are shown in Table 1. Here, the evaluation of the softening characteristics was performed using the semi-softening temperature. Moreover, about each copper wire, the complete annealing process (process which softens until the intensity | strength of a copper wire does not fall any more) was performed, and the electrical conductivity measurement was also implemented.

Figure 2008254023
Figure 2008254023

表1に示すように、実施例1〜14の各銅線は、いずれも硫黄親和性金属の含有量が0.0006〜0.06重量%の範囲であり、本発明に係る銅線の製造方法を満足していた。実施例1〜14の各銅線の半軟化温度はいずれも115℃以下(74〜115℃)であり、硫黄親和性金属(Nb)が無添加の比較例1の各銅線の半軟化温度(135℃)と比較すると、20℃以上(約20〜61℃)も半軟化温度が低下していた。実施例4の銅線の半軟化温度が115℃であることから、硫黄親和性金属の含有量の上限が0.06重量%であることが確認できる。特に、実施例1〜3,5〜14の各銅線は、半軟化温度が96℃以下であるのでより好ましい。   As shown in Table 1, each copper wire of Examples 1 to 14 has a sulfur-affinity metal content in the range of 0.0006 to 0.06% by weight, and the production of the copper wire according to the present invention. I was satisfied with the method. The semi-softening temperature of each copper wire of Examples 1 to 14 is 115 ° C. or lower (74 to 115 ° C.), and the semi-softening temperature of each copper wire of Comparative Example 1 to which no sulfur-affinity metal (Nb) is added. Compared with (135 ° C.), the semi-softening temperature also decreased at 20 ° C. or higher (about 20 to 61 ° C.). Since the semi-softening temperature of the copper wire of Example 4 is 115 degreeC, it can confirm that the upper limit of content of a sulfur affinity metal is 0.06 weight%. In particular, the copper wires of Examples 1 to 3 and 5 to 14 are more preferable because the semi-softening temperature is 96 ° C. or lower.

これに対して、比較例2の銅線は、Nb含有量が0.0005重量%と少なすぎるため、銅線の軟化温度を低下させる効果が十分でなく、Nb無添加の比較例1の銅線と比較して半軟化温度の低下は14℃だけであった(121℃)。   On the other hand, since the Nb content of the copper wire of Comparative Example 2 is too small as 0.0005% by weight, the effect of lowering the softening temperature of the copper wire is not sufficient, and the copper of Comparative Example 1 containing no Nb is added. The decrease in semi-softening temperature compared to the line was only 14 ° C (121 ° C).

各銅線の完全焼きなまし処理後の導電率は、半軟化温度の低い本実施例1〜14は101.5%IACS以上であったが、半軟化温度の高い比較例1、2は、101.5%IACS未満であった。また、試料である銅線と銅線の先端同士を突合わせしTIG溶接したところ、従来例の銅線の場合には銅中にボイドが形成されたが、本発明の実施例1〜14及び比較例1、2にはボイドが認められなかった。   The electrical conductivity of each copper wire after the complete annealing treatment was 101.5% IACS or higher in Examples 1 to 14 having a low semi-softening temperature, but Comparative Examples 1 and 2 having a high semi-softening temperature were 101. Less than 5% IACS. Moreover, when the copper wire which is a sample and the front-end | tips of a copper wire were faced | matched and TIG-welded, in the case of the copper wire of a prior art example, the void was formed in copper, Examples 1-14 of this invention, and In Comparative Examples 1 and 2, no void was observed.

以上より、荒引き線の構成材である無酸素銅溶湯に硫黄親和性金属を所定の割合で添加し、その無酸素銅溶湯を上方引上連続鋳造装置に供給して銅線を製造することで、銅線の軟化温度を大幅に低下させることができ、かつ、導電率も高くでき、更に溶接時に導体中のボイドは発生せず、接続信頼性が大幅に向上することが確認された。   From the above, a sulfur-affinity metal is added to the oxygen-free copper melt, which is a constituent material of the rough drawing wire, at a predetermined ratio, and the oxygen-free copper melt is supplied to the upward pulling continuous casting apparatus to produce a copper wire. Thus, it was confirmed that the softening temperature of the copper wire can be significantly lowered, the electrical conductivity can be increased, and no voids are generated in the conductor during welding, so that the connection reliability is greatly improved.

Claims (3)

上方引上連続鋳造装置を用いて無酸素銅溶湯から直接、銅材を製造する方法において、
上記上方引上連続鋳造装置の溶湯貯溜手段に貯溜された無酸素銅溶湯にNbを添加し、無酸素銅溶湯中に含まれるNbの割合を0.0006〜0.06重量%に調整することを特徴とする銅材の製造方法。
In a method for producing a copper material directly from an oxygen-free copper melt using an upward pulling continuous casting apparatus,
Nb is added to the oxygen free copper melt stored in the molten metal storage means of the upward pulling continuous casting apparatus, and the ratio of Nb contained in the oxygen free copper melt is adjusted to 0.0006 to 0.06 wt%. A method for producing a copper material.
上方引上連続鋳造装置を用いて無酸素銅溶湯から直接、銅材を製造する方法において、
上記上方引上連続鋳造装置の溶湯貯溜手段に貯溜された無酸素銅溶湯に、NbとTi、Zr、Hf、V、Ta、Fe、B、Ca、Mg、又はミッシュメタルから選択される少なくとも1種の金属又は合金とを添加し、無酸素銅溶湯中に含まれる各金属又は合金の割合を0.0006〜0.06重量%に調整することを特徴とする銅材の製造方法。
In a method for producing a copper material directly from an oxygen-free copper melt using an upward pulling continuous casting apparatus,
At least one selected from Nb, Ti, Zr, Hf, V, Ta, Fe, B, Ca, Mg, or Misch metal is used as the oxygen-free copper molten metal stored in the molten metal storage means of the upward pulling continuous casting apparatus. A method for producing a copper material, comprising adding a seed metal or alloy and adjusting a ratio of each metal or alloy contained in the oxygen-free copper melt to 0.0006 to 0.06 wt%.
請求項1又は2記載の製造方法を用いて製造された銅材であって、半軟化温度が115℃以下であることを特徴とする銅材。   A copper material manufactured using the manufacturing method according to claim 1 or 2, wherein a semi-softening temperature is 115 ° C or lower.
JP2007098963A 2007-04-05 2007-04-05 Method for producing copper material, and copper material Pending JP2008254023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007098963A JP2008254023A (en) 2007-04-05 2007-04-05 Method for producing copper material, and copper material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007098963A JP2008254023A (en) 2007-04-05 2007-04-05 Method for producing copper material, and copper material

Publications (1)

Publication Number Publication Date
JP2008254023A true JP2008254023A (en) 2008-10-23

Family

ID=39978148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007098963A Pending JP2008254023A (en) 2007-04-05 2007-04-05 Method for producing copper material, and copper material

Country Status (1)

Country Link
JP (1) JP2008254023A (en)

Similar Documents

Publication Publication Date Title
JP2008255417A (en) Method for producing copper material, and copper material
JP4674483B2 (en) Copper material manufacturing method and copper material
JP2006274383A (en) Method for manufacturing copper material, and copper material
JP3999676B2 (en) Copper-based alloy and method for producing the same
JP5085908B2 (en) Copper alloy for electronic materials and manufacturing method thereof
JP5051647B2 (en) High-strength and high-conductivity Cu-Ag alloy wire and method for producing the same
JP5555135B2 (en) Copper alloy with improved hot and cold workability, method for producing the same, and copper alloy strip or alloy foil obtained from the copper alloy
CN108538426B (en) Aluminum alloy conductor, insulated wire using same, and method for manufacturing insulated wire
CN108431256A (en) Electronic electric equipment copper alloy, electronic electric equipment copper alloy plate web, electronic electric equipment component, terminal, busbar and relay movable plate
JP2008255416A (en) Method for manufacturing copper material, and copper material
JP2007126739A (en) Copper alloy for electronic material
JP5652741B2 (en) Copper wire and method for producing the same
JP2009167450A (en) Copper alloy and producing method therefor
JP2002241873A (en) High strength and highly electrically conductive copper alloy and method for producing copper alloy material
JP5696972B2 (en) Aluminum alloy wire, coil, and manufacturing method of aluminum alloy wire
JP6278812B2 (en) Copper alloy material, distribution member for electric vehicle and distribution member for hybrid vehicle
JP2006272422A (en) Manufacturing method of copper material and copper material
JP2008254023A (en) Method for producing copper material, and copper material
JP6009145B2 (en) Aluminum electric wire and method for manufacturing the same
CN108728686B (en) Copper alloy material, method for producing copper alloy material, and cage rotor
JP7120389B1 (en) Copper alloy plastic working materials, copper alloy wire rods, parts for electronic and electrical equipment, terminals
JP4171907B2 (en) Trolley wire and its manufacturing method
JP2008255418A (en) Method for producing copper material, and copper material
JP5619391B2 (en) Copper alloy material and method for producing the same
JP5565262B2 (en) Clad material with excellent workability and manufacturing method thereof