JP2002241873A - High strength and highly electrically conductive copper alloy and method for producing copper alloy material - Google Patents

High strength and highly electrically conductive copper alloy and method for producing copper alloy material

Info

Publication number
JP2002241873A
JP2002241873A JP2001040156A JP2001040156A JP2002241873A JP 2002241873 A JP2002241873 A JP 2002241873A JP 2001040156 A JP2001040156 A JP 2001040156A JP 2001040156 A JP2001040156 A JP 2001040156A JP 2002241873 A JP2002241873 A JP 2002241873A
Authority
JP
Japan
Prior art keywords
copper alloy
base material
heat treatment
alloy base
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001040156A
Other languages
Japanese (ja)
Other versions
JP3896793B2 (en
Inventor
Yoshinori Yamamoto
佳紀 山本
Takeshi Shimada
健 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2001040156A priority Critical patent/JP3896793B2/en
Publication of JP2002241873A publication Critical patent/JP2002241873A/en
Application granted granted Critical
Publication of JP3896793B2 publication Critical patent/JP3896793B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a high strength and highly electrically conductive copper alloy which has high strength and excellent heat resistance, has high characteristics also in electric conductivity, and is suitable as the material for a lead frame having many pins, and a production method therefor. SOLUTION: The high strength and highly electrically conductive copper alloy has a composition containing, by weight, 2.0 to 2.5% Fe, 0.01 to 0.1% P, 0.01 to 1% Zn and 0.05 to 0.2% Sn, and the balance Cu. Further, the method for producing the high strength and highly electrically conductive copper alloy material consists of a step where a copper alloy base metal having the above composition is cast, a step where the copper alloy base metal is subjected to high temperature aging heat treatment of holding the same at 550 to 650 deg.C for 30 min to 5 hr, a step where the copper alloy base metal subjected to the high temperature heat treatment is subjected to low temperature aging heat treatment at 400 to 500 deg.C for 30 min to 5 hr, and a finish working step where the copper alloy base metal subjected to the low temperature heat treatment is subjected to cold rolling.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高強度・高導電性
の銅合金および銅合金材の製造方法、特に、半導体機器
のリード材、端子、コネクタ等に使用される高強度で高
導電性の銅合金、およびその銅合金材の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-strength, high-conductivity copper alloy and a copper alloy material, and in particular, to a high-strength, high-conductivity conductive material used for lead materials, terminals, connectors and the like of semiconductor equipment. And a method for producing the copper alloy material.

【0002】[0002]

【従来の技術】ICなどの半導体装置においては、リー
ド部分の材料として銅合金材が広く用いられている。こ
のようなリード材の中でもピン数の多いICパッケージ
向けには、高い強度と良好な導電率を兼ね備え、なおか
つパッケージの製造工程で加えられる熱に対して強度低
下を起こさない十分な耐熱性を持つ材料が求められる。
こうした用途には、代表的な材料としてCu−Ni−S
i系合金、あるいはCu−Cr系の合金が使われてい
る。一方、より広い範囲の電子部品向けに用いられてい
る銅合金材として、Feを2wt%程度含んだCu−F
e系合金がある。これらの材料は、加工性などリード材
としての取り扱い易さにも優れた合金材料であり、比較
的安価に提供されている。
2. Description of the Related Art In a semiconductor device such as an IC, a copper alloy material is widely used as a material of a lead portion. Among such lead materials, for IC packages with a large number of pins, they have both high strength and good electrical conductivity, and have sufficient heat resistance so that the strength is not reduced by the heat applied in the package manufacturing process. Materials are required.
For such applications, a typical material is Cu-Ni-S
An i-based alloy or a Cu-Cr-based alloy is used. On the other hand, as a copper alloy material used for a wider range of electronic components, Cu-F containing about 2 wt% of Fe is used.
There are e-based alloys. These materials are alloy materials which are excellent in ease of handling as a lead material such as workability, and are provided at relatively low cost.

【0003】[0003]

【発明が解決しようとする課題】しかし、通常の製造方
法で得られるCu−Ni−Si系合金、Cu−Cr系合
金、あるいはCu−Fe系合金の銅合金材料は、ピン数
の多いパッケージのリード材として使用した場合に強度
が不足するという問題があった。強度が不足する銅合金
に対しては、最終圧延工程の冷間加工率を高め加工硬化
させて高強度化を図る方法が考えられるが、この場合で
も達成できる強度は十分に満足できないレベルであり、
また耐熱性の大幅な低下を伴うという課題があった。
However, a Cu-Ni-Si alloy, a Cu-Cr alloy, or a Cu-Fe alloy which is obtained by a normal manufacturing method is used for a package having a large number of pins. When used as a lead material, there is a problem that strength is insufficient. For copper alloys with insufficient strength, a method of increasing the cold working rate in the final rolling step to work harden to increase the strength is conceivable, but the strength that can be achieved even in this case is a level that is not fully satisfactory. ,
In addition, there is a problem that heat resistance is significantly reduced.

【0004】一方、強度向上を期待して、効果的な合金
成分を微量に添加し強度の改善を図る方法もある。この
場合、添加元素成分を選択することによって強度と耐熱
性を共に改善することは可能であるが、所定の強度の向
上を得ようと期待して添加量を増やすと導電率の低下を
伴なうという問題があった。このため、元素成分の添加
量は極微量に限られて強度の向上にも限界があり、より
一層の特性向上が望まれている。
On the other hand, there is a method of improving the strength by adding a small amount of an effective alloy component in order to expect the improvement of the strength. In this case, it is possible to improve both strength and heat resistance by selecting an additive element component, but increasing the amount of addition with the expectation of obtaining a predetermined improvement in strength is accompanied by a decrease in conductivity. There was a problem. For this reason, the addition amount of the elemental component is limited to a very small amount, and there is a limit in the improvement of the strength, and further improvement of the characteristics is desired.

【0005】それ故、本発明の目的は、ピン数の多いリ
ードフレーム向け材料として好適といえる高強度を持
ち、従来材に比べて優れた耐熱性を持つと同時に、導電
率においても高い特性を持ったCu−Fe系の銅合金お
よび銅合金材の製造方法を提供することにある。
Accordingly, an object of the present invention is to provide a material having high strength which can be said to be suitable as a material for a lead frame having a large number of pins, and having excellent heat resistance as compared with the conventional material and also having high conductivity. An object of the present invention is to provide a method for producing a Cu—Fe-based copper alloy and a copper alloy material having the same.

【0006】[0006]

【課題を解決するための手段】この発明は、上記の目的
を達成するため、2.0〜2.5wt%のFe、0.0
1〜0.1wt%のP、0.01〜1wt%のZnと、
0.05〜0.2wt%のSnを含有し、残部がCuと
不可避不純物の組成から構成されることを特徴とする高
強度・高導電性銅合金を提供する。
In order to achieve the above object, the present invention provides a method for producing a steel sheet containing 2.0 to 2.5 wt% of Fe, 0.0
1 to 0.1 wt% P, 0.01 to 1 wt% Zn,
Provided is a high-strength, highly-conductive copper alloy containing 0.05 to 0.2 wt% of Sn, with the balance being composed of Cu and inevitable impurities.

【0007】また、この発明は、上記の目的を達成する
ため、2.0〜2.5wt%のFe、0.01〜0.1
wt%のP、0.01〜1wt%のZnと、0.05〜
0.2wt%のSnを含有し、残部がCuと不可避不純
物の組成から構成される銅合金母材を鋳造するステップ
と、前記銅合金母材を550〜650℃の高温で時効熱
処理するステップと、前記高温で熱処理した銅合金母材
を400〜500℃の低温で時効熱処理するステップ
と、前記低温で熱処理した銅合金母材に冷間圧延を施こ
す仕上げ加工ステップとから構成されることを特徴とす
る高強度・高導電性銅合金材の製造方法を提供し、ま
た、2.0〜2.5wt%のFe、0.01〜0.1w
t%のP、0.01〜1wt%のZnと、0.05〜
0.2wt%のSnを含有し、残部がCuと不可避不純
物の組成から構成される銅合金母材を鋳造するステップ
と、前記銅合金母材を850〜1000℃に加熱した後
に冷却する溶体化熱処理ステップと、前記溶体化熱処理
した前記銅合金母材に冷間圧延を行う中間圧延加工ステ
ップと、前記銅合金母材を550〜650℃の高温で時
効熱処理するステップと、前記高温で熱処理した銅合金
母材を400〜500℃の低温で時効熱処理するステッ
プと、前記低温で熱処理した銅合金母材に冷間圧延を施
こす仕上げ加工ステップとから構成されることを特徴と
する高強度・高導電性銅合金材の製造方法を提供する。
In order to achieve the above-mentioned object, the present invention provides a method for producing a steel sheet containing 2.0 to 2.5 wt% of Fe, 0.01 to 0.1 wt%.
wt% P, 0.01-1 wt% Zn, 0.05-
Casting a copper alloy base material containing 0.2 wt% of Sn and the balance being composed of Cu and unavoidable impurities; and subjecting the copper alloy base material to aging heat treatment at a high temperature of 550 to 650 ° C. Aging the copper alloy base material heat-treated at a high temperature at a low temperature of 400 to 500 ° C., and a finishing step of subjecting the copper alloy base material heat-treated at a low temperature to cold rolling. Provided is a method for producing a high-strength, high-conductivity copper alloy material characterized by the following: 2.0 to 2.5 wt% Fe, 0.01 to 0.1 w
t% P, 0.01-1 wt% Zn, 0.05-
Casting a copper alloy base material containing 0.2 wt% of Sn and the balance being composed of Cu and unavoidable impurities; and solution cooling in which the copper alloy base material is heated to 850 to 1000 ° C. and then cooled. A heat treatment step, an intermediate rolling step of performing cold rolling on the solution heat-treated copper alloy base material, a step of aging heat treatment of the copper alloy base material at a high temperature of 550 to 650 ° C., and a heat treatment at the high temperature. A step of subjecting the copper alloy base material to aging heat treatment at a low temperature of 400 to 500 ° C .; and a finishing step of performing cold rolling on the copper alloy base material heat-treated at the low temperature. Provided is a method for manufacturing a highly conductive copper alloy material.

【0008】さらに、この発明は、上記の目的を達成す
るため、前記銅合金母材を550〜650℃の高温で時
効熱処理するステップは、前記銅合金母材を30分〜5
時間保持して時効熱処理するステップを含むことを特徴
とし、前記高温で熱処理した銅合金母材を400〜50
0℃の低温で時効熱処理するステップは、前記銅合金母
材を30分〜5時間保持して時効熱処理するステップを
含むことを特徴とし、前記銅合金母材を850〜100
0℃に加熱した後に冷却する溶体化熱処理ステップは、
850〜1000℃に加熱した前記銅合金母材を、30
0℃以下になるまでに50℃/分以上の速度で冷却する
熱処理ステップを含むことを特徴とし、前記低温で熱処
理した銅合金母材に冷間圧延を施こす仕上げ加工ステッ
プは、前記高温および低温で時効熱処理した銅合金母材
に加工率70%以上の仕上げ冷間圧延加工を施こすステ
ップを含むことを特徴とする高強度・高導電性銅合金材
の製造方法を提供する。
In order to achieve the above object, the present invention further comprises the step of subjecting the copper alloy base material to aging heat treatment at a high temperature of 550 to 650 ° C.
Aging heat treatment with holding for a time, wherein the copper alloy base material heat-treated at the high temperature is 400 to 50.
The step of aging heat treatment at a low temperature of 0 ° C. includes the step of holding the copper alloy base material for 30 minutes to 5 hours to perform aging heat treatment, wherein the copper alloy base material is subjected to 850 to 100
The solution heat treatment step of cooling after heating to 0 ° C.
The copper alloy base material heated to 850-1000 ° C.
A heat treatment step of cooling at a rate of 50 ° C./min or more until the temperature becomes 0 ° C. or less, wherein the finishing step of subjecting the copper alloy base material heat-treated at a low temperature to cold rolling is performed at the high temperature and A method for producing a high-strength, high-conductivity copper alloy material, comprising a step of subjecting a copper alloy base material that has been subjected to aging heat treatment at a low temperature to a finish cold rolling process at a working ratio of 70% or more.

【0009】[0009]

【発明の実施の形態】本発明の実施の形態として、2.
0〜2.5wt%のFe、0.01〜0.1wt%の
P、0.01〜1wt%のZnと、0.05〜0.2w
t%のSnを含有し、残部がCuと不可避不純物の組成
から構成される高強度・高導電性銅合金、ならびに高強
度・高導電性銅合金材の製造方法について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION
0-2.5 wt% Fe, 0.01-0.1 wt% P, 0.01-1 wt% Zn, 0.05-0.2 w
A method for producing a high-strength and high-conductive copper alloy containing t% Sn and the balance of the composition of Cu and unavoidable impurities, and a method of manufacturing a high-strength and high-conductive copper alloy material will be described.

【0010】本発明の実施の形態において、従来のCu
−Fe−P−Zn合金、またはCu−Fe合金などは一
般的な組成であり、これにSnを添加すると材料の導電
率を大きく低下させると考えられていたが、本発明は、
2.0〜2.5wt%のFe、0.01〜0.1wt%
のP、0.01〜1wt%のZnに加えて、0.05〜
0.2wt%という特定範囲のSnを含有させ、残部が
Cuの組成から成る銅合金材を構成することによって、
高い導電率と十分な強度、耐熱性を有する銅合金が得ら
れることを見い出すに至ったものである。さらに、Sn
は強度の向上と耐熱性の向上を効果的に達成できる添加
元素であるが、材料の導電率を大きく低下させる悪影響
を持っため、従来は添加量を極微量の範囲に抑えること
が必要であった。しかし、本発明では特定の製造ステッ
プの工夫により、Snを添加して導電率を改善するとと
もに、十分な強度、耐熱性の向上が期待できる銅合金材
を可能にし、従来の合金材以上の高強度、高耐熱性を安
定して得られることを見い出した。
In an embodiment of the present invention, a conventional Cu
-Fe-P-Zn alloy or Cu-Fe alloy has a general composition, and it was thought that the addition of Sn to this greatly reduced the conductivity of the material.
2.0-2.5 wt% Fe, 0.01-0.1 wt%
P, 0.01-1 wt% Zn, and 0.05-
By containing a specific range of Sn of 0.2 wt% and forming a copper alloy material having a balance of Cu,
It has been found that a copper alloy having high conductivity, sufficient strength and heat resistance can be obtained. Furthermore, Sn
Is an additive element that can effectively improve the strength and heat resistance, but has the adverse effect of greatly reducing the conductivity of the material. Was. However, in the present invention, by improving the electric conductivity by adding Sn by devising a specific manufacturing step, a copper alloy material that can be expected to have sufficient strength and heat resistance can be obtained. It has been found that strength and high heat resistance can be stably obtained.

【0011】本発明の実施の形態においては、2.0〜
2.5wt%のFe、0.01〜0.1wt%のP、
0.01〜1wt%のZnに加えて、0.05〜0.2
wt%という特定範囲のSnを含有させ、残部がCuの
組成から銅合金材を構成することによって、導電率の低
下を招くことなく材料の強度と耐熱性を同時に向上させ
ることができる。この場合、銅合金を構成する所定範囲
のFe−P−Zn−Sn−Cu組成に、合金として不可
避な不純物の金属元素を含むことは許される。また、S
nの添加量を0.05〜0.2wt%の範囲に制限する
理由は、つぎの通りである。すなわち、Snの下限値と
して0.05wt%に規定したのは、0.05wt%未
満のSnの添加量では材料の特性を向上させる効果が小
さいためであり、Snの上限値として0.2wt%に規
定したのは、0.2wt%を超えるSnの添加量では導
電率の低下が大きくなり過ぎたり、はんだ耐候性が悪化
するなどの問題が生じるためである。
[0011] In the embodiment of the present invention, 2.0 to
2.5 wt% Fe, 0.01-0.1 wt% P,
In addition to 0.01-1 wt% Zn, 0.05-0.2
By containing Sn in a specific range of wt% and the balance constituting the copper alloy material from the composition of Cu, the strength and heat resistance of the material can be simultaneously improved without lowering the conductivity. In this case, the Fe-P-Zn-Sn-Cu composition in the predetermined range constituting the copper alloy is allowed to contain a metal element of an unavoidable impurity as an alloy. Also, S
The reason for limiting the amount of n added to the range of 0.05 to 0.2 wt% is as follows. That is, the reason why the lower limit value of Sn is set to 0.05 wt% is that the effect of improving the properties of the material is small with the addition amount of Sn less than 0.05 wt%, and the upper limit value of Sn is 0.2 wt%. The reason for this is that if the amount of Sn added exceeds 0.2 wt%, problems such as an excessive decrease in conductivity and deterioration in solder weather resistance will occur.

【0012】本発明の実施の形態においては、時効を目
的とする高温および低温での時効処理の前工程として、
さらに溶体化を狙いとした溶体化熱処理ステップと、冷
間圧延による中間圧延加工ステップを施こすことが本発
明の特徴である。この溶体化処理は、時効の前段階とし
て合金元素を母材中に十分固溶させる狙いを持ってお
り、これによって時効工程での析出物形成をより効果的
に進めることができる。本発明の溶体化熱処理ステップ
では、850〜1000℃に加熱後、300℃以下の温
度になるまで50℃/分以上の速度で冷却する熱処理を
行うと、溶体化によってFeを銅の母材中に固溶させる
ことができる。また、加熱温度を850〜1000℃の
高温の範囲とし、冷却速度を50℃/分以上に制限する
ことで冷却中に粗大な析出物が形成されることを防いで
いる。溶体化処理に続いて中間圧延加工ステップを施こ
すと、冷間圧延で材料中には析出物形成の起点となる格
子欠陥が導入されることになる。これによってその後施
こされる時効処理における微細析出物の形成を促進し、
材料中に微細な析出物を均一に発生させることができ
る。この結果、更に良好な強度、耐熱性を有する銅合金
材を得るのに大きく寄与するものである。
In an embodiment of the present invention, as a step prior to the aging treatment at a high temperature and a low temperature for the purpose of aging,
Further, it is a feature of the present invention that a solution heat treatment step for solution treatment and an intermediate rolling step by cold rolling are performed. This solution treatment has an aim of sufficiently dissolving the alloying element in the base material as a pre-aging step, whereby the precipitate formation in the aging step can be more effectively advanced. In the solution heat treatment step of the present invention, heat treatment at 850 to 1000 ° C. and then cooling at a rate of 50 ° C./min or more until a temperature of 300 ° C. or less is performed. To form a solid solution. Further, by setting the heating temperature to a high temperature range of 850 to 1000 ° C. and limiting the cooling rate to 50 ° C./min or more, formation of coarse precipitates during cooling is prevented. When an intermediate rolling step is performed following the solution treatment, a lattice defect serving as a starting point of precipitate formation is introduced into the material by cold rolling. This promotes the formation of fine precipitates in the subsequent aging treatment,
Fine precipitates can be uniformly generated in the material. As a result, it greatly contributes to obtaining a copper alloy material having better strength and heat resistance.

【0013】本発明の実施の形態において、時効を目的
とする熱処理ステップは、550〜650℃で30分〜
5時間保持する高温の熱処理と、400〜500℃で3
0分〜5時間保持する低温の熱処理が行われる。この時
効熱処理は、Feを銅母材中に微細な形状で析出させて
材料特性、特に材料の導電率や強度、耐熱性を改善する
ために行われるが、本発明は高温での時効処理と低温で
の時効処理を組み合わせて実施することに特徴がある。
これは、高温で形成される析出物と低温で形成される析
出物では、構造や大きさ、材料特性に及ぼす効果に違い
があることを考慮したものである。高温での析出物は強
度、耐熱性を向上させる効果が大きく、それに対して低
温での析出物は主に導電率を向上させる効果が大きい。
特に高温時効後に引き続き低温時効を行なった場合、導
電率をより一層向上させることができる。この結果、双
方の時効処理によって、高温での時効処理は導電率の向
上とともに強度、耐熱性の向上に大きく寄与し、それに
引き続いて行う低温での時効処理はより一層の導電率の
向上に大きな効果を発揮するものである。
In an embodiment of the present invention, the heat treatment step for aging is performed at 550-650 ° C. for 30 minutes.
High temperature heat treatment for 5 hours and 3 hours at 400-500 ° C
A low-temperature heat treatment of holding for 0 minutes to 5 hours is performed. This aging heat treatment is performed in order to improve the material properties, particularly the electrical conductivity and strength of the material and the heat resistance by precipitating Fe in a fine shape in the copper base material. It is characterized in that aging treatment at low temperature is performed in combination.
This takes into account that there is a difference between the precipitate formed at a high temperature and the precipitate formed at a low temperature in the effect on the structure, size, and material properties. A precipitate at a high temperature has a large effect of improving strength and heat resistance, whereas a precipitate at a low temperature has a large effect of mainly improving conductivity.
In particular, when low-temperature aging is performed after high-temperature aging, the conductivity can be further improved. As a result, by both aging treatments, the aging treatment at a high temperature greatly contributes to the improvement of the strength and the heat resistance together with the improvement of the electric conductivity, and the aging treatment at a low temperature performed subsequently increases the aging treatment at a further low temperature. It is effective.

【0014】本発明の実施の形態において、時効熱処理
は、高温時効の条件範囲として550〜650℃で30
分〜5時間を保持し、低温時効の条件範囲として400
〜500℃で30分〜5時間を保持することが最適であ
る。これは、それぞれの時効目的を最も効果的に実現で
きる条件範囲を選択したものであり、この範囲を外れる
条件では、銅合金材の強度、導電率、耐熱性のいずれか
が不十分になるためである。
In the embodiment of the present invention, the aging heat treatment is performed at 550 to 650 ° C. for 30 hours as a condition range of the high temperature aging.
Minutes to 5 hours, and the condition range of low-temperature aging is 400
Optimally, the temperature is maintained at 500500 ° C. for 30 minutes to 5 hours. This is because we selected the condition range that can most effectively achieve each aging purpose, and if the conditions deviate from this range, the strength, conductivity, or heat resistance of the copper alloy material will be insufficient. It is.

【0015】本発明の実施の形態において、高温での時
効熱処理と低温での時効熱処理を組み合わせて実施する
場合、2つの時効熱処理は、それぞれ独立して実施する
必要はない。すなわち、まず銅合金母材を550〜65
0℃に昇温して所定時間保持した後、冷却途中で400
〜500℃の範囲に30分〜5時間保持することによっ
て、本発明の実施の形態における1回の昇温降温プロセ
スで時効熱処理を完結させることが可能であり、本発明
の実施の形態における高温および低温の時効熱処理が経
済的に実現できる。
In the embodiment of the present invention, when the aging heat treatment at a high temperature and the aging heat treatment at a low temperature are performed in combination, the two aging heat treatments do not need to be performed independently. That is, first, the copper alloy base material is 550-65.
After the temperature was raised to 0 ° C. and maintained for a predetermined time, 400 ° C.
By keeping the temperature in the range of 500 to 500 ° C. for 30 minutes to 5 hours, it is possible to complete the aging heat treatment by one heating and cooling process in the embodiment of the present invention. And low-temperature aging heat treatment can be realized economically.

【0016】本発明の実施の形態において、最後に施こ
される仕上げ加工ステップは、時効熱処理後に冷却した
材料に、加工率70%以上の仕上げ冷間圧延加工を加え
るものである。この仕上げ冷間圧延加工によって、時効
熱処理を行なって導電率を十分に向上させた銅合金材
に、加工率70%以上の仕上げ冷間圧延加工を加えると
材料は加工硬化し、望ましい水準の強度を持った材料を
得ることができる。しかし、仕上げ冷間圧延の加工率が
70%未満の場合は、加工硬化による所定の十分な強度
が得られないので加工率は70%以上の仕上げ冷間圧延
加工を加えることが望まれる。
In the embodiment of the present invention, the final finishing step is a step of subjecting the material cooled after the aging heat treatment to finish cold rolling at a working ratio of 70% or more. By applying the finish cold rolling to the copper alloy material, which has been subjected to aging heat treatment to sufficiently improve the conductivity by performing the aging heat treatment, the material is work hardened when the finish cold rolling is performed at a working ratio of 70% or more, and a desired level of strength is obtained. Can be obtained. However, when the working ratio of the finish cold rolling is less than 70%, a predetermined sufficient strength due to work hardening cannot be obtained, so it is desired to add finish cold rolling at a working ratio of 70% or more.

【0017】本発明の実施の形態において、Fe−P−
Znに適量なSnを含有させ残部がCuの組成から成る
銅合金の構成にすると、従来のCu−Fe合金材よりも
高強度でかつ優れた耐熱性を安定して有し、導電率にお
いても従来の合金材と同等以上の特性を持ち、小型・多
ピンのリードフレーム材として最適であるのみならず、
電子電気機器用の材料として幅広く利用することができ
る。
In an embodiment of the present invention, Fe-P-
When Zn is made to contain an appropriate amount of Sn and the balance is made of a copper alloy having a composition of Cu, it has high strength and excellent heat resistance stably as compared with the conventional Cu-Fe alloy material, and also has an electrical conductivity. It has properties equal to or better than conventional alloy materials, and is not only ideal as a compact, multi-pin lead frame material,
It can be widely used as a material for electronic and electrical equipment.

【0018】以下に本発明の実施例について説明する。
表1に示す組成の合金を、無酸素銅を母材にして高周波
溶解炉で溶製し、直径30mm、長さ250mmのイン
ゴットに鋳造して所定の銅合金母材を得た。この銅合金
母材を850℃に加熱して押出加工し、幅20mm、厚
さ8mmの板材にした後、厚さ2.0mmまで冷間圧延
した。次に、その板材を900℃に加熱して3分間保持
した後、水中に投入して約300℃/分の速度で室温
(約25℃)まで冷却した。その後、厚さ0.7mmま
で冷間圧延した後、600℃で2時間加熱し、更に冷却
途中で450℃に2時間保持する時効処理を行った。最
後に、この材料を厚さ0.15mmまで冷間圧延して供
試材とした。
An embodiment of the present invention will be described below.
An alloy having a composition shown in Table 1 was melted in an induction melting furnace using oxygen-free copper as a base material, and cast into an ingot having a diameter of 30 mm and a length of 250 mm to obtain a predetermined copper alloy base material. The copper alloy base material was heated to 850 ° C. and extruded to form a plate having a width of 20 mm and a thickness of 8 mm, and then cold-rolled to a thickness of 2.0 mm. Next, the plate was heated to 900 ° C. and held for 3 minutes, and then poured into water and cooled to room temperature (about 25 ° C.) at a rate of about 300 ° C./min. Thereafter, after cold-rolling to a thickness of 0.7 mm, the steel sheet was heated at 600 ° C. for 2 hours, and further subjected to an aging treatment of maintaining the temperature at 450 ° C. for 2 hours during cooling. Finally, this material was cold-rolled to a thickness of 0.15 mm to obtain a test material.

【0019】[0019]

【表1】 [Table 1]

【0020】前記の供試材から採取した試験片につい
て、引張強さ、導電率、ビッカーズ硬さを測定した。そ
の結果を表2に示す。
The tensile strength, electrical conductivity, and Vickers hardness of the test specimens collected from the test materials were measured. Table 2 shows the results.

【0021】[0021]

【表2】 [Table 2]

【0022】表2から明らかなように、本発明合金であ
る実施例1、2は、引張強さ614N/mm2 以上、導
電率65%IACS以上、硬さHv172以上と158
という良好な特性を持った材料であることが判る。これ
に対し、Sn量の少ない比較例1は強度、耐熱性が劣
り、Sn量の多い比較例2は導電性が劣り、第4の添加
元素を変えた比較例3〜5はSn添加材と比較して、強
度、導電率、耐熱性が劣っていることが判る。
As is clear from Table 2, the alloys of Examples 1 and 2 of the present invention have a tensile strength of 614 N / mm 2 or more, a conductivity of 65% IACS or more, and a hardness of Hv 172 or more and 158.
It can be seen that the material has good characteristics. On the other hand, Comparative Example 1 with a small amount of Sn is inferior in strength and heat resistance, Comparative Example 2 with a large amount of Sn is inferior in conductivity, and Comparative Examples 3 to 5 in which the fourth additive element is changed have Sn additive materials. In comparison, it turns out that strength, electrical conductivity, and heat resistance are inferior.

【0023】一方、実施例1と同じ組成の銅合金につい
て、表3に示す時効条件、仕上圧延の加工率で供試材を
製造(時効処理前までは前記の製造方法と同じ)した。
得られた供試材について引張強さ、導電率、ビッカーズ
硬さを測定した。その結果を表4に示す。
On the other hand, with respect to the copper alloy having the same composition as in Example 1, a test material was manufactured under the aging conditions and the finish rolling rate shown in Table 3 (the same as the above-mentioned manufacturing method until the aging treatment).
The tensile strength, electric conductivity, and Vickers hardness of the obtained test material were measured. Table 4 shows the results.

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【表4】 [Table 4]

【0026】表4において、比較例6〜8は夫々単一の
温度で時効処理を行なったものであるが、これらの材料
は何れも導電率が低くなっており、時効処理の温度が低
いと耐熱性も不十分である。また、高温での時効温度が
本発明の規定範囲を外れた比較例9と比較例10は実施
例1のものに比べて耐熱性が劣り、低温での時効温度が
本発明の規定範囲を外れた比較例11と比較例12は実
施例1のものに比べて導電率が劣っている。比較例13
は仕上圧延の加工率が本発明の規定範囲を外れた材料で
あるが、この材料は実施例1に比べて強度が劣ることが
わかる。表4の結果から、550〜650℃で加熱する
高温時効と400〜500℃で加熱する低温時効を組み
合せて行ない、仕上圧延によって加工料70%以上の加
工を行ったときに、良好な特性の銅合金材料が得られる
ことが判る。
In Table 4, Comparative Examples 6 to 8 are each subjected to the aging treatment at a single temperature. However, all of these materials have low electric conductivity, and the aging treatment temperature is low. Heat resistance is also insufficient. Further, Comparative Examples 9 and 10 in which the aging temperature at a high temperature was out of the specified range of the present invention were inferior in heat resistance to those of Example 1, and the aging temperature at a low temperature was out of the specified range of the present invention. Comparative Examples 11 and 12 are inferior in conductivity to those of Example 1. Comparative Example 13
Is a material whose finish rolling work ratio is out of the range specified in the present invention. It can be seen that this material is inferior in strength to Example 1. From the results in Table 4, when high-temperature aging heated at 550 to 650 ° C. and low-temperature aging heated at 400 to 500 ° C. are combined, and when a processing rate of 70% or more is processed by finish rolling, good characteristics are obtained. It can be seen that a copper alloy material is obtained.

【0027】[0027]

【発明の効果】本発明の銅合金、および銅合金材の製造
方法によると、Fe−P−Znと適量なSnを含有し、
残部がCuの組成から構成される銅合金とすることによ
り、耐熱性に富む高強度・高導電性の銅合金材料を得る
ことができる。また、高温の時効熱処理、低温の時効熱
処理、およびそれらに引き続く冷間圧延を施こして溶体
化熱処理を適性に行うことにより、耐熱性の大幅な低下
を招くことなく、従来の合金材を凌ぐ高強度・高導電性
の銅合金材料を低コストで製造することができるという
効果がある。この結果、本発明による高特性銅合金材料
の安価な供給は、小型・多ピンリードフレームおよびパ
ッケージについて、その製造技術の向上を支え、半導体
装置の発展に大きく寄与するものである。
According to the copper alloy and the method for producing a copper alloy material of the present invention, Fe-P-Zn and an appropriate amount of Sn are contained.
By using a copper alloy whose remainder is composed of Cu, a high-strength and high-conductivity copper alloy material having high heat resistance can be obtained. In addition, by performing high-temperature aging heat treatment, low-temperature aging heat treatment, and subsequent cold rolling, and appropriately performing solution heat treatment, it surpasses conventional alloy materials without causing a significant decrease in heat resistance. There is an effect that a copper alloy material having high strength and high conductivity can be manufactured at low cost. As a result, the inexpensive supply of the high-performance copper alloy material according to the present invention supports the improvement of the manufacturing technology for small and multi-pin lead frames and packages, and greatly contributes to the development of semiconductor devices.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01R 13/03 H01R 13/03 A // C22F 1/00 602 C22F 1/00 602 623 623 630 630A 661 661A 681 681 682 682 685 685Z 691 691B 691C 692 692A 692B 694 694A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court ゛ (Reference) H01R 13/03 H01R 13/03 A // C22F 1/00 602 C22F 1/00 602 623 623 630 630 630A 661 661A 681 681 682 682 685 685Z 691 691B 691C 692 692A 692B 694 694A

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】2.0〜2.5wt%のFe、0.01〜
0.1wt%のP、0.01〜1wt%のZnと、0.
05〜0.2wt%のSnを含有し、残部がCuと不可
避不純物の組成から構成されることを特徴とする高強度
・高導電性銅合金。
(1) 2.0 to 2.5 wt% of Fe, 0.01 to
0.1 wt% P, 0.01-1 wt% Zn, and 0.1 wt% Zn.
A high-strength and high-conductivity copper alloy containing 0.05 to 0.2 wt% of Sn and the balance being composed of Cu and inevitable impurities.
【請求項2】2.0〜2.5wt%のFe、0.01〜
0.1wt%のP、0.01〜1wt%のZnと、0.
05〜0.2wt%のSnを含有し、残部がCuと不可
避不純物の組成から構成される銅合金母材を鋳造するス
テップと、 前記銅合金母材を550〜650℃の高温で時効熱処理
するステップと、 前記高温で熱処理した銅合金母材を400〜500℃の
低温で時効熱処理するステップと、 前記低温で熱処理した銅合金母材に冷間圧延を施こす仕
上げ加工ステップとから構成されることを特徴とする高
強度・高導電性銅合金材の製造方法。
2. The composition according to claim 2, wherein 2.0 to 2.5 wt% of Fe, 0.01 to 2.5 wt%.
0.1 wt% P, 0.01-1 wt% Zn, and 0.1 wt% Zn.
Casting a copper alloy base material containing 0.5 to 0.2 wt% of Sn and the balance being composed of Cu and unavoidable impurities, and subjecting the copper alloy base material to aging heat treatment at a high temperature of 550 to 650 ° C. A step of subjecting the copper alloy base material heat-treated at a high temperature to aging heat treatment at a low temperature of 400 to 500 ° C .; and a finishing step of subjecting the copper alloy base material heat-treated at a low temperature to cold rolling. A method for producing a high-strength, high-conductivity copper alloy material, comprising:
【請求項3】2.0〜2.5wt%のFe、0.01〜
0.1wt%のP、0.01〜1wt%のZnと、0.
05〜0.2wt%のSnを含有し、残部がCuと不可
避不純物の組成から構成される銅合金母材を鋳造するス
テップと、 前記銅合金母材を850〜1000℃に加熱した後に冷
却する溶体化熱処理ステップと、 前記溶体化熱処理した前記銅合金母材に冷間圧延を行う
中間圧延加工ステップと、 前記銅合金母材を550〜650℃の高温で時効熱処理
するステップと、 前記高温で熱処理した銅合金母材を400〜500℃の
低温で時効熱処理するステップと、 前記低温で熱処理した銅合金母材に冷間圧延を施こす仕
上げ加工ステップとから構成されることを特徴とする高
強度・高導電性銅合金材の製造方法。
(3) 2.0-2.5 wt% Fe, 0.01-2.5 wt%
0.1 wt% P, 0.01-1 wt% Zn, and 0.1 wt% Zn.
Casting a copper alloy base material containing 0.5 to 0.2 wt% of Sn and the balance being composed of Cu and unavoidable impurities; and cooling the copper alloy base material after heating to 850 to 1000 ° C. A solution heat treatment step; an intermediate rolling step of cold rolling the copper alloy base material subjected to the solution heat treatment; an aging heat treatment of the copper alloy base material at a high temperature of 550 to 650 ° C .; A step of subjecting the heat-treated copper alloy base material to aging heat treatment at a low temperature of 400 to 500 ° C .; and a finishing step of subjecting the copper alloy base material heat-treated at a low temperature to cold rolling. Manufacturing method of high strength and high conductivity copper alloy material.
【請求項4】前記銅合金母材を550〜650℃の高温
で時効熱処理するステップは、前記銅合金母材を30分
〜5時間保持して時効熱処理するステップを含むことを
特徴とする請求項2および請求項3に記載の高強度・高
導電性銅合金材の製造方法。
4. The aging heat treatment of the copper alloy base material at a high temperature of 550 to 650 ° C. includes the step of holding the copper alloy base material for 30 minutes to 5 hours to perform aging heat treatment. The method for producing a high-strength, high-conductivity copper alloy material according to claim 2 or 3.
【請求項5】前記高温で熱処理した銅合金母材を400
〜500℃の低温で時効熱処理するステップは、前記銅
合金母材を30分〜5時間保持して時効熱処理するステ
ップを含むことを特徴とする請求項2および請求項3に
記載の高強度・高導電性銅合金材の製造方法。
5. The copper alloy base material heat-treated at a high temperature is 400
The high-strength steel according to claim 2 or 3, wherein the step of performing aging heat treatment at a low temperature of -500 ° C includes a step of holding the copper alloy base material for 30 minutes to 5 hours and performing aging heat treatment. A method for producing a highly conductive copper alloy material.
【請求項6】前記銅合金母材を850〜1000℃に加
熱した後に冷却する溶体化熱処理ステップは、850〜
1000℃に加熱した前記銅合金母材を、300℃以下
になるまでに50℃/分以上の速度で冷却する熱処理ス
テップを含むことを特徴とする請求項3に記載の高強度
・高導電性銅合金材の製造方法。
6. A solution heat treatment step of heating the copper alloy base material to 850 to 1000 ° C. and then cooling the same,
The high strength and high conductivity according to claim 3, further comprising a heat treatment step of cooling the copper alloy base material heated to 1000 ° C at a rate of 50 ° C / min or more until the temperature becomes 300 ° C or less. Manufacturing method of copper alloy material.
【請求項7】前記低温で熱処理した銅合金母材に冷間圧
延を施こす仕上げ加工ステップは、前記高温および低温
で時効熱処理した銅合金母材に加工率70%以上の仕上
げ冷間圧延加工を施こすステップを含むことを特徴とす
る請求項2および請求項3に記載の高強度・高導電性銅
合金材の製造方法。
7. The finishing step of subjecting the copper alloy base material heat-treated at a low temperature to cold-rolling includes the step of finishing cold-rolling the copper alloy base material heat-aged at a high temperature and a low temperature to a working ratio of 70% or more. 4. The method for producing a high-strength and high-conductivity copper alloy material according to claim 2, further comprising the step of:
JP2001040156A 2001-02-16 2001-02-16 Manufacturing method of high strength and high conductivity copper alloy material Expired - Lifetime JP3896793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001040156A JP3896793B2 (en) 2001-02-16 2001-02-16 Manufacturing method of high strength and high conductivity copper alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001040156A JP3896793B2 (en) 2001-02-16 2001-02-16 Manufacturing method of high strength and high conductivity copper alloy material

Publications (2)

Publication Number Publication Date
JP2002241873A true JP2002241873A (en) 2002-08-28
JP3896793B2 JP3896793B2 (en) 2007-03-22

Family

ID=18902817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001040156A Expired - Lifetime JP3896793B2 (en) 2001-02-16 2001-02-16 Manufacturing method of high strength and high conductivity copper alloy material

Country Status (1)

Country Link
JP (1) JP3896793B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249516A (en) * 2005-03-11 2006-09-21 Mitsubishi Electric Corp Copper alloy and its manufacturing method
JP2007227489A (en) * 2006-02-22 2007-09-06 Matsushita Electric Ind Co Ltd Heat dissipation substrate, its production method and light emitting module employing it
JP2010229438A (en) * 2009-03-26 2010-10-14 Dowa Metaltech Kk Copper alloy sheet and manufacturing method therefor
CN101914701A (en) * 2010-08-26 2010-12-15 中铝华中铜业有限公司 Lead frame material and method for processing strip made of same
JP2011174142A (en) * 2010-02-25 2011-09-08 Dowa Metaltech Kk Copper alloy plate, and method for producing copper alloy plate
JP2012107297A (en) * 2010-11-18 2012-06-07 Hitachi Cable Ltd Copper alloy for electric and electronic components, and method of manufacturing the same
CN102644003A (en) * 2011-02-16 2012-08-22 宋东升 High-strength high-conductivity corrosion-resistant rare earth-copper alloy and manufacturing method thereof
JP2015134955A (en) * 2014-01-18 2015-07-27 株式会社神戸製鋼所 Fe-P-BASED COPPER ALLOY SHEET EXCELLENT IN STRENGTH, HEAT RESISTANCE AND BENDABILITY
JP2015175056A (en) * 2014-03-18 2015-10-05 株式会社神戸製鋼所 Fe-P-BASED COPPER ALLOY SHEET EXCELLENT IN STRENGTH, HEAT RESISTANCE AND BENDABILITY
CN105088117A (en) * 2015-09-17 2015-11-25 北京科技大学 Treatment method for improving comprehensive performances of Cu-Fe-C complex phase copper alloy
CN105624461A (en) * 2016-03-31 2016-06-01 东北大学 Preparation method of Cu-Fe composite material
CN106180248A (en) * 2016-08-05 2016-12-07 徐高磊 A kind of electrician is by the production technology of phosphor-copper band
CN104073677B (en) * 2013-03-27 2017-01-11 株式会社神户制钢所 Copper alloy strip for lead frame of led
CN107799496A (en) * 2017-09-01 2018-03-13 华南理工大学 A kind of high reliability copper alloy bonding wire used for electronic packaging and preparation method thereof
CN108342608A (en) * 2018-03-23 2018-07-31 江西鸥迪铜业有限公司 A kind of free machining red copper alloy of high temperature resistant and preparation method thereof
JP2019173091A (en) * 2018-03-28 2019-10-10 三菱マテリアル株式会社 Copper alloy

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104036875B (en) * 2014-06-05 2016-12-07 深圳市本征方程石墨烯技术股份有限公司 Copper composite conductive powder of carbon-coating cladding of graphene-structured and preparation method thereof
CN111304486B (en) * 2020-03-20 2021-01-29 中色奥博特铜铝业有限公司 Copper-iron-phosphorus-zinc-tin alloy foil and production process thereof

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4494258B2 (en) * 2005-03-11 2010-06-30 三菱電機株式会社 Copper alloy and manufacturing method thereof
JP2006249516A (en) * 2005-03-11 2006-09-21 Mitsubishi Electric Corp Copper alloy and its manufacturing method
JP2007227489A (en) * 2006-02-22 2007-09-06 Matsushita Electric Ind Co Ltd Heat dissipation substrate, its production method and light emitting module employing it
JP2010229438A (en) * 2009-03-26 2010-10-14 Dowa Metaltech Kk Copper alloy sheet and manufacturing method therefor
JP2011174142A (en) * 2010-02-25 2011-09-08 Dowa Metaltech Kk Copper alloy plate, and method for producing copper alloy plate
CN101914701A (en) * 2010-08-26 2010-12-15 中铝华中铜业有限公司 Lead frame material and method for processing strip made of same
JP2012107297A (en) * 2010-11-18 2012-06-07 Hitachi Cable Ltd Copper alloy for electric and electronic components, and method of manufacturing the same
CN102644003A (en) * 2011-02-16 2012-08-22 宋东升 High-strength high-conductivity corrosion-resistant rare earth-copper alloy and manufacturing method thereof
CN104073677B (en) * 2013-03-27 2017-01-11 株式会社神户制钢所 Copper alloy strip for lead frame of led
JP2015134955A (en) * 2014-01-18 2015-07-27 株式会社神戸製鋼所 Fe-P-BASED COPPER ALLOY SHEET EXCELLENT IN STRENGTH, HEAT RESISTANCE AND BENDABILITY
JP2015175056A (en) * 2014-03-18 2015-10-05 株式会社神戸製鋼所 Fe-P-BASED COPPER ALLOY SHEET EXCELLENT IN STRENGTH, HEAT RESISTANCE AND BENDABILITY
CN105088117A (en) * 2015-09-17 2015-11-25 北京科技大学 Treatment method for improving comprehensive performances of Cu-Fe-C complex phase copper alloy
CN105088117B (en) * 2015-09-17 2017-05-17 北京科技大学 Treatment method for improving comprehensive performances of Cu-Fe-C complex phase copper alloy
CN105624461A (en) * 2016-03-31 2016-06-01 东北大学 Preparation method of Cu-Fe composite material
CN105624461B (en) * 2016-03-31 2017-05-24 东北大学 Preparation method of Cu-Fe composite material
CN106180248A (en) * 2016-08-05 2016-12-07 徐高磊 A kind of electrician is by the production technology of phosphor-copper band
CN106180248B (en) * 2016-08-05 2017-12-29 惠州市一电电池技术有限公司 A kind of electrician is with the production technology of phosphor-copper band
CN107799496A (en) * 2017-09-01 2018-03-13 华南理工大学 A kind of high reliability copper alloy bonding wire used for electronic packaging and preparation method thereof
CN108342608A (en) * 2018-03-23 2018-07-31 江西鸥迪铜业有限公司 A kind of free machining red copper alloy of high temperature resistant and preparation method thereof
JP2019173091A (en) * 2018-03-28 2019-10-10 三菱マテリアル株式会社 Copper alloy

Also Published As

Publication number Publication date
JP3896793B2 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP4655834B2 (en) Copper alloy material for electrical parts and manufacturing method thereof
TWI439556B (en) Cu-Ni-Si-Co based copper alloy for electronic materials and method of manufacturing the same
JP5320642B2 (en) Copper alloy manufacturing method and copper alloy
JP2002241873A (en) High strength and highly electrically conductive copper alloy and method for producing copper alloy material
JP3699701B2 (en) Easy-to-process high-strength, high-conductivity copper alloy
JP5506806B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP2006009137A (en) Copper alloy
JP5611773B2 (en) Copper alloy, copper-drawn article, electronic component and connector using the same, and method for producing copper alloy
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP4787986B2 (en) Copper alloy and manufacturing method thereof
KR101114116B1 (en) Copper Alloy Material for Electric and Electronic Apparatuses, and Electric and Electronic Components
JP4393663B2 (en) Copper-based alloy strip for terminal and manufacturing method thereof
JP6695725B2 (en) Al-Mg-Si alloy plate
JP2012001780A (en) Copper alloy material for electric/electronic component, and method of manufacturing the same
JP6301734B2 (en) Copper alloy material and method for producing the same
JP4396874B2 (en) Manufacturing method of copper base alloy strip for terminal
JP3864965B2 (en) Manufacturing method of copper alloy for terminals and connectors
JP2010285671A (en) High-strength and high-electrical conductivity copper alloy and method of producing the same
JP6730784B2 (en) Cu-Ni-Co-Si alloy for electronic parts
JP3763234B2 (en) Method for producing high-strength, high-conductivity, high-heat-resistant copper-based alloy
JP3325641B2 (en) Method for producing high-strength high-conductivity copper alloy
JPH09176808A (en) Production of precipitation hardening copper alloy
JP2945208B2 (en) Method for producing copper alloy for electrical and electronic equipment
TWI708854B (en) Titanium copper plate, pressed product, and manufacturing method of pressed product
JP2010236029A (en) Cu-Si-Co ALLOY FOR ELECTRONIC MATERIAL, AND METHOD OF MANUFACTURING THE SAME

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061211

R150 Certificate of patent or registration of utility model

Ref document number: 3896793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term