JP4674483B2 - Copper material manufacturing method and copper material - Google Patents

Copper material manufacturing method and copper material Download PDF

Info

Publication number
JP4674483B2
JP4674483B2 JP2005097492A JP2005097492A JP4674483B2 JP 4674483 B2 JP4674483 B2 JP 4674483B2 JP 2005097492 A JP2005097492 A JP 2005097492A JP 2005097492 A JP2005097492 A JP 2005097492A JP 4674483 B2 JP4674483 B2 JP 4674483B2
Authority
JP
Japan
Prior art keywords
copper
sulfur
mass
wire
copper material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005097492A
Other languages
Japanese (ja)
Other versions
JP2006274384A (en
Inventor
元 阿部
正義 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2005097492A priority Critical patent/JP4674483B2/en
Publication of JP2006274384A publication Critical patent/JP2006274384A/en
Application granted granted Critical
Publication of JP4674483B2 publication Critical patent/JP4674483B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)
  • Metal Extraction Processes (AREA)
  • Metal Rolling (AREA)

Description

本発明は、銅材の製造方法に係り、特に、連続鋳造圧延装置を用いて製造される銅材に関するものである。   The present invention relates to a method for producing a copper material, and more particularly to a copper material produced using a continuous casting and rolling apparatus.

現在、銅線を含む各種線材の多くは、連続鋳造圧延法により形成される。先ず、シャフト炉で溶解させた溶湯がSCR方式、又はコンチロッド(登録商標)方式の連続鋳造手段に供給され、鋳造バーが得られる。次に、その鋳造バーは連続鋳造手段に連結された熱間圧延手段に供給され、所定の外径に圧延される。その後、圧延材が冷却され、荒引き線が得られる。   At present, most of various types of wires including copper wires are formed by a continuous casting and rolling method. First, the molten metal melted in the shaft furnace is supplied to the SCR type or Contirod (registered trademark) type continuous casting means to obtain a casting bar. Next, the casting bar is supplied to a hot rolling means connected to the continuous casting means and rolled to a predetermined outer diameter. Thereafter, the rolled material is cooled, and a rough drawing line is obtained.

連続鋳造圧延法は、溶解工程、鋳造工程、及び熱間圧延工程の各ラインが連続しており、荒引き線の製造法としては効率的で、生産性に優れた方法である。得られた荒引き線は、その後、冷間伸線工程、焼きなまし工程に供され、最終製品(例えば銅線)が得られる。   In the continuous casting and rolling method, each line of the melting step, the casting step, and the hot rolling step is continuous, which is an efficient method for producing the roughing wire and is an excellent method for productivity. The rough drawing wire thus obtained is then subjected to a cold drawing step and an annealing step to obtain a final product (for example, a copper wire).

特開平6−240426号公報JP-A-6-240426 特開昭58−181853号公報JP 58-181853 A 特開平2−104629号公報JP-A-2-104629

ところで、銅線製造の焼きなまし工程において、連続焼きなましを行う(冷間伸線工程と焼きなまし工程を連続的に行う)ことで、工業生産性を向上させることができる。しかし、この場合、被焼きなまし材の軟化温度が高いと、焼きなまし工程に時間がかかると共に、焼きなまし工程の生産速度に冷間伸線工程の生産速度を合わせる必要があり、銅線の生産性が阻害される。また、被焼きなまし材の軟化温度が高いと、焼きなましに要する熱エネルギーが増大し、製造コストの上昇を招いてしまう。よって、被焼きなまし材の軟化温度の低下が図られている。   By the way, industrial productivity can be improved by performing continuous annealing in the annealing process of copper wire manufacture (a cold wire drawing process and an annealing process are performed continuously). However, in this case, if the softening temperature of the annealed material is high, the annealing process takes time, and it is necessary to match the production speed of the cold drawing process with the production speed of the annealing process, which hinders the productivity of copper wire. Is done. Moreover, when the softening temperature of the material to be annealed is high, the thermal energy required for annealing increases, leading to an increase in manufacturing cost. Therefore, the softening temperature of the material to be annealed is lowered.

銅材の軟化温度を低下させるには、銅母材中に含まれる不純物元素を除去し、Cu純度を高めることが必要とされる。不純物元素を除去する方法としては、例えば、溶湯原料の選定(高純度のものを使用)、溶湯の酸化精錬、還元精錬などがある。しかしながら、この不純物元素を除去する方法は、コストが非常にかさむ方法である。このため、溶湯原料にタフピッチ銅を用いた場合、この方法は経済的に極めて不利であり、工業的に適した方法とは言えなかった。   In order to lower the softening temperature of the copper material, it is necessary to remove the impurity elements contained in the copper base material and increase the Cu purity. As a method for removing the impurity element, there are, for example, selection of a molten metal raw material (using a high-purity material), oxidation refining of the molten metal, reduction refining, and the like. However, this method of removing the impurity element is a method that is very expensive. For this reason, when tough pitch copper is used for the molten metal raw material, this method is extremely disadvantageous economically and cannot be said to be an industrially suitable method.

一方、銅材の軟化温度を低下させる他の方法として、銅母材中に含まれる不純物元素の内、ある元素の濃度をより低くすればよいことが知られている。ここで言うある元素の1つとして、Cuに固溶した状態で存在する硫黄(S)や鉛(Pb)などがある。このCu中に固溶したSやPbの濃度を低減させるべく、銅の溶湯に真空脱ガス処理を施したり、鋳造後の銅バーに特定温度で熱処理を施すなどの方策が試みられている。しかし、従来のこれらの方策では、SやPbの濃度を十分に低減させることができないため、銅材の軟化温度を十分に低下させることができなかった。   On the other hand, as another method for lowering the softening temperature of the copper material, it is known that the concentration of a certain element among impurity elements contained in the copper base material may be lowered. One of the elements mentioned here includes sulfur (S) and lead (Pb) that are present in a solid solution state in Cu. In order to reduce the concentration of S and Pb solid-dissolved in Cu, measures such as vacuum degassing of the molten copper and heat treatment at a specific temperature on the copper bar after casting have been attempted. However, since these conventional measures cannot sufficiently reduce the concentration of S and Pb, the softening temperature of the copper material cannot be sufficiently lowered.

以上の事情を考慮して創案された本発明の目的は、安価で、軟化温度の低い銅材の製造方法及び銅材を提供することにある。   An object of the present invention created in view of the above circumstances is to provide a copper material manufacturing method and a copper material that are inexpensive and have a low softening temperature.

上記目的を達成すべく本発明に係る銅材の製造方法は、連続鋳造圧延装置を用いて銅溶湯から直接、銅材を製造する方法において、上記連続鋳造圧延装置の溶湯貯溜手段に貯溜され、酸素含有量が0.02〜0.05質量%の銅溶湯に、Ti、Zr、V、Ta、Fe、Ca又はNiから選択される少なくとも1種の金属又は合金を添加し、銅溶湯中に含まれる該金属又は合金の割合を0.0007〜0.05質量%に調整し、その銅溶湯を用いて荒引き材を製造し、その荒引き材に減面率30%以上の冷間伸線加工を施し、その冷間伸線材に100〜600℃×1時間以上の熱処理を施すものである。 In order to achieve the above object, a method for producing a copper material according to the present invention is a method for producing a copper material directly from a molten copper using a continuous casting and rolling device, and is stored in a molten metal storage means of the continuous casting and rolling device, At least one metal or alloy selected from Ti, Zr, V, Ta, Fe, Ca or Ni is added to a molten copper having an oxygen content of 0.02 to 0.05 % by mass, and the metal contained in the molten copper Alternatively, the ratio of the alloy is adjusted to 0.0007 to 0.05% by mass, a rough drawn material is produced using the molten copper, and the rough drawn material is subjected to cold drawing with a surface reduction rate of 30% or more. The wire drawing material is heat-treated at 100 to 600 ° C. for 1 hour or longer.

一方、本発明に係る銅材は、前述した製造方法を用いて製造された銅材であって、半軟化温度が147℃以下のものである。   On the other hand, the copper material according to the present invention is a copper material manufactured using the manufacturing method described above, and has a semi-softening temperature of 147 ° C. or lower.

本発明によれば、軟化温度の低い銅材を得ることができるという優れた効果を発揮する。   According to this invention, the outstanding effect that the copper material with a low softening temperature can be obtained is exhibited.

以下、本発明の好適一実施の形態を説明する。   Hereinafter, a preferred embodiment of the present invention will be described.

本発明の好適一実施の形態に係る銅材の製造方法は、連続鋳造圧延装置を用いて銅溶湯から直接、銅材を製造するものである。   The manufacturing method of the copper material which concerns on suitable one embodiment of this invention manufactures a copper material directly from molten copper using a continuous casting rolling apparatus.

具体的には、先ず、連続鋳造圧延装置の溶湯貯溜手段(例えば、タンディッシュなど)に貯溜され、酸素含有量が0.05質量%以下の銅溶湯、例えばタフピッチ銅溶湯に、Ti、Zr、V、Ta、Fe、Ca又はNiから選択される少なくとも1種の金属又は合金を添加する。この時、銅溶湯中に含まれる少なくとも1種の金属の割合が0.0007〜0.05質量%となるように、その添加量が調整される。これらの金属又は合金は、いずれもSとの親和力が大きな金属(以下、硫黄親和性金属という)である。ここで言う硫黄親和性金属とは、金属元素の単体又は混合体や、合金の単体又は混合体のいずれであってもよい。 Specifically, first, it is stored in a molten metal storage means (for example, tundish etc.) of a continuous casting and rolling apparatus, and an oxygen content of 0.05 mass % or less, for example, a tough pitch copper molten metal, Ti, Zr, V, At least one metal or alloy selected from Ta, Fe, Ca or Ni is added. At this time, the addition amount is adjusted so that the ratio of at least one metal contained in the molten copper is 0.0007 to 0.05 mass %. Any of these metals or alloys is a metal having a high affinity for S (hereinafter referred to as a sulfur affinity metal). The sulfur-affinity metal mentioned here may be either a simple substance or a mixture of metal elements, or a simple substance or a mixture of alloys.

次に、硫黄親和性金属を含むタフピッチ銅溶湯を、鋳造工程及び熱間圧延工程に供し、タフピッチ銅の荒引き材(例えば、荒引き線)を連続的に製造する。その後、荒引き材に、減面率が30%以上の冷間伸線加工、100〜600℃×1時間以上の熱処理を適宜繰り返し施して最終線径とし、半軟化温度が147℃以下の銅材(例えば、銅線)が得られる。この銅材に焼きなまし処理を施したものが、最終製品となる。ここで言う半軟化温度とは、60分間加熱した後の銅材の引張強度が加熱前の銅材の引張強度の半分になる時の温度のことである。   Next, the tough pitch copper molten metal containing a sulfur affinity metal is subjected to a casting process and a hot rolling process to continuously produce a roughing material (for example, roughing wire) of tough pitch copper. After that, the rough drawn material is subjected to cold drawing with a reduction in area of 30% or more and heat treatment at 100 to 600 ° C for 1 hour or more to obtain the final wire diameter. Copper with a semi-softening temperature of 147 ° C or less A material (for example, copper wire) is obtained. A product obtained by subjecting this copper material to annealing treatment is the final product. The semi-softening temperature referred to here is a temperature at which the tensile strength of the copper material after heating for 60 minutes becomes half the tensile strength of the copper material before heating.

荒引き材のベース材料としてタフピッチ銅を用いるのは、銅母材に0.02質量%〜0.05質量%の割合で酸素が共存する(比較的多く存在する)ためである。この酸素が銅母材に固溶している各種不純物と反応して酸化物を形成することによって、銅母材に固溶している各種不純物の濃度が減少する。また、タフピッチ銅を用いるのは、銅線用材料として幅広く用いられていると共に、無酸素銅と比較して安価で、コストパフォーマンスがよいためである。ここで、タフピッチ銅としては、電気銅のみを用いて形成したもの、又は電気銅とスクラップ銅を混ぜて形成したもののいずれであってもよい。
The reason why tough pitch copper is used as the base material of the roughing material is that oxygen coexists in the copper base material at a ratio of 0.02% by mass to 0.05 % by mass (relatively exists). The oxygen reacts with various impurities dissolved in the copper base material to form oxides, thereby reducing the concentration of various impurities dissolved in the copper base material. The tough pitch copper is used because it is widely used as a copper wire material and is cheaper and more cost-effective than oxygen-free copper. Here, the tough pitch copper may be either one formed using only electric copper or one formed by mixing electric copper and scrap copper.

硫黄親和性金属の含有量を0.0007〜0.05質量%、好ましくは0.001〜0.05質量%と規定したのは、含有量が0.0007質量%未満だと、硫黄親和性金属と銅母材に固溶しているSが十分に反応せず、軟化温度を低下させる効果が十分に得られないためである。一方、含有量が0.05質量%を超えると、銅材に固溶する硫黄親和性金属の固溶量が多くなりすぎて、銅材の軟化温度が逆に上昇するためである。 The content of sulfur affinity metal from 0.0007 to 0.05 wt%, preferably is was defined as 0.001 to 0.05 wt%, that's content is less than 0.0007 wt%, a solid solution of sulfur affinity metal and copper matrix This is because S which does not sufficiently react and the effect of lowering the softening temperature cannot be sufficiently obtained. On the other hand, when the content exceeds 0.05% by mass , the amount of the sulfur-affinity metal dissolved in the copper material is excessively increased, and the softening temperature of the copper material is increased.

冷間伸線加工の減面率を30%以上と規定したのは、減面率が30%未満だと、SやPbの析出を促進させ、銅材の軟化温度を低減させる効果が不十分となるためである。   The reason for defining the area reduction rate of cold drawing as 30% or more is that if the area reduction rate is less than 30%, the effect of promoting the precipitation of S and Pb and reducing the softening temperature of the copper material is insufficient. It is because it becomes.

冷間伸線材に対する熱処理温度は100〜600℃と規定した。ここで、銅材に固溶しているSやPbなどを析出させるための反応は拡散反応であり、拡散反応を十分に生じさせるには、十分な反応温度(加熱温度)を必要とする。熱処理温度が100℃未満だと、拡散反応を十分に生じさせられない。また、熱処理温度が600℃を超えると、Cuに対するSやPbの固溶限が高まることで、銅材に固溶するSやPbの濃度が逆に増えてしまい、その結果、銅材の軟化温度がさらに上昇する。   The heat treatment temperature for the cold drawn wire was defined as 100 to 600 ° C. Here, the reaction for precipitating S, Pb and the like dissolved in the copper material is a diffusion reaction, and a sufficient reaction temperature (heating temperature) is required to sufficiently generate the diffusion reaction. When the heat treatment temperature is less than 100 ° C., the diffusion reaction cannot be sufficiently caused. In addition, when the heat treatment temperature exceeds 600 ° C., the solid solubility limit of S and Pb with respect to Cu increases, so the concentration of S and Pb that dissolve in the copper material increases conversely. As a result, the softening of the copper material The temperature rises further.

一方、冷間伸線材に対する熱処理時間は1時間以上と規定した。ここで、前述した拡散反応を十分に生じさせるには、十分な反応時間(加熱時間)を必要とする。熱処理時間が1時間未満だと、銅材に固溶しているSやPbなどを析出させるための反応時間を十分に確保できない。   On the other hand, the heat treatment time for the cold drawn wire was defined as 1 hour or more. Here, a sufficient reaction time (heating time) is required to sufficiently cause the diffusion reaction described above. When the heat treatment time is less than 1 hour, it is not possible to ensure a sufficient reaction time for precipitating S, Pb and the like dissolved in the copper material.

また、半軟化温度を147℃以下と規定したのは、半軟化温度が147℃を超えると、銅材の軟化温度の低減効果が十分でないためである。   The reason why the semi-softening temperature is defined as 147 ° C. or lower is that when the semi-softening temperature exceeds 147 ° C., the effect of reducing the softening temperature of the copper material is not sufficient.

ここで、本実施の形態に係る銅材の軟化温度が大幅に低下する理由は、次のように考えられる。   Here, the reason why the softening temperature of the copper material according to the present embodiment is greatly reduced is considered as follows.

通常のタフピッチ銅には10ppm前後のSが固溶しており、このSが銅材の軟化温度を上昇させる大きな因子といわれている。そこで、本実施の形態に係る製造方法では、鋳造直前の酸素含有量が0.05質量%以下の銅溶湯、例えばタフピッチ銅溶湯に、硫黄親和性金属を所定の割合で添加している。この硫黄親和性金属(例えば、Ti)がタフピッチ銅溶湯に固溶しているSと反応することで、Sが硫化物(例えば、TiS)として析出し、Sの固溶量が減少される。また、硫黄親和性金属は、タフピッチ銅溶湯が凝固、再結晶する際の核となることから、これによって、タフピッチ銅の再結晶生成エネルギーを低くすることができる。 Ordinary tough pitch copper contains about 10 ppm of S as a solid solution, and this S is said to be a major factor for increasing the softening temperature of the copper material. Therefore, in the manufacturing method according to the present embodiment, a sulfur-affinity metal is added at a predetermined ratio to a molten copper having an oxygen content immediately before casting of 0.05 mass % or less, for example, a tough pitch copper molten metal. The sulfur-affinity metal (for example, Ti) reacts with S that is dissolved in the tough pitch copper molten metal, so that S is precipitated as a sulfide (for example, TiS), and the solid solution amount of S is reduced. In addition, since the sulfur affinity metal becomes a nucleus when the tough pitch copper melt is solidified and recrystallized, the recrystallization generation energy of the tough pitch copper can be lowered.

また、連続鋳造圧延法の熱間圧延工程を経て急冷された荒引き材は、SやPbなどの不純物元素が過飽和に固溶された状態にある。ところが、本実施の形態に係る製造方法では、連続鋳造圧延した荒引き材に減面率が30%以上の冷間伸線加工、及び100〜600℃×1時間以上の熱処理を施している。このように、荒引き材に冷間伸線加工を施すことで、冷間伸線加工時に増大、成長した転位によって、Cu原子及びS原子が容易に拡散、移動できるようになる。その結果、熱処理時に、銅材に過飽和に固溶されたSなどの不純物元素がCuと化合し、析出物(例えば、Cu2S)として析出し易くなる。特に、銅の軟化温度を上昇させるSは、Cuに対する固溶限が小さいため、冷間伸線加工及び熱処理によって容易に析出する。その結果、銅材に固溶するSやPbの濃度が低減され、延いては、銅材の軟化温度が低下すると考えられる。このように両者(冷間伸線加工及び熱処理)の効果の組み合わせにより、銅材の軟化温度を大幅に低下させることが可能となると考えられる。 Moreover, the rough-drawn material rapidly cooled through the hot rolling process of the continuous casting rolling method is in a state where impurity elements such as S and Pb are dissolved in a supersaturated state. However, in the manufacturing method according to the present embodiment, the rough drawn material that has been continuously cast and rolled is subjected to cold wire drawing with a reduction in area of 30% or more and heat treatment at 100 to 600 ° C. for 1 hour or more. In this way, by performing cold drawing on the roughing material, Cu atoms and S atoms can be easily diffused and moved by dislocations increased and grown during the cold drawing. As a result, during heat treatment, an impurity element such as S that is supersaturated in the copper material is combined with Cu and is likely to precipitate as a precipitate (for example, Cu 2 S). In particular, S, which raises the softening temperature of copper, is easily precipitated by cold wire drawing and heat treatment since the solid solubility limit for Cu is small. As a result, it is considered that the concentration of S or Pb dissolved in the copper material is reduced, and the softening temperature of the copper material is lowered. Thus, it is considered that the softening temperature of the copper material can be greatly reduced by a combination of the effects of both (cold drawing and heat treatment).

本実施の形態に係る製造方法に用いる荒引き材及び最終的に得られる銅材の形態は、減面加工によって形成可能なものであれば特に限定するものではなく、例えば、線状、板状、又は条状などのいずれであってもよい。   The form of the roughing material used in the manufacturing method according to the present embodiment and the finally obtained copper material is not particularly limited as long as it can be formed by surface reduction processing. For example, the shape is linear or plate-like. Or any of the stripes.

次に、本実施の形態に係る銅材の作用を説明する。   Next, the operation of the copper material according to the present embodiment will be described.

通常、荒引き材に冷間伸線加工を施し、伸延、伸線させてなる銅材は、加工硬化によって高硬度な線材(例えば、硬銅線)となっている。このため、通常の硬銅線に焼きなましを行う際、特にアニーラー焼きなましを行う際は、高温、長時間の熱処理が必要となる。   Usually, a copper material obtained by subjecting a rough drawing material to cold drawing, drawing and drawing is a wire material having high hardness (for example, hard copper wire) by work hardening. For this reason, when annealing normal copper wire, particularly when annealing annealing, high temperature and long time heat treatment is required.

しかしながら、本実施の形態に係る製造方法により得られた銅材は、酸素含有量が0.05質量%以下の銅溶湯、例えばタフピッチ銅溶湯に、Ti、Zr、V、Ta、Fe、Ca又はNiから選択される少なくとも1種の硫黄親和性金属を、その含有量が0.0007〜0.05質量%となるように添加している。 However, the copper material obtained by the manufacturing method according to the present embodiment is a molten copper having an oxygen content of 0.05 % by mass or less, such as a tough pitch copper molten metal, from Ti, Zr, V, Ta, Fe, Ca, or Ni. At least one selected sulfur-affinity metal is added so that the content thereof is 0.0007 to 0.05% by mass .

ここで、硫黄親和性金属は、酸素との反応性が強い金属であるため、大気中の酸素と容易に反応して酸化する。よって、銅溶湯に硫黄親和性金属を添加してから実際に鋳造に供するまでの時間が長いと、硫黄親和性金属が大気に晒される時間が長くなり、硫黄親和性金属が多量に酸化されて添加ロスとなる。そこで、硫黄親和性金属と大気中の酸素との反応を抑制することが重要となる。本実施の形態に係る製造方法において、硫黄親和性金属を銅溶湯中に添加する望ましいタイミングは鋳造直前である。また、硫黄親和性金属の添加形態は、硫黄親和性金属の単体を、直接、添加してもよいが、銅母材と合金化させたものを添加することが好ましい。これによって、前述したように硫黄親和性金属の酸化を抑制することができる。また、添加量の秤量ばらつきを抑制することができ、延いては硫黄親和性金属の含有量の精度を高めることができる。   Here, since the sulfur affinity metal is a metal having a strong reactivity with oxygen, it easily reacts with oxygen in the atmosphere and oxidizes. Therefore, if it takes a long time to add the sulfur-affinity metal to the molten copper and actually use it for casting, it takes longer time for the sulfur-affinity metal to be exposed to the atmosphere. Additive loss. Therefore, it is important to suppress the reaction between the sulfur affinity metal and oxygen in the atmosphere. In the manufacturing method according to the present embodiment, a desirable timing for adding the sulfur affinity metal to the molten copper is immediately before casting. Moreover, the addition form of a sulfur affinity metal may add the simple substance of a sulfur affinity metal directly, However, It is preferable to add what was alloyed with the copper base material. Thereby, as described above, oxidation of the sulfur affinity metal can be suppressed. In addition, variation in the amount of addition can be suppressed, and as a result, the accuracy of the content of sulfur-affinity metal can be increased.

以上のような製造方法によって得られた銅材は、タフピッチ銅を用い、従来の方法で製造した銅材(以下、従来の銅材という)と比較して軟化温度が低くなる(例えば、半軟化温度が147℃以下となる)。このため、本実施の形態の銅材は、より低い温度で十分な焼きなましを行うことができる。よって、アニーラー焼きなましを行う際、本実施の形態の銅材は、従来の銅材と比較して、より低い温度で、かつ、短時間で焼きなましを行うことが可能となる。その結果、銅材の生産性が向上すると共に、銅材製造に要するエネルギーの削減も可能となる。   The copper material obtained by the above manufacturing method uses tough pitch copper and has a softening temperature lower than that of a copper material manufactured by a conventional method (hereinafter referred to as a conventional copper material) (for example, semi-softening). The temperature becomes 147 ° C or less). For this reason, the copper material of the present embodiment can be sufficiently annealed at a lower temperature. Therefore, when performing annealing annealing, the copper material of the present embodiment can be annealed at a lower temperature and in a shorter time than a conventional copper material. As a result, productivity of the copper material is improved, and energy required for manufacturing the copper material can be reduced.

本実施の形態の銅材は、安価なタフピッチ銅で構成されており、かつ、その軟化温度が従来の銅材よりも大幅に低いことから、最終製品の原料コスト及び製造コストが安価となり、その工業的価値が非常に高い銅材である。   The copper material of the present embodiment is made of inexpensive tough pitch copper and its softening temperature is significantly lower than that of the conventional copper material, so that the raw material cost and manufacturing cost of the final product are reduced, It is a copper material with very high industrial value.

以上、本発明は、上述した実施の形態に限定されるものではなく、他にも種々のものが想定されることは言うまでもない。   As described above, the present invention is not limited to the above-described embodiment, and it goes without saying that various other things are assumed.

次に、本発明の実施例に基づいて説明するが、本発明はこの実施例に限定されるものではない。   Next, although it demonstrates based on the Example of this invention, this invention is not limited to this Example.

シャフト炉と連結したSCR方式の連続鋳造圧延装置を用い、タフピッチ銅からなる直径φ8mmの荒引き線を製造した。荒引き線の構成材は、タフピッチ銅溶湯に硫黄親和性金属を所定の割合で添加したものである。この荒引き線に冷間伸線加工、熱処理を適宜繰り返して施し、直径φ2.6mmの銅線を作製した(試料1〜試料22)。 Using a SCR-type continuous casting and rolling device connected to a shaft furnace, a rough drawn wire made of tough pitch copper and having a diameter of 8 mm was manufactured. The constituent material of the rough drawing wire is obtained by adding a sulfur-affinity metal to a tough pitch copper molten metal at a predetermined ratio. The rough drawing wire was repeatedly subjected to cold drawing and heat treatment as appropriate to produce copper wires having a diameter of 2.6 mm (Sample 1 to Sample 22 ).

試料1〜4は、それぞれ荒引き線のままの状態(冷間伸線加工及び熱処理は無し)であり、
硫黄親和性金属含有量が0質量%のものを(比較例1)、
硫黄親和性金属含有量が0.0003質量%Tiのものを(比較例2)、
硫黄親和性金属含有量が0.003質量%Tiのものを(比較例3)、
硫黄親和性金属含有量が0.06質量%Tiのものを(比較例4)とした。
Samples 1 to 4 are each in a state of rough drawing (no cold wire drawing and heat treatment),
A sulfur-affinity metal content of 0% by mass (Comparative Example 1)
A sulfur affinity metal content of 0.0003 mass % Ti (Comparative Example 2),
A sulfur affinity metal content of 0.003 mass % Ti (Comparative Example 3),
The one having a sulfur-affinity metal content of 0.06 mass % Ti was defined as (Comparative Example 4).

試料5〜7は、硫黄親和性金属含有量が0.003質量%Tiの荒引き線に、それぞれ、減面率30%の冷間伸線加工、400℃×60minの熱処理を施したもの(実施例1)、
減面率20%の冷間伸線加工、400℃×60minの熱処理を施したもの(比較例5)、
減面率50%の冷間伸線加工、400℃×60minの熱処理を施したもの(実施例2)、
である。
Samples 5 to 7 were obtained by subjecting a rough drawn wire having a sulfur-affinity metal content of 0.003 mass % Ti to cold drawing with a surface reduction rate of 30% and heat treatment at 400 ° C. for 60 minutes (Example) 1),
Cold drawn with a surface reduction of 20%, heat treated at 400 ° C for 60 min (Comparative Example 5),
Cold drawn with 50% area reduction, heat treated at 400 ° C x 60 min (Example 2),
It is.

試料8〜10は、硫黄親和性金属含有量が0.003質量%Tiの荒引き線に減面率30%の冷間伸線加工を施し、それぞれ更に、
100℃×60minの熱処理を施したもの(実施例3)、
600℃×90minの熱処理を施したもの(実施例4)、
800℃×30minの熱処理を施したもの(比較例6)、
である。
Samples 8 to 10 were subjected to cold drawing with a surface reduction rate of 30% on the rough drawn wire having a sulfur-affinity metal content of 0.003 mass % Ti,
What was heat-treated at 100 ° C. for 60 minutes (Example 3),
Those subjected to heat treatment of 600 ° C. × 90 min (Example 4),
Heat-treated at 800 ° C for 30 min (Comparative Example 6)
It is.

試料11,12は、それぞれ硫黄親和性金属含有量が0.003質量%Tiの荒引線に冷間伸線加工を施さず、直接、
600℃×30minの熱処理を施したもの(比較例7)、
800℃×60minの熱処理を施したもの(比較例8)、
である。
Samples 11 and 12 are not subjected to cold wire drawing, each roughing feeder of sulfur affinity metal content of 0.003 wt% Ti, directly,
Heat-treated at 600 ° C x 30 min (Comparative Example 7)
Heat-treated at 800 ° C x 60 min (Comparative Example 8)
It is.

試料13〜22は、硫黄親和性金属を含む荒引き線に、それぞれ減面率30%の冷間伸線加工、400℃×60minの熱処理を施したものである。
硫黄親和性金属含有量が0質量%のものを(比較例9)、
硫黄親和性金属含有量が0.0003質量%Tiのものを(比較例10)、
硫黄親和性金属含有量が0.06質量%Tiのものを(比較例11)、
硫黄親和性金属含有量が0.003質量%Zrのものを(実施例5)、
硫黄親和性金属含有量が0.003質量%Feのものを(実施例6)、
硫黄親和性金属含有量が0.006質量%Taのものを(実施例)、
硫黄親和性金属含有量が0.0005質量%Niのものを(比較例12)、
硫黄親和性金属含有量が0.01質量%Niのものを(実施例)、
硫黄親和性金属含有量が0.01質量%Ni+0.001質量%Tiのものを(実施例)、
硫黄親和性金属含有量が0.01質量%Ni+0.001質量%Mnのものを(実施例10)、とした。
Samples 13 to 22 were obtained by subjecting a rough drawn wire containing a sulfur-affinity metal to cold drawing with a surface reduction rate of 30% and heat treatment at 400 ° C. for 60 minutes.
A sulfur-affinity metal content of 0% by mass (Comparative Example 9),
A sulfur affinity metal content of 0.0003 mass % Ti (Comparative Example 10),
A sulfur-affinity metal content of 0.06 mass % Ti (Comparative Example 11),
A sulfur-affinity metal content of 0.003 mass % Zr (Example 5),
A sulfur-affinity metal content of 0.003 mass % Fe (Example 6),
A sulfur-affinity metal content of 0.006 mass % Ta (Example 7 ),
The one having a sulfur affinity metal content of 0.0005 mass % Ni (Comparative Example 12),
A sulfur-affinity metal content of 0.01 mass % Ni (Example 8 ),
A sulfur-affinity metal content of 0.01 mass % Ni + 0.001 mass % Ti (Example 9 ),
A sample having a sulfur-affinity metal content of 0.01 mass % Ni + 0.001 mass % Mn was defined as (Example 10 ).

実施例1〜10及び比較例1〜12の各銅線を用いて軟化試験を行い、軟化特性の評価を行った。その結果を表1に示す。ここで、軟化特性の評価は、半軟化温度を用いて行った。 Softening tests were performed using the copper wires of Examples 1 to 10 and Comparative Examples 1 to 12, and the softening characteristics were evaluated. The results are shown in Table 1. Here, the evaluation of the softening characteristics was performed using the semi-softening temperature.

Figure 0004674483
Figure 0004674483

表1に示すように、実施例1〜10の各銅線は、いずれも硫黄親和性金属の含有量が0.0007〜0.05質量%の範囲であり、本発明に係る銅線の製造方法を満足していた。実施例1〜10の各銅線の半軟化温度はいずれも147℃以下(126〜146℃)であり、硫黄親和性金属が無添加の銅線(比較例1)の半軟化温度(231℃)と比較すると、大幅に(80℃以上)半軟化温度が低下していた。 As shown in Table 1, each of the copper wires of Examples 1 to 10 has a sulfur-affinity metal content in the range of 0.0007 to 0.05% by mass , and satisfies the copper wire manufacturing method according to the present invention. It was. The semi-softening temperatures of the copper wires of Examples 1 to 10 are all 147 ° C. or lower (126 to 146 ° C.), and the semi-softening temperature (231 ° C.) of the copper wire to which no sulfur-affinity metal is added (Comparative Example 1). ), The semi-softening temperature was significantly reduced (over 80 ° C).

比較例2の銅線は、硫黄親和性金属の含有量が0.0003質量%Tiと少なすぎるため、銅線の軟化温度を低下させる効果が全く得られず、半軟化温度は比較例1の銅線と全く同じ231℃であった。比較例4の銅線は、硫黄親和性金属の含有量が0.06質量%Tiと多すぎるため、銅線の軟化温度を逆に上昇させてしまい、半軟化温度は硫黄親和性金属無添加の銅線(比較例1)よりも100℃も高温(331℃)となった。 The copper wire of Comparative Example 2 has a sulfur-affinity metal content of 0.0003 mass % Ti, which is too small, so that no effect of lowering the softening temperature of the copper wire can be obtained. Was exactly 231 ° C. The copper wire of Comparative Example 4 has too much sulfur-affinity metal content of 0.06 mass % Ti, so the softening temperature of the copper wire is raised conversely, and the semi-softening temperature is copper with no sulfur-affinity metal added. The temperature was 100 ° C. (331 ° C.) higher than that of the wire (Comparative Example 1).

比較例3の銅線は、硫黄親和性金属の含有量が0.003質量%Tiと規定範囲内であるが、冷間伸線加工及び熱処理を施していないため、半軟化温度(169℃)を十分に低下させることができなかった。 The copper wire of Comparative Example 3 has a sulfur-affinity metal content of 0.003 mass % Ti within the specified range, but is not subjected to cold wire drawing and heat treatment, so the semi-softening temperature (169 ° C) is sufficient. Could not be lowered.

比較例5の銅線は、硫黄親和性金属の含有量が0.003質量%Tiで、かつ、熱処理が400℃×60minといずれも規定範囲内であるが、冷間伸線加工の減面率が20%と小さいため、半軟化温度(154℃)を十分に低下させることができなかった。 The copper wire of Comparative Example 5 has a sulfur-affinity metal content of 0.003 mass % Ti and a heat treatment of 400 ° C. × 60 min, both within the specified range. Since it was as small as 20%, the semisoftening temperature (154 ° C.) could not be lowered sufficiently.

比較例6の銅線は、硫黄親和性金属の含有量が0.003質量%Tiで、かつ、冷間伸線加工の減面率が30%といずれも規定範囲内であるが、熱処理温度が800℃と高い。このため、比較例6の銅線は、実施例1の銅線と比較すると、半軟化温度(172℃)が大幅に高くなった。 The copper wire of Comparative Example 6 has a sulfur-affinity metal content of 0.003 mass % Ti and a cold-drawing area reduction rate of 30%, both within the specified range, but the heat treatment temperature is 800 High as ℃. For this reason, compared with the copper wire of Example 1, the semi-softening temperature (172 ° C.) of the copper wire of Comparative Example 6 was significantly increased.

比較例7,8の各銅線は、硫黄親和性金属の含有量が0.003質量%Tiと規定範囲内であるが、冷間伸線加工を施していない。このため、比較例7,8の各銅線は、実施例1の銅線と比較すると、半軟化温度(148℃、163℃)がそれぞれ高くなった。
特に、比較例7、8の各銅線を比較すると、熱処理温度を高くすることで、半軟化温度が高くなることが確認された。
Each copper wire of Comparative Examples 7 and 8 has a sulfur-affinity metal content within the specified range of 0.003 mass % Ti, but is not subjected to cold drawing. For this reason, the copper wires of Comparative Examples 7 and 8 had higher semi-softening temperatures (148 ° C. and 163 ° C.) than the copper wires of Example 1, respectively.
In particular, when the copper wires of Comparative Examples 7 and 8 were compared, it was confirmed that the semi-softening temperature was increased by increasing the heat treatment temperature.

比較例9〜12の各銅線は、冷間伸線加工の減面率が30%で、かつ、熱処理が400℃×60minといずれも規定範囲内であるが、硫黄親和性金属の含有量が規定範囲外である。このため、硫黄親和性金属の含有量が規定範囲よりも少ない比較例9,10,12の各銅線は、実施例1の銅線と比較すると、半軟化温度(192℃、192℃、165℃)がそれぞれ高くなった。また、硫黄親和性金属の含有量が規定範囲よりも多い比較例11の銅線は、冷間伸線加工及び熱処理により、比較例4の銅線と比べると半軟化温度が低くなっているが、依然として高いレベルにあった(292℃)。   Each of the copper wires of Comparative Examples 9 to 12 has a surface reduction rate of 30% in cold drawing and a heat treatment of 400 ° C. × 60 min, both within the specified range. Is outside the specified range. For this reason, compared with the copper wire of Example 1, the copper wires of Comparative Examples 9, 10, and 12 having a sulfur-affinity metal content that is less than the specified range have a semi-softening temperature (192 ° C., 192 ° C., 165 ℃) increased. Moreover, although the copper wire of the comparative example 11 with more content of a sulfur affinity metal than a regulation range has the semi-softening temperature low compared with the copper wire of the comparative example 4 by cold wire drawing and heat processing. It was still at a high level (292 ° C).

以上より、荒引き線の構成材であるタフピッチ銅溶湯に硫黄親和性金属を所定の割合で添加し、そのタフピッチ銅溶湯を連続鋳造圧延装置に供給して荒引き線を製造すると共に、その荒引き線に、所定の条件の冷間伸線加工及び熱処理を施すことで、銅線の軟化温度を大幅に低下させることができることが確認された。
As described above, a sulfur-affinity metal is added to the tough pitch copper molten metal, which is a constituent material of the rough drawing wire, at a predetermined ratio, and the rough tough copper wire is supplied to the continuous casting rolling apparatus to produce the rough drawing wire. It was confirmed that the softening temperature of the copper wire can be greatly reduced by subjecting the drawn wire to cold drawing and heat treatment under predetermined conditions.

Claims (2)

連続鋳造圧延装置を用いて銅溶湯から直接、銅材を製造する方法において、
上記連続鋳造圧延装置の溶湯貯溜手段に貯溜され、酸素含有量が0.02〜0.05質量%の銅溶湯に、Ti、Zr、V、Ta、Fe、Ca又はNiから選択される少なくとも1種の金属又は合金を添加し、銅溶湯中に含まれる該金属又は合金の割合を0.0007〜0.05質量%に調整し、その銅溶湯を用いて荒引き材を製造し、その荒引き材に減面率30%以上の冷間伸線加工を施し、その冷間伸線材に100〜600℃×1時間以上の熱処理を施すことを特徴とする銅材の製造方法。
In a method for producing a copper material directly from a molten copper using a continuous casting and rolling device,
At least one metal selected from Ti, Zr, V, Ta, Fe, Ca, or Ni is stored in the molten metal storage means of the continuous casting and rolling apparatus, and the molten copper having an oxygen content of 0.02 to 0.05 mass% , or Add an alloy , adjust the ratio of the metal or alloy contained in the molten copper to 0.0007-0.05 mass%, manufacture the roughing material using the molten copper, and reduce the surface reduction rate to the roughened material by 30% A method for producing a copper material, comprising performing the above cold wire drawing and heat-treating the cold wire at 100 to 600 ° C. for 1 hour or more.
請求項1記載の製造方法を用いて製造された銅材であって、半軟化温度が147℃以下であることを特徴とする銅材。   A copper material manufactured using the manufacturing method according to claim 1, wherein a semi-softening temperature is 147 ° C. or lower.
JP2005097492A 2005-03-30 2005-03-30 Copper material manufacturing method and copper material Expired - Fee Related JP4674483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005097492A JP4674483B2 (en) 2005-03-30 2005-03-30 Copper material manufacturing method and copper material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005097492A JP4674483B2 (en) 2005-03-30 2005-03-30 Copper material manufacturing method and copper material

Publications (2)

Publication Number Publication Date
JP2006274384A JP2006274384A (en) 2006-10-12
JP4674483B2 true JP4674483B2 (en) 2011-04-20

Family

ID=37209417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005097492A Expired - Fee Related JP4674483B2 (en) 2005-03-30 2005-03-30 Copper material manufacturing method and copper material

Country Status (1)

Country Link
JP (1) JP4674483B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182170A (en) * 2006-12-28 2008-08-07 Hitachi Cable Ltd Solder-plated wire for solar cell and manufacturing method thereof, and solar cell
JP2008182171A (en) * 2006-12-28 2008-08-07 Hitachi Cable Ltd Solder-plated wire for solar cell and manufacturing method thereof, and solar cell
JP2008255417A (en) * 2007-04-05 2008-10-23 Hitachi Cable Ltd Method for producing copper material, and copper material
JP4709296B2 (en) * 2009-04-17 2011-06-22 日立電線株式会社 Method for manufacturing diluted copper alloy material
JP5077416B2 (en) * 2010-02-08 2012-11-21 日立電線株式会社 Soft dilute copper alloy material, soft dilute copper alloy wire, soft dilute copper alloy plate, soft dilute copper alloy twisted wire and cables, coaxial cables and composite cables using these
CN102214503B (en) * 2010-03-02 2017-08-25 日立金属株式会社 The manufacture method of molten solder plating wire
JP5609564B2 (en) * 2010-11-10 2014-10-22 日立金属株式会社 Manufacturing method of molten solder plating wire
JP5589753B2 (en) * 2010-10-20 2014-09-17 日立金属株式会社 Welded member and manufacturing method thereof
JP5601147B2 (en) * 2010-10-20 2014-10-08 日立金属株式会社 Micro speaker voice coil winding and method of manufacturing the same
JP5637435B2 (en) * 2010-10-20 2014-12-10 日立金属株式会社 Coaxial cable and manufacturing method thereof
JP5601146B2 (en) * 2010-10-20 2014-10-08 日立金属株式会社 Winding for speaker voice coil and manufacturing method thereof
JP5589754B2 (en) * 2010-10-20 2014-09-17 日立金属株式会社 Dilute copper alloy material and method for producing diluted copper alloy material excellent in hydrogen embrittlement resistance
JP2012087366A (en) * 2010-10-20 2012-05-10 Hitachi Cable Ltd Rolled copper foil and method for manufacturing the same
JP5621502B2 (en) * 2010-10-20 2014-11-12 日立金属株式会社 Electrode plate and method for manufacturing electrode plate
JP5732809B2 (en) * 2010-10-20 2015-06-10 日立金属株式会社 Extruded product and manufacturing method thereof
JP5549528B2 (en) * 2010-10-20 2014-07-16 日立金属株式会社 Glass wound copper wire and method for producing glass wound copper wire
JP5589756B2 (en) * 2010-10-20 2014-09-17 日立金属株式会社 Flexible flat cable and manufacturing method thereof
JP5760544B2 (en) * 2011-03-17 2015-08-12 日立金属株式会社 Soft dilute copper alloy wire, soft dilute copper alloy stranded wire, insulated wire, coaxial cable and composite cable using them
JP5772338B2 (en) * 2011-07-21 2015-09-02 日立金属株式会社 Soft dilute copper alloy wire, soft dilute copper alloy sheet and soft dilute copper alloy stranded wire
JP6019547B2 (en) * 2011-07-21 2016-11-02 日立金属株式会社 Copper bonding wire
JP2013040384A (en) * 2011-08-17 2013-02-28 Hitachi Cable Ltd Wiring material and plate material using soft dilute copper alloy
JP6028586B2 (en) * 2013-01-18 2016-11-16 日立金属株式会社 Copper alloy material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497528A (en) * 1978-01-20 1979-08-01 Sumitomo Electric Ind Ltd Copperr alloy soft conductor and method of making same
JPS5789448A (en) * 1980-11-21 1982-06-03 Tatsuta Electric Wire & Cable Co Ltd Copper alloy for conducting electricity
JPS62145756A (en) * 1985-12-20 1987-06-29 Sumitomo Metal Mining Co Ltd Copper wirings for bonding
JPS63176441A (en) * 1987-01-16 1988-07-20 Kobe Steel Ltd Refining method for copper alloy
JPH02104629A (en) * 1988-10-12 1990-04-17 Hitachi Cable Ltd Low temperature softening oxygen free copper dilute alloy and copper foil for printed board by using it
JPH02163330A (en) * 1988-12-15 1990-06-22 Hitachi Cable Ltd Annealed copper wire for hammering piano string
JPH02263958A (en) * 1989-04-04 1990-10-26 Hitachi Cable Ltd Oxygen free copper rolled foil and flexible printing circuit board using it

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497528A (en) * 1978-01-20 1979-08-01 Sumitomo Electric Ind Ltd Copperr alloy soft conductor and method of making same
JPS5789448A (en) * 1980-11-21 1982-06-03 Tatsuta Electric Wire & Cable Co Ltd Copper alloy for conducting electricity
JPS62145756A (en) * 1985-12-20 1987-06-29 Sumitomo Metal Mining Co Ltd Copper wirings for bonding
JPS63176441A (en) * 1987-01-16 1988-07-20 Kobe Steel Ltd Refining method for copper alloy
JPH02104629A (en) * 1988-10-12 1990-04-17 Hitachi Cable Ltd Low temperature softening oxygen free copper dilute alloy and copper foil for printed board by using it
JPH02163330A (en) * 1988-12-15 1990-06-22 Hitachi Cable Ltd Annealed copper wire for hammering piano string
JPH02263958A (en) * 1989-04-04 1990-10-26 Hitachi Cable Ltd Oxygen free copper rolled foil and flexible printing circuit board using it

Also Published As

Publication number Publication date
JP2006274384A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
JP4674483B2 (en) Copper material manufacturing method and copper material
JP2008255417A (en) Method for producing copper material, and copper material
JP2006274383A (en) Method for manufacturing copper material, and copper material
JP3999676B2 (en) Copper-based alloy and method for producing the same
JP5604882B2 (en) Manufacturing method of copper rough drawing wire having low semi-softening temperature, manufacturing method of copper wire, and copper wire
KR101994015B1 (en) Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
JP5051647B2 (en) High-strength and high-conductivity Cu-Ag alloy wire and method for producing the same
JP4787986B2 (en) Copper alloy and manufacturing method thereof
JP2001294957A (en) Copper alloy for connector and its producing method
JP2009167450A (en) Copper alloy and producing method therefor
JP2008255416A (en) Method for manufacturing copper material, and copper material
JP4820572B2 (en) Manufacturing method of heat-resistant aluminum alloy wire
JPS6132386B2 (en)
JP2012136746A (en) Copper alloy for electric and electronic parts, and method for manufacturing the same
JP4313136B2 (en) High strength copper alloy with excellent bending workability
JP2006272422A (en) Manufacturing method of copper material and copper material
CN114540664B (en) Copper alloy and preparation method and application thereof
CN112567058B (en) Method for producing copper alloy sheet having excellent strength and conductivity, and copper alloy sheet produced thereby
JP3763234B2 (en) Method for producing high-strength, high-conductivity, high-heat-resistant copper-based alloy
JP2000144284A (en) High-strength and high-conductivity copper-iron alloy sheet excellent in heat resistance
CN108728686B (en) Copper alloy material, method for producing copper alloy material, and cage rotor
JP5252722B2 (en) High strength and high conductivity copper alloy and method for producing the same
KR19990048844A (en) Copper (Cu) -nickel (Ni) -manganese (Mn) -tin (Sn) -silicon (Si) alloys for high-strength wire and plate and its manufacturing method
JP2008254023A (en) Method for producing copper material, and copper material
JPS61143564A (en) Manufacture of high strength and highly conductive copper base alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees