JP5536258B1 - Copper alloy sheet with excellent conductivity and stress relaxation properties - Google Patents

Copper alloy sheet with excellent conductivity and stress relaxation properties Download PDF

Info

Publication number
JP5536258B1
JP5536258B1 JP2013121154A JP2013121154A JP5536258B1 JP 5536258 B1 JP5536258 B1 JP 5536258B1 JP 2013121154 A JP2013121154 A JP 2013121154A JP 2013121154 A JP2013121154 A JP 2013121154A JP 5536258 B1 JP5536258 B1 JP 5536258B1
Authority
JP
Japan
Prior art keywords
copper alloy
less
mpa
mass
stress relaxation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013121154A
Other languages
Japanese (ja)
Other versions
JP2014198894A (en
Inventor
隆紹 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2013121154A priority Critical patent/JP5536258B1/en
Application granted granted Critical
Publication of JP5536258B1 publication Critical patent/JP5536258B1/en
Publication of JP2014198894A publication Critical patent/JP2014198894A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

【課題】高強度、高導電性および優れた応力緩和特性を兼ね備えた銅合金板、並びにこの銅合金板を用いた大電流用電子部品及び放熱用電子部品を提供する。
【解決手段】本発明は、ZrおよびTiのうちの一種または二種を合計で0.01〜0.50質量%含有し、残部が銅およびその不可避的不純物から成り、引張強さが350MPa以上であり、X線回折法により求めた(113)面に対して圧延方向と平行な方向に生じる残留応力が200MPa以下であることを特徴とする銅合金板である。
【選択図】なし
A copper alloy plate having high strength, high conductivity, and excellent stress relaxation characteristics, and a high-current electronic component and a heat dissipation electronic component using the copper alloy plate are provided.
The present invention contains one or two of Zr and Ti in a total amount of 0.01 to 0.50% by mass, the balance is made of copper and its inevitable impurities, and the tensile strength is 350 MPa or more. And a residual stress generated in a direction parallel to the rolling direction with respect to the (113) plane obtained by the X-ray diffraction method is 200 MPa or less.
[Selection figure] None

Description

本発明は銅合金板及び通電用又は放熱用電子部品に関し、特に、電機・電子機器、自動車等に搭載される端子、コネクタ、リレー、スイッチ、ソケット、バスバー、リードフレーム、放熱板等の電子部品の素材として使用される銅合金板、及び該銅合金板を用いた電子部品に関する。中でも、電気自動車、ハイブリッド自動車等で用いられる大電流用コネクタや端子等の大電流用電子部品の用途、又はスマートフォンやタブレットPCで用いられる液晶フレーム等の放熱用電子部品の用途に好適な銅合金板及び該銅合金板を用いた電子部品に関するものである。   TECHNICAL FIELD The present invention relates to a copper alloy plate and electronic parts for energization or heat dissipation, and in particular, electronic parts such as terminals, connectors, relays, switches, sockets, bus bars, lead frames, heat sinks, etc. mounted on electric machines / electronic devices, automobiles, etc. The present invention relates to a copper alloy plate used as a material for the above and an electronic component using the copper alloy plate. Among these, copper alloys suitable for use in high current electronic parts such as high current connectors and terminals used in electric vehicles, hybrid cars, etc., or in heat dissipation electronic parts such as liquid crystal frames used in smartphones and tablet PCs. The present invention relates to a plate and an electronic component using the copper alloy plate.

電機・電子機器、自動車等には、端子、コネクタ、スイッチ、ソケット、リレー、バスバー、リードフレーム、放熱板等の電気又は熱を伝えるための部品が組み込まれており、これら部品には銅合金板が用いられている。ここで、電気伝導性と熱伝導性は比例関係にある。   Electrical and electronic equipment, automobiles, etc. have built-in components to transmit electricity or heat, such as terminals, connectors, switches, sockets, relays, bus bars, lead frames, heat sinks, etc. Is used. Here, electrical conductivity and thermal conductivity are in a proportional relationship.

近年、電子部品の小型化に伴い、通電部における銅合金の断面積が小さくなる傾向にある。断面積が小さくなると、通電した際の銅合金からの発熱が増大する。また、成長著しい電気自動車やハイブリッド電気自動車で用いられる電子部品には、バッテリー部のコネクタ等の著しく高い電流が流される部品があり、通電時の銅合金の発熱が問題になっている。発熱が過大になると、銅合金は高温環境に晒されることになる。   In recent years, with the miniaturization of electronic components, the cross-sectional area of the copper alloy in the current-carrying part tends to be small. When the cross-sectional area becomes small, heat generation from the copper alloy when energized increases. In addition, electronic parts used in fast-growing electric vehicles and hybrid electric vehicles include parts through which a remarkably high current flows, such as a connector of a battery unit, and heat generation of a copper alloy during energization is a problem. When the heat generation becomes excessive, the copper alloy is exposed to a high temperature environment.

コネクタ等の電子部品の電気接点では、銅合金板にたわみが与えられ、このたわみで発生する応力により、接点での接触力を得ている。たわみを与えた銅合金板を高温下に長時間保持すると、応力緩和現象により、応力すなわち接触力が低下し、接触電気抵抗の増大を招く。この問題に対処するため、銅合金板には発熱量が減ずるよう導電性により優れることが求められ、また発熱しても接触力が低下しないよう応力緩和特性により優れることも求められている。   In an electrical contact of an electronic component such as a connector, a deflection is given to the copper alloy plate, and a contact force at the contact is obtained by a stress generated by the deflection. When a bent copper alloy plate is held at a high temperature for a long time, the stress, that is, the contact force is lowered due to the stress relaxation phenomenon, and the contact electric resistance is increased. In order to cope with this problem, the copper alloy sheet is required to be excellent in conductivity so that the amount of heat generation is reduced, and is also required to be excellent in stress relaxation characteristics so that the contact force does not decrease even if heat is generated.

一方、例えばスマートフォンやタブレットPCの液晶には液晶フレームと呼ばれる放熱部品が用いられている。このような放熱用途の銅合金板においても応力緩和特性を高めると、外力による放熱板のクリープ変形が抑制され、放熱板周りに配置される液晶部品、ICチップ等に対する保護性が改善される等の効果を期待できる。このため、放熱用途の銅合金板においても、応力緩和特性に優れることが望まれている。   On the other hand, for example, a heat radiating component called a liquid crystal frame is used for a liquid crystal of a smartphone or a tablet PC. Even in such a copper alloy plate for heat dissipation, when stress relaxation characteristics are enhanced, creep deformation of the heat sink due to external force is suppressed, and the protection against liquid crystal components, IC chips, etc. arranged around the heat sink is improved. The effect of can be expected. For this reason, it is desired that the copper alloy plate for heat dissipation also has excellent stress relaxation characteristics.

CuにZrやTiを添加すると応力緩和特性が向上することが知られていている(例えば、特許文献1参照)。導電率が高く比較的高い強度と良好な応力緩和特性を有する材料としては、例えばC15100(0.1質量%Zr−残Cu)、C15150(0.02質量%Zr−残Cu)、C18140(0.1質量%Zr−0.3質量%Cr−0.02質量%Si−残Cu)、C18145(0.1質量%Zr−0.2質量%Cr−0.2質量%Zn−残Cu)、C18070(0.1質量%Ti−0.3質量%Cr−0.02質量%Si−残Cu)、C18080(0.06質量%Ti−0.5質量%Cr−0.1質量%Ag−0.08質量%Fe−0.06質量%Si−残Cu)等の合金が、CDA(Copper Development Association)に登録されている。   It is known that when Zr or Ti is added to Cu, the stress relaxation characteristics are improved (see, for example, Patent Document 1). Examples of materials having high electrical conductivity and relatively high strength and good stress relaxation characteristics include C15100 (0.1 mass% Zr-residual Cu), C15150 (0.02 mass% Zr-residual Cu), C18140 (0 .1 mass% Zr-0.3 mass% Cr-0.02 mass% Si-residual Cu), C18145 (0.1 mass% Zr-0.2 mass% Cr-0.2 mass% Zn-residual Cu) C18070 (0.1 mass% Ti-0.3 mass% Cr-0.02 mass% Si-residual Cu), C18080 (0.06 mass% Ti-0.5 mass% Cr-0.1 mass% Ag) Alloys such as -0.08 mass% Fe-0.06 mass% Si-residual Cu) are registered in CDA (Copper Development Association).

特開2011−117055号公報JP 2011-1117055 A

しかしながら、CuにZrまたはTiを添加した銅合金(以下、Cu−Zr−Ti系合金と記す)は、比較的良好な応力緩和特性を有するとはいうものの、その応力緩和特性のレベルは大電流を流す部品の用途又は大熱量を放散する部品の用途として必ずしも十分とはいえなかった。例えば、特許文献1が開示する銅合金板は、0.05〜0.3質量%のZrを添加するとともに、Mg、Ti、Zn、Ga、Y、Nb、Mo、Ag、In、Snの中の一種以上を0.01〜0.3質量%添加し、さらに中間焼鈍後の結晶粒径を20〜100μmに調整することにより、応力緩和特性を改善したものであるが、実施例における150℃で1000時間保持後の応力緩和率は最低でも17.2%である。   However, although a copper alloy obtained by adding Zr or Ti to Cu (hereinafter referred to as a Cu-Zr-Ti alloy) has relatively good stress relaxation characteristics, the level of the stress relaxation characteristics is a large current. It was not always sufficient as a use of a component that flows heat or a use of a component that dissipates a large amount of heat. For example, in the copper alloy plate disclosed in Patent Document 1, 0.05 to 0.3% by mass of Zr is added, and Mg, Ti, Zn, Ga, Y, Nb, Mo, Ag, In, and Sn are included. The stress relaxation characteristics are improved by adding one or more of 0.01 to 0.3% by mass and adjusting the crystal grain size after intermediate annealing to 20 to 100 μm. The stress relaxation rate after holding for 1000 hours is at least 17.2%.

そこで、本発明は、高強度、高導電性および優れた応力緩和特性を兼ね備えた銅合金板及び大電流用途又は放熱用途に好適な電子部品を提供することを目的とし、具体的には、応力緩和特性が改善されたCu−Zr−Ti系合金を提供することを課題とする。さらには、本発明は大電流用途又は放熱用途に好適な電子部品を提供することをも目的とする。   Therefore, the present invention has an object to provide a copper alloy plate having high strength, high conductivity, and excellent stress relaxation characteristics, and an electronic component suitable for large current use or heat radiation use. It is an object of the present invention to provide a Cu—Zr—Ti alloy having improved relaxation characteristics. Furthermore, an object of the present invention is to provide an electronic component suitable for high current use or heat dissipation use.

本発明者は、鋭意検討を重ねた結果、Cu−Zr−Ti系合金について、表面の残留応力を所定の範囲となるよう調整することにより、高強度および高導電性を有するCu−Zr−Ti系合金の応力緩和特性が向上することを見出した。   As a result of intensive studies, the inventor has adjusted Cu-Zr-Ti alloy having a high strength and high conductivity by adjusting the residual stress on the surface to be within a predetermined range. It has been found that the stress relaxation properties of the alloy are improved.

以上の知見を基礎として完成した本発明は一側面において、ZrおよびTiのうちの一種または二種を合計で0.01〜0.50質量%含有し、残部が銅及び不可避的不純物からなり、引張強さが350MPa以上、導電率が75%IACS以上、150℃で1000時間保持後の応力緩和率が15%以下であり、X線回折法により求めた(113)面に対して圧延方向と平行な方向に生じている残留応力が200MPa以下である銅合金板である。
The present invention completed on the basis of the above knowledge, in one aspect, contains one or two of Zr and Ti in a total of 0.01 to 0.50 mass%, the balance consists of copper and inevitable impurities, The tensile strength is 350 MPa or more, the electrical conductivity is 75% IACS or more , the stress relaxation rate after holding at 150 ° C. for 1000 hours is 15% or less , and the rolling direction with respect to the (113) plane determined by the X-ray diffraction method It is a copper alloy plate whose residual stress generated in the parallel direction is 200 MPa or less.

本発明は別の一側面において、ZrおよびTiのうちの一種または二種を合計で0.01〜0.50質量%含有し、さらにAg、Fe、Co、Ni、Cr、Mn、Zn、Mg、Si、P、SnおよびBのうちの一種以上を1.0質量%以下含有し、残部が銅及び不可避的不純物からなり、引張強さが350MPa以上、導電率が75%IACS以上、150℃で1000時間保持後の応力緩和率が15%以下であり、X線回折法により求めた(113)面に対して圧延方向と平行な方向に生じている残留応力が200MPa以下である銅合金板である。
In another aspect of the present invention, one or two of Zr and Ti are contained in a total amount of 0.01 to 0.50% by mass, and Ag, Fe, Co, Ni, Cr, Mn, Zn, Mg , Si, P, Sn and B are contained in an amount of 1.0% by mass or less, the balance is made of copper and inevitable impurities, the tensile strength is 350 MPa or more, the conductivity is 75% IACS or more , 150 ° C. And a stress relaxation rate after holding for 1000 hours is 15% or less , and the residual stress generated in the direction parallel to the rolling direction with respect to the (113) plane obtained by X-ray diffraction method is 200 MPa or less It is.

本発明に係る銅合金板は別の一実施態様において、圧延方向と直交する断面の組織より求めた厚み方向の平均結晶粒径Aと幅方向の平均結晶粒径Bとの比(B/A)が1.3以上である。   In another embodiment, the copper alloy sheet according to the present invention is a ratio (B / A) of the average crystal grain size A in the thickness direction and the average crystal grain size B in the width direction obtained from the structure of the cross section perpendicular to the rolling direction. ) Is 1.3 or more.

本発明に係る銅合金板は更に別の一実施態様において、圧延方向と直交する断面の組織より求めた幅方向の平均結晶粒径Bが50μm以下である。   In yet another embodiment of the copper alloy sheet according to the present invention, the average grain size B in the width direction determined from the cross-sectional structure orthogonal to the rolling direction is 50 μm or less.

本発明は別の一側面において、上記銅合金板を用いた大電流用電子部品である。   Another aspect of the present invention is an electronic component for large current using the copper alloy plate.

本発明は更に別の一側面において、上記銅合金板を用いた放熱用電子部品である。   In another aspect of the present invention, there is provided a heat dissipating electronic component using the copper alloy plate.

本発明によれば、高強度、高導電性および優れた応力緩和特性を兼ね備えた銅合金板及び大電流用途又は放熱用途に好適な電子部品を提供することが可能である。この銅合金板は、端子、コネクタ、スイッチ、ソケット、リレー、バスバー、リードフレーム、放熱板等の電子部品の素材として好適に使用することができ、とくに大電流を通電する電子部品の素材又は大熱量を放散する電子部品の素材として有用である。   According to the present invention, it is possible to provide a copper alloy plate having high strength, high conductivity, and excellent stress relaxation characteristics, and an electronic component suitable for large current use or heat radiation use. This copper alloy plate can be suitably used as a material for electronic parts such as terminals, connectors, switches, sockets, relays, bus bars, lead frames, heat sinks, etc. It is useful as a material for electronic parts that dissipate heat.

残留応力の測定原理を示す図である。It is a figure which shows the measurement principle of a residual stress. 応力緩和率の測定原理を説明する図である。It is a figure explaining the measurement principle of a stress relaxation rate. 応力緩和率の測定原理を説明する図である。It is a figure explaining the measurement principle of a stress relaxation rate.

以下、本発明の実施の形態を説明する。
(目標特性)
本発明の実施の形態に係る銅合金板は、75%IACS以上の導電率を有し、且つ350MPa以上の引張強さを有する。導電率が75%IACS以上であれば、通電時の発熱量が純銅と同等といえる。また、引張強さが350MPa以上であれば、大電流を通電する部品の素材又は大熱量を放散する部品の素材として必要な強度を有しているといえる。
Embodiments of the present invention will be described below.
(Target characteristics)
The copper alloy plate according to the embodiment of the present invention has a conductivity of 75% IACS or more and a tensile strength of 350 MPa or more. If the electrical conductivity is 75% IACS or higher, it can be said that the amount of heat generated during energization is equivalent to that of pure copper. Further, if the tensile strength is 350 MPa or more, it can be said that the material has a strength necessary for a material for a component that conducts a large current or a material for a component that dissipates a large amount of heat.

本発明の実施の形態に係る銅合金板の応力緩和特性については、0.2%耐力の80%の応力を付加し、150℃で1000時間保持した時の銅合金板の応力緩和率が15%以下であり、より好ましくは10%以下である。通常のCu−Zr−Ti系合金の応力緩和率は25〜35%程度であるが、これを15%以下にすることで、コネクタ等の電子部品に加工した後に大電流を通電しても接触力低下に伴う接触電気抵抗の増加が生じ難くなり、また、放熱板に加工した後に熱と外力が同時に加わってもクリープ変形が生じ難くなる。   Regarding the stress relaxation characteristics of the copper alloy plate according to the embodiment of the present invention, the stress relaxation rate of the copper alloy plate when the stress of 80% of 0.2% proof stress is applied and held at 150 ° C. for 1000 hours is 15 % Or less, more preferably 10% or less. The stress relaxation rate of a normal Cu-Zr-Ti alloy is about 25 to 35%, but by making this 15% or less, even if a large current is applied after processing into an electronic component such as a connector, the contact is achieved It is difficult for the contact electric resistance to increase due to the decrease in force, and creep deformation hardly occurs even if heat and external force are applied simultaneously after processing the heat sink.

(合金成分濃度)
本発明の実施の形態に係る銅合金板は、Zr及びTiのうちの一種又は二種を合計で0.01〜0.50質量%、より好ましくは0.02〜0.20質量%含有する。Zr及びTiのうちの一種又は二種の合計が0.01質量%未満になると、350MPa以上の引張強さおよび15%以下の応力緩和率を得ることが難しくなる。Zr及びTiのうちの一種又は二種の合計が0.50質量%を超えると、熱間圧延割れ等により合金の製造が困難になる。Zrを添加する場合にはその添加量を0.01〜0.45質量%に調整することが好ましく、Tiを添加する場合にはその添加量を0.01〜0.20質量%に調整することが好ましい。添加量が下限値を下回ると応力緩和特性の改善効果が得られにくく、添加量が上限値を超えると導電率や製造性の悪化を招くことがある。
(Alloy component concentration)
The copper alloy plate according to the embodiment of the present invention contains one or two of Zr and Ti in a total amount of 0.01 to 0.50% by mass, more preferably 0.02 to 0.20% by mass. . When the total of one or two of Zr and Ti is less than 0.01% by mass, it becomes difficult to obtain a tensile strength of 350 MPa or more and a stress relaxation rate of 15% or less. If the total of one or two of Zr and Ti exceeds 0.50% by mass, it becomes difficult to produce an alloy due to hot rolling cracks or the like. When adding Zr, it is preferable to adjust the addition amount to 0.01 to 0.45 mass%, and when adding Ti, the addition amount is adjusted to 0.01 to 0.20 mass%. It is preferable. When the addition amount is less than the lower limit value, it is difficult to obtain the effect of improving the stress relaxation characteristics, and when the addition amount exceeds the upper limit value, conductivity and manufacturability may be deteriorated.

Cu−Zr−Ti系合金には、強度や耐熱性を改善するために、Ag、Fe、Co、Ni、Cr、Mn、Zn、Mg、Si、P、SnおよびBのうちの一種以上を含有させることができる。ただし、添加量が多すぎると、導電率が低下して75%IACSを下回ったり、合金の製造性が悪化したりする場合があるので、添加量は総量で1.0質量%以下、より好ましくは0.5質量%以下とする。また、添加による効果を得るためには、添加量を総量で0.001質量%以上にすることが好ましい。   Cu-Zr-Ti alloy contains at least one of Ag, Fe, Co, Ni, Cr, Mn, Zn, Mg, Si, P, Sn and B in order to improve strength and heat resistance. Can be made. However, if the amount added is too large, the electrical conductivity may be reduced to be less than 75% IACS, or the manufacturability of the alloy may be deteriorated. Therefore, the amount added is preferably 1.0% by mass or less, more preferably Is 0.5 mass% or less. Moreover, in order to acquire the effect by addition, it is preferable to make addition amount 0.001 mass% or more in total amount.

(残留応力)
本発明の実施の形態に係る銅合金板は、製品表面の残留応力を200MPa以下、好ましくは100MPa以下に調整することで、応力緩和率が15%以下になる。ここで、本発明の残留応力は、X線回折法を用い、X線入射角度に対する(113)面間隔の変化を測定することにより求めるものである。測定方向としては、圧延方向と厚み方向のそれぞれに平行な面内においてX線入射角度を変化させることにより、圧延方向と平行に生じている残留応力値を求める。他の結晶面や方向に対しても残留応力値を測定することは可能であるが、当該条件で測定した場合に、測定のばらつきが最も小さく、残留応力値と応力緩和との間に最も良好な相関が得られた。なお、銅合金板の残留応力は、板の片側表面をエッチングしたときの板の反り量からの算出されることが多いが(須藤一:残留応力とゆがみ、内田老鶴圃社、(1988)、p.46.)、このエッチング法で求めた残留応力値には応力緩和との相関が認められなかった。
(Residual stress)
The copper alloy plate according to the embodiment of the present invention has a stress relaxation rate of 15% or less by adjusting the residual stress on the product surface to 200 MPa or less, preferably 100 MPa or less. Here, the residual stress of the present invention is determined by measuring the change in (113) plane spacing with respect to the X-ray incident angle using the X-ray diffraction method. As the measurement direction, the residual stress value generated in parallel with the rolling direction is obtained by changing the X-ray incident angle in a plane parallel to the rolling direction and the thickness direction. Although it is possible to measure residual stress values for other crystal planes and directions, the measurement variation is the smallest when measured under these conditions, and the best between residual stress values and stress relaxation A good correlation was obtained. The residual stress of a copper alloy plate is often calculated from the amount of warpage of the plate when one side surface of the plate is etched (Kazuto Sudo: Residual Stress and Distortion, Uchida Otsuru Farm Co., (1988) P.46.), The residual stress value obtained by this etching method was not correlated with stress relaxation.

(結晶粒形態)
本発明の実施の形態に係る銅合金板の圧延方向と直交する断面(以下、圧延直角断面)において、厚み方向の平均結晶粒径Aと幅方向(圧延方向と厚み方向のそれぞれに対し直交する方向)の平均結晶粒径Bとの比(アスペクト比B/A)は1.3以上とすることが好ましい。アスペクト比が1.3未満になると引張強さが350MPa未満となることがある。
(Grain shape)
In a cross section orthogonal to the rolling direction of the copper alloy sheet according to the embodiment of the present invention (hereinafter referred to as a cross section perpendicular to rolling), the average crystal grain size A in the thickness direction and the width direction (perpendicular to each of the rolling direction and the thickness direction). (Direction) to the average crystal grain size B (aspect ratio B / A) is preferably 1.3 or more. If the aspect ratio is less than 1.3, the tensile strength may be less than 350 MPa.

また、銅合金板の圧延直角断面の幅方向の平均結晶粒径Bは、50μm以下であることが好ましい。B値が50μmを超えると引張強さが350MPa未満になることがある。   Moreover, it is preferable that the average crystal grain size B of the width direction of the cross section of a copper alloy plate at the right angle of rolling is 50 μm or less. If the B value exceeds 50 μm, the tensile strength may be less than 350 MPa.

(厚み)
製品の厚みは0.1〜2.0mmであることが好ましい。厚みが薄すぎると、通電部断面積が小さくなり通電時の発熱が増大するため大電流を流すコネクタ等の素材として不適である。一方で、厚みが厚すぎると、曲げ加工が困難になる。このような観点から、より好ましい厚みは0.2〜1.5mmである。厚みが上記範囲となることにより、通電時の発熱を抑えつつ、曲げ加工性を良好なものとすることができる。
(Thickness)
The thickness of the product is preferably 0.1 to 2.0 mm. If the thickness is too thin, the cross-sectional area of the current-carrying part is reduced and heat generation during current-carrying increases, so that it is not suitable as a material for a connector or the like through which a large current flows. On the other hand, if the thickness is too thick, bending becomes difficult. From such a viewpoint, a more preferable thickness is 0.2 to 1.5 mm. When the thickness is in the above range, the bending workability can be improved while suppressing heat generation during energization.

(用途)
本発明の実施の形態に係る銅合金板は、電機・電子機器、自動車等で用いられる端子、コネクタ、リレー、スイッチ、ソケット、バスバー、リードフレーム、放熱板等の電子部品の用途に好適に使用することができ、特に、電気自動車、ハイブリッド自動車などで用いられる大電流用コネクタや端子等の大電流用電子部品の用途、又はスマートフォンやタブレットPCで用いられる液晶フレーム等の放熱用電子部品の用途に有用である。
(Use)
The copper alloy plate according to the embodiment of the present invention is suitably used for applications of electronic parts such as terminals, connectors, relays, switches, sockets, bus bars, lead frames, heat sinks, etc. used in electric / electronic devices, automobiles, etc. In particular, applications of high current electronic components such as connectors and terminals for large current used in electric vehicles, hybrid vehicles, etc., or applications of heat dissipation electronic components such as liquid crystal frames used in smartphones and tablet PCs Useful for.

(製造方法)
純銅原料として電気銅等を溶解し、カーボン脱酸等により酸素濃度を低減した後、Zr及びTiのうちの一種又は二種と、必要に応じて他の合金元素を添加し、厚み30〜300mm程度のインゴットに鋳造する。このインゴットを例えば800〜1000℃の熱間圧延により厚み3〜30mm程度の板とした後、冷間圧延と再結晶焼鈍とを繰り返し、最終の冷間圧延で所定の製品厚みに仕上げ、最後に歪取り焼鈍を施す。最終冷間圧延で材料に導入される残留応力は、その後の歪取焼鈍により低下する。
(Production method)
After dissolving electrolytic copper or the like as a pure copper raw material and reducing the oxygen concentration by carbon deoxidation or the like, one or two of Zr and Ti, and other alloy elements are added as necessary, and the thickness is 30 to 300 mm. Cast into a moderate ingot. After this ingot is made into a plate having a thickness of about 3 to 30 mm by hot rolling at 800 to 1000 ° C., for example, cold rolling and recrystallization annealing are repeated, and finally finished to a predetermined product thickness by cold rolling. Apply strain relief annealing. The residual stress introduced into the material in the final cold rolling is reduced by subsequent strain relief annealing.

再結晶焼鈍では、圧延組織を再結晶させる。また、適当な条件で焼鈍することにより、Zr、Ti等が析出し、合金の導電率が上昇する。最終冷間圧延前の再結晶焼鈍では、製品の圧延直角断面の平均結晶粒径が50μm以下となるように、当該再結晶焼鈍後の平均結晶粒径を50μm以下に調整する。最終冷間圧延前の再結晶焼鈍には、バッチ炉を用いてもよいし、連続焼鈍炉を使用しても良い。バッチ炉では150〜750℃の炉内温度において30分から30時間の範囲で加熱時間を適宜調整することにより、また、連続焼鈍炉では450〜800℃の炉内温度において5秒から15分の範囲で加熱時間を適宜調整することにより、当該再結晶焼鈍後の平均結晶粒径を50μm以下に調整できる。一般的にはより低温でより長時間の条件で焼鈍を行うと、同じ結晶粒径でより高い導電率が得られる。   In recrystallization annealing, the rolled structure is recrystallized. Further, by annealing under appropriate conditions, Zr, Ti, etc. are precipitated, and the electrical conductivity of the alloy is increased. In the recrystallization annealing before the final cold rolling, the average crystal grain size after the recrystallization annealing is adjusted to 50 μm or less so that the average crystal grain size in the cross section perpendicular to the rolling of the product is 50 μm or less. For recrystallization annealing before final cold rolling, a batch furnace may be used, or a continuous annealing furnace may be used. In a batch furnace, by appropriately adjusting the heating time in the range of 30 minutes to 30 hours at a furnace temperature of 150 to 750 ° C., and in a continuous annealing furnace, a range of 5 seconds to 15 minutes at a furnace temperature of 450 to 800 ° C. By adjusting the heating time appropriately, the average crystal grain size after the recrystallization annealing can be adjusted to 50 μm or less. Generally, when annealing is performed at a lower temperature for a longer time, higher conductivity can be obtained with the same crystal grain size.

最終冷間圧延では、一対の圧延ロール間に材料を繰り返し通過させ、目標の板厚に仕上げていく。最終冷間圧延の加工度は25〜99%とする。ここで加工度r(%)は、r=(t0−t)/t0×100(t0:圧延前の板厚、t:圧延後の板厚)で与えられる。加工度が25%未満になるとアスペクト比を1.3以上に調整することが難しくなる。加工度が99%を超えると、圧延材のエッジが割れることがある。 In the final cold rolling, the material is repeatedly passed between a pair of rolling rolls to finish the target plate thickness. The workability of the final cold rolling is 25 to 99%. Here, the working degree r (%) is given by r = (t 0 −t) / t 0 × 100 (t 0 : plate thickness before rolling, t: plate thickness after rolling). When the degree of processing is less than 25%, it becomes difficult to adjust the aspect ratio to 1.3 or more. If the degree of work exceeds 99%, the edges of the rolled material may be broken.

また、最終冷間圧延では圧延ロールの径と、通板回数とを調整することにより、銅合金板の残留応力を調整することができる。一般的に使用されている大径ロールを用いて圧延した場合、表面部に引張応力、厚み方向中央部に圧縮応力が残留する。一方、小径ロールを用いて低い加工度で圧延した場合、表面部に圧縮応力、厚み方向中央部に引張応力が残留する。よって、大径ロールで圧延した後に小径ロールで軽圧下圧延を数回行えば、それまでの圧延で表面に蓄積した引張残留応力がキャンセルされ、銅合金板の残留応力は減少する。なお、本実施形態において大径ロールとは直径150〜500mmのロールを意味し、小径ロールとは直径20〜80mmのロールを意味する。   Further, in the final cold rolling, the residual stress of the copper alloy plate can be adjusted by adjusting the diameter of the rolling roll and the number of plate passes. When rolling is performed using a generally used large-diameter roll, tensile stress remains in the surface portion and compressive stress remains in the central portion in the thickness direction. On the other hand, when rolling is performed at a low workability using a small-diameter roll, compressive stress remains in the surface portion and tensile stress remains in the central portion in the thickness direction. Thus, if rolling is performed with a large-diameter roll and then light-rolling with a small-diameter roll several times, the tensile residual stress accumulated on the surface by the previous rolling is canceled and the residual stress of the copper alloy sheet is reduced. In the present embodiment, the large diameter roll means a roll having a diameter of 150 to 500 mm, and the small diameter roll means a roll having a diameter of 20 to 80 mm.

上記小径ロールによる圧延に加え、適切な条件で歪取焼鈍を行うことにより、残留応力を200MPa以下に調整することができる。本発明の歪取焼鈍は連続焼鈍炉を用いて行う。バッチ炉の場合、コイル状に巻き取った状態で材料を加熱するため、加熱中に材料が変形を起こし材料に反りが生じる。したがって、バッチ炉は本発明の歪取焼鈍に不適である。   Residual stress can be adjusted to 200 MPa or less by performing strain relief annealing under appropriate conditions in addition to the rolling with the small-diameter roll. The strain relief annealing of the present invention is performed using a continuous annealing furnace. In the case of a batch furnace, since the material is heated in a state of being wound in a coil shape, the material is deformed during the heating, and the material is warped. Therefore, the batch furnace is not suitable for the strain relief annealing of the present invention.

連続焼鈍炉において、炉内温度を300〜700℃とし、5秒から10分の範囲で加熱時間を適宜調整し、歪取焼鈍後の引張強さを歪取焼鈍前(最終圧延上がり)の引張強さに対し、10〜100MPa低い値、好ましくは15〜50MPa低い値に調整する。引張強さの低下量が小さすぎると、残留応力を200MPa以下に調整することが難しくなる。引張強さの低下量が大きすぎると製品の引張強さが350MPa未満になることがある。   In a continuous annealing furnace, the furnace temperature is 300 to 700 ° C., the heating time is appropriately adjusted in the range of 5 seconds to 10 minutes, and the tensile strength after strain relief annealing is the tensile strength before strain relief annealing (after final rolling). The strength is adjusted to a value 10 to 100 MPa lower, preferably 15 to 50 MPa lower. If the amount of decrease in tensile strength is too small, it is difficult to adjust the residual stress to 200 MPa or less. If the decrease in tensile strength is too large, the tensile strength of the product may be less than 350 MPa.

さらに、歪取焼鈍後では連続焼鈍炉内において材料に付加される張力を1〜5MPa、より好ましくは1〜4MPaに調整する。張力が大きすぎると、残留応力を200MPa以下に調整することが難しくなる。張力が小さすぎると、焼鈍炉を通板中の材料が炉壁と接触し、材料の表面やエッジに傷が付くことがある。   Further, after the strain relief annealing, the tension applied to the material in the continuous annealing furnace is adjusted to 1 to 5 MPa, more preferably 1 to 4 MPa. If the tension is too large, it is difficult to adjust the residual stress to 200 MPa or less. If the tension is too small, the material in the passing plate of the annealing furnace may come into contact with the furnace wall, and the surface or edge of the material may be damaged.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。   Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.

溶銅に合金元素を添加した後、厚みが200mmのインゴットに鋳造した。インゴットを950℃で3時間加熱し、熱間圧延により厚み15mmの板にした。熱間圧延板表面の酸化スケールをグラインダーで研削、除去した後、焼鈍と冷間圧延を繰り返し、最終の冷間圧延で所定の製品厚みに仕上げた。最後に連続焼鈍炉を用い歪取焼鈍を行った。   After adding the alloy element to the molten copper, it was cast into an ingot having a thickness of 200 mm. The ingot was heated at 950 ° C. for 3 hours and formed into a plate having a thickness of 15 mm by hot rolling. After grinding and removing the oxide scale on the surface of the hot rolled plate with a grinder, annealing and cold rolling were repeated, and the product was finished to a predetermined product thickness by final cold rolling. Finally, strain relief annealing was performed using a continuous annealing furnace.

最終冷間圧延前の焼鈍(最終再結晶焼鈍)は、バッチ炉を用い、加熱時間を5時間とし炉内温度を200〜700℃の範囲で調整し、焼鈍後の結晶粒径と導電率を変化させた。   For annealing before final cold rolling (final recrystallization annealing), a batch furnace is used, the heating time is 5 hours, the furnace temperature is adjusted in the range of 200 to 700 ° C., and the crystal grain size and conductivity after annealing are adjusted. Changed.

最終冷間圧延の前半では、直径200mmの大径ロールを使用し、後半では直径50mmの小径ロールを用いた。後半の小径ロールによる圧延では、一回の通板当たりの加工度を3%とし、この通板の実施回数を0〜5回の範囲で変化させた。   In the first half of the final cold rolling, a large-diameter roll having a diameter of 200 mm was used, and in the latter half, a small-diameter roll having a diameter of 50 mm was used. In rolling in the latter half of the small-diameter roll, the degree of processing per pass was 3%, and the number of passes was changed in the range of 0-5.

連続焼鈍炉を用いた歪取り焼鈍では、炉内温度を500℃とし加熱時間を1秒から10分の間で調整し、該焼鈍による引張強さの低下量を種々変化させた。また、炉内において材料に付加する張力を種々変化させた。なお、一部の例では歪取り焼鈍を行わなかった。   In strain relief annealing using a continuous annealing furnace, the furnace temperature was 500 ° C., the heating time was adjusted between 1 second and 10 minutes, and the amount of decrease in tensile strength due to the annealing was variously changed. In addition, various tensions were added to the material in the furnace. In some cases, strain relief annealing was not performed.

製造途中の材料および歪取焼鈍後の材料につき、次の測定を行った。
(成分)
歪取焼鈍後の材料の合金元素濃度をICP−質量分析法で分析した。
The following measurement was performed on the material in the process of manufacturing and the material after strain relief annealing.
(component)
The alloy element concentration of the material after strain relief annealing was analyzed by ICP-mass spectrometry.

(最終冷間圧延前の再結晶焼鈍後の平均結晶粒径)
銅合金板の圧延直角断面を機械研磨により鏡面に仕上げた後、エッチングにより結晶粒界を現出させた。この金属組織上において、JIS H 0501(1999年)の切断法に従い測定し、平均結晶粒径を求めた。
(Average grain size after recrystallization annealing before final cold rolling)
After rolling the right-angled cross section of the copper alloy plate to a mirror surface by mechanical polishing, crystal grain boundaries were revealed by etching. On this metal structure, the average crystal grain size was determined by measurement according to the cutting method of JIS H 0501 (1999).

(歪取焼鈍後(製品)の幅方向の平均結晶粒径およびアスペクト比)
銅合金板の圧延直角断面を機械研磨により鏡面に仕上げた後、エッチングにより結晶粒界を現出させた。この金属組織上において、圧延直角断面の厚み方向に直線を引き、直線によって切断された結晶粒の個数を求めた。そして、直線の長さをこの結晶粒の個数で割った値を厚み方向の平均結晶粒径Aとした。同様に、圧延直角断面の幅方向に直線を引き、直線によって切断される結晶粒の個数を求め、直線の長さをこの結晶粒径の個数で割った値を幅方向の平均結晶粒径Bとした。(B/A)値をアスペクト比とした。
(Average grain size and aspect ratio in the width direction after strain relief annealing (product))
After rolling the right-angled cross section of the copper alloy plate to a mirror surface by mechanical polishing, crystal grain boundaries were revealed by etching. On this metal structure, a straight line was drawn in the thickness direction of the cross section perpendicular to the rolling, and the number of crystal grains cut by the straight line was determined. The value obtained by dividing the length of the straight line by the number of crystal grains was defined as the average crystal grain size A in the thickness direction. Similarly, a straight line is drawn in the width direction of the perpendicular cross section of rolling, the number of crystal grains cut by the straight line is obtained, and the value obtained by dividing the length of the straight line by the number of crystal grain sizes is the average crystal grain size B in the width direction. It was. The (B / A) value was taken as the aspect ratio.

(引張強さ)
最終冷間圧延後および歪取焼鈍後の材料につき、JIS Z2241に規定する13B号試験片を引張方向が圧延方向と平行になるように採取し、JIS Z2241に準拠して圧延方向と平行に引張試験を行い、引張強さ求めた。
(Tensile strength)
For the material after the final cold rolling and strain relief annealing, sample No. 13B specified in JIS Z2241 was taken so that the tensile direction was parallel to the rolling direction, and pulled in parallel with the rolling direction in accordance with JIS Z2241. A test was conducted to determine the tensile strength.

(導電率)
歪取焼鈍後の材料から、試験片の長手方向が圧延方向と平行になるように試験片を採取し、JIS H0505に準拠し四端子法により20℃での導電率を測定した。
(conductivity)
A test piece was taken from the material after strain relief annealing so that the longitudinal direction of the test piece was parallel to the rolling direction, and the conductivity at 20 ° C. was measured by a four-terminal method in accordance with JIS H0505.

(残留応力)
X線回折法により、銅合金板の(113)面に対し、圧延方向と平行な方向に生じている残留応力を求めた。測定原理を以下に説明する。
例えば図1に示すように引張残留応力が存在する場合、(a)→(b)→(c)と試料面法線Nと格子面法線N’とのなす角度Ψが大きくなると、この順で格子面間隔が大きくなる。結晶面間隔は応力の大きさに比例するので、各Ψにおいて格子面間隔すなわち回折角度(2θ)を測定すると、次式により残留応力σを求めることができる。
(Residual stress)
Residual stress generated in the direction parallel to the rolling direction was determined with respect to the (113) plane of the copper alloy plate by X-ray diffraction. The measurement principle will be described below.
For example, when there is a tensile residual stress as shown in FIG. 1, if the angle Ψ between (a) → (b) → (c), the sample surface normal N and the lattice surface normal N ′ increases, this order The lattice spacing increases. Since the crystal plane spacing is proportional to the magnitude of the stress, when the lattice plane spacing, that is, the diffraction angle (2θ) is measured at each Ψ, the residual stress σ can be obtained by the following equation.

Figure 0005536258
ここで、σは応力、Eはヤング率、νはポアソン比、θ0は標準ブラッグ角である。また、Kは材料と測定波長により決定される定数である。2θとsin2Ψとの関係を図示して最小二乗法で勾配を求め、これにKを乗じることで残留応力値が得られる。
Figure 0005536258
Here, σ is stress, E is Young's modulus, ν is Poisson's ratio, and θ 0 is standard Bragg angle. K is a constant determined by the material and the measurement wavelength. The relationship between 2θ and sin 2 Ψ is illustrated, a gradient is obtained by the least square method, and a residual stress value is obtained by multiplying this by K.

(応力緩和率)
歪取焼鈍後の材料から、幅10mm、長さ100mmの短冊形状の試験片を、試験片の長手方向が圧延方向と平行になるように採取した。図2のように、l=50mmの位置を作用点として、試験片にy0のたわみを与え、圧延方向の0.2%耐力の80%に相当する応力(s)を負荷した。y0は次式により求めた。
0=(2/3)・l2・s / (E・t)
ここで、Eは圧延方向のヤング率であり、tは試料の厚みである。150℃にて1000時間加熱後に除荷し、図3のように永久変形量(高さ)yを測定し、応力緩和率{[y(mm)/y0(mm)]×100(%)}を算出した。
(Stress relaxation rate)
A strip-shaped test piece having a width of 10 mm and a length of 100 mm was collected from the material after strain relief annealing so that the longitudinal direction of the test piece was parallel to the rolling direction. As shown in FIG. 2, with the position of l = 50 mm as the working point, the test piece was given a deflection of y 0 and a stress (s) corresponding to 80% of the 0.2% proof stress in the rolling direction was applied. y 0 was determined by the following equation.
y 0 = (2/3) · l 2 · s / (E · t)
Here, E is the Young's modulus in the rolling direction, and t is the thickness of the sample. After unloading after heating at 150 ° C. for 1000 hours, the amount of permanent deformation (height) y is measured as shown in FIG. 3, and the stress relaxation rate {[y (mm) / y 0 (mm)] × 100 (%) } Was calculated.

Figure 0005536258
Figure 0005536258

表1に評価結果を示す。残留応力値には、圧縮または引張残留応力値の絶対値を示してある。   Table 1 shows the evaluation results. The residual stress value indicates the absolute value of the compressive or tensile residual stress value.

発明例1〜25の銅合金板では、ZrとTiの合計濃度を0.01〜0.50質量%に調整し、最終冷間圧延前の再結晶焼鈍において、結晶粒径を50μm以下に調整し、最終冷間圧延において加工度を25〜99%とし小径ロールによる通板を3回以上行い、歪取焼鈍において材料を連続焼鈍炉に張力1〜5MPaで通板して引張強さを10〜100MPa低下させた。   In the copper alloy plates of Invention Examples 1 to 25, the total concentration of Zr and Ti is adjusted to 0.01 to 0.50 mass%, and the crystal grain size is adjusted to 50 μm or less in the recrystallization annealing before the final cold rolling. In the final cold rolling, the degree of work is set to 25 to 99%, and the sheet passing with a small diameter roll is performed three or more times. In the strain relief annealing, the material is passed through a continuous annealing furnace at a tension of 1 to 5 MPa and the tensile strength is 10 Reduced by ~ 100 MPa.

その結果、発明例1〜25の銅合金板では、幅方向の平均結晶粒径が50μm以下、アスペクト比が1.3以上、X線回折法により求めた(113)面に対して圧延方向と平行な方向に生じる残留応力が200MPa以下となり、75%IACS以上の導電率、350MPa以上の引張強さ、15%以下の応力緩和率が得られた。   As a result, in the copper alloy sheets of Invention Examples 1 to 25, the average crystal grain size in the width direction was 50 μm or less, the aspect ratio was 1.3 or more, and the rolling direction was determined with respect to the (113) plane obtained by the X-ray diffraction method. The residual stress generated in the parallel direction was 200 MPa or less, and a conductivity of 75% IACS or more, a tensile strength of 350 MPa or more, and a stress relaxation rate of 15% or less were obtained.

比較例1は歪取焼鈍を行わなかったものであり、残留応力が200MPaを超え、応力緩和率が15%を超えた。
比較例2〜4では、歪取焼鈍を行ったものの、炉内での材料張力が5MPaを超えたため、残留応力が200MPaを超え、応力緩和率が15%を超えた。
比較例5、6、7、8では、最終冷間圧延における小径ロールによる通板回数が過少であっため残留応力が200MPaを超え、応力緩和率が15%を超えた。
比較例9、10では歪取焼鈍における引張強さの低下量が過少であったため、残留応力が200MPaを超え、応力緩和率が15%を超えた。
In Comparative Example 1, the strain relief annealing was not performed, the residual stress exceeded 200 MPa, and the stress relaxation rate exceeded 15%.
In Comparative Examples 2 to 4, although strain relief annealing was performed, the material tension in the furnace exceeded 5 MPa, the residual stress exceeded 200 MPa, and the stress relaxation rate exceeded 15%.
In Comparative Examples 5, 6, 7, and 8, the number of passes through the small diameter roll in the final cold rolling was too small, so the residual stress exceeded 200 MPa and the stress relaxation rate exceeded 15%.
In Comparative Examples 9 and 10, the amount of decrease in tensile strength during strain relief annealing was too small, so the residual stress exceeded 200 MPa and the stress relaxation rate exceeded 15%.

比較例11では最終冷間圧延における加工度が25%未満であり、アスペクト比が1.3に満たなかったため、また比較例12では最終冷間圧延前の再結晶焼鈍上がりの結晶粒径が50μmを超え、歪取焼鈍後の幅方向の平均結晶粒径が50μmを超えたため、歪取焼鈍後の引張強さが350MPaに満たなかった。   In Comparative Example 11, the degree of work in final cold rolling was less than 25%, and the aspect ratio was less than 1.3. In Comparative Example 12, the crystal grain size after recrystallization annealing before final cold rolling was 50 μm. Since the average grain size in the width direction after strain relief annealing exceeded 50 μm, the tensile strength after strain relief annealing was less than 350 MPa.

比較例13では、ZrとTiの合計濃度が0.01質量%未満だったため、歪取焼鈍後の引張強さが350MPa未満となり、応力緩和率が15%を超えた。   In Comparative Example 13, since the total concentration of Zr and Ti was less than 0.01% by mass, the tensile strength after strain relief annealing was less than 350 MPa, and the stress relaxation rate exceeded 15%.

Claims (6)

ZrおよびTiのうちの一種または二種を合計で0.01〜0.50質量%含有し、残部が銅及び不可避的不純物からなり、引張強さが350MPa以上、導電率が75%IACS以上、150℃で1000時間保持後の応力緩和率が15%以下であり、X線回折法により求めた(113)面に対して圧延方向と平行な方向に生じている残留応力が200MPa以下であることを特徴とする銅合金板。 One or two of Zr and Ti are contained in a total of 0.01 to 0.50% by mass, the balance is made of copper and inevitable impurities, the tensile strength is 350 MPa or more, and the conductivity is 75% IACS or more . The stress relaxation rate after holding at 150 ° C. for 1000 hours is 15% or less , and the residual stress generated in the direction parallel to the rolling direction with respect to the (113) plane obtained by the X-ray diffraction method is 200 MPa or less. Copper alloy plate characterized by ZrおよびTiのうちの一種または二種を合計で0.01〜0.50質量%含有し、さらにAg、Fe、Co、Ni、Cr、Mn、Zn、Mg、Si、P、SnおよびBのうちの一種以上を1.0質量%以下含有し、残部が銅及び不可避的不純物からなり、引張強さが350MPa以上、導電率が75%IACS以上、150℃で1000時間保持後の応力緩和率が15%以下であり、X線回折法により求めた(113)面に対して圧延方向と平行な方向に生じている残留応力が200MPa以下であることを特徴とする銅合金板。 One or two of Zr and Ti are contained in a total of 0.01 to 0.50% by mass, and further Ag, Fe, Co, Ni, Cr, Mn, Zn, Mg, Si, P, Sn, and B 1.0% by mass or less of at least one of them, the balance being copper and inevitable impurities, tensile strength is 350 MPa or more, conductivity is 75% IACS or more , stress relaxation rate after holding at 150 ° C. for 1000 hours 15% or less , and the residual stress generated in the direction parallel to the rolling direction with respect to the (113) plane obtained by the X-ray diffraction method is 200 MPa or less. 圧延方向と直交する断面の組織より求めた厚み方向の平均結晶粒径Aと幅方向の平均結晶粒径Bとの比(B/A)が1.3以上である請求項1または2に記載の銅合金板。   The ratio (B / A) of the average crystal grain size A in the thickness direction and the average crystal grain size B in the width direction obtained from the structure of the cross section orthogonal to the rolling direction is 1.3 or more. Copper alloy plate. 圧延方向と直交する断面の組織より求めた幅方向の平均結晶粒径Bが50μm以下である請求項1〜3の何れか1項に記載の銅合金板。   The copper alloy sheet according to any one of claims 1 to 3, wherein an average crystal grain size B in a width direction obtained from a structure of a cross section perpendicular to the rolling direction is 50 µm or less. 請求項1〜の何れか1項に記載の銅合金板を用いた大電流用電子部品。 The electronic component for large currents using the copper alloy plate of any one of Claims 1-4 . 請求項1〜の何れか1項に記載の銅合金板を用いた放熱用電子部品。 The electronic component for thermal radiation using the copper alloy plate of any one of Claims 1-4 .
JP2013121154A 2013-03-14 2013-06-07 Copper alloy sheet with excellent conductivity and stress relaxation properties Active JP5536258B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013121154A JP5536258B1 (en) 2013-03-14 2013-06-07 Copper alloy sheet with excellent conductivity and stress relaxation properties

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013052155 2013-03-14
JP2013052155 2013-03-14
JP2013121154A JP5536258B1 (en) 2013-03-14 2013-06-07 Copper alloy sheet with excellent conductivity and stress relaxation properties

Publications (2)

Publication Number Publication Date
JP5536258B1 true JP5536258B1 (en) 2014-07-02
JP2014198894A JP2014198894A (en) 2014-10-23

Family

ID=51409390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013121154A Active JP5536258B1 (en) 2013-03-14 2013-06-07 Copper alloy sheet with excellent conductivity and stress relaxation properties

Country Status (1)

Country Link
JP (1) JP5536258B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7213086B2 (en) * 2018-12-26 2023-01-26 Dowaメタルテック株式会社 Copper alloy sheet material and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004076091A (en) * 2002-08-16 2004-03-11 Nikko Metal Manufacturing Co Ltd Cu-Ti ALLOY AND METHOD FOR PRODUCING THE SAME
JP2013028856A (en) * 2011-07-29 2013-02-07 Hitachi Cable Ltd Rolled copper foil, manufacturing method for the same, and lithium ion secondary battery negative electrode using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122108B2 (en) * 1991-08-21 1995-12-25 日鉱金属株式会社 High-strength and high-conductivity copper alloy for electronic devices with excellent bendability and stress relaxation properties
JP2004256902A (en) * 2003-02-27 2004-09-16 Nikko Metal Manufacturing Co Ltd Cu-Cr-Zr ALLOY, AND PRODUCTION METHOD THEREFOR
JP5312920B2 (en) * 2008-11-28 2013-10-09 Jx日鉱日石金属株式会社 Copper alloy plate or strip for electronic materials
JP5170916B2 (en) * 2010-08-27 2013-03-27 古河電気工業株式会社 Copper alloy sheet and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004076091A (en) * 2002-08-16 2004-03-11 Nikko Metal Manufacturing Co Ltd Cu-Ti ALLOY AND METHOD FOR PRODUCING THE SAME
JP2013028856A (en) * 2011-07-29 2013-02-07 Hitachi Cable Ltd Rolled copper foil, manufacturing method for the same, and lithium ion secondary battery negative electrode using the same

Also Published As

Publication number Publication date
JP2014198894A (en) 2014-10-23

Similar Documents

Publication Publication Date Title
JP5847787B2 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP5380621B1 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP6270417B2 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP5427971B1 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP5470483B1 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP6128976B2 (en) Copper alloy and high current connector terminal material
JP6296728B2 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP6328380B2 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
WO2015075990A1 (en) Copper alloy plate, and electronic component for large current applications and electronic component for heat dissipation applications each provided with same
JP2017155340A (en) Copper alloy sheet excellent in conductivity and stress relaxation characteristic
JP2017002407A (en) Copper alloy sheet excellent in conductivity and stress relaxation characteristic
JP6246502B2 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP5892974B2 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP5449595B1 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP2017066532A (en) Copper alloy sheet having excellent conductivity and stress relaxation properties
WO2014041865A1 (en) Copper alloy plate having excellent electroconductive properties and stress relaxation properties
JP5620025B2 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP5536258B1 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP5352750B1 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP2017089011A (en) Copper alloy sheet excellent in conductivity and flexure deflection coefficient
JP2014208868A (en) Copper alloy and high-current connector terminal material
JP2014205864A (en) Copper alloy sheet excellent in conductivity and stress relaxation property
JP2014055347A (en) Copper alloy sheet excellent in conductivity and stress relief properties
JP6140555B2 (en) Cu-Zr-Ti copper alloy strip

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140423

R150 Certificate of patent or registration of utility model

Ref document number: 5536258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250