JP5590990B2 - Copper alloy - Google Patents

Copper alloy Download PDF

Info

Publication number
JP5590990B2
JP5590990B2 JP2010148674A JP2010148674A JP5590990B2 JP 5590990 B2 JP5590990 B2 JP 5590990B2 JP 2010148674 A JP2010148674 A JP 2010148674A JP 2010148674 A JP2010148674 A JP 2010148674A JP 5590990 B2 JP5590990 B2 JP 5590990B2
Authority
JP
Japan
Prior art keywords
copper alloy
less
mass
alloy material
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010148674A
Other languages
Japanese (ja)
Other versions
JP2012012644A (en
Inventor
祥束 沢井
佳紀 山本
Original Assignee
株式会社Shカッパープロダクツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Shカッパープロダクツ filed Critical 株式会社Shカッパープロダクツ
Priority to JP2010148674A priority Critical patent/JP5590990B2/en
Publication of JP2012012644A publication Critical patent/JP2012012644A/en
Application granted granted Critical
Publication of JP5590990B2 publication Critical patent/JP5590990B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、銅合金の製造方法、及び銅合金に関する。特に、本発明は、電気用部品の銅合金の製造方法、及び銅合金に関する。   The present invention relates to a copper alloy manufacturing method and a copper alloy. In particular, the present invention relates to a method for producing a copper alloy for electrical parts, and a copper alloy.

リードフレーム、コネクタ、リレー、スイッチ等の電気部品に用いられる材料には、高強度、優れた耐応力緩和特性、高導電性、優れた曲げ加工性等の特性が要求される。高強度は、バネ材として高い接触圧を当該材料に付与するために要求され、優れた耐応力緩和特性は、電気部品を高温下で長期間使用した場合であっても接触圧を維持するために要求される。また、高導電性は、電気部品の通電時におけるジュール熱の発生を抑制すると共に、発生した熱を放散しやすくするために要求され、優れた曲げ加工性は、曲げ加工による割れを電気部品に発生させないために要求される。   Materials used for electrical parts such as lead frames, connectors, relays, and switches are required to have characteristics such as high strength, excellent stress relaxation resistance, high conductivity, and excellent bending workability. High strength is required for applying high contact pressure to the material as a spring material, and excellent stress relaxation resistance is to maintain contact pressure even when electrical components are used at high temperatures for long periods of time. As required. In addition, high conductivity is required to suppress the generation of Joule heat when electrical components are energized and to easily dissipate the generated heat. Required not to generate.

近年の電気部品の小型化に伴い、電気部品を構成する材料に流れる電流の電流密度が増大している。電流密度の増大に伴い、従来の材料より高導電性の材料に対する要求が生じている。また、車載向けの電気部品においては更に高温の環境下における使用に耐える材料が必要であることから、耐応力緩和特性に優れた材料に対する要求も高まっている。高温環境下における使用に耐え、耐応力緩和特性に優れた材料として、従来は黄銅やリン青銅等が用いられてきたが、これらの材料は、近年、要求される高導電性、耐応力緩和特性等に応える特性は有していない。   With the recent miniaturization of electrical components, the current density of the current flowing through the material constituting the electrical component is increasing. With increasing current density, there is a need for materials that are more conductive than conventional materials. In addition, since electric components for in-vehicle use require materials that can withstand use in higher temperature environments, there is an increasing demand for materials having excellent stress relaxation resistance. Conventionally, brass and phosphor bronze have been used as materials that can withstand use in high-temperature environments and have excellent stress relaxation properties. However, these materials have recently been required to have high conductivity and stress relaxation properties. It does not have the characteristics to meet the above.

高導電性と優れた耐応力緩和特性とを併せ持つ材料として、Cu−Cr−Zr系合金が提案されている。Cu−Cr−Zr系合金は、析出硬化型合金であるCu−Ni−Si系合金に比べ、析出硬化による強度の上昇が小さいことから、更なる高強度化が要求されている。   A Cu—Cr—Zr-based alloy has been proposed as a material having both high conductivity and excellent stress relaxation resistance. The Cu—Cr—Zr alloy is required to be further strengthened because the increase in strength due to precipitation hardening is small compared to the Cu—Ni—Si alloy which is a precipitation hardening type alloy.

例えば、0.05〜0.40%のCrと、0.03〜0.25%のZrと、0.10〜1.80%のFeと、0.10〜0.80%のTiとを含むか、あるいは更に0.05〜2.0%のZnと、総量で0.01〜1%のSn、In、Mn、P、Mg、及びSiの1種以上とを含有すると共に、0.10%≦Ti≦0.60%ではFe/Ti重量比が0.66〜2.6を満足し、0.60%<Ti≦0.80%ではFe/Ti重量比が1.1〜2.6を満足し、残部がCu及び不可避的不純物からなる銅合金の素材に、1)950℃未満の温度での溶体化処理、2)50〜90%の加工度での冷間加工、3)300〜580℃の温度での時効処理、4)16〜83%の加工度での冷間加工、5)350〜700℃の温度での焼鈍処理をこの順に施すことにより銅合金材を製造する電子機器用高力高導電性銅合金材の製造方法が知られている。(例えば、特許文献1参照。)。   For example, 0.05 to 0.40% Cr, 0.03 to 0.25% Zr, 0.10 to 1.80% Fe, and 0.10 to 0.80% Ti. Or further containing 0.05 to 2.0% Zn and 0.01 to 1% of Sn, In, Mn, P, Mg, and Si in a total amount, and 0. When 10% ≦ Ti ≦ 0.60%, the Fe / Ti weight ratio satisfies 0.66 to 2.6, and when 0.60% <Ti ≦ 0.80%, the Fe / Ti weight ratio is 1.1 to 2. .6, and the remainder is made of a copper alloy material consisting of Cu and inevitable impurities. 1) Solution treatment at a temperature of less than 950 ° C., 2) Cold working at a working degree of 50 to 90%, 3 ) Aging treatment at a temperature of 300 to 580 ° C. 4) Cold working at a working degree of 16 to 83%, 5) An annealing treatment at a temperature of 350 to 700 ° C. in this order. Method of manufacturing an electronic device for high strength high conductivity copper alloy material for producing the copper alloy material is known by performing. (For example, refer to Patent Document 1).

特開平7−258805号公報JP 7-258805 A

しかしながら、特許文献1に記載の電子機器用高力高導電性銅合金材の製造方法は高温での溶体化処理を採用しており、斯かる溶体化処理では母相の金属組織の粗大化を引き起こすので、銅合金材が部分的に軟化すること、銅合金材の曲げ加工性が悪化すること、銅合金材の耐応力緩和特性が悪化することが懸念される。耐応力緩和特性、強度、及び曲げ加工性を向上させるためには、Cr、Zrを含む析出物の析出を制御することが必要になる。これらの析出物の析出を制御するためには、溶体化処理、時効処理前の冷間圧延、時効処理等の各加工条件の調整による制御、又は他の添加物による制御が要求される。   However, the method for producing a high-strength, high-conductivity copper alloy material for electronic devices described in Patent Document 1 employs a solution treatment at a high temperature, and in such a solution treatment, the metal structure of the matrix is coarsened. Therefore, there are concerns that the copper alloy material is partially softened, the bending workability of the copper alloy material is deteriorated, and the stress relaxation resistance of the copper alloy material is deteriorated. In order to improve the stress relaxation resistance, strength, and bending workability, it is necessary to control the precipitation of precipitates containing Cr and Zr. In order to control the precipitation of these precipitates, control by adjusting each processing condition such as solution treatment, cold rolling before aging treatment, aging treatment, or control by other additives is required.

したがって、本発明の目的は、高い導電率、優れた耐応力緩和性を有すると共に、強度が高く、曲げ加工性に優れた銅合金の製造方法、及び銅合金を提供することにある。   Accordingly, an object of the present invention is to provide a copper alloy production method and a copper alloy that have high conductivity, excellent stress relaxation resistance, high strength, and excellent bending workability.

(1)本発明は、上記課題を解決することを目的として、母相としての銅(Cu)に、0.1質量%以上0.4質量%以下のクロム(Cr)と、0.01質量%以上0.2質量%以下のジルコニウム(Zr)と、0.01質量%以上0.3質量%以下のスズ(Sn)と、0.05質量%以上0.4質量%以下のマグネシウム(Mg)と、不可避的不純物とを含む銅合金材を鋳造する鋳造工程と、銅合金材に熱間圧延加工を施す熱間圧延工程と、熱間圧延加工を施した銅合金材に700℃以上900℃未満の温度の熱処理を施した後、急冷する冷却工程と、冷却工程を経た銅合金材に、80%以上の加工度の冷間圧延加工を施す第1冷間圧延工程と、第1冷間圧延加工が施された銅合金材に、390℃以上450℃以下の温度で時効処理を施す時効処理工程と、時効処理が施された銅合金材に、20%以上40%以下の加工度の冷間圧延加工を施す第2冷間圧延工程と、第2冷間圧延工程を経た銅合金材に、400℃以上600℃未満で焼鈍を施すことにより銅合金を製造する焼鈍工程とを備える銅合金の製造方法が提供される。   (1) For the purpose of solving the above-mentioned problems, the present invention provides copper (Cu) as a parent phase with 0.1 mass% or more and 0.4 mass% or less of chromium (Cr), and 0.01 mass. % To 0.2% by mass of zirconium (Zr), 0.01% to 0.3% by mass of tin (Sn), 0.05% to 0.4% by mass of magnesium (Mg) ) And a copper alloy material containing inevitable impurities, a hot rolling step of hot rolling the copper alloy material, and a copper alloy material subjected to the hot rolling process at 700 ° C. or more and 900 ° C. A cooling process in which the steel alloy is subjected to a heat treatment at a temperature of less than 0 ° C. and then rapidly cooled; a first cold rolling process in which the copper alloy material that has undergone the cooling process is subjected to a cold rolling process with a working degree of 80% or more; Aging treatment is performed at a temperature of 390 ° C. or higher and 450 ° C. or lower on the hot-rolled copper alloy material. An effect treatment step, a second cold rolling step for subjecting a copper alloy material subjected to an aging treatment to a cold rolling process with a working degree of 20% to 40%, and a copper alloy that has undergone a second cold rolling step There is provided a method for producing a copper alloy comprising an annealing process for producing a copper alloy by annealing the material at a temperature of 400 ° C or higher and lower than 600 ° C.

(2)また、本発明は、上記課題を解決することを目的として、上記(1)に記載の銅合金の製造方法により製造された銅合金材であって、第2冷間圧延工程の圧延方向に対して垂直な断面内から所定の1か所の600nm×400nmの領域を選択した場合に、領域内の母相の結晶粒径が50μm以下であり、領域内に存在するCr又はZrを含む析出物から30個の析出物を選択した場合に、各析出物の長径の算術平均値が20nm以下であり、領域内の900nmの面積の領域を10か所、選択した場合に、各900nmの面積の領域内に存在する長径が20nm以下の析出物の個数の算術平均値が5個以上である銅合金が提供される。 (2) Moreover, this invention is a copper alloy material manufactured by the manufacturing method of the copper alloy as described in said (1) in order to solve the said subject, Comprising: Rolling of a 2nd cold rolling process When a predetermined 600 nm × 400 nm region is selected from the cross section perpendicular to the direction, the crystal grain size of the parent phase in the region is 50 μm or less, and Cr or Zr existing in the region is When 30 precipitates are selected from the included precipitates, the arithmetic mean value of the major axis of each precipitate is 20 nm or less, and when 10 regions with an area of 900 nm 2 in the region are selected, A copper alloy is provided in which the arithmetic average value of the number of precipitates having a major axis of 20 nm or less existing in a region having an area of 900 nm 2 is 5 or more.

(3)また、上記銅合金において、80%IACS以上の導電率と、550MPa以上の強度とを有し、日本電子材料工業会標準規格EMAS−1011及び日本伸銅協会技術標準JCBA−T309に準拠した応力緩和試験において、150℃で1500時間保持した後の応力緩和率が20%以下の応力緩和特性を有することが好ましい。
(3) Moreover, in the said copper alloy, it has the electrical conductivity of 80% IACS or more, and the intensity | strength of 550 Mpa or more, Complies with the Japan Electronic Materials Manufacturers Association standard EMMA-1011 and the Japan Copper and Brass Association technical standard JCBA-T309. in the stress relaxation test, preferably 1500 hours retained stress relaxation rate after at 0.99 ° C. has a resistance stress relaxation properties of 20% or less.

本発明に係る銅合金の製造方法、及び銅合金によれば、高い導電率、優れた耐応力緩和性を有すると共に、強度が高く、曲げ加工性に優れた銅合金の製造方法、及び銅合金を提供できる。   According to the copper alloy manufacturing method and the copper alloy according to the present invention, the copper alloy manufacturing method and the copper alloy have high conductivity, excellent stress relaxation resistance, high strength, and excellent bending workability. Can provide.

[実施の形態の要約]
Cu−Cr−Zr系の銅合金の製造方法において、母相としての銅(Cu)に、0.1質量%以上0.4質量%以下のクロム(Cr)と、0.01質量%以上0.2質量%以下のジルコニウム(Zr)と、0.01質量%以上0.3質量%以下のスズ(Sn)と、0.05質量%以上0.4質量%以下のマグネシウム(Mg)と、不可避的不純物とを含む銅合金材を鋳造する鋳造工程と、前記銅合金材に熱間圧延加工を施す熱間圧延工程と、前記熱間圧延加工を施した前記銅合金材に700℃以上900℃未満の温度の熱処理を施した後、急冷する冷却工程と、前記冷却工程を経た前記銅合金材に、80%以上の加工度の冷間圧延加工を施す第1冷間圧延工程と、前記第1冷間圧延加工が施された前記銅合金材に、390℃以上450℃以下の温度で時効処理を施す時効処理工程と、前記時効処理が施された前記銅合金材に、20%以上40%以下の加工度の冷間圧延加工を施す第2冷間圧延工程と、前記第2冷間圧延工程を経た前記銅合金材に、400℃以上600℃未満で焼鈍を施すことにより銅合金を製造する焼鈍工程とを備える銅合金の製造方法が提供される。
[Summary of embodiment]
In the method for producing a Cu—Cr—Zr-based copper alloy, copper (Cu) as a parent phase is added in an amount of 0.1% by mass to 0.4% by mass of chromium (Cr), 0.01% by mass to 0% by mass. 0.2 mass% or less of zirconium (Zr), 0.01 mass% or more and 0.3 mass% or less of tin (Sn), 0.05 mass% or more and 0.4 mass% or less of magnesium (Mg), A casting process for casting a copper alloy material containing inevitable impurities, a hot rolling process for subjecting the copper alloy material to hot rolling, and a temperature of 700 ° C. to 900 ° C. for the copper alloy material subjected to the hot rolling process. A cooling step of rapidly cooling after performing a heat treatment at a temperature of less than ° C., a first cold rolling step of performing a cold rolling process with a working degree of 80% or more on the copper alloy material that has undergone the cooling step, The copper alloy material subjected to the first cold rolling process is 390 ° C. or higher and 450 ° C. or lower. An aging treatment step of performing an aging treatment at a temperature, a second cold rolling step of subjecting the copper alloy material subjected to the aging treatment to a cold rolling process with a working degree of 20% to 40%, and the second There is provided a method for producing a copper alloy comprising: an annealing step for producing a copper alloy by subjecting the copper alloy material that has undergone two cold rolling steps to annealing at 400 ° C. or more and less than 600 ° C.

[実施の形態] [Embodiment]

本発明の実施の形態に係る銅合金は、Cu−Cr−Zr系の銅合金である。本実施の形態に係る銅合金は以下のようにして製造することができる。   The copper alloy according to the embodiment of the present invention is a Cu—Cr—Zr based copper alloy. The copper alloy according to the present embodiment can be manufactured as follows.

まず、母相としての銅(Cu)に、0.1質量%以上0.4質量%以下のクロム(Cr)と、0.01質量%以上0.2質量%以下のジルコニウム(Zr)と、0.01質量%以上0.3質量%以下のスズ(Sn)と、0.05質量%以上0.4質量%以下のマグネシウム(Mg)と、不可避的不純物とを含む銅合金材を鋳造する(鋳造工程)。   First, to copper (Cu) as a parent phase, 0.1 mass% or more and 0.4 mass% or less chromium (Cr), 0.01 mass% or more and 0.2 mass% or less zirconium (Zr), A copper alloy material containing 0.01 mass% or more and 0.3 mass% or less of tin (Sn), 0.05 mass% or more and 0.4 mass% or less of magnesium (Mg), and unavoidable impurities is cast. (Casting process).

Crは、後述する時効処理時に単独で母相中に析出する。これにより、製造される銅合金の強度及び耐熱性が向上する。本実施の形態では、十分な量のCrを母相中へ析出させることを目的として、母相に添加されるCrの量は0.1質量%以上に制御することが好ましい。また、後述する溶体化処理時に、母相に固溶していないCrが粗粒の第2相析出物を形成する場合がある。この第2相析出物が存在すると、製造される銅合金の強度の増加が抑制される。したがって、本実施の形態では、この銅合金の強度が増加しないことに起因する銅合金の加工性の低下を抑制することを目的として、母相に添加されるCrの量は0.4質量%以下に制御されることが好ましい。   Cr precipitates alone in the matrix during the aging treatment described below. Thereby, the strength and heat resistance of the produced copper alloy are improved. In the present embodiment, for the purpose of precipitating a sufficient amount of Cr in the matrix, the amount of Cr added to the matrix is preferably controlled to 0.1% by mass or more. In addition, during the solution treatment described later, Cr that is not solid-solved in the parent phase may form coarse second-phase precipitates. When this second phase precipitate is present, an increase in strength of the produced copper alloy is suppressed. Therefore, in the present embodiment, the amount of Cr added to the parent phase is 0.4 mass% for the purpose of suppressing a decrease in workability of the copper alloy due to the strength of the copper alloy not increasing. It is preferable to be controlled as follows.

Zrは、後述する時効処理時に母相のCuとの間で化合物を形成し、当該化合物は母相中に析出する。この化合物が母相中に析出することにより、製造される銅合金の強度が向上する。本実施の形態では、十分な量のZrを母相中へ析出させることを目的として、母相に添加されるZrの量は0.01質量%以上に制御することが好ましい。また、後述する溶体化処理時に、母相に固溶していないZrが粗粒の第2相析出物を形成する場合がある。この第2相析出物が存在すると、製造される銅合金の強度の増加が抑制される。したがって、本実施の形態では、この銅合金の強度が増加しないことに起因する銅合金の加工性の低下を抑制することを目的として、母相に添加されるZrの量は0.2質量%以下に制御されることが好ましい。   Zr forms a compound with the parent phase Cu during the aging treatment described later, and the compound precipitates in the parent phase. By precipitating this compound in the parent phase, the strength of the produced copper alloy is improved. In the present embodiment, the amount of Zr added to the mother phase is preferably controlled to 0.01% by mass or more for the purpose of precipitating a sufficient amount of Zr into the mother phase. In addition, Zr that is not solid-solved in the matrix may form coarse second phase precipitates during the solution treatment described later. When this second phase precipitate is present, an increase in strength of the produced copper alloy is suppressed. Therefore, in the present embodiment, the amount of Zr added to the parent phase is 0.2% by mass for the purpose of suppressing a decrease in workability of the copper alloy due to the strength of the copper alloy not increasing. It is preferable to be controlled as follows.

Snは、高温におけるCrの不均一な析出を抑制する機能を有する。斯かる機能により、後述する熱間圧延加工及びその後の冷却時におけるCrの析出が抑制され、母相中に固溶しているCr量を増加させることができる。一方、時効処理時においては、微細なCrを析出させることができるので、銅合金の強度を向上させることができる。また、Snの固溶強化による銅合金の強化作用を発揮させることを目的として、母相に添加されるSnの量は0.01質量%以上に制御されることが好ましい。また、製造される銅合金の導電率の低下の抑制を目的として、母相に添加されるSnの量は0.3質量%以下に制御されることが好ましい。   Sn has a function of suppressing non-uniform precipitation of Cr at high temperatures. With such a function, precipitation of Cr during hot rolling described later and subsequent cooling is suppressed, and the amount of Cr dissolved in the matrix can be increased. On the other hand, in the aging treatment, fine Cr can be precipitated, so that the strength of the copper alloy can be improved. For the purpose of exerting the strengthening action of the copper alloy by solid solution strengthening of Sn, the amount of Sn added to the parent phase is preferably controlled to 0.01% by mass or more. Moreover, it is preferable to control the quantity of Sn added to a mother phase to 0.3 mass% or less for the purpose of suppressing the fall of the electrical conductivity of the copper alloy manufactured.

Mgは、母相を構成するCu原子の原子半径より大きい原子半径を有するので、製造される銅合金の耐応力緩和特性を向上させることができる。また、Mgは、固溶強化による銅合金の強化作用を有する。本実施の形態では、耐応力緩和特性の向上及び強化作用を発揮させることを目的として、母相に添加されるMgの量は0.01質量%以上に制御されることが好ましい。また、製造される銅合金の導電率の低下の抑制を目的として、母相に添加されるMgの量は1.0質量%以下に制御されることが好ましい。   Since Mg has an atomic radius larger than the atomic radius of Cu atoms constituting the parent phase, the stress relaxation resistance of the manufactured copper alloy can be improved. Mg has a strengthening action of the copper alloy by solid solution strengthening. In the present embodiment, the amount of Mg added to the matrix phase is preferably controlled to 0.01% by mass or more for the purpose of improving the stress relaxation resistance and exerting a strengthening effect. Moreover, it is preferable that the amount of Mg added to the matrix phase is controlled to 1.0% by mass or less for the purpose of suppressing the decrease in the electrical conductivity of the produced copper alloy.

次に、鋳造工程により得られた銅合金材に熱間圧延加工を施す(熱間圧延工程)。熱間圧延工程時における加熱により、鋳造工程で銅合金材から生じた析出物は、一旦、母相中に固溶する。すなわち、熱間圧延工程は、析出物を母相に溶体化させる。ここで、銅合金材に添加されているSnは、銅合金材に固溶しているCrの高温における析出を抑制する。そして、後述する時効処理において生成される析出物の銅合金中における分布状態を、均一、かつ、微細な状態にすることができる。これにより、製造される銅合金の各特性が向上する。   Next, hot rolling is performed on the copper alloy material obtained by the casting process (hot rolling process). Precipitates generated from the copper alloy material in the casting process due to heating during the hot rolling process are once dissolved in the matrix. That is, in the hot rolling process, the precipitate is formed into a solution in the parent phase. Here, Sn added to the copper alloy material suppresses precipitation of Cr dissolved in the copper alloy material at a high temperature. And the distribution state in the copper alloy of the precipitate produced | generated in the aging treatment mentioned later can be made into a uniform and fine state. Thereby, each characteristic of the copper alloy manufactured improves.

続いて、熱間圧延加工を施した銅合金材に熱処理を施す。更に、熱処理後、熱処理を施した銅合金材を急冷する(冷却工程)。具体的に、冷却工程は、熱処理時の温度から室温まで銅合金材を冷却することにより実施する。一例として、冷却工程は、銅合金材への熱処理を700℃から900℃の熱処理炉内で実施した後、熱処理を施した銅合金材を大気中に移動させることにより実施することができる。この熱処理及び冷却工程により、熱間圧延加工により銅合金材に発生した歪が解消され、製造される銅合金材の曲げ加工性の低下を防止できる。また、この熱処理及び冷却工程により、銅合金材を構成する各結晶の結晶粒径が微細化するので、銅合金材の強度を向上させることもできる。なお、熱処理の温度は700℃以上900℃未満の温度に制御する。斯かる熱処理により、熱間圧延加工により生成した圧延組織がすべて解消され、再結晶によって生成された結晶粒径が50μm以下になるので、製造される銅合金の曲げ加工時の曲げ部の肌荒れを防止できる。   Subsequently, heat treatment is performed on the copper alloy material that has been hot-rolled. Further, after the heat treatment, the heat-treated copper alloy material is rapidly cooled (cooling step). Specifically, the cooling step is performed by cooling the copper alloy material from the temperature during the heat treatment to room temperature. As an example, the cooling step can be performed by performing heat treatment on the copper alloy material in a heat treatment furnace at 700 ° C. to 900 ° C. and then moving the heat-treated copper alloy material into the atmosphere. By this heat treatment and cooling step, distortion generated in the copper alloy material by hot rolling can be eliminated, and a decrease in bending workability of the manufactured copper alloy material can be prevented. Moreover, since the crystal grain size of each crystal constituting the copper alloy material is refined by this heat treatment and cooling step, the strength of the copper alloy material can be improved. Note that the temperature of heat treatment is controlled to a temperature of 700 ° C. or higher and lower than 900 ° C. Such heat treatment eliminates all of the rolled structure generated by hot rolling, and the crystal grain size generated by recrystallization is 50 μm or less, so that the roughness of the bent portion during bending of the produced copper alloy is reduced. Can be prevented.

次に、熱処理及び冷却工程を経た銅合金材に冷間圧延加工を施す(第1冷間圧延工程)。当該冷間圧延工程は、80%以上の加工度の冷間圧延加工を銅合金材に施す。第1冷間圧延工程により、銅合金材中には多数の転位が導入される。これにより、銅合金材の強度は、加工硬化により向上する。また、銅合金材に導入された転位は、後述する時効処理における析出物の起点として機能し、銅合金材中に均一に分散した析出を促進させる効果を奏する。   Next, cold rolling is performed on the copper alloy material that has undergone the heat treatment and cooling process (first cold rolling process). In the cold rolling process, the copper alloy material is subjected to cold rolling with a working degree of 80% or more. A number of dislocations are introduced into the copper alloy material by the first cold rolling process. Thereby, the strength of the copper alloy material is improved by work hardening. Moreover, the dislocation introduced into the copper alloy material functions as a starting point of precipitates in an aging treatment described later, and has the effect of promoting precipitation that is uniformly dispersed in the copper alloy material.

続いて、第1冷間圧延加工が施された銅合金材に時効処理を施す(時効処理工程)。時効処理により銅合金材中のCr、Zr化合物の析出が発生する。これにより、製造される銅合金の導電率及び強度を向上させることができる。また、第1冷間圧延工程において低下した銅合金材の延性を回復させることもできる。なお、Cr、Zr化合物の析出を十分に促進させ、製造される銅合金の導電率及び強度を十分に向上させることを目的として、時効処理は390℃以上の温度で実施することが好ましい。また、過時効による析出物の粗大化による、製造される銅合金の強度の低下を抑制することを目的として、時効処理は450℃以下の温度で実施することが好ましい。   Subsequently, an aging treatment is performed on the copper alloy material subjected to the first cold rolling process (aging treatment process). The aging treatment causes precipitation of Cr and Zr compounds in the copper alloy material. Thereby, the electrical conductivity and intensity | strength of the copper alloy manufactured can be improved. Moreover, the ductility of the copper alloy material that has decreased in the first cold rolling step can be recovered. The aging treatment is preferably performed at a temperature of 390 ° C. or more for the purpose of sufficiently promoting the precipitation of Cr and Zr compounds and sufficiently improving the conductivity and strength of the produced copper alloy. The aging treatment is preferably carried out at a temperature of 450 ° C. or lower for the purpose of suppressing a decrease in strength of the produced copper alloy due to coarsening of precipitates due to overaging.

次に、時効処理が施された銅合金材に冷間圧延加工を施し、所定の厚さに制御する(第2冷間圧延工程)。第2冷間圧延工程により、銅合金材の強度が加工硬化で向上する。ここで、銅合金材を十分に加工硬化し、製造される銅合金の強度を向上させることを目的として、加工度は20%以上に制御することが好ましい。また、製造される銅合金の導電率及び延性の低下を抑制し、製造される銅合金の十分な導電率及び十分な曲げ加工性を確保することを目的として、加工度は40%以下に制御することが好ましい。   Next, the copper alloy material that has been subjected to the aging treatment is subjected to cold rolling and controlled to a predetermined thickness (second cold rolling step). Through the second cold rolling process, the strength of the copper alloy material is improved by work hardening. Here, in order to sufficiently work harden the copper alloy material and improve the strength of the produced copper alloy, the workability is preferably controlled to 20% or more. In addition, the degree of workability is controlled to 40% or less for the purpose of suppressing the decrease in conductivity and ductility of the manufactured copper alloy and ensuring sufficient conductivity and sufficient bending workability of the manufactured copper alloy. It is preferable to do.

更に、第2冷間圧延工程を経た銅合金材に歪取焼鈍としての焼鈍を施すことにより銅合金を製造する(焼鈍工程)。焼鈍工程により、銅合金材の歪が除去されると共に延性が回復する。また、製造される銅合金の十分な延性を確保することを目的として、焼鈍の温度は400℃以上に制御することが好ましい。また、析出物の再固溶の発生により製造される銅合金の強度が低下することを防止すべく、焼鈍の温度は600℃未満に制御することが好ましい。   Furthermore, a copper alloy is manufactured by performing annealing as strain relief annealing on the copper alloy material that has undergone the second cold rolling process (annealing process). By the annealing process, strain of the copper alloy material is removed and ductility is restored. Moreover, it is preferable to control the temperature of annealing to 400 degreeC or more for the purpose of ensuring sufficient ductility of the copper alloy manufactured. Moreover, it is preferable to control the temperature of annealing to less than 600 degreeC in order to prevent the intensity | strength of the copper alloy manufactured by generation | occurrence | production of the re-solution of a precipitate falling.

(実施の形態の効果)
本発明の実施の形態に係る銅合金の製造方法によれば、銅合金の製造工程、例えば、冷却工程、第1冷間圧延工程、時効処理工程、第2冷間圧延工程、及び焼鈍工程を最適化することにより、強度、導電性、曲げ加工性、耐応力緩和特性に優れる銅合金を製造することができる。そして、本実施の形態に係る銅合金の製造方法により製造される銅合金は、電気部品の小型化、高載積化に資することができ、例えば、リードフレーム等の電気部品に用いることができる。
(Effect of embodiment)
According to the copper alloy manufacturing method according to the embodiment of the present invention, a copper alloy manufacturing process, for example, a cooling process, a first cold rolling process, an aging treatment process, a second cold rolling process, and an annealing process are performed. By optimizing, a copper alloy excellent in strength, conductivity, bending workability, and stress relaxation resistance can be produced. And the copper alloy manufactured with the manufacturing method of the copper alloy which concerns on this Embodiment can contribute to size reduction and high mounting of an electrical component, for example, can be used for electrical components, such as a lead frame. .

無酸素銅を母相にして、表1に示す合金組成の銅合金を溶製し、インゴットに鋳造した。そして、表1に示す所定の条件でインゴットに加工及び熱処理を施し、実施例1〜7に係る銅合金、及び比較例1〜12に係る銅合金を製造した。表1には、実施例1〜7、及び比較例1〜12に係る銅合金のそれぞれについての合金成分と、銅合金の製造条件と、全工程を経て製造された銅合金における析出物の平均粒径、析出物の密度、耐応力緩和特性、導電率、引張強さ、及び曲げ加工性の指標であるMBR/tとを示す。   A copper alloy having the alloy composition shown in Table 1 was melted using oxygen-free copper as a parent phase and cast into an ingot. And the processing and heat processing were given to the ingot on the predetermined conditions shown in Table 1, and the copper alloy which concerns on Examples 1-7 and the copper alloy which concerns on Comparative Examples 1-12 were manufactured. Table 1 shows the alloy components for each of the copper alloys according to Examples 1 to 7 and Comparative Examples 1 to 12, the production conditions of the copper alloy, and the average of precipitates in the copper alloy produced through all the steps. The particle size, the density of the precipitate, the stress relaxation resistance, the conductivity, the tensile strength, and MBR / t, which is an index of bending workability, are shown.

Figure 0005590990
Figure 0005590990

実施例1〜7、及び比較例1〜12に係る銅合金のそれぞれについて、熱間圧延加工後であって、熱処理直後の銅合金の一部をサンプリングして試験片とした。そして、各試験片について、圧延方向に垂直な断面に研磨及びエッチングを施した。これにより、断面を現出させ、板幅方向の結晶粒の平均値を算出し、平均結晶粒径と規定した。   About each of the copper alloys which concern on Examples 1-7 and Comparative Examples 1-12, after a hot rolling process, a part of copper alloy immediately after heat processing was sampled, and it was set as the test piece. And about each test piece, grinding | polishing and the etching were given to the cross section perpendicular | vertical to a rolling direction. As a result, the cross section was revealed, the average value of the crystal grains in the plate width direction was calculated, and defined as the average crystal grain size.

また、実施例1〜7、及び比較例1〜12に係る銅合金のそれぞれについて引張試験を実施した。引張試験は、JIS Z2201に準拠して、圧延平行方向の引張強さを測定した。また、JIS H 3130に従い、Bad Way(つまり、曲げ軸が圧延方向に同一な方向)のW曲げ試験を実施し、割れが発生しない最小曲げ半径(MBR)の板厚(t)に対する比であるMBR/t値を算出した。更に、日本電子材料工業会標準規格EMAS−1011及び日本伸銅協会技術標準JCBA−T309に準拠して応力緩和試験を実施し、150℃、1000時間の応力緩和率を耐応力緩和特性として測定した。   Moreover, the tension test was implemented about each of the copper alloys which concern on Examples 1-7 and Comparative Examples 1-12. In the tensile test, the tensile strength in the rolling parallel direction was measured according to JIS Z2201. Further, according to JIS H 3130, a W-bending test of Bad Way (that is, the bending axis is the same direction as the rolling direction) is carried out, and the ratio is the ratio of the minimum bending radius (MBR) to the plate thickness (t) at which no crack occurs. The MBR / t value was calculated. Furthermore, a stress relaxation test was carried out in accordance with the Japan Electronic Materials Manufacturers Association Standard EMAS-1011 and the Japan Copper and Brass Association Technical Standard JCBA-T309, and the stress relaxation rate at 150 ° C. for 1000 hours was measured as the stress relaxation resistance. .

実施例1〜7、及び比較例1〜12に係る銅合金のそれぞれに薄膜処理を施し、電子顕微鏡で画像を撮影した。そして、各画像から、30個の析出物の粒径(ただし、長径)の平均値を析出物の平均粒径として算出した。なお、電子顕微鏡で撮影した画像は、銅合金の薄膜の577nm×404nmの領域であり、顕微鏡の倍率は220倍である。また、90nmの領域の10か所での析出物の個数の平均値を、析出物の密度として算出した。 Each of the copper alloys according to Examples 1 to 7 and Comparative Examples 1 to 12 was subjected to thin film treatment, and images were taken with an electron microscope. And from each image, the average value of the particle diameters (however, the major axis) of 30 precipitates was calculated as the average particle diameter of the precipitates. In addition, the image image | photographed with the electron microscope is a 577 nm x 404 nm area | region of the thin film of a copper alloy, and the magnification of a microscope is 220 times. Further, the average value of the number of precipitates at 10 locations in the 90 nm 2 region was calculated as the density of the precipitates.

比較例1及び比較例2に係る銅合金は、実施例1〜7とは異なる量のCrを含有し、比較例3及び比較例4に係る銅合金は、実施例1〜7とは異なる量のZrを含有し、比較例5及び比較例6に係る銅合金は、実施例1〜7とは異なる量のSnを含有し、比較例7及び比較例8に係る銅合金は、実施例1〜7とは異なる量のMgを含有している。   The copper alloys according to Comparative Example 1 and Comparative Example 2 contain a different amount of Cr from Examples 1 to 7, and the copper alloys according to Comparative Example 3 and Comparative Example 4 are different from Examples 1 to 7. The copper alloys according to Comparative Example 5 and Comparative Example 6 contain a different amount of Sn from Examples 1 to 7, and the copper alloys according to Comparative Example 7 and Comparative Example 8 are It contains an amount of Mg different from ˜7.

また、比較例9に係る銅合金は、熱処理後の平均結晶粒径が実施例1〜7とは異なる粒径であり、比較例10に係る銅合金は、中間圧延加工度が実施例1〜7とは異なる加工度であり、比較例11及び比較例12に係る銅合金は、時効温度が実施例1〜7とは異なる温度であり、比較例13及び比較例14に係る銅合金は、仕上り圧延加工度が実施例1〜7とは異なる加工度であり、比較例15及び比較例16に係る銅合金は、歪取焼鈍温度が実施例1〜7とは異なる温度である。   Moreover, the copper alloy which concerns on the comparative example 9 is a particle size from which the average crystal grain diameter after heat processing differs from Examples 1-7, and the copper alloy which concerns on the comparative example 10 has intermediate rolling work degree of Examples 1- 7, the copper alloys according to Comparative Example 11 and Comparative Example 12 are different in aging temperature from Examples 1 to 7, and the copper alloys according to Comparative Example 13 and Comparative Example 14 are The finish rolling work degree is a work degree different from those of Examples 1 to 7, and the copper alloys according to Comparative Example 15 and Comparative Example 16 have a strain relief annealing temperature different from those of Examples 1 to 7.

表1を参照すると、実施例1〜7においては、第2冷間圧延工程の圧延方向に対して垂直な断面内から所定の1か所の600nm×400nmの領域を選択した場合に、領域内の母相の結晶粒径が50μm以下であり、領域内に存在するCr又はZrを含む析出物から30個の析出物を選択した場合に、各析出物の長径の算術平均値が20nm以下であり、領域内の900nmの面積の領域を10か所、選択した場合に、各900nmの面積の領域内に存在する長径が20nm以下の析出物の個数の算術平均値が5個以上である銅合金が得られることが示された。また、実施例1〜7においては、80%IACS以上の導電率と、550MPa以上の強度とを有し、日本電子材料工業会標準規格EMAS−1011及び日本伸銅協会技術標準JCBA−T309に準拠した応力緩和試験において、150℃で1500時間保持した後の応力緩和率が20%以下の応力緩和特性を有する銅合金が得られることが示された。
Referring to Table 1, in Examples 1 to 7, when a predetermined 600 nm × 400 nm region was selected from the cross section perpendicular to the rolling direction of the second cold rolling process, When the crystal grain size of the mother phase is 50 μm or less and 30 precipitates are selected from the precipitates containing Cr or Zr present in the region, the arithmetic average value of the major axis of each precipitate is 20 nm or less. Yes, when 10 regions of 900 nm 2 area in the region are selected, the arithmetic average value of the number of precipitates having a major axis of 20 nm or less present in each region of 900 nm 2 area is 5 or more. It has been shown that certain copper alloys can be obtained. Moreover, in Examples 1-7, it has the electrical conductivity of 80% IACS or more, and the intensity | strength of 550 Mpa or more, Complies with the Japan Electronic Materials Industry Standard EMA-1011 and the Japan Copper and Brass Association technical standard JCBA-T309. in the stress relaxation test, 1500 hours retained stress relaxation rate after at 0.99 ° C. it has been shown that copper alloys having resistance to stress relaxation properties of 20% or less is obtained.

以上、本発明の実施の形態及び実施例を説明したが、上記に記載した実施の形態及び実施例は特許請求の範囲に係る発明を限定するものではない。また、実施の形態及び実施例の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。   While the embodiments and examples of the present invention have been described above, the embodiments and examples described above do not limit the invention according to the claims. It should be noted that not all combinations of features described in the embodiments and examples are necessarily essential to the means for solving the problems of the invention.

Claims (2)

母相としての銅(Cu)に、0.1質量%以上0.4質量%以下のクロム(Cr)と、0.01質量%以上0.2質量%以下のジルコニウム(Zr)と、0.01質量%以上0.3質量%以下のスズ(Sn)と、0.05質量%以上0.4質量%以下のマグネシウム(Mg)と、不可避的不純物とを含む銅合金材を鋳造する鋳造工程と、
前記銅合金材に熱間圧延加工を施す熱間圧延工程と、
前記熱間圧延加工を施した前記銅合金材に700℃以上900℃未満の温度の熱処理を施した後、冷却する冷却工程と、
前記冷却工程を経た前記銅合金材に、80%以上の加工度の冷間圧延加工を施す第1冷間圧延工程と、
前記第1冷間圧延加工が施された前記銅合金材に、390℃以上450℃以下の温度で時効処理を施す時効処理工程と、
前記時効処理が施された前記銅合金材に、20%以上40%以下の加工度の冷間圧延加工を施す第2冷間圧延工程と、
前記第2冷間圧延工程を経た前記銅合金材に、400℃以上600℃未満で焼鈍を施すことにより銅合金を製造する焼鈍工程と
を備える銅合金の製造方法により製造された銅合金であって、
前記第2冷間圧延工程の圧延方向に対して垂直な断面内から所定の1か所の600nm×400nmの領域を選択した場合に、
前記領域内の前記母相の結晶粒径が50μm以下であり、
前記領域内に存在するCr又はZrを含む析出物から30個の析出物を選択した場合に、各析出物の長径の算術平均値が20nm以下であり、
前記領域内の900nm の面積の領域を10か所、選択した場合に、各900nm の面積の領域内に存在する長径が20nm以下の析出物の個数の算術平均値が5個以上である銅合金。
To copper (Cu) as a parent phase, 0.1 mass% or more and 0.4 mass% or less of chromium (Cr), 0.01 mass% or more and 0.2 mass% or less of zirconium (Zr); A casting process for casting a copper alloy material containing tin (Sn) of not less than 01 mass% and not more than 0.3 mass%, magnesium (Mg) of not less than 0.05 mass% and not more than 0.4 mass%, and unavoidable impurities When,
A hot rolling step of subjecting the copper alloy material to hot rolling,
A cooling step of cooling the copper alloy material that has been subjected to the hot rolling process after performing a heat treatment at a temperature of 700 ° C. or more and less than 900 ° C .;
A first cold rolling step for subjecting the copper alloy material that has undergone the cooling step to cold rolling with a workability of 80% or more;
An aging treatment step of performing an aging treatment at a temperature of 390 ° C. or higher and 450 ° C. or lower on the copper alloy material subjected to the first cold rolling process;
A second cold rolling process in which the copper alloy material subjected to the aging treatment is subjected to a cold rolling process with a working degree of 20% or more and 40% or less;
A copper alloy manufactured by a copper alloy manufacturing method comprising: an annealing process for manufacturing a copper alloy by annealing the copper alloy material that has undergone the second cold rolling process at a temperature of 400 ° C. or higher and lower than 600 ° C. And
When a predetermined 600 nm × 400 nm region is selected from within a cross section perpendicular to the rolling direction of the second cold rolling step,
The crystal grain size of the matrix in the region is 50 μm or less,
When 30 precipitates are selected from the precipitates containing Cr or Zr present in the region, the arithmetic average value of the major axis of each precipitate is 20 nm or less,
When ten regions with an area of 900 nm 2 in the region are selected , the arithmetic average value of the number of precipitates having a major axis of 20 nm or less present in each region with an area of 900 nm 2 is 5 or more. Copper alloy.
80%IACS以上の導電率と、550MPa以上の強度とを有し、日本電子材料工業会標準規格EMAS−1011及び日本伸銅協会技術標準JCBA−T309に準拠した応力緩和試験において、150℃で1500時間保持した後の応力緩和率が20%以下の応力緩和特性を有する請求項に記載の銅合金。
It has a conductivity of 80% IACS or more and a strength of 550 MPa or more, and is 1500 at 150 ° C. in a stress relaxation test in accordance with the Japan Electronic Materials Industries Association standard EMMA-1011 and the Japan Copper and Brass Association technical standard JCBA-T309. copper alloy according to claim 1, retention time and stress relaxation rate after having a resistance stress relaxation properties of 20% or less.
JP2010148674A 2010-06-30 2010-06-30 Copper alloy Active JP5590990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010148674A JP5590990B2 (en) 2010-06-30 2010-06-30 Copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010148674A JP5590990B2 (en) 2010-06-30 2010-06-30 Copper alloy

Publications (2)

Publication Number Publication Date
JP2012012644A JP2012012644A (en) 2012-01-19
JP5590990B2 true JP5590990B2 (en) 2014-09-17

Family

ID=45599422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010148674A Active JP5590990B2 (en) 2010-06-30 2010-06-30 Copper alloy

Country Status (1)

Country Link
JP (1) JP5590990B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019102716A1 (en) 2017-11-21 2019-05-31 三菱マテリアル株式会社 Mold material for casting and copper alloy material

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6265582B2 (en) * 2011-12-22 2018-01-24 古河電気工業株式会社 Copper alloy material and method for producing the same
JP5892974B2 (en) * 2012-07-06 2016-03-23 Jx金属株式会社 Copper alloy sheet with excellent conductivity and stress relaxation properties
JP5470483B1 (en) * 2012-10-22 2014-04-16 Jx日鉱日石金属株式会社 Copper alloy sheet with excellent conductivity and stress relaxation properties
JP5525101B2 (en) * 2012-10-22 2014-06-18 Jx日鉱日石金属株式会社 Copper alloy sheet with excellent conductivity and stress relaxation properties
JP6222971B2 (en) * 2013-03-25 2017-11-01 Jx金属株式会社 Copper alloy sheet with excellent conductivity and stress relaxation properties
JP6301734B2 (en) * 2014-05-26 2018-03-28 古河電気工業株式会社 Copper alloy material and method for producing the same
KR102441663B1 (en) * 2014-05-29 2022-09-13 후루카와 덴키 고교 가부시키가이샤 Copper alloy sheet material, production method therefor, and electrical/electronic component comprising said copper alloy sheet material
JP2017057476A (en) 2015-09-18 2017-03-23 Dowaメタルテック株式会社 Copper alloy sheet material and manufacturing method therefor
CN105483404A (en) * 2015-12-02 2016-04-13 芜湖楚江合金铜材有限公司 Electric connector copper alloy wire material produced through scrap copper and pyrogenic process thereof
CN109355525B (en) * 2018-11-06 2020-01-10 有研工程技术研究院有限公司 Multi-scale multi-element high-strength high-conductivity copper chromium zirconium alloy material and preparation method thereof
TW202035723A (en) * 2019-03-25 2020-10-01 日商Jx金屬股份有限公司 Copper alloy plate, electronic component for passage of electricity, and electronic component for heat dissipation
TW202035722A (en) * 2019-03-25 2020-10-01 日商Jx金屬股份有限公司 Copper alloy plate, electronic component for passage of electricity, and electronic component for heat dissipation
CN111424188B (en) * 2020-05-14 2022-04-22 中南大学 High-conductivity high-strength copper-iron alloy and preparation method thereof
CN115323216B (en) * 2022-07-28 2023-04-04 昆明冶金研究院有限公司北京分公司 High-performance copper alloy strip and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06145930A (en) * 1992-11-02 1994-05-27 Furukawa Electric Co Ltd:The Production of precipitation type copper alloy
JPH07258776A (en) * 1994-03-22 1995-10-09 Nikko Kinzoku Kk High strength and high electrical conductivity copper alloy for electronic appliance
JP2732355B2 (en) * 1994-03-22 1998-03-30 日鉱金属株式会社 Manufacturing method of high strength and high conductivity copper alloy material for electronic equipment
JP4968533B2 (en) * 2007-11-30 2012-07-04 日立電線株式会社 Copper alloy material for electrical and electronic parts
JP5426936B2 (en) * 2009-06-18 2014-02-26 株式会社Shカッパープロダクツ Copper alloy manufacturing method and copper alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019102716A1 (en) 2017-11-21 2019-05-31 三菱マテリアル株式会社 Mold material for casting and copper alloy material
KR20200087123A (en) 2017-11-21 2020-07-20 미쓰비시 마테리알 가부시키가이샤 Mold material for casting, and copper alloy material

Also Published As

Publication number Publication date
JP2012012644A (en) 2012-01-19

Similar Documents

Publication Publication Date Title
JP5590990B2 (en) Copper alloy
JP5312920B2 (en) Copper alloy plate or strip for electronic materials
JP4596493B2 (en) Cu-Ni-Si alloy used for conductive spring material
JP5426936B2 (en) Copper alloy manufacturing method and copper alloy
JP4937815B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5320642B2 (en) Copper alloy manufacturing method and copper alloy
JP4837697B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
WO2010064547A1 (en) Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor
JP5225787B2 (en) Cu-Ni-Si alloy plate or strip for electronic materials
JP2014088604A (en) Cu-Ni-Co-Si-BASED COPPER ALLOY SHEET MATERIAL AND MANUFACTURING METHOD THEREOF
WO2009122869A1 (en) Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING THE SAME
JP2004149874A (en) Easily-workable high-strength high-electric conductive copper alloy
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP5461467B2 (en) Titanium copper excellent in strength, electrical conductivity and bending workability and its manufacturing method
JP4834781B1 (en) Cu-Co-Si alloy for electronic materials
JP2010059543A (en) Copper alloy material
KR20130109209A (en) Cu-si-co-base copper alloy for electronic materials and method for producing same
JP6222885B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
JP6077755B2 (en) Cu-Zn-Sn-Ni-P-based alloy and manufacturing method thereof
JP2011246740A (en) Cu-Co-Si BASED ALLOY SHEET OR STRIP FOR ELECTRONIC MATERIAL
JP2008088558A (en) High-strength and high-conductivity copper alloy with excellent ductility
JP7430502B2 (en) Copper alloy wire and electronic equipment parts
JP4175920B2 (en) High strength copper alloy
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2011190469A (en) Copper alloy material, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20120824

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130628

A977 Report on retrieval

Effective date: 20130912

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20140708

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140729

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5590990

Free format text: JAPANESE INTERMEDIATE CODE: R150

Country of ref document: JP