JP6133178B2 - Copper alloy sheet and manufacturing method thereof - Google Patents

Copper alloy sheet and manufacturing method thereof Download PDF

Info

Publication number
JP6133178B2
JP6133178B2 JP2013185448A JP2013185448A JP6133178B2 JP 6133178 B2 JP6133178 B2 JP 6133178B2 JP 2013185448 A JP2013185448 A JP 2013185448A JP 2013185448 A JP2013185448 A JP 2013185448A JP 6133178 B2 JP6133178 B2 JP 6133178B2
Authority
JP
Japan
Prior art keywords
copper alloy
alloy sheet
mass
copper
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013185448A
Other languages
Japanese (ja)
Other versions
JP2015052143A (en
Inventor
恵人 藤井
恵人 藤井
清慈 廣瀬
清慈 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2013185448A priority Critical patent/JP6133178B2/en
Publication of JP2015052143A publication Critical patent/JP2015052143A/en
Application granted granted Critical
Publication of JP6133178B2 publication Critical patent/JP6133178B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、EV(Electric Vihicle)、HEV(Hybrid Electric Vihicle)を中心とした車載部品および周辺インフラや太陽光発電システムなどのコネクタのほか、リードフレーム、リレー、スイッチ、ソケット等に好適な銅合金板材及びその製造方法に関する。   The present invention is a copper alloy suitable for lead frames, relays, switches, sockets, etc., as well as connectors for in-vehicle components and peripheral infrastructure, solar power generation systems, etc., centering on EVs (Electronic Vehicles) and HEVs (Hybrid Electric Vehicles). It is related with a board | plate material and its manufacturing method.

EV、HEVを中心とした車載部品及び周辺インフラや太陽光発電システム等のコネクタ、その他リードフレーム、リレー、スイッチ、ソケット等の用途においては、銅合金材が一般的に使用されている。近年、回路電源の高電圧化や電子機器寸法の小型化による、回路の高電流密度化が進行しており、通電時の抵抗発熱及びそれに伴う回路接続信頼性の低下が懸念されるため、導電率の高い材料が求められている。
また、コネクタの挿抜やスイッチの切り替えを繰り返し行う場合、あるいは部品に振動が加わる場合に、材料の疲労破壊による回路の断線も問題となるため、これらの用途に用いられる銅合金材には、耐疲労特性も要求される。
さらに、通電時の抵抗発熱量の増大だけでなく、使用環境の高温化も進行しており、回路接続信頼性の観点から、耐応力緩和特性も兼ね備えた材料が好ましい。
しかし一般的に、材料の耐疲労特性、耐応力緩和特性を改善するためには、銅合金材に合金成分を添加する必要があり、それに伴い導電率が低下するため、これらの特性を兼ね備えることは困難であった。
Copper alloys are generally used in applications such as in-vehicle components such as EVs and HEVs, connectors for peripheral infrastructure, solar power generation systems, and other lead frames, relays, switches, sockets, and the like. In recent years, high current density of circuits has progressed due to high voltage of circuit power supply and miniaturization of electronic equipment, and there is concern about resistance heat generation during energization and concomitant deterioration of circuit connection reliability. A material with a high rate is required.
In addition, when a connector is repeatedly inserted and removed or a switch is switched, or when vibration is applied to a component, circuit disconnection due to fatigue failure of the material also becomes a problem. Fatigue properties are also required.
In addition to the increase in resistance heat generation during energization, the use environment is also increasing in temperature. From the viewpoint of circuit connection reliability, a material that also has stress relaxation resistance is preferable.
However, in general, in order to improve the fatigue resistance and stress relaxation resistance of a material, it is necessary to add an alloy component to the copper alloy material, and as a result, the electrical conductivity decreases. Was difficult.

Cu−Cr系銅合金は、中程度の強度と高い導電性を有していることで知られている。文献1では、Cu−Cr−Zr銅合金において特定の介在物の個数を制御することで、耐疲労特性を改善している。文献2では、Zr、Sn、Mgを添加し、析出物の大きさと個数を制御することにより、耐応力緩和特性を改善している。しかしこれらは耐疲労特性、あるいは耐応力緩和特性のそれぞれを向上することにしか着目しておらず、それらを同時に改善した銅合金板材は、これまで見られなかった。   Cu—Cr-based copper alloys are known to have moderate strength and high conductivity. In Document 1, fatigue resistance is improved by controlling the number of specific inclusions in a Cu—Cr—Zr copper alloy. In Document 2, the stress relaxation resistance is improved by adding Zr, Sn, and Mg and controlling the size and number of precipitates. However, these only focus on improving each of fatigue resistance and stress relaxation characteristics, and no copper alloy sheet material that has been improved at the same time has been found so far.

特許第4130593号公報Japanese Patent No. 4130593 特開2012−12644号公報JP 2012-12644 A

EV、HEVを中心とした車載部品及び周辺インフラや太陽光発電システム等のコネクタ、その他リードフレーム、リレー、スイッチ、ソケット等の用途においては、導電性、及び耐疲労特性、さらにこれに加えて耐応力緩和特性を兼ね備えた銅合金板材が要求されているにも関わらず、これまでこれらの特性を同時に改善するような発明はなかった。   In applications such as EV, HEV and other in-vehicle components, connectors for peripheral infrastructure, solar power generation systems, and other lead frames, relays, switches, sockets, etc., conductivity and fatigue resistance, in addition to this, In spite of the demand for copper alloy sheets having stress relaxation properties, there has been no invention that improves these properties at the same time.

上記の事情に鑑み、本発明の課題は、EV、HEVを中心とした車載部品及び周辺インフラや太陽光発電システム等のコネクタ、その他リードフレーム、リレー、スイッチ、ソケット等に適した強度、導電性、及び耐疲労特性を有する、又はさらに耐応力緩和特性をも兼ね備えた銅合金板材及びその製造方法を提供することにある。   In view of the above circumstances, the object of the present invention is to provide strength and conductivity suitable for in-vehicle components such as EVs and HEVs, peripheral infrastructure, connectors for solar power generation systems, other lead frames, relays, switches, sockets, and the like. Another object of the present invention is to provide a copper alloy sheet material having fatigue resistance or further having stress relaxation characteristics and a method for producing the same.

本発明者らは、電気・電子部品用途に適した銅合金板材について研究を行い、Crを0.10〜0.50mass%と、Mgを0〜0.20mass%と、Zr、Tiのうち少なくとも一種類を合計で0〜0.20mass%と、Zn、Sn、Ag、Si、Feのうち少なくとも一種類を合計で0〜0.40mass%とを含有し、残部がCuと不可避的不純物からなる銅合金板材の均質化熱処理において、室温から500℃までと500℃から最終到達温度までの昇温速度を制御することで、より効率的に、化合物を銅母相中に固溶させられることを見出した。さらに熱間加工後の水冷において750℃まで0.1〜10℃/秒の冷却速度とし、冷間圧延後の材料に対して特定の条件で時効熱処理を行なうことにより、強度、導電性、耐疲労特性、耐応力緩和特性を兼ね備えた銅合金板材が得られることを見出した。本発明はこの知見に基づきなされるに至ったものである。   The inventors of the present invention have studied copper alloy sheet materials suitable for electric / electronic component applications, and have Cr of 0.10 to 0.50 mass%, Mg of 0 to 0.20 mass%, and at least of Zr and Ti. One type contains 0 to 0.20 mass% in total, and at least one of Zn, Sn, Ag, Si, and Fe contains 0 to 0.40 mass% in total, and the balance consists of Cu and inevitable impurities In the homogenization heat treatment of the copper alloy sheet, it is possible to more efficiently dissolve the compound in the copper matrix by controlling the rate of temperature increase from room temperature to 500 ° C and from 500 ° C to the final temperature. I found it. Furthermore, the water cooling after hot working is performed at a cooling rate of 0.1 to 10 ° C./second up to 750 ° C., and the material after cold rolling is subjected to aging heat treatment under specific conditions, thereby increasing strength, conductivity, It has been found that a copper alloy sheet material having both fatigue characteristics and stress relaxation resistance characteristics can be obtained. The present invention has been made based on this finding.

本発明の上記の課題は下記の手段によって達成される。
(1)Crを0.10〜0.50mass%と、Mgを0〜0.20mass%と、Zr、Tiのうち少なくとも一種類を合計で0〜0.20mass%と、Zn、Sn、Ag、Si、Feのうち少なくとも一種類を合計で0〜0.40mass%とを含有し、残部がCuと不可避的不純物からなる銅合金板材であって、加工方向の平行断面を観察した際に、粒子径の長径aを短径bで割ったアスペクト比a/bが2超5未満であって、短径bが100nm以上である粒子が1×10〜1×10個/mm存在することを特徴とする銅合金板材。
(2)銅母相中に、粒子径が5〜50nmの合金成分または合金成分を含む化合物からなる粒子が1×10〜1×1012個/mm含まれることを特徴とする、請求項1に記載の銅合金板材。
(3)銅母相中にMgを0.01〜0.20mass%含有することを特徴とする、(1)または(2)に記載の銅合金板材。
(4)銅母相中にZr、Tiのうち少なくとも一種類を合計で0.01〜0.20mass%含有することを特徴とする(1)〜(3)のいずれか1項に記載の銅合金板材。
(5)銅母相中に、Zn、Sn、Ag、Si、Feのうち少なくとも一種類を合計で0.01〜0.40mass%含有することを特徴とする(1)〜(4)のいずれか1項に記載の銅合金板材。
(6)(1)〜(5)のいずれかに記載の銅合金板材の製造方法であって、銅合金成分を溶解鋳造して得られた鋳塊に、(a)均質化熱処理を、室温から500℃までの昇温速度を5℃/分以下とし、その後2℃/分以上の速度で900〜1050℃の最終到達温度まで昇温し、0.5〜12時間行い(b)熱間加工を、850〜1000℃の温度域で行い(c)熱間加工後、750℃まで0.1〜10℃/秒の冷却速度で冷却した後に水冷し、面削し、(d)70〜90%の加工率で冷間加工後(e)400〜500℃で、10分〜24時間の時効熱処理を行ない、(f)前記面削後からの材料の総加工率が70〜90%となるように仕上げ加工を0〜50%行う、銅合金板材の製造方法。
The above object of the present invention is achieved by the following means.
(1) Cr is 0.10 to 0.50 mass%, Mg is 0 to 0.20 mass%, and at least one of Zr and Ti is 0 to 0.20 mass% in total, Zn, Sn, Ag, It is a copper alloy sheet containing at least one of Si and Fe in a total of 0 to 0.40 mass%, the balance being Cu and inevitable impurities, and particles observed when a parallel section in the processing direction is observed. There are 1 × 10 1 to 1 × 10 3 particles / mm 2 in which the aspect ratio a / b obtained by dividing the major axis a by the minor axis b is more than 2 and less than 5, and the minor axis b is 100 nm or more. A copper alloy sheet characterized by the above.
(2) The copper matrix phase contains 1 × 10 9 to 1 × 10 12 particles / mm 2 of an alloy component having a particle size of 5 to 50 nm or a compound containing an alloy component. Item 4. The copper alloy sheet according to Item 1.
(3) The copper alloy sheet according to (1) or (2), wherein Mg is contained in the copper matrix phase in an amount of 0.01 to 0.20 mass%.
(4) The copper according to any one of (1) to (3), wherein the copper matrix contains at least one of Zr and Ti in a total amount of 0.01 to 0.20 mass%. Alloy plate material.
(5) In any one of (1) to (4), the copper matrix phase contains at least one of Zn, Sn, Ag, Si, and Fe in a total amount of 0.01 to 0.40 mass%. The copper alloy sheet material according to claim 1.
(6) A method for producing a copper alloy sheet according to any one of (1) to (5), wherein (a) homogenization heat treatment is performed at room temperature on an ingot obtained by melting and casting a copper alloy component. From 500 ° C. to 500 ° C./min or less, then at a rate of 2 ° C./min or more, the temperature is raised to 900 to 1050 ° C. and reached for 0.5 to 12 hours (b) Processing is performed in a temperature range of 850 to 1000 ° C. (c) After hot working, it is cooled to 750 ° C. at a cooling rate of 0.1 to 10 ° C./second, then cooled with water, and face-cut, (d) 70 to 70 After cold working at a processing rate of 90% (e) aging heat treatment is performed at 400 to 500 ° C. for 10 minutes to 24 hours, and (f) the total processing rate of the material after the chamfering is 70 to 90% The manufacturing method of a copper alloy sheet | seat material which performs a finishing process so that it may become 0-50%.

本発明の銅合金板材は、強度、導電性、耐疲労特性、耐応力緩和特性に優れ、EV、HEVを中心とした車載部品及び周辺インフラや太陽光発電システム等のコネクタ、その他リードフレーム、リレー、スイッチ、ソケット等に好適である。   The copper alloy sheet material of the present invention is excellent in strength, conductivity, fatigue resistance and stress relaxation characteristics, and is equipped with EV, HEV and other in-vehicle components, peripheral infrastructure, connectors for solar power generation systems, other lead frames, relays, etc. Suitable for switches, sockets and the like.

本発明の銅合金板材の好ましい実施の形態について、詳細に説明する。ここで、「銅合金板材」とは、(加工前であって所定の合金組成を有する)銅合金素材が所定の形状(例えば、板、条、箔など)に加工されたものを意味する。以下では、実施形態として板材、条材について説明するが、その形状はこれに限定されるものではない。   A preferred embodiment of the copper alloy sheet material of the present invention will be described in detail. Here, the “copper alloy plate” means a copper alloy material (before processing and having a predetermined alloy composition) processed into a predetermined shape (for example, a plate, a strip, a foil, etc.). Below, although a board | plate material and a strip are demonstrated as embodiment, the shape is not limited to this.

本発明の銅合金板材は、加工方向の平行断面を観察した際に、粒子径の長径aを短径bで割ったアスペクト比(a/b)が、2<a/b<5であって短径bが100nm以上である粒子Aが1×10〜1×10個/mm存在することを特徴とする。また場合によって、粒子径が5〜50nmの粒子Bが1×10〜1×1012個/mm含まれることを特徴とする。
本発明の銅合金板材の構成を以下に詳細に説明する。
The copper alloy sheet of the present invention has an aspect ratio (a / b) of 2 <a / b <5 when the major axis a of the particle diameter is divided by the minor axis b when observing a parallel section in the processing direction. 1 × 10 1 to 1 × 10 3 particles / mm 2 of particles A having a minor axis b of 100 nm or more exist. In some cases, particles B having a particle diameter of 5 to 50 nm are contained in an amount of 1 × 10 9 to 1 × 10 12 particles / mm 2 .
The configuration of the copper alloy sheet of the present invention will be described in detail below.

<粒子A>
粒子Aは、粒子径の長径aを短径bで割ったアスペクト比a/bが2超5未満(2<a/b<5)であって、短径bが100nm以上の粒子である。本発明の銅合金板材は、銅合金母相中に含まれる粒子Aを1×10〜1×10個/mm、好ましくは1×10〜1×10個/mmとすることで、銅合金板材の圧延方向(Rolling Direction;RD)に対して垂直方向(Transverse Direction;TD)を長手方向とした梁を振動させた際の耐疲労特性を損なうことなく、平行方向(RD)を長手とした梁を振動させた際の耐疲労特性を向上させることができる。銅母相中に含まれる粒子Aの量が1×10個/mmより少ない場合、耐疲労特性の向上は望めない。また1×10個/mmより多い場合、圧延方向に対して垂直方向を長手とした梁を振動させた際の耐疲労特性が低下する。アスペクト比が2以下の粒子や、短径が100nmより小さい粒子では、耐疲労特性の向上は望めない。またアスペクト比が5以上の粒子は、圧延方向に対して垂直方向を長手とした梁を振動させた際の耐疲労特性を低下させやすい。粒子Aは、後述する均質化熱処理工程から熱間加工工程で銅母相中に形成させた粗大な析出物を、下工程である冷間加工工程と仕上加工工程において引き伸ばすことで得られる。
<Particle A>
The particle A is a particle having an aspect ratio a / b obtained by dividing the major axis a of the particle diameter by the minor axis b and more than 2 and less than 5 (2 <a / b <5), and the minor axis b is 100 nm or more. In the copper alloy sheet of the present invention, the particle A contained in the copper alloy matrix is 1 × 10 1 to 1 × 10 3 particles / mm 2 , preferably 1 × 10 1 to 1 × 10 2 particles / mm 2 . Thus, the parallel direction (RD) without impairing the fatigue resistance when the beam having the longitudinal direction (Transverse Direction; TD) as the longitudinal direction is vibrated with respect to the rolling direction (RD) of the copper alloy sheet material. It is possible to improve the fatigue resistance when a beam having a longitudinal length of) is vibrated. When the amount of particles A contained in the copper matrix is less than 1 × 10 1 particles / mm 2 , improvement in fatigue resistance cannot be expected. On the other hand, when the number is more than 1 × 10 3 pieces / mm 2, the fatigue resistance when a beam having a longitudinal direction as a longitudinal direction with respect to the rolling direction is vibrated decreases. For particles having an aspect ratio of 2 or less, or particles having a minor axis of less than 100 nm, improvement in fatigue resistance cannot be expected. Further, particles having an aspect ratio of 5 or more tend to lower fatigue resistance when a beam having a longitudinal direction as a longitudinal direction with respect to the rolling direction is vibrated. The particles A are obtained by stretching coarse precipitates formed in the copper matrix phase in the hot working process from the homogenizing heat treatment process described later in the cold working process and the finishing process, which are the lower processes.

なお、本発明の銅合金板材における粒子Aの成分は、主に銅合金板材中に含まれる合金元素からなる。すなわち、Crをはじめ、Mg、Zr、Ti、Zn、Sn、Ag、Si、Fe等を必須元素もしくは任意的元素として有する金属間化合物を含有する。なお、粒子Aは通常、析出物であるが本発明で規定した要件を満たしていれば、晶出物等であっても良い。   In addition, the component of the particle | grains A in the copper alloy board | plate material of this invention consists of the alloy element mainly contained in a copper alloy board | plate material. That is, it contains an intermetallic compound having Cr, Mg, Zr, Ti, Zn, Sn, Ag, Si, Fe, and the like as essential elements or optional elements. The particles A are usually precipitates, but may be crystallized substances as long as the requirements defined in the present invention are satisfied.

<粒子B>
粒子Bは粒子径が5nm以上50nm以下の粒子である。本発明の銅合金板材は、銅合金母相中に含まれる粒子Bを1×10〜1×1012個/mm、好ましくは1×1010〜1×1012個/mmとすることで、銅合金の強度、耐疲労特性を向上させることができる。銅母相中に含まれる粒子Bの量が1×10個/mmより少ない場合、強度、耐応力緩和特性の向上は望めない。また1×1012個/mmより多い場合、材料の耐疲労特性が低下する。5nmより小さい粒子では強度、耐応力緩和特性の向上は望めない。また粒子Bは、後述する時効熱処理工程において銅母相中に析出させることで得られるが、本発明の製造範囲においては、50nmより大きいものはほとんど形成されない。
<Particle B>
The particle B is a particle having a particle diameter of 5 nm or more and 50 nm or less. In the copper alloy sheet of the present invention, the particle B contained in the copper alloy matrix is 1 × 10 9 to 1 × 10 12 particles / mm 2 , preferably 1 × 10 10 to 1 × 10 12 particles / mm 2 . As a result, the strength and fatigue resistance of the copper alloy can be improved. When the amount of particles B contained in the copper matrix is less than 1 × 10 9 particles / mm 2 , improvement in strength and stress relaxation resistance cannot be expected. On the other hand, when it is more than 1 × 10 12 pieces / mm 2 , the fatigue resistance of the material is lowered. With particles smaller than 5 nm, improvement in strength and stress relaxation resistance cannot be expected. Moreover, although the particle | grains B are obtained by making it precipitate in a copper parent phase in the aging heat treatment process mentioned later, in the manufacturing range of this invention, a thing larger than 50 nm is hardly formed.

なお、本発明の銅合金板材における粒子Bの成分は、主に銅合金板材中に含まれる合金元素からなる。すなわち、Crをはじめ、Mg、Zr、Ti、Zn、Sn、Ag、Si、Fe等を必須元素もしくは任意的元素として有する金属間化合物を含有する。なお、粒子Bは通常、析出物であるが本願で規定した要件を満たしていれば、晶出物等であっても良い。   In addition, the component of the particle | grains B in the copper alloy board | plate material of this invention consists of the alloy element mainly contained in a copper alloy board | plate material. That is, it contains an intermetallic compound having Cr, Mg, Zr, Ti, Zn, Sn, Ag, Si, Fe, and the like as essential elements or optional elements. In addition, although the particle | grains B are precipitation normally, if the requirements prescribed | regulated by this application are satisfy | filled, a crystallization thing etc. may be sufficient.

<Cr>
Crは、銅合金母相中に析出させることで、導電性を損なうことなく、強度、耐疲労特性、耐応力緩和特性を向上させることができる。本発明において、Crは0.10〜0.50mass%、好ましくは0.15〜0.40mass%含まれる。Cr量が0.10mass%未満になると、銅母相中のCrまたはCrを含む化合物の量が少なくなるため、所望の強度、耐疲労特性、耐応力緩和特性が得られない。また0.50mass%より大きくなると、導電性の低下、銅母相中における粗大な化合物の発生による、強度や耐疲労特性の低下、加工性への悪影響といった問題が生じる。
<Cr>
By precipitating Cr in the copper alloy matrix, Cr can improve strength, fatigue resistance, and stress relaxation characteristics without impairing electrical conductivity. In the present invention, Cr is contained in an amount of 0.10 to 0.50 mass%, preferably 0.15 to 0.40 mass%. When the amount of Cr is less than 0.10 mass%, the amount of Cr or a compound containing Cr in the copper matrix decreases, so that desired strength, fatigue resistance, and stress relaxation characteristics cannot be obtained. On the other hand, if it exceeds 0.50 mass%, problems such as a decrease in conductivity, a decrease in strength and fatigue resistance due to the generation of coarse compounds in the copper matrix, and an adverse effect on workability arise.

<Mg>
Mgは、銅母相中に固溶元素として存在することで、強度、耐疲労特性、耐応力緩和特性を向上させることができる。本発明において、Mgを0〜0.20mass%、好ましくは0.05〜0.15mass%含有させても良い。含有量が0.05mass%未満では、特性改善効果は十分に得られず、0.20mass%より大きくなると、導電性の低下、加工性への悪影響といった問題が生じる。
<Mg>
Mg can be improved in strength, fatigue resistance, and stress relaxation characteristics by being present as a solid solution element in the copper matrix. In the present invention, Mg may be contained in an amount of 0 to 0.20 mass%, preferably 0.05 to 0.15 mass%. When the content is less than 0.05 mass%, the effect of improving the characteristics cannot be sufficiently obtained. When the content is more than 0.20 mass%, problems such as a decrease in conductivity and an adverse effect on workability occur.

<Ti、Zr>
Ti、Zrは、銅母相中に析出させることで、強度、耐疲労特性、耐応力緩和特性を向上させることができる。本発明において、Ti、Zrのうち少なくとも1種類を合計で0〜0.20mass%、好ましくは0.05〜0.15mass%含有させても良い。含有量が0.05mass%未満では、特性改善効果は十分に得られず、0.20mass%より大きくなると、導電性の低下、加工性への悪影響といった問題が生じる。
<Ti, Zr>
By precipitating Ti and Zr in the copper matrix, the strength, fatigue resistance, and stress relaxation characteristics can be improved. In the present invention, at least one of Ti and Zr may be contained in a total of 0 to 0.20 mass%, preferably 0.05 to 0.15 mass%. When the content is less than 0.05 mass%, the effect of improving the characteristics cannot be sufficiently obtained. When the content is more than 0.20 mass%, problems such as a decrease in conductivity and an adverse effect on workability occur.

<Zn、Fe、Sn、Ag、Si>
Zn、Fe、Sn、Ag、Siを添加することで、強度、耐疲労特性、耐応力緩和特性、プレス性、めっき性といった材料特性を向上させることができる。本発明において、Zn、Fe、Sn、Ag、Siのうち少なくとも一種類を合計で0〜0.40mass%、好ましくは0.01〜0.30mass%含有させても良い。含有量が0.01mass%未満では、上記の特性改善効果は十分に得られず、0.40mass%より多すぎると、導電性の低下、加工性への悪影響、原料費の増加といった問題が生じる。
<Zn, Fe, Sn, Ag, Si>
By adding Zn, Fe, Sn, Ag, and Si, material properties such as strength, fatigue resistance, stress relaxation resistance, pressability, and plating properties can be improved. In the present invention, at least one of Zn, Fe, Sn, Ag, and Si may be contained in a total amount of 0 to 0.40 mass%, preferably 0.01 to 0.30 mass%. If the content is less than 0.01 mass%, the above-mentioned property improvement effect cannot be obtained sufficiently. If the content is more than 0.40 mass%, problems such as decreased conductivity, adverse effects on workability, and increased raw material costs arise. .

次に、本発明の銅合金板材の製造方法について説明する。
本発明の銅合金板材は、溶解鋳造により得られた鋳塊に、通常、均質化熱処理→熱間加工→面削→冷間加工→時効熱処理を行なった後、必要に応じて仕上加工、更に必要に応じて歪取り焼鈍を行なうことで製造される。
Next, the manufacturing method of the copper alloy sheet | seat material of this invention is demonstrated.
The copper alloy sheet of the present invention is usually subjected to homogenization heat treatment → hot working → face milling → cold working → aging heat treatment to the ingot obtained by melt casting, and then finish processing as necessary. Manufactured by performing strain relief annealing as necessary.

<均質化熱処理>
均質化熱処理は、鋳塊に含まれる化合物を銅母相中に固溶させ、鋳塊の成分を均質化するために実施する。本工程において鋳塊中に大部分の化合物が残存すると、後述する熱間加工以降の工程で粒子AとBの量を制御できなくなり、最終製品において所望の特性を得られなくなる。鋳塊に含まれる化合物が粗大であるほど、銅母相中に固溶させることが困難となる。従来は、均質化熱処理の昇温中、鋳塊に含まれる化合物が銅母相中に固溶を開始する最終到達温度付近の温度に至るまでに、銅合金母相中に含まれる固溶元素が元々存在する化合物を核として析出することで化合物が粗大化し、固溶の難度が上がっていた。
<Homogenization heat treatment>
The homogenization heat treatment is performed in order to solidify the compound contained in the ingot in the copper matrix and to homogenize the ingot components. If most of the compound remains in the ingot in this step, the amount of particles A and B cannot be controlled in the steps after hot working described later, and desired properties cannot be obtained in the final product. The coarser the compound contained in the ingot, the more difficult it is to dissolve in the copper matrix. Conventionally, during the temperature increase of the homogenization heat treatment, the solid solution element contained in the copper alloy matrix until the compound contained in the ingot reaches a temperature near the final temperature at which the solid solution starts in the copper matrix. Precipitating with the compound that originally existed as a nucleus coarsened the compound, increasing the difficulty of solid solution.

これに対し本発明においては、室温(約25℃)から500℃までと500℃から最終到達温度までの昇温速度を制御することで、より効率的に、化合物を銅母相中に固溶させられることを見出した。すなわち本発明では、室温から500℃までの昇温速度を5℃/分以下とすることで、500℃までの昇温中に、微細な化合物を銅母相中に一旦析出、成長させ、銅母相中の固溶元素量を減少させる。その後2℃/分以上の速度で最終到達温度まで昇温することで、銅母相中に元々存在する化合物の成長を抑制しながら、最終到達温度付近まで昇温できる。このため、従来の均質化熱処理に比べ、化合物を銅母相中に固溶させやすく、熱処理後に銅母相中に残存する化合物の数が減少するため、結果として最終製品における化合物Bの数も減少する。室温から500℃までの昇温速度が5℃/分より大きい場合、昇温中に銅母相中に析出する微細な析出物が十分に成長せず、銅母相中の固溶元素の減少量が少ないため、その後の最終到達温度までの昇温において、元々存在する化合物の成長が抑制されない。また室温から500℃までの昇温速度が5℃/分以下の場合であっても、500℃〜最終到達温度までの昇温速度が2℃/分より小さい場合は、500℃までの昇温の際に析出した微細な化合物が再度銅母相中に固溶し、元々存在する化合物の成長が抑制されない。   On the other hand, in the present invention, by controlling the rate of temperature increase from room temperature (about 25 ° C.) to 500 ° C. and from 500 ° C. to the final temperature, the compound is dissolved more efficiently in the copper matrix. I found out that That is, in the present invention, by setting the rate of temperature increase from room temperature to 500 ° C. to 5 ° C./min or less, fine compounds are once precipitated and grown in the copper matrix during the temperature increase to 500 ° C. Reduce the amount of dissolved elements in the matrix. Thereafter, by raising the temperature to the final temperature at a rate of 2 ° C./min or more, the temperature can be raised to the vicinity of the final temperature while suppressing the growth of the compound originally present in the copper matrix phase. For this reason, compared with the conventional homogenization heat treatment, the compound is easily dissolved in the copper matrix phase, and the number of compounds remaining in the copper matrix phase after the heat treatment is reduced. As a result, the number of the compound B in the final product is also reduced. Decrease. When the rate of temperature increase from room temperature to 500 ° C. is greater than 5 ° C./min, fine precipitates that precipitate in the copper matrix do not grow sufficiently during temperature increase, and the solid solution elements in the copper matrix decrease. Since the amount is small, the growth of the originally existing compound is not suppressed in the subsequent temperature increase to the final temperature. Even if the rate of temperature increase from room temperature to 500 ° C is 5 ° C / min or less, if the rate of temperature increase from 500 ° C to the final temperature is less than 2 ° C / min, the temperature is increased to 500 ° C. The fine compound precipitated at this time is again dissolved in the copper matrix and the growth of the originally existing compound is not suppressed.

本発明においては、昇温後、最終到達温度(900〜1050℃)で0.5〜12時間の熱処理を行う。最終到達温度が900℃より低い場合、粗大な化合物が銅母相中に固溶しきれずに一部残存し、1050℃より高い場合は、加工後の板形状が悪化する。また均質化熱処理時間が0.5時間より短い場合、粗大な化合物が銅母相中に固溶しきれず、一部残存する。均質化熱処理時間の上限は、粗大な化合物の銅母相中への固溶がほとんど飽和する、12時間程度である。   In the present invention, after the temperature rise, heat treatment is performed at a final temperature (900 to 1050 ° C.) for 0.5 to 12 hours. When the final ultimate temperature is lower than 900 ° C., the coarse compound does not completely dissolve in the copper matrix, but partially remains, and when it is higher than 1050 ° C., the plate shape after processing deteriorates. When the homogenization heat treatment time is shorter than 0.5 hour, the coarse compound cannot be completely dissolved in the copper matrix and partially remains. The upper limit of the homogenization heat treatment time is about 12 hours, at which the solid solution of the coarse compound is almost saturated.

<熱間加工>
均質化熱処理した直後の鋳塊を、850〜1000℃の温度域で加工率15〜95%で熱間加工(熱間圧延など)する。熱間加工後、従来は冷却中の粗大析出物の形成を懸念し水冷を行うが、本発明においては、750℃まで0.1〜10℃/秒の冷却速度で冷却した後に水冷することで、最終製品において粒子Aとなる粗大析出物の粒子径と量を制御することができる。750℃までの冷却速度が0.1℃/秒より小さい場合、粗大析出物の成長が著しく、銅母相中に残存する固溶状態の合金元素の量が減少し、後述する時効熱処理工程において十分な量の粒子Bを得ることができないため、最終製品において十分な強度、耐疲労特性、耐応力緩和特性を得ることができない。また10℃/秒より大きい場合、粗大析出物はほとんど形成されず、最終製品における粒子Aの量が少なくなり、耐疲労特性の向上は望めなくなる。
<Hot processing>
The ingot immediately after the homogenization heat treatment is hot-worked (hot rolled or the like) at a working rate of 15 to 95% in a temperature range of 850 to 1000 ° C. Conventionally, after hot working, water cooling is performed in consideration of the formation of coarse precipitates during cooling. However, in the present invention, water cooling is performed after cooling to 750 ° C. at a cooling rate of 0.1 to 10 ° C./second. The particle size and amount of coarse precipitates that become particles A in the final product can be controlled. When the cooling rate to 750 ° C. is smaller than 0.1 ° C./second, the growth of coarse precipitates is remarkable, and the amount of alloy elements in a solid solution state remaining in the copper matrix phase is reduced. Since a sufficient amount of particles B cannot be obtained, sufficient strength, fatigue resistance, and stress relaxation characteristics cannot be obtained in the final product. On the other hand, when the temperature is higher than 10 ° C./second, coarse precipitates are hardly formed, the amount of particles A in the final product is reduced, and improvement in fatigue resistance cannot be expected.

<面削>
熱間加工後の材料表面に形成された酸化皮膜を、面削により取り除く。面削は公知の方法で行うことができる。
<Chamfer>
The oxide film formed on the surface of the material after hot working is removed by chamfering. The chamfering can be performed by a known method.

<冷間加工>
面削後の材料を、70〜90%の加工率で冷間加工(冷間圧延など)する。この工程において、材料の強度を増加させ、板厚を薄くするとともに、熱間加工後に銅母相中に析出させた粗大析出物を引き伸ばす。
<Cold processing>
The material after chamfering is cold-worked (cold rolling or the like) at a processing rate of 70 to 90%. In this step, the strength of the material is increased, the plate thickness is reduced, and coarse precipitates precipitated in the copper matrix after hot working are stretched.

<時効熱処理>
冷間圧延後の材料に対して、400〜500℃で、10分〜24時間の時効熱処理を行なう。時効熱処理により、銅母相中に微細な析出物が析出し、強度、導電性、耐疲労特性、耐応力緩和特性が向上する。低温で短時間処理する場合、析出量が少なく、また析出する化合物の粒子径が微細すぎるため、強度、導電性、耐疲労特性、耐応力緩和特性の向上は望めない。また高温で長時間処理する場合、析出する化合物が粗大化し、単位体積当りの化合物の個数が少なくなるため、導電性は向上するものの、強度、耐疲労特性、耐応力緩和特性の向上は望めない。更に場合によっては組織の再結晶が進行し、強度が著しく低下する。また、時効熱処理後の300℃までの冷却速度は、1〜2℃/分とすることが好ましい。300℃までの冷却速度をこの範囲とすることで、強度、導電性、耐疲労特性、耐応力緩和特性をより向上させることができる。
<Aging heat treatment>
The material after cold rolling is subjected to an aging heat treatment at 400 to 500 ° C. for 10 minutes to 24 hours. By the aging heat treatment, fine precipitates are precipitated in the copper matrix, and the strength, conductivity, fatigue resistance, and stress relaxation characteristics are improved. When the treatment is performed at a low temperature for a short time, the amount of precipitation is small, and the particle diameter of the precipitated compound is too fine, so that improvement in strength, conductivity, fatigue resistance, and stress relaxation resistance cannot be expected. In addition, when treated at a high temperature for a long time, the deposited compounds become coarse and the number of compounds per unit volume is reduced, so that the conductivity is improved, but the improvement in strength, fatigue resistance, and stress relaxation characteristics cannot be expected. . Further, in some cases, recrystallization of the structure proceeds and the strength is significantly reduced. Moreover, it is preferable that the cooling rate to 300 degreeC after an aging heat processing shall be 1-2 degreeC / min. By setting the cooling rate to 300 ° C. within this range, the strength, conductivity, fatigue resistance, and stress relaxation characteristics can be further improved.

<仕上加工>
時効熱処理後の材料に、0〜50%の加工率で、仕上加工(仕上げ圧延など)を行なっても良い。ここで加工率0%とは、仕上加工を行なわないことを意味する。仕上加工により、強度、耐疲労特性が向上するが、導電性、耐応力緩和特性が低下する。また、冷間加工により引き伸ばされた粗大析出物が、仕上加工によりさらに引き伸ばされる。仕上加工の加工率が50%より大きくなると、導電性と耐応力緩和特性が著しく低下する。面削後から仕上圧延後までの材料の総加工率を70〜90%とすることで、熱間加工後の冷却で生じた粗大析出物のアスペクト比を、粒子Aで規定する範囲に調整することができる。総加工率が70%より小さい場合、加工後の粗大析出物のアスペクト比が小さいため、圧延方向に対して平行方向を長手方向とした梁を振動させた際の耐疲労特性の向上が見られず、また所望の強度を得づらくなる。総加工率が90%より大きい場合、加工後の粗大析出物のアスペクト比が大きくなり、圧延方向に対して垂直方向を長手方向とした梁を振動させた際の耐疲労特性が損なわれる。
<Finish processing>
Finishing processing (such as finish rolling) may be performed on the material after aging heat treatment at a processing rate of 0 to 50%. Here, the processing rate of 0% means that finish processing is not performed. Finishing improves strength and fatigue resistance, but decreases conductivity and stress relaxation characteristics. In addition, coarse precipitates stretched by cold working are further stretched by finishing. When the processing rate of finishing is larger than 50%, the conductivity and the stress relaxation resistance are remarkably deteriorated. By adjusting the total processing rate of the material from chamfering to finish rolling to 70 to 90%, the aspect ratio of coarse precipitates generated by cooling after hot working is adjusted to a range defined by particles A. be able to. When the total processing rate is less than 70%, the aspect ratio of the coarse precipitates after processing is small, so that the fatigue resistance is improved when a beam whose longitudinal direction is parallel to the rolling direction is vibrated. In addition, it is difficult to obtain a desired strength. When the total processing rate is greater than 90%, the aspect ratio of the coarse precipitate after processing becomes large, and the fatigue resistance characteristics when the beam whose longitudinal direction is perpendicular to the rolling direction is vibrated are impaired.

<歪取り焼鈍>
仕上加工後の材料に、300〜600℃で10秒〜12時間の、歪取り焼鈍を行なっても良い。歪取り焼鈍を行なうと、強度は低下するが、導電性、耐応力緩和特性が回復する。低温で短時間処理しても、これらの特性変化はほとんど起こらず、また高温で長時間処理すると、強度が著しく低下する。
<Strain relief annealing>
The material after finishing may be subjected to strain relief annealing at 300 to 600 ° C. for 10 seconds to 12 hours. When strain relief annealing is performed, the strength decreases, but the conductivity and stress relaxation resistance are restored. Even if it is processed at a low temperature for a short time, these characteristics hardly change, and when it is processed at a high temperature for a long time, the strength is remarkably lowered.

本発明の銅合金板材は、強度、導電性、耐疲労特性、耐応力緩和特性を兼ね備えており、EV、HEVを中心とした車載部品及び周辺インフラや太陽光発電システム等のコネクタ、その他リードフレーム、リレー、スイッチ、ソケット等に好適である。   The copper alloy sheet of the present invention has strength, conductivity, fatigue resistance, and stress relaxation characteristics, and includes automotive parts such as EV and HEV, peripheral infrastructure, connectors for solar power generation systems, and other lead frames. Suitable for relays, switches, sockets and the like.

以下に、実施例に基づき本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

原料を溶解・鋳造して鋳塊を作製し、所定の均質化熱処理直後に850℃〜1000℃で60%の熱間加工を行ない、750℃まで冷却速度を制御した後、水冷した。水冷後、面削により材料の酸化皮膜を除去した後に冷間加工を行い、時効熱処理して1℃/分の冷却速度で冷却した。冷却後、加工率25%の仕上圧延、350℃、30分の歪取り焼鈍を続けて行なうことで、材料を得た。各工程の条件を規定の範囲内に収めることで、目標とする材料組織を有する発明例の試料を得た。また比較例として、鋳塊成分、製造条件の異なる材料を作製した。   The raw material was melted and cast to produce an ingot, 60% hot processing was performed at 850 ° C. to 1000 ° C. immediately after a predetermined homogenization heat treatment, and the cooling rate was controlled to 750 ° C., followed by water cooling. After cooling with water, the oxide film of the material was removed by chamfering, followed by cold working, aging heat treatment, and cooling at a cooling rate of 1 ° C./min. After cooling, finish rolling with a processing rate of 25% and continuous strain relief annealing at 350 ° C. for 30 minutes were performed to obtain a material. By keeping the conditions of each step within a specified range, a sample of the invention example having a target material structure was obtained. As a comparative example, materials with different ingot components and production conditions were produced.

なお、各熱処理や圧延の後に、材料表面の酸化や粗度の状態に応じて酸洗浄や表面研磨を行った。   In addition, after each heat treatment and rolling, acid cleaning and surface polishing were performed according to the state of oxidation and roughness of the material surface.

このようにして調製した供試材について、下記の評価を実施した。   The following evaluation was performed on the specimens thus prepared.

(粒子Aの測定)
走査型電子顕微鏡(SEM)により粒子Aを観察し、その数を確認した。最終製品について圧延方向(RD)に対して平行断面に湿式研磨およびバフ研磨を施し、クロム酸:水=1:1(容量比)の割合で混合した液にて数秒間研磨面を腐食した後、SEMにて50〜5000倍の倍率で観察及び測定を行った。
アスペクト比については、観察された化合物において、粒子の重心を通り、最も直径が大きくなる長径aと、最も直径が小さくなる短径bを測定してa/bを算出し、それをアスペクト比とした。アスペクト比が2超5未満で短径bが100nm以上である化合物を粒子Aとし、0.1mmの範囲に含まれる粒子Aの個数を数え、更に1mm当りの粒子数に換算した。粒子成分の確認は、SEMに付属しているエネルギー分散形X線分光器(EDS)により行った。
(Measurement of particle A)
Particles A were observed with a scanning electron microscope (SEM), and the number was confirmed. After the final product is wet-polished and buffed in a cross section parallel to the rolling direction (RD), and the polished surface is corroded for several seconds with a liquid mixed at a ratio of chromic acid: water = 1: 1 (volume ratio). , And observed and measured with a SEM at a magnification of 50 to 5000 times.
Regarding the aspect ratio, in the observed compound, the major axis a having the largest diameter and the minor axis b having the smallest diameter passing through the center of gravity of the particle were measured, and a / b was calculated. did. A compound having an aspect ratio of more than 2 and less than 5 and a minor axis b of 100 nm or more was designated as particle A, and the number of particles A contained in a range of 0.1 mm 2 was counted and further converted to the number of particles per mm 2 . The particle component was confirmed by an energy dispersive X-ray spectrometer (EDS) attached to the SEM.

(粒子Bの測定)
透過型電子顕微鏡(TEM)により粒子Bを観察し、その数を確認した。銅母相中の粒子Bの数が確定し、更に最も歪量が少ない時効熱処理直後の材料を、硝酸20%のメタノール溶液にて電解研磨することで観察用試料とし、TEMにて×10000〜×100000の倍率で観察及び測定を行った。粒子径が5〜50nmの化合物を粒子Bとし、0.25μmの範囲に含まれる粒子Bの個数を数え、更に1mm当りの粒子数に換算した。粒子成分の確認は、TEMに付属しているEDSにより行った。
(Measurement of particle B)
Particle B was observed with a transmission electron microscope (TEM), and the number thereof was confirmed. The material immediately after the aging heat treatment in which the number of particles B in the copper matrix is determined and the strain amount is the smallest is electropolished with a methanol solution of 20% nitric acid to obtain a sample for observation. Observation and measurement were performed at a magnification of × 100,000. A compound having a particle diameter of 5 to 50 nm was defined as particle B, and the number of particles B contained in a range of 0.25 μm 2 was counted and further converted to the number of particles per 1 mm 2 . The particle component was confirmed by EDS attached to TEM.

(引張強度)
圧延平行方向から切り出したJIS Z2201−13B号の試験片を、JIS Z2241に準じて3本測定し、その平均値を示した。
(Tensile strength)
Three test pieces of JIS Z2201-13B cut out from the rolling parallel direction were measured according to JIS Z2241, and the average value was shown.

(導電率)
20℃(±0.5℃)に保たれた恒温漕中で、四端子法により比抵抗を計測し、導電率を算出した。なお、端子間距離は100mmとした。
(conductivity)
In a constant temperature bath maintained at 20 ° C. (± 0.5 ° C.), the specific resistance was measured by the four probe method, and the conductivity was calculated. In addition, the distance between terminals was 100 mm.

(耐疲労特性)
日本伸銅協会 JCBA T308:2001(仮)「銅及び銅合金薄板条の疲労特性試験方法」に準じ、両振り平面曲げの疲労試験を行うことで評価した。負荷する最大曲げ応力を設定して試験を4回行い、試験片が破断した時の平均振動回数が10回以上となる場合を耐疲労特性良好(○)、10未満となる場合を不良(×)と判断した。試験片は、幅10mmの短冊形とした。圧延平行方向と試験片の長さ方向が一致している場合を、圧延平行方向の耐疲労特性、圧延平行方向と試験片の長さ方向が垂直関係にある場合を、圧延垂直方向の耐疲労特性とした。負荷する最大曲げ応力は、圧延平行方向を300MPa、圧延垂直方向を250MPaとした。
(Fatigue resistance)
In accordance with Japan Copper and Brass Association JCBA T308: 2001 (provisional) "Fatigue property test method for copper and copper alloy sheet strip", a double-bending plane bending fatigue test was performed. Set the maximum bending stress to be applied, perform the test 4 times, and if the average number of vibrations when the test piece breaks is 10 6 or more, fatigue resistance is good (○), and the case is less than 10 6 (X) was judged. The test piece was a strip having a width of 10 mm. Fatigue resistance in the rolling parallel direction when the rolling parallel direction matches the length direction of the test piece, and fatigue resistance in the rolling vertical direction when the rolling parallel direction and the length direction of the test piece are in a vertical relationship Characteristic. The maximum bending stress to be applied was 300 MPa in the rolling parallel direction and 250 MPa in the rolling vertical direction.

(応力緩和率)
日本伸銅協会 JCBA T309:2004「銅及び銅合金薄板条の曲げによる応力緩和試験方法」に準じ、以下に示すように、150℃で1000時間保持の条件で測定した。片持ちはり法(片持ちはりブロック式ジグ使用)により、耐力の80%を初期最大応力として負荷した。試験片は幅10mmの短冊形とし、圧延平行方向と試験片の長さ方向を一致させた。
(Stress relaxation rate)
In accordance with Japan Copper and Brass Association JCBA T309: 2004 “Stress Relaxation Test Method by Bending Copper and Copper Alloy Sheet Strips”, the measurement was carried out at 150 ° C. for 1000 hours as shown below. By the cantilever method (using a cantilever block type jig), 80% of the proof stress was applied as the initial maximum stress. The test piece was a strip having a width of 10 mm, and the parallel direction of rolling and the length direction of the test piece were matched.

Figure 0006133178
Figure 0006133178

表1に、作製した鋳塊の合金成分をまとめた。合金1〜26は本発明の範囲内であり、合金27〜37は範囲外である。   Table 1 summarizes the alloy components of the produced ingots. Alloys 1-26 are within the scope of the present invention, and alloys 27-37 are out of range.

Figure 0006133178
Figure 0006133178

表2は、製造方法が本発明の範囲内であり、成分も本発明の範囲内である発明例と、成分が本発明の範囲外である比較例について示す。成分と製造方法が共に本発明の範囲内である発明例は、本発明で規定した材料組織を有し、導電性と圧延平行方向の耐疲労特性に優れた銅合金板材である。また合金成分を添加することで、引張強度≧500MPa、導電率≧75%IACS、応力緩和率≦30%であり、かつ圧延平行方向の耐疲労特性が良好な、強度、導電性、耐応力緩和特性、耐疲労特性を兼ね備えた銅合金板材を製造可能である。これに対し、合金成分の添加量が本発明で規定する範囲未満の比較例では、合金成分添加の効果が十分でなく、未添加の発明例とほぼ同等の材料特性を示している。また添加量が本発明で規定する範囲の上限を越える比較例では、導電性、耐疲労特性、及び加工性のいずれかがが劣る結果となった。   Table 2 shows the inventive examples in which the production method is within the scope of the present invention and the components are also within the scope of the present invention, and the comparative examples in which the components are outside the scope of the present invention. The invention example in which both the component and the production method are within the scope of the present invention is a copper alloy sheet having the material structure defined in the present invention and excellent in conductivity and fatigue resistance in the rolling parallel direction. By adding alloy components, tensile strength ≧ 500 MPa, conductivity ≧ 75% IACS, stress relaxation rate ≦ 30%, and good fatigue resistance in the rolling parallel direction, strength, conductivity, stress relaxation It is possible to produce a copper alloy sheet having both properties and fatigue resistance. On the other hand, in the comparative example in which the addition amount of the alloy component is less than the range specified in the present invention, the effect of adding the alloy component is not sufficient, and the material characteristics are almost the same as those of the non-added invention example. Moreover, in the comparative example in which the addition amount exceeds the upper limit of the range specified in the present invention, any of conductivity, fatigue resistance, and workability was inferior.

Figure 0006133178
Figure 0006133178

表3は、成分が本発明の範囲内であり、製造条件も本発明の範囲内である発明例と、製造条件が本発明の範囲外である比較例について示す。成分と製造方法が共に本発明の範囲内である発明例は、本発明で規定した材料組織を有し、強度、導電性、耐応力緩和特性、圧延平行方向と垂直方向の両方向における耐疲労特性を、兼ね備えた銅合金板材となっている。これに対し、製造条件が本発明の範囲外である比較例は、導電性、耐疲労特性、加工性に劣り、強度、導電性、耐応力緩和特性、耐疲労特性、加工性を兼ね備えることが出来ない。   Table 3 shows an invention example in which the components are within the scope of the present invention and the production conditions are also within the scope of the present invention, and a comparative example in which the production conditions are outside the scope of the present invention. Inventive examples whose components and production methods are both within the scope of the present invention have the material structure defined in the present invention, and have strength, conductivity, stress relaxation resistance, and fatigue resistance characteristics in both the parallel and vertical directions of rolling. Is a copper alloy sheet material. On the other hand, the comparative example whose manufacturing conditions are outside the scope of the present invention is inferior in conductivity, fatigue resistance, and workability, and has strength, conductivity, stress relaxation resistance, fatigue resistance, and workability. I can't.

本発明の範囲内の銅合金板材は、どれも導電性と耐疲労特性に優れ、また合金元素を添加することで強度、導電性、耐応力緩和特性、耐疲労特性を兼ね備えることが出来るため、EV、HEVを中心とした車載部品及び周辺インフラや太陽光発電システム等のコネクタ、その他リードフレーム、リレー、スイッチ、ソケット等に好適である。   All copper alloy sheets within the scope of the present invention are excellent in electrical conductivity and fatigue resistance, and can have strength, electrical conductivity, stress relaxation resistance, and fatigue resistance by adding alloy elements, It is suitable for in-vehicle components such as EV and HEV, connectors for peripheral infrastructure and solar power generation systems, other lead frames, relays, switches, sockets and the like.

Claims (6)

Crを0.10〜0.50mass%と、Mgを0〜0.20mass%と、Zr、Tiのうち少なくとも一種類を合計で0〜0.20mass%と、Zn、Sn、Ag、Si、Feのうち少なくとも一種類を合計で0〜0.40mass%とを含有し、残部がCuと不可避的不純物からなる銅合金板材であって、
加工方向の平行断面を観察した際に、粒子径の長径aを短径bで割ったアスペクト比a/bが2超5未満であって、短径bが100nm以上である粒子が1×10〜1×10個/mm存在することを特徴とする銅合金板材。
Cr is 0.10 to 0.50 mass%, Mg is 0 to 0.20 mass%, and at least one of Zr and Ti is 0 to 0.20 mass% in total, Zn, Sn, Ag, Si, Fe A copper alloy sheet material containing a total of at least one of 0 to 0.40 mass%, the balance being Cu and inevitable impurities,
When observing a parallel section in the processing direction, particles having an aspect ratio a / b obtained by dividing the major axis “a” of the particle diameter by the minor axis “b” is greater than 2 and less than 5, and the minor axis “b” is 100 nm or more. A copper alloy sheet characterized by the presence of 1 to 1 × 10 3 / mm 2 .
銅母相中に、粒子径が5〜50nmの合金成分または合金成分を含む化合物からなる粒子が1×10〜1×1012個/mm含まれることを特徴とする、請求項1に記載の銅合金板材。 The copper matrix phase contains 1 × 10 9 to 1 × 10 12 particles / mm 2 of an alloy component having a particle diameter of 5 to 50 nm or a compound containing an alloy component. The copper alloy sheet material described. 銅母相中にMgを0.01〜0.20mass%含有することを特徴とする、請求項1または2に記載の銅合金板材。   The copper alloy sheet according to claim 1, wherein Mg is contained in the copper matrix phase in an amount of 0.01 to 0.20 mass%. 銅母相中にZr、Tiのうち少なくとも一種類を合計で0.01〜0.20mass%含有することを特徴とする請求項1〜3のいずれか1項に記載の銅合金板材。   The copper alloy sheet according to any one of claims 1 to 3, wherein the copper matrix phase contains at least one of Zr and Ti in a total amount of 0.01 to 0.20 mass%. 銅母相中に、Zn、Sn、Ag、Si、Feのうち少なくとも一種類を合計で0.01〜0.40mass%含有することを特徴とする請求項1〜4のいずれか1項に記載の銅合金板材。   The copper matrix phase contains at least one of Zn, Sn, Ag, Si, and Fe in a total amount of 0.01 to 0.40 mass%, according to any one of claims 1 to 4. Copper alloy sheet material. 請求項1〜5のいずれかに記載の銅合金板材の製造方法であって、
銅合金成分を溶解鋳造して得られた鋳塊に、(a)均質化熱処理を、室温から500℃までの昇温速度を5℃/分以下とし、その後2℃/分以上の速度で900〜1050℃の最終到達温度まで昇温し、0.5〜12時間行い(b)熱間加工を、850〜1000℃の温度域で行い(c)熱間加工後、750℃まで0.1〜10℃/秒の冷却速度で冷却した後に水冷し、面削し、(d)70〜90%の加工率で冷間加工後(e)400〜500℃で、10分〜24時間の時効熱処理を行ない、(f)前記面削後からの材料の総加工率が70〜90%となるように仕上げ加工を0〜50%行う、銅合金板材の製造方法。
It is a manufacturing method of the copper alloy sheet material according to any one of claims 1 to 5,
The ingot obtained by melting and casting the copper alloy component is subjected to (a) homogenization heat treatment at a temperature rising rate from room temperature to 500 ° C. of 5 ° C./min or less, and then 900 ° C. at a rate of 2 ° C./min or more. (B) Hot working is performed in the temperature range of 850 to 1000 ° C. (c) After hot working, 0.1 to 750 ° C. After cooling at a cooling rate of 10 ° C./second, water cooling, chamfering, (d) after cold working at a processing rate of 70-90% (e) aging at 400-500 ° C. for 10 minutes to 24 hours (F) A method for producing a copper alloy sheet material, wherein heat treatment is performed, and (f) finishing is performed in an amount of 0 to 50% so that the total processing rate of the material after the chamfering is 70 to 90%.
JP2013185448A 2013-09-06 2013-09-06 Copper alloy sheet and manufacturing method thereof Active JP6133178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013185448A JP6133178B2 (en) 2013-09-06 2013-09-06 Copper alloy sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013185448A JP6133178B2 (en) 2013-09-06 2013-09-06 Copper alloy sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015052143A JP2015052143A (en) 2015-03-19
JP6133178B2 true JP6133178B2 (en) 2017-05-24

Family

ID=52701364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013185448A Active JP6133178B2 (en) 2013-09-06 2013-09-06 Copper alloy sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6133178B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6301734B2 (en) * 2014-05-26 2018-03-28 古河電気工業株式会社 Copper alloy material and method for producing the same
JP6283048B2 (en) * 2016-03-31 2018-02-21 株式会社神戸製鋼所 Copper alloy strip for electrical and electronic parts
JP6951999B2 (en) * 2018-03-26 2021-10-20 古河電気工業株式会社 Copper alloy strip, its manufacturing method and flat cable using it
JP2019178366A (en) * 2018-03-30 2019-10-17 Dowaメタルテック株式会社 Copper alloy sheet material and manufacturing method therefor
JP7263953B2 (en) * 2019-07-10 2023-04-25 三菱マテリアル株式会社 Copper alloy contact wire

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2178448B (en) * 1985-07-31 1988-11-02 Wieland Werke Ag Copper-chromium-titanium-silicon alloy and application thereof
DE3527341C1 (en) * 1985-07-31 1986-10-23 Wieland-Werke Ag, 7900 Ulm Copper-chromium-titanium-silicon alloy and use thereof
JPH01139742A (en) * 1987-11-27 1989-06-01 Nippon Mining Co Ltd Manufacture of high-strength and high-conductivity copper alloy
JP3735005B2 (en) * 1999-10-15 2006-01-11 古河電気工業株式会社 Copper alloy having excellent punchability and method for producing the same
JP4130593B2 (en) * 2003-01-23 2008-08-06 日鉱金属株式会社 High strength and high conductivity copper alloy with excellent fatigue and intermediate temperature characteristics
JP4177221B2 (en) * 2003-10-06 2008-11-05 古河電気工業株式会社 Copper alloy for electronic equipment
JP5367271B2 (en) * 2007-01-26 2013-12-11 古河電気工業株式会社 Rolled plate
JP5170916B2 (en) * 2010-08-27 2013-03-27 古河電気工業株式会社 Copper alloy sheet and manufacturing method thereof
TWI571518B (en) * 2011-08-29 2017-02-21 Furukawa Electric Co Ltd Copper alloy material and manufacturing method thereof
JP5802150B2 (en) * 2012-02-24 2015-10-28 株式会社神戸製鋼所 Copper alloy

Also Published As

Publication number Publication date
JP2015052143A (en) 2015-03-19

Similar Documents

Publication Publication Date Title
JP5224415B2 (en) Copper alloy material for electric and electronic parts and manufacturing method thereof
KR101914322B1 (en) Copper alloy material and manufacturing method thereof
JP5158909B2 (en) Copper alloy sheet and manufacturing method thereof
JP4677505B1 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP6076724B2 (en) Copper alloy material and method for producing the same
JP6053959B2 (en) Copper alloy sheet, method for producing the same, and electric / electronic component comprising the copper alloy sheet
JP4948678B2 (en) Copper alloy sheet, connector using the same, and copper alloy sheet manufacturing method for manufacturing the same
JP5525247B2 (en) Copper alloy with high strength and excellent bending workability
JP5503791B2 (en) Copper alloy sheet and manufacturing method thereof
WO2009123140A1 (en) Cu-ni-si alloy to be used in electrically conductive spring material
JP5619389B2 (en) Copper alloy material
WO2010016429A1 (en) Copper alloy material for electrical/electronic component
CN110506132B (en) Cu-Co-Si-based copper alloy plate material, method for producing same, and member using same
JP6133178B2 (en) Copper alloy sheet and manufacturing method thereof
JP4887851B2 (en) Ni-Sn-P copper alloy
JP2007291518A (en) Cu-Fe-P-Mg BASED COPPER ALLOY, ITS PRODUCTION METHOD, AND CONDUCTIVE COMPONENT
JP2013129889A (en) Copper alloy material and method for producing the same
JP2006299287A (en) Dual phase copper alloy, spring material and foil body, and method for producing dual phase copper alloy
JP2010121166A (en) Copper alloy having high strength and high electric conductivity
JP6301734B2 (en) Copper alloy material and method for producing the same
JP2013213236A (en) Cu-Zn-Sn-Ni-P-BASED ALLOY
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
KR102499442B1 (en) Copper alloy sheet and its manufacturing method
JP2012229469A (en) Cu-Si-Co BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
WO2020152967A1 (en) Copper alloy plate material and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170419

R151 Written notification of patent or utility model registration

Ref document number: 6133178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350