WO2020152967A1 - Copper alloy plate material and method for manufacturing same - Google Patents

Copper alloy plate material and method for manufacturing same Download PDF

Info

Publication number
WO2020152967A1
WO2020152967A1 PCT/JP2019/045713 JP2019045713W WO2020152967A1 WO 2020152967 A1 WO2020152967 A1 WO 2020152967A1 JP 2019045713 W JP2019045713 W JP 2019045713W WO 2020152967 A1 WO2020152967 A1 WO 2020152967A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper alloy
mass
less
plate material
value
Prior art date
Application number
PCT/JP2019/045713
Other languages
French (fr)
Japanese (ja)
Inventor
翔一 檀上
樋口 優
俊太 秋谷
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to KR1020217016901A priority Critical patent/KR20210117252A/en
Priority to CN201980080952.XA priority patent/CN113166850B/en
Priority to JP2020513364A priority patent/JP6762453B1/en
Publication of WO2020152967A1 publication Critical patent/WO2020152967A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/05Alloys based on copper with manganese as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/10Alloys based on copper with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present invention relates to a copper alloy plate and a method for manufacturing the same.
  • a copper alloy plate material for example, a copper alloy plate material used for electric/electronic parts and automobile in-vehicle parts, conventionally, a Cu—Ni—Si-based alloy (which is a high-strength copper alloy mainly strengthened by precipitation strengthening or work hardening) ( Corson alloys) have been widely used.
  • a Cu—Ni—Si-based alloy which is a high-strength copper alloy mainly strengthened by precipitation strengthening or work hardening
  • the Cu-Ni-Si alloy has a maximum conductivity of about 50% IACS, and when it is energized with a large current, the amount of heat generated by resistance increases, which causes the spring property of the contact portion to deteriorate and the terminal to be fixed. It is not suitable for use as a terminal material for a large current because the function of the terminal may be significantly reduced due to deterioration of the mold.
  • Patent Document 1 a Cu—Co—Si based alloy is used in place of the Cu—Ni—Si based alloy, and the frequency of equiaxed grains and twin grain boundaries in the recrystallization structure is controlled to control the plate material. It is disclosed that bendability and conductivity can be improved.
  • Patent Document 1 the Cu—Co—Si alloy strip described in Patent Document 1 has not been examined in terms of strain that greatly affects bending workability and strength, and there is room for further improvement in bending workability and strength. there were.
  • Patent Document 2 in a copper alloy containing Mg in the range of 3.3 atomic% or more and 6.9 atomic% or less, the strain introduced during processing was measured by the SEM-EBSD method in the rolling width direction. On the other hand, it is said that the bending workability can be improved by keeping the value within the range defined by the ratio of the measurement points having a low CI value on the vertical surface (that is, the TD surface).
  • Patent Document 3 in titanium copper containing Ti in an amount of 2.0 to 4.0% by mass, the area ratio having a reliability index (CI value) of 0.2 or less measured by SEM-EBSD method for surface strain It is said that the bending workability can be improved by setting the ratio to 20% or less.
  • CI value reliability index
  • Patent Document 2 improvement in bending workability is recognized, but there is no description about Cu—Co—Si alloys.
  • conductivity is 31.8 to 45. Only a low value in the range of 1% IACS was obtained, and the numerical value of conductivity is not shown in Patent Document 3.
  • An object of the present invention is to use a Cu—Co—Si alloy having a higher conductivity than a Cu—Ni—Si alloy, and to achieve excellent bending workability and high strength at a high level. And to provide a manufacturing method thereof.
  • the present inventor uses a copper alloy material having a Cu—Co—Si alloy composition having a higher electrical conductivity than Cu—Ni—Si alloy to produce a copper alloy sheet material by rolling.
  • a crystal orientation analysis was performed on a vertical cross section parallel to, by an electron backscattering diffraction (EBSD) method, the area ratio of a measurement spot region having a small reliability index (CI value) in the vertical cross section was controlled to be low, and by achieve an appropriate ratio of the average value of the reliability index (CI value) in each of the surface portion and the central portion of the longitudinal section (CI S / CI C ratio), it is possible to develop processed structure, its As a result, they have found that the strength can be improved while ensuring bending workability, and have completed the present invention.
  • EBSD electron backscattering diffraction
  • the gist of the present invention is as follows.
  • (I) A copper alloy plate containing 0.3 to 2.5 mass% of Co and 0.1 to 0.7 mass% of Si, and the balance of Cu and unavoidable impurities.
  • the crystal orientation analysis performed on the longitudinal section parallel to the rolling direction of the alloy sheet material by the electron backscatter diffraction (EBSD) method showed that all the measurement of the measurement spot area where the reliability index (CI value) was 0.2 or less.
  • the area ratio of the spot region is 40% or less, and the longitudinal section is divided into a pair of surface layer portions each including both surfaces of the plate material and a central portion located between the pair of surface layer portions.
  • Fe 0.02 to 0.5 mass%, Mg 0.01 to 0.3 mass%, Mn 0.01 to 0.5 mass%, Zn 0.01 to 0.15 mass% % And Zr are at least one optional additive selected from the group consisting of 0.01 to 0.15 mass %, and the balance is a copper alloy sheet material having an alloy composition of Cu and inevitable impurities, A crystal orientation analysis performed by an electron backscattering diffraction (EBSD) method on a longitudinal section parallel to the longitudinal direction of the copper alloy plate material shows that a reliability index (CI value) is 0.2 or less in a measurement spot region.
  • EBSD electron backscattering diffraction
  • the copper alloy plate material according to (II) which contains the optional additive component in a total amount of 1.5% by mass or less.
  • the temperature rising rate in the homogenizing heat treatment step [step 3] is set to 10 to 110° C./sec and the holding temperature is 950 to 1250° C.
  • the achievable temperature in the aging heat treatment step [step 9] is 450 to 650° C. and the holding time of 500 to 20000 sec
  • the second cooling In the inter-rolling step [Step 10] when the processing rate per pass is 10% or more and 40% or less, and the rolling roll diameter is R, the processing amount is ⁇ h, and the final plate thickness is h, the parameter M is A method for producing a copper alloy sheet material, which is represented by the following formula (1) and is 6 or more and 40 or less.
  • the copper alloy sheet of the present invention contains 0.3 to 2.5 mass% of Co and 0.1 to 0.7 mass% of Si, and further contains 0.05 to 1.0 mass of Cr, if necessary. %, Ni 0.05 to 0.7 mass %, Fe 0.02 to 0.5 mass %, Mg 0.01 to 0.3 mass %, Mn 0.01 to 0.5 mass %, An alloy containing 0.01 to 0.15% by mass of Zn and 0.01 to 0.15% by mass of Zr, and at least one optional additive component selected from the group consisting of Cu and unavoidable impurities in the balance.
  • a copper alloy sheet having a composition, and a crystal orientation analysis performed by an electron backscattering diffraction (EBSD) method on a longitudinal section parallel to the rolling direction of the copper alloy sheet has a reliability index (CI value) of 0.
  • An area ratio of the measurement spot areas of 2 or less to all the measurement spot areas is 40% or less, and a pair of surface layer portions each including both surfaces of the plate having the vertical cross section and a pair of surface layer portions.
  • a copper alloy material having an alloy composition substantially the same as the alloy composition of the above copper alloy sheet is cast into a step [step 1] and a first chamfering step [step 2].
  • the step [step 8], the aging heat treatment step [step 9], the second cold rolling step [step 10] and the annealing step [step 11] are sequentially performed, and the temperature rising rate in the homogenization heat treatment step [step 3] is set to 10 ⁇ 110°C/sec and a holding temperature of 950 to 1250°C, the cooling start temperature in the surface layer portion of the plate material in the cooling step [step 5] is 680 to 850°C, and the average cooling rate is 5 to 20°C/sec.
  • the ultimate temperature is 450 to 650° C. and the holding time is 500 to 20,000 seconds
  • the working rate per pass is 10%.
  • the rolling roll diameter is R
  • the working amount is ⁇ h
  • the final plate thickness is h
  • the parameter M is represented by the following formula (1), and is 6 or more and 40 or less. According to the above, the above-mentioned copper alloy plate material can be manufactured.
  • FIG. 1 is a schematic diagram for explaining a method of obtaining a reliability index (CI value) by performing a crystal orientation analysis by an EBSD method on a copper alloy sheet material of the present invention in a longitudinal section parallel to the rolling direction.
  • the copper alloy sheet according to the present invention is a copper alloy sheet containing Co in an amount of 0.3 to 2.5% by mass and Si in an amount of 0.1 to 0.7% by mass, with the balance being Cu and inevitable impurities. Therefore, in the crystal orientation analysis performed by the electron backscattering diffraction (EBSD) method on the longitudinal section parallel to the rolling direction of the copper alloy sheet material, the numerical value of the reliability index (CI value) is 0.2 or less.
  • EBSD electron backscattering diffraction
  • the area ratio is 40% or less, and the longitudinal section is divided into a pair of surface layer portions each including both surfaces of the plate material, and a central portion located between the pair of surface layer portions, the average value of the reliability index (CI value) of the surface layer portion of the pair and CI S, the average value of the reliability index (CI value) of the central portion when the CI C, the CI S for CI C
  • the ratio (CI S /CI C ratio) is 0.8 or more and 2.0 or less.
  • the copper alloy sheet material of the present invention contains 0.3 to 2.5 mass% of Co and 0.1 to 0.7 mass% of Si.
  • Co (cobalt) is finely precipitated in the mother phase (matrix) of Cu as a second phase particle consisting of a simple substance or a compound with Si, for example, in a size of about 50 to 500 nm. It is an important component which has effects of precipitation hardening by suppressing dislocation movement, further suppressing grain growth to increase material strength by refining crystal grains, and improving bending workability. In order to exert such an effect, it is necessary that the Co content is 0.3% by mass or more. Further, Co has a smaller decrease rate of conductivity when it forms a solid solution than Ni, but when the Co content exceeds 2.5 mass %, the decrease in conductivity becomes remarkable and exceeds 50% IACS.
  • the Co content needs to be 2.5 mass% or less.
  • the conductivity is about 38%IACS, but the Co content is 0.3.
  • the copper alloy sheet material of the present invention in the range of up to 2.5% by mass, a high numerical value is obtained in which the electrical conductivity exceeds 50% IACS.
  • the tensile strength of the copper alloy sheet material of the present invention depends on the manufacturing conditions, but by adopting specific manufacturing conditions, about 600 MPa can be obtained after aging precipitation, and a copper alloy made of a Cu-Ni-Si-based alloy High strength equivalent to plate material can be obtained.
  • the Co content is preferably in the range of 0.8 to 1.6 mass% in order to satisfy both properties of tensile strength and conductivity in a well-balanced manner. Therefore, the Co content is set in the range of 0.3 to 2.5 mass %.
  • Si silicon finely precipitates in the Cu mother phase (matrix) as precipitates of second-phase particles composed of a compound together with Co, Cr, etc., and these precipitates suppress dislocation movement to cause precipitation hardening. Further, it is an important component having an action of suppressing grain growth and increasing the material strength by refining the crystal grains. In order to exert such an effect, the Si content needs to be 0.1% by mass or more. Further, when the Si content exceeds 0.7 mass %, the conductivity is remarkably lowered and the conductivity exceeding 50% IACS cannot be obtained. Therefore, the Si content is 0.7 mass% or less. There is a need to. Therefore, the Si content is set to the range of 0.1 to 0.7 mass %. The Si content is preferably in the range of 0.2 to 0.5 mass% in order to satisfy both properties of tensile strength and conductivity in a well-balanced manner.
  • the copper alloy sheet material of the present invention contains Co and Si as essential essential contained components, and further contains 0.05 to 1.0 mass% of Cr and 0.05 to 0% of Ni as optional sub-additive components. 0.7 mass%, Fe 0.02 to 0.5 mass%, Mg 0.01 to 0.3 mass%, Mn 0.01 to 0.5 mass%, Zn 0.01 to 0.15 It may contain at least one optional additive component selected from the group consisting of mass% and Zr of 0.01 to 0.15 mass %.
  • Cr 0.05 to 1.0 mass%
  • Cr Cr (chromium) is finely precipitated as a compound or a simple substance in the matrix of Cu as a compound or a simple substance in the form of a precipitate having a size of, for example, about 50 to 500 nm, and this precipitate suppresses dislocation movement. It is a component that has the effect of precipitation hardening and further increasing the material strength by suppressing grain growth and refining the crystal grains, and also improving bendability.
  • the Cr content is preferably 0.05% by mass or more. Further, when the Cr content is 1.0% by mass or less, the rate of decrease in conductivity is small and the conductivity over 50% IACS tends to be obtained. Therefore, the Cr content is preferably 0.05 to 1.0% by mass.
  • Ni nickel
  • Ni (nickel) is finely precipitated as a compound or simple substance in the matrix of Cu (matrix) in the form of a precipitate having a size of, for example, about 50 to 500 nm, and this precipitate suppresses dislocation movement. It is a component which has effects of precipitation hardening, further suppressing grain growth, increasing the material strength by refining the crystal grains, and improving bending workability.
  • the Ni content is preferably 0.05% by mass or more. Further, when the Ni content is 0.7% by mass or less, the rate of decrease in conductivity is small, and a conductivity over 50% IACS tends to be obtained. Therefore, the Ni content is preferably 0.05 to 0.7 mass %.
  • Fe 0.02 to 0.5 mass%
  • Fe (iron) is a component having an effect of improving product characteristics such as conductivity, strength, stress relaxation characteristics, and plating properties.
  • the Fe content is preferably 0.02 mass% or more. Further, if the Fe content is more than 0.5% by mass, not only the improvement effect cannot be expected, but also the conductivity tends to decrease. Therefore, the Fe content is preferably 0.02 to 0.5 mass %.
  • Mg 0.01 to 0.3 mass%
  • Mg magnesium
  • the Mg content is preferably 0.01% by mass or more. If the Mg content is more than 0.3% by mass, the conductivity tends to decrease. Therefore, the Mg content is preferably 0.01 to 0.3 mass %.
  • Mn 0.01 to 0.5 mass%
  • Mn manganese
  • Mn forms a solid solution in the parent phase to improve the rolling workability, suppresses the rapid development of grain boundary reaction type precipitation, and controls the discontinuous precipitation cell structure generated by grain boundary reaction type precipitation. It is a component that has an enabling effect.
  • the Mn content is preferably 0.01% by mass or more. Further, if the Mn content is more than 0.5% by mass, not only the improvement effect cannot be expected, but also the conductivity may decrease and the bendability may deteriorate. Therefore, the Mn content is preferably 0.01 to 0.5 mass %.
  • Zn 0.01 to 0.15 mass%
  • Zn (zinc) is a component that has an effect of improving bending workability and improving adhesion and migration characteristics of Sn plating and solder plating.
  • the Zn content is preferably 0.01% by mass or more. Further, if the Zn content is more than 0.15 mass %, the conductivity tends to decrease. Therefore, the Zn content is preferably 0.01 to 0.15 mass %.
  • Zr 0.01 to 0.15 mass%
  • Zr zirconium
  • the Zr content is preferably 0.01 mass or more. Further, if the Zr content is more than 0.15 mass %, a compound is formed, and the conductivity and the press punching workability tend to be remarkably lowered. Therefore, the Zr content is preferably 0.01 to 0.15% by mass.
  • Total content of optional additives 1.5 mass% or less
  • the total content of the optional additive components should be 1.5% by mass or less. Preferably. This is because, if the total content of the optional additional components is 1.5% by mass or less, the press punching workability and the conductivity will not be significantly reduced.
  • the balance consists of Cu (copper) and unavoidable impurities.
  • unavoidable impurities refers generally to metal products, which are present in the raw materials and are inevitably mixed in the manufacturing process. It is an allowable impurity because it does not affect the product characteristics.
  • the components that can be cited as the inevitable impurities include silver (Ag), tin (Sn), oxygen (O), and the like. The upper limit of the content of these components may be 0.05 mass% for each of the above components, and 0.20 mass% for the total amount of the above components.
  • the copper alloy sheet of the present invention has a reliability index (CI value) of 0.2 or less in the crystal orientation analysis performed by the electron backscattering diffraction (EBSD) method on the longitudinal section parallel to the rolling direction of the copper alloy sheet.
  • the area ratio of the measurement spot area occupying in all the measurement spot areas is 40% or less, and the longitudinal section is formed into a pair of surface layer portions including both surfaces of the plate material and a pair of surface layer portions.
  • the present inventor has conducted a study to make excellent bending workability and high strength compatible with each other at a high level by using a Cu—Co—Si alloy having higher conductivity than the Cu—Ni—Si alloy. It was found that the bending workability deteriorates as the strain introduced into the rolled plate material, particularly the surface layer portion of the plate material, increases.
  • a crystal obtained by electron backscattering diffraction (EBSD) was applied to a longitudinal section parallel to the rolling direction of the copper alloy plate material.
  • the reliability index CI in each measurement spot area is calculated, and the area ratio of the measurement spot area having a reliability index (CI value) of 0.2 or less in all the measurement spot areas is 40% or less.
  • CI value reliability index
  • the area ratio is 40% or less, a high level of bending workability may not be obtained in some cases.
  • the present inventor has further conducted intensive was conducted study, in the vertical section, the average CI S reliability index of the surface layer portion (CI value), the average value of the reliability index of the central portion (CI value) by the ratio of CI S a (CI S / CI C ratio) of 0.8 to 2.0 for CI C, it made it possible to achieve both excellent bending property and high strength at a high level.
  • the CI S / CI C ratio is less than 0.8, the surface distortion surface layer of the sheet material is compared to the central portion (inside) is too large, the proportion of bending workability for tensile strength of the plate becomes lower Therefore, it becomes impossible to achieve a good balance between tensile strength and bending workability.
  • CI S / CI C ratio when the CI S / CI C ratio is greater than 2.0, although the bending ratio of workability is increased relative to the tensile strength of the plate material, uneven distribution of strain in the center portion of the plate (inside) is increased This is because there is a high possibility that variations in shape will occur during press working. Therefore, CI S / CI C ratio of 0.8 to 2.0, preferably 1.0 to 1.8.
  • the calculation method of the reliability index (CI value) is as follows.
  • the crystal orientation measured by the electron backscatter diffraction (EBSD) method is used for each measurement spot area (spot size: 0.5 ⁇ m ⁇ 0.5 ⁇ m) by using analysis software. ) was calculated.
  • a longitudinal section parallel to the rolling direction of the copper alloy sheet in other words, a section perpendicular to the rolling direction of the copper alloy sheet, is mechanically polished with water-resistant abrasive paper and diamond abrasive before measurement by the EBSD method. After that, finish polishing was performed using a colloidal silica solution.
  • the measurement was performed by the EBSD method under the conditions of a measurement area of 64 ⁇ 10 4 ⁇ m 2 (800 ⁇ m ⁇ 800 ⁇ m) and a scan step of 0.1 ⁇ m.
  • the scan step was performed in 0.1 ⁇ m steps in order to measure fine crystal grains.
  • an inverse pole figure IPF Inverse Pole Figure
  • the electron beam was generated by thermoelectrons from the W filament of the scanning electron microscope.
  • the probe diameter at the time of measurement is about 0.015 ⁇ m.
  • OIM5.0 (trade name) manufactured by TSL Solutions Co., Ltd. was used.
  • FIG. 1 illustrates a method for obtaining a reliability index (CI value) by performing crystal orientation analysis (mapping) by the EBSD method on a copper alloy sheet material 10 of the present invention in a longitudinal section parallel to the rolling direction. It is a schematic diagram. As shown in FIG. 1, each measurement spot region is scanned in the longitudinal direction parallel to the rolling direction with an electron beam from one surface layer portion 11a through the central portion 12 to the other surface layer portion 11b, and all the scanning spots are scanned. The area ratio occupied by the measurement spot region having a reliability index (CI value) of 0.2 or less was calculated with respect to the measurement spot region.
  • CI value reliability index
  • the surface layer portions 11a and 11b of the plate material in the present invention mean plate material portions corresponding to 1 ⁇ 8 of the plate thickness respectively from both sides of the plate material, and the central portion 12 is a pair of surface layer portions 11a. And 11b means a sandwiched plate material portion.
  • the average value CI S reliability index of the surface layer portion of the plate member (CI value), method of calculating the average value CI C reliability index of the central portion of the plate member (CI value), the thickness direction (FIG plate material 10 vertical lines) are drawn on the longitudinal section of the plate material at predetermined intervals (for example, 20 ⁇ m intervals), and from the distribution of the CI value on each line, the surface layer portion and the central portion of the plate material are respectively extracted.
  • the average value of the reliability index (CI value) was calculated. For the measurement, 10 fields of view were measured for each strip, and the average value was used as the value.
  • the reliability index (CI value) of this EBSD method is a value measured by the analysis software OIM Analysis of the EBSD device, and the crystal pattern of the evaluation/analysis result is not good, that is, the processed structure is The greater the distortion associated with, the lower the CI value.
  • the tensile strength when pulled in parallel with the rolling direction is preferably 600 MPa or more.
  • the measurement of the tensile strength was performed on three test pieces of No. 13B specified in JIS Z2241:2011 cut out from the rolling parallel direction, and the tensile strength was an average value of the tensile strengths obtained from the three test pieces.
  • the copper alloy sheet material of the present invention preferably has a conductivity of more than 50% IACS.
  • the electrical conductivity can be calculated from the numerical value of the specific resistance measured by the four-terminal method in a constant temperature bath kept at 20°C ( ⁇ 0.5°C).
  • a plurality of test pieces with a width of 10 mm and a length of 30 mm were sampled from each test material so that the rolling direction and the longitudinal direction of the test pieces were parallel, and a W-shaped jig with a bending angle of 90 degrees and a bending radius of 0 mm.
  • a W-shaped jig with a bending angle of 90 degrees and a bending radius of 0 mm. was used to perform a W bending test.
  • unevenness of the bent surface of the 90°W bending test piece was measured with a laser microscope at a pitch of 0.1 ⁇ m.
  • the root mean square roughness Rq is calculated in accordance with JIS B0601:2013 by substituting it into the following equation (2).
  • the small surface roughness of the bent portion indicates that the bending workability of the material is good.
  • 1 is a reference length.
  • a copper alloy material having substantially the same alloy composition as the above-described alloy composition of the copper alloy sheet is cast in the step [step 1], Chamfering step [step 2], homogenizing heat treatment step [step 3], hot rolling step [step 4], water cooling step [step 5], second chamfering step [step 6], first cold rolling step [Ste 7], solution heat treatment step [step 8], aging heat treatment step [step 9], second cold rolling step [step 10] and annealing step [step 11] are sequentially performed, and the homogenization heat treatment step [step 3 ], the holding temperature is 950 to 1250° C., the cooling start temperature in the surface layer part of the plate material in the cooling step [step 5] is 680 to 850° C., and the average cooling rate is 5 To 20° C./sec, the temperature reached in the aging heat treatment step [step 9] is 450 to 650° C., the holding time is 500 to 20000 seconds, and the second cold rolling step [
  • the homogenizing heat treatment step [step 3] and the aging heat treatment step [step 9] are controlled, and the cooling step [after the hot rolling step [step 4]] is performed. 5] and controlling the second (final) cold rolling step [step 10]. That is, in the homogenizing heat treatment step [step 3], the temperature rising rate is 10 to 110° C./sec and the holding temperature is 950 to 1250° C., and in the cooling step [step 5] performed after the hot rolling step [step 4].
  • the cooling start temperature in the surface layer part of the plate material is 680 to 850° C.
  • the average cooling rate is 5 to 20° C./sec
  • the ultimate temperature in the aging heat treatment step [step 9] is 450 to 650° C. and the holding time is 500 to 20,000.
  • the working rate per pass is 10% or more and 40% or less
  • M ⁇ (R ⁇ h) 0.5 ⁇ / It is necessary to set the parameter M represented by h to 6 or more and 40 or less.
  • (I) Casting process [Process 1] In the casting step, a copper alloy material having the alloy components shown in Table 1 is melted in a high-frequency melting furnace in the air, and the ingot is cast into a predetermined shape (for example, thickness 300 mm, width 500 mm, length 3000 mm). To manufacture.
  • the alloy composition of the copper alloy material may not always completely match the alloy composition of the copper alloy sheet material produced by adhering to the melting furnace or volatilizing depending on the additive components in each step of production. However, it has an alloy composition substantially the same as that of the copper alloy sheet.
  • the first chamfering step removes the oxide film formed on the surface of the ingot obtained in the casting step (step 1) in which the copper alloy material is melted, so that both sides of the ingot have a thickness of 0.5 mm or more. It is a process of scraping off just that much.
  • the temperature rising rate is 10 to 110° C./sec and the holding temperature is 950 to 1250° C. If the temperature rising rate in the homogenizing heat treatment step is less than 10°C/sec or more than 110°C/sec or the holding temperature is less than 950°C, the solid solution of the crystallized product produced during casting becomes insufficient, and the product is produced. In addition, it becomes impossible to obtain a satisfactory level of strength and conductivity in the copper alloy sheet material. On the other hand, if the holding temperature in the homogenizing heat treatment step exceeds 1250° C., the vicinity of the crystal grain boundaries is partially in the liquid phase, cracks are likely to occur during hot rolling, and production may not be possible in some cases.
  • the hot rolling step is a step in which the ingot immediately after the homogenizing heat treatment is hot rolled to a predetermined thickness to produce a hot rolled sheet.
  • the hot rolling conditions are, for example, preferably a rolling temperature of 600 to 1100° C., a rolling frequency of 4 or more, and a total rolling rate of 60% or more.
  • the cooling step is also performed after the hot rolling step (step 4), and is a surface layer portion (a plate material corresponding to 1/8 of the plate thickness from the surface of the plate material) of the plate material (hot rolled plate) in the cooling step. It is necessary to set the cooling start temperature in (part) to 680 to 850°C and the average cooling rate to 5 to 20°C/sec. If the cooling start temperature is lower than 680° C. or the average cooling rate is lower than 5° C./sec, coarse precipitation of solute elements will proceed during cooling, and the copper alloy sheet produced will not have satisfactory strength and electrical conductivity. Because. On the other hand, if the cooling start temperature exceeds 850° C.
  • the average cooling rate exceeds 20° C./sec, the formation of the rolling structure becomes insufficient, which adversely affects the bendability after the final step.
  • the average cooling rate exceeds 20° C./sec, the precipitation of the surface is too small, the crystal grain coarsening of the surface progresses in the solution treatment step, and strain easily accumulates, and the target CI value is obtained. Is not satisfied, and bending workability deteriorates.
  • the second chamfering step is a step of scraping both the front and back surfaces of the hot rolled material by a thickness of 0.5 mm or more in order to remove the oxide film on the surface of the hot rolled material.
  • the first cold rolling step is a step of producing a cold rolled sheet by performing cold rolling until a predetermined thickness is obtained after the second chamfering step. It is preferable that the cold rolling condition is, for example, two or more rolling cycles and a total rolling work rate of 50% or more.
  • the solution heat treatment step is a step of performing heat treatment at a temperature rising rate of 1 to 150° C./second, an ultimate temperature of 800 to 1000° C., a holding time of 1 to 300 seconds, and a cooling rate of 1 to 200° C./second.
  • the additional cold rolling step is a step that is optionally performed after the solution heat treatment step [step 8] and before the aging heat treatment step [step 9], and is not an essential step.
  • the rolling conditions are, for example, one or more rolling cycles and a total rolling rate of 10 to 70%.
  • Step 10 Second (final) cold rolling step
  • the parameter M exceeds 40, the load on the rolling equipment becomes extremely large, and Because it is not the target.
  • the number of times of rolling is 2 or more and the total rolling rate is 10% or more.
  • the parameter M becomes smaller as R and ⁇ h become smaller or h becomes larger.
  • the CI value when R becomes small, the contact length between the material and the roll is reduced, and only the vicinity of the surface is sheared, so that the strain amount becomes relatively high and the inside is uniform.
  • CI S / CI C for not distorted state tends to be low.
  • the parameter M increases as R or ⁇ h increases or h decreases.
  • the rolling roll diameter R by properly setting the etching amount ⁇ h and final thickness h, CI value, CI S / CI C, more it is possible to control the strength and bending workability.
  • the annealing step is a heat treatment performed after the second (final) cold rolling step.
  • the annealing conditions are preferably, for example, an ultimate temperature of 200 to 600° C. and a holding time of 1 to 3600 seconds.
  • the copper alloy plate material of the present invention is suitable for use in, for example, lead frames, connectors, terminal materials, relays, switches, sockets for in-vehicle parts and electric/electronic devices.
  • the cooling step (step 5) was performed under the conditions of the cooling start temperature and the cooling rate, and then both front and back surfaces of the hot rolled material were shaved by a thickness of 0.5 mm or more in order to remove the oxide film on the surface.
  • the first cold rolling step (step 7) is performed under the condition that the number of rolling times is 2 times or more and the total working rate is 50% or more, and then the temperature rising rate is 1 to
  • the solution heat treatment step (step 8) is performed under the conditions of 150° C./second, ultimate temperature of 800 to 1000° C., holding time of 1 to 300 seconds, and cooling rate of 1 to 200° C./second.
  • step 9 After performing the aging heat treatment step (step 9) under the condition of the holding time, under the conditions of the rolling rate of 2 times or more and the total working rate of 5% or more so that the processing rate per pass and the parameter M shown in Table 2 are obtained.
  • the second cold rolling step (step 10) was performed at that temperature, and then the annealing step (step 11) was performed at an ultimate temperature of 200 to 600° C. and a holding time of 1 to 3600 seconds. , 6 to 8 and 12, and Comparative Examples 1, 3, 8 and 9, after the solution heat treatment step and before the aging heat treatment step, an additional cold rolling step (step 12) was performed at a total rolling work rate of 5 to It was further performed at 70% In this way, the copper alloy sheet material of the present invention was produced.
  • [2] EBSD measurement method After mechanically polishing a vertical section parallel to the rolling direction of each of the prepared test materials (copper alloy plate materials) with water-resistant abrasive paper and diamond abrasive grains, a colloidal silica solution is used. Finish polishing was performed. Then, the measurement was performed by the EBSD method under the conditions of a measurement area of 64 ⁇ 10 4 ⁇ m 2 (800 ⁇ m ⁇ 800 ⁇ m) and a scan step of 0.1 ⁇ m. The scan step was performed in 0.1 ⁇ m steps in order to measure fine crystal grains. In the analysis, an inverse pole figure IPF (Inverse Pole Figure) was confirmed by the analysis from the EBSD measurement result of 64 ⁇ 10 4 ⁇ m 2 .
  • IPF Inverse Pole Figure
  • the electron beam was generated by thermoelectrons from the W filament of the scanning electron microscope.
  • the probe diameter at the time of measurement is about 0.015 ⁇ m.
  • OIM5.0 (trade name) manufactured by TSL Solutions Co., Ltd. was used.
  • the reliability index (CI value) of the EBSD method is a value measured by the analysis software OIM Analysis of the EBSD device.
  • Copper alloy plate material 11a, 11b Surface layer part of copper alloy plate material 12 Central part of copper alloy plate material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

A copper alloy plate material according to the present invention has an alloy composition comprising 0.3 to 2.5% by mass of Co, 0.1 to 0.7% by mass of Si and a remainder made up by Cu and unavoidable impurities. When a longitudinal section of the copper alloy plate material which is parallel to the rolling direction of the copper alloy plate material is subjected to a crystal orientation analysis by an EBSD method, the ratio of the area of a measurement spot region having a reliability index (CI value) of 0.2 or less to the total area of all of measurement spot regions is 40% or less. When the longitudinal section is divided into a pair of surface layer parts respectively including both surfaces of the plate material and a center part located between the pair of surface layer parts and the average value of the reliability indices (CI values) of the pair of surface layer parts is defined as CIS and the average value of the reliability indices (CI values) of the center part is defined as CIC, the ratio of CIS to CIC (i.e., CIS/CIC ratio) is 0.8 to 2.0 inclusive. The copper alloy plate material can achieve both of excellent bending workability and high strength at a high level.

Description

銅合金板材およびその製造方法Copper alloy sheet and method for producing the same
 本発明は、銅合金板材およびその製造方法に関する。 The present invention relates to a copper alloy plate and a method for manufacturing the same.
 銅合金板材、例えば電気・電子部品や自動車車載部品に用いられる銅合金板材としては、従来は、主に析出強化や加工硬化によって強化された高強度銅合金であるCu-Ni-Si系合金(コルソン系合金)が広く用いられてきた。 As a copper alloy plate material, for example, a copper alloy plate material used for electric/electronic parts and automobile in-vehicle parts, conventionally, a Cu—Ni—Si-based alloy (which is a high-strength copper alloy mainly strengthened by precipitation strengthening or work hardening) ( Corson alloys) have been widely used.
 しかしながら、Cu-Ni-Si系合金は、導電率は最大でも50%IACS程度であり、大電流で通電すると抵抗発熱量が多くなり、熱によって接点部のばね性の低下や、端子を固定するモールドの劣化などにより、端子の機能が著しく低下するおそれがあることから、大電流用の端子材料として用いるには適さない。 However, the Cu-Ni-Si alloy has a maximum conductivity of about 50% IACS, and when it is energized with a large current, the amount of heat generated by resistance increases, which causes the spring property of the contact portion to deteriorate and the terminal to be fixed. It is not suitable for use as a terminal material for a large current because the function of the terminal may be significantly reduced due to deterioration of the mold.
 このため、Cu-Ni-Si系合金に代わる端子材料を開発することが求められている。例えば特許文献1には、Cu-Ni-Si系合金に代えて、Cu-Co-Si系合金を用い、再結晶組織において等軸粒と双晶粒界の頻度を制御することで、板材の曲げ加工性と導電性を改善できることが開示されている。 Therefore, it is required to develop a terminal material to replace the Cu-Ni-Si alloy. For example, in Patent Document 1, a Cu—Co—Si based alloy is used in place of the Cu—Ni—Si based alloy, and the frequency of equiaxed grains and twin grain boundaries in the recrystallization structure is controlled to control the plate material. It is disclosed that bendability and conductivity can be improved.
 しかしながら、特許文献1に記載のCu-Co-Si系合金条は、曲げ加工性や強度に大きく影響する歪みについては何ら検討がなされておらず、曲げ加工性や強度に関してはさらに改善の余地があった。 However, the Cu—Co—Si alloy strip described in Patent Document 1 has not been examined in terms of strain that greatly affects bending workability and strength, and there is room for further improvement in bending workability and strength. there were.
 また、特許文献2では、Mgを3.3原子%以上6.9原子%以下の範囲を含む銅合金において、加工時に導入された歪みを、SEM-EBSD法により測定した、圧延の幅方向に対して垂直な面(すなわちTD面)のCI値の低い測定点の割合で規定した範囲に収めることで、曲げ加工性が向上できるとしている。 Further, in Patent Document 2, in a copper alloy containing Mg in the range of 3.3 atomic% or more and 6.9 atomic% or less, the strain introduced during processing was measured by the SEM-EBSD method in the rolling width direction. On the other hand, it is said that the bending workability can be improved by keeping the value within the range defined by the ratio of the measurement points having a low CI value on the vertical surface (that is, the TD surface).
 さらに、特許文献3では、Tiを2.0~4.0質量%含有するチタン銅において、表面の歪みをSEM-EBSD法により測定した信頼性指数(CI値)が0.2以下の面積率が20%以下とすることで、曲げ加工性を向上させることができるとしている。 Further, in Patent Document 3, in titanium copper containing Ti in an amount of 2.0 to 4.0% by mass, the area ratio having a reliability index (CI value) of 0.2 or less measured by SEM-EBSD method for surface strain It is said that the bending workability can be improved by setting the ratio to 20% or less.
 特許文献2および3はいずれも、曲げ加工性の向上が認められるものの、Cu-Co-Si系合金に関しては記載がなく、加えて、特許文献2には、導電率が31.8~45.1%IACSの範囲と低い数値しか得られておらず、また、特許文献3には導電率の数値が示されていない。 In both Patent Documents 2 and 3, improvement in bending workability is recognized, but there is no description about Cu—Co—Si alloys. In addition, in Patent Document 2, conductivity is 31.8 to 45. Only a low value in the range of 1% IACS was obtained, and the numerical value of conductivity is not shown in Patent Document 3.
特許第5534610号公報Japanese Patent No. 5534610 特許第5903838号公報Japanese Patent No. 5903838 特許第6080822号公報Japanese Patent No. 6080822
 本発明の目的は、Cu-Ni-Si系合金よりも高い導電率を有するCu-Co-Si系合金を用い、優れた曲げ加工性と高強度を高いレベルで両立させることができる銅合金板材およびその製造方法を提供することにある。 An object of the present invention is to use a Cu—Co—Si alloy having a higher conductivity than a Cu—Ni—Si alloy, and to achieve excellent bending workability and high strength at a high level. And to provide a manufacturing method thereof.
 本発明者は、Cu-Ni-Si系よりも高い導電率を有するCu-Co-Si系の合金組成を有する銅合金素材を用い、圧延を行なうことによって銅合金板材を製造するに当たり、圧延方向に平行な縦断面に対し、電子後方散乱回折(EBSD)法によって結晶方位解析を行なったところ、前記縦断面における信頼性指数(CI値)が小さい測定スポット領域の面積率を低く制御するとともに、前記縦断面の表層部と中央部のそれぞれにおける信頼性指数(CI値)の平均値の比(CI/CI比)の適正化を図ることによって、加工組織を発達させることができ、その結果、曲げ加工性を確保しつつ、強度を向上させることができることを見出し、本発明を完成させるに至った。 The present inventor uses a copper alloy material having a Cu—Co—Si alloy composition having a higher electrical conductivity than Cu—Ni—Si alloy to produce a copper alloy sheet material by rolling. When a crystal orientation analysis was performed on a vertical cross section parallel to, by an electron backscattering diffraction (EBSD) method, the area ratio of a measurement spot region having a small reliability index (CI value) in the vertical cross section was controlled to be low, and by achieve an appropriate ratio of the average value of the reliability index (CI value) in each of the surface portion and the central portion of the longitudinal section (CI S / CI C ratio), it is possible to develop processed structure, its As a result, they have found that the strength can be improved while ensuring bending workability, and have completed the present invention.
 上記目的を達成するため、本発明の要旨構成は、以下のとおりである。
(I)Coを0.3~2.5質量%およびSiを0.1~0.7質量%含有し、残部がCuおよび不可避不純物からなる合金組成を有する銅合金板材であって、該銅合金板材の圧延方向に平行な縦断面に対し、電子後方散乱回折(EBSD)法によって行なった結晶方位解析は、信頼性指数(CI値)が0.2以下である測定スポット領域の、全測定スポット領域に占める面積率が40%以下であり、かつ、前記縦断面を、板材の両表面をそれぞれ含む1対の表層部と、該1対の表層部に挟まれて位置する中央部とに区分し、前記1対の表層部の前記信頼性指数(CI値)の平均値をCIとし、前記中央部の前記信頼性指数(CI値)の平均値をCIとするとき、CIに対するCIの比(CI/CI比)が、0.8以上2.0以下であることを特徴とする銅合金板材。
(II)Coを0.3~2.5質量%およびSiを0.1~0.7質量%含有し、さらにCrを0.05~1.0質量%、Niを0.05~0.7質量%、Feを0.02~0.5質量%、Mgを0.01~0.3質量%、Mnを0.01~0.5質量%、Znを0.01~0.15質量%およびZrを0.01~0.15質量%からなる群から選択される少なくとも1種の任意添加成分を含有し、残部がCuおよび不可避不純物からなる合金組成を有する銅合金板材であって、該銅合金板材の長手方向に平行な縦断面に対し、電子後方散乱回折(EBSD)法によって行なった結晶方位解析は、信頼性指数(CI値)が0.2以下である測定スポット領域の、全測定スポット領域に占める面積率が40%以下であり、かつ、前記縦断面を、板材の両表面をそれぞれ含む1対の表層部と、該1対の表層部に挟まれて位置する中央部とに区分し、前記1対の表層部の前記信頼性指数(CI値)の平均値をCIとし、前記中央部の前記信頼性指数(CI値)の平均値をCIとするとき、CIに対するCIの比(CI/CI比)が、0.8以上2.0以下であることを特徴とする銅合金板材。
(III)前記任意添加成分は、合計で1.5質量%以下含有する、上記(II)に記載の銅合金板材。
(IV)前記圧延方向と平行に引っ張ったときの引張強度が600MPa以上であり、導電率が50%IACS超えであり、かつ、日本伸銅協会(JCBA)T307:2007に準拠するW曲げ試験をGoodway方向にr/t=0で行った後の、曲げ加工部の屈曲外面における二乗平均平方根粗さRqが7.0μm以下である、上記(I)~(III)のいずれか1項に記載の銅合金板材。
(V)上記(I)~(IV)のいずれか1項に記載の銅合金板材を製造する方法であって、前記銅合金板材の前記合金組成と実質的に同じ合金組成を有する銅合金素材に、鋳造工程[工程1]、第1面削工程[工程2]、均質化熱処理工程[工程3]、熱間圧延工程[工程4]、冷却工程[工程5]、第2面削工程[工程6]、第1冷間圧延工程[工程7]、溶体化熱処理工程[工程8]、時効熱処理工程[工程9]、第2冷間圧延工程[工程10]および焼鈍工程[工程11]を順次行ない、前記均質化熱処理工程[工程3]における昇温速度を10~110℃/秒および保持温度を950~1250℃とし、前記冷却工程[工程5]における板材の表層部での冷却開始温度を680~850℃および平均冷却速度を5~20℃/秒とし、前記時効熱処理工程[工程9]における到達温度を450~650℃および保持時間を500~20000秒とし、そして、前記第2冷間圧延工程[工程10]は、1パスあたりの加工率が10%以上40%以下であり、かつ、圧延ロール径をR、加工量をΔhおよび最終板厚をhとするとき、パラメータMは、下記の(1)式で表され、6以上40以下であることを特徴とする銅合金板材の製造方法。
    M={(R・Δh)0.5}/h ・・・・(1)
(VI)前記溶体化熱処理工程[工程8]の後、時効熱処理工程[工程9]の前に、追加の冷間圧延工程[工程12]をさらに行なう、上記(V)に記載の銅合金板材の製造方法。
In order to achieve the above object, the gist of the present invention is as follows.
(I) A copper alloy plate containing 0.3 to 2.5 mass% of Co and 0.1 to 0.7 mass% of Si, and the balance of Cu and unavoidable impurities. The crystal orientation analysis performed on the longitudinal section parallel to the rolling direction of the alloy sheet material by the electron backscatter diffraction (EBSD) method showed that all the measurement of the measurement spot area where the reliability index (CI value) was 0.2 or less. The area ratio of the spot region is 40% or less, and the longitudinal section is divided into a pair of surface layer portions each including both surfaces of the plate material and a central portion located between the pair of surface layer portions. when the indicator is, the average value of the reliability index (CI value) of the surface layer portion of the pair and CI S, the average value of the reliability index (CI value) of the central portion and CI C, CI C copper alloy sheet ratio CI S (CI S / CI C ratio), which is characterized in that 0.8 to 2.0 relative to.
(II) 0.3 to 2.5% by mass of Co and 0.1 to 0.7% by mass of Si, 0.05 to 1.0% by mass of Cr and 0.05 to 0. 7 mass%, Fe 0.02 to 0.5 mass%, Mg 0.01 to 0.3 mass%, Mn 0.01 to 0.5 mass%, Zn 0.01 to 0.15 mass% % And Zr are at least one optional additive selected from the group consisting of 0.01 to 0.15 mass %, and the balance is a copper alloy sheet material having an alloy composition of Cu and inevitable impurities, A crystal orientation analysis performed by an electron backscattering diffraction (EBSD) method on a longitudinal section parallel to the longitudinal direction of the copper alloy plate material shows that a reliability index (CI value) is 0.2 or less in a measurement spot region. An area ratio of 40% or less in all the measurement spot regions, and a pair of surface layer portions each including both surfaces of the plate member in the longitudinal section, and a central portion located between the pair of surface layer portions. divided into bets, the average value of the reliability index (CI value) of the surface layer portion of the pair and CI S, the average value of the reliability index (CI value) of the central portion when the CI C, the ratio of the CI S for CI C (CI S / CI C ratio), the copper alloy sheet which is characterized in that 0.8 to 2.0.
(III) The copper alloy plate material according to (II), which contains the optional additive component in a total amount of 1.5% by mass or less.
(IV) The tensile strength when stretched in parallel with the rolling direction is 600 MPa or more, the electrical conductivity is more than 50% IACS, and the W bending test according to Japan Copper and Brass Association (JCBA) T307:2007 is conducted. The root mean square roughness Rq on the bending outer surface of the bent portion after performing r/t=0 in the Goodway direction is 7.0 μm or less, (I) to (III) above. Copper alloy plate material.
(V) A method for producing the copper alloy sheet according to any one of (I) to (IV) above, which has a substantially same alloy composition as the alloy composition of the copper alloy sheet. The casting step [step 1], the first chamfering step [step 2], the homogenizing heat treatment step [step 3], the hot rolling step [step 4], the cooling step [step 5], the second chamfering step [ Step 6], the first cold rolling step [Step 7], the solution heat treatment step [Step 8], the aging heat treatment step [Step 9], the second cold rolling step [Step 10] and the annealing step [Step 11]. Sequentially, the temperature rising rate in the homogenizing heat treatment step [step 3] is set to 10 to 110° C./sec and the holding temperature is 950 to 1250° C., and the cooling start temperature in the surface layer portion of the plate material in the cooling step [step 5] Of 680 to 850° C. and an average cooling rate of 5 to 20° C./sec, the achievable temperature in the aging heat treatment step [step 9] is 450 to 650° C. and the holding time of 500 to 20000 sec, and the second cooling In the inter-rolling step [Step 10], when the processing rate per pass is 10% or more and 40% or less, and the rolling roll diameter is R, the processing amount is Δh, and the final plate thickness is h, the parameter M is A method for producing a copper alloy sheet material, which is represented by the following formula (1) and is 6 or more and 40 or less.
M={(R·Δh) 0.5 }/h ··· (1)
(VI) After the solution heat treatment step [step 8] and before the aging heat treatment step [step 9], an additional cold rolling step [step 12] is further performed, and the copper alloy sheet material according to the above (V). Manufacturing method.
 本発明の銅合金板材は、Coを0.3~2.5質量%およびSiを0.1~0.7質量%含有し、さらに必要に応じて、Crを0.05~1.0質量%、Niを0.05~0.7質量%、Feを0.02~0.5質量%、Mgを0.01~0.3質量%、Mnを0.01~0.5質量%、Znを0.01~0.15質量%およびZrを0.01~0.15質量%からなる群から選択される少なくとも1種の任意添加成分を含有し、残部がCuおよび不可避不純物からなる合金組成を有する銅合金板材であって、銅合金板材の圧延方向に平行な縦断面に対し、電子後方散乱回折(EBSD)法によって行なった結晶方位解析は、信頼性指数(CI値)が0.2以下である測定スポット領域の、全測定スポット領域に占める面積率が40%以下であり、かつ、前記縦断面を、板材の両表面をそれぞれ含む1対の表層部と、1対の表層部に挟まれて位置する中央部とに区分し、1対の表層部の信頼性指数(CI値)の平均値をCIとし、中央部の信頼性指数(CI値)の平均値をCIとするとき、CIに対するCIの比(CI/CI比)が、0.8以上2.0以下であることによって、Cu-Ni-Si系合金よりも高い導電率を有するとともに、優れた曲げ加工性と高強度を高いレベルで両立させることができる。 The copper alloy sheet of the present invention contains 0.3 to 2.5 mass% of Co and 0.1 to 0.7 mass% of Si, and further contains 0.05 to 1.0 mass of Cr, if necessary. %, Ni 0.05 to 0.7 mass %, Fe 0.02 to 0.5 mass %, Mg 0.01 to 0.3 mass %, Mn 0.01 to 0.5 mass %, An alloy containing 0.01 to 0.15% by mass of Zn and 0.01 to 0.15% by mass of Zr, and at least one optional additive component selected from the group consisting of Cu and unavoidable impurities in the balance. A copper alloy sheet having a composition, and a crystal orientation analysis performed by an electron backscattering diffraction (EBSD) method on a longitudinal section parallel to the rolling direction of the copper alloy sheet has a reliability index (CI value) of 0. An area ratio of the measurement spot areas of 2 or less to all the measurement spot areas is 40% or less, and a pair of surface layer portions each including both surfaces of the plate having the vertical cross section and a pair of surface layer portions. divided into a central portion is positioned sandwiched, the average value of the reliability index of the surface layer portion of the pair (CI value) and CI S, the average value of the reliability index of the central portion (CI value) CI C when the ratio of CI S for CI C (CI S / CI C ratio), by 0.8 to 2.0, which has a higher conductivity than Cu-Ni-Si alloy, Excellent bending workability and high strength can both be achieved at a high level.
 また、本発明の銅合金板材の製造方法は、上記銅合金板材の合金組成と実質的に同じ合金組成を有する銅合金素材に、鋳造工程[工程1]、第1面削工程[工程2]、均質化熱処理工程[工程3]、熱間圧延工程[工程4]、冷却工程[工程5]、第2面削工程[工程6]、第1冷間圧延工程[工程7]、溶体化熱処理工程[工程8]、時効熱処理工程[工程9]、第2冷間圧延工程[工程10]および焼鈍工程[工程11]を順次行ない、前記均質化熱処理工程[工程3]における昇温速度を10~110℃/秒および保持温度を950~1250℃とし、前記冷却工程[工程5]における板材の表層部での冷却開始温度を680~850℃および平均冷却速度を5~20℃/秒とし、前記時効熱処理工程[工程9]における到達温度を450~650℃および保持時間を500~20000秒とし、そして、前記第2冷間圧延工程[工程10]は、1パスあたりの加工率が10%以上40%以下であり、かつ、圧延ロール径をR、加工量をΔhおよび最終板厚をhとするとき、パラメータMは、下記の(1)式で表され、6以上40以下であることによって、上述した銅合金板材を製造することができる。 Further, in the method for producing a copper alloy sheet according to the present invention, a copper alloy material having an alloy composition substantially the same as the alloy composition of the above copper alloy sheet is cast into a step [step 1] and a first chamfering step [step 2]. , Homogenizing heat treatment step [step 3], hot rolling step [step 4], cooling step [step 5], second chamfering step [step 6], first cold rolling step [step 7], solution heat treatment The step [step 8], the aging heat treatment step [step 9], the second cold rolling step [step 10] and the annealing step [step 11] are sequentially performed, and the temperature rising rate in the homogenization heat treatment step [step 3] is set to 10 ~110°C/sec and a holding temperature of 950 to 1250°C, the cooling start temperature in the surface layer portion of the plate material in the cooling step [step 5] is 680 to 850°C, and the average cooling rate is 5 to 20°C/sec. In the aging heat treatment step [step 9], the ultimate temperature is 450 to 650° C. and the holding time is 500 to 20,000 seconds, and in the second cold rolling step [step 10], the working rate per pass is 10%. When the rolling roll diameter is R, the working amount is Δh, and the final plate thickness is h, the parameter M is represented by the following formula (1), and is 6 or more and 40 or less. According to the above, the above-mentioned copper alloy plate material can be manufactured.
図1は、本発明の銅合金板材を、圧延方向に平行な縦断面にて、EBSD法によって結晶方位解析を行ない、信頼性指数(CI値)を求める方法を説明するための模式図である。FIG. 1 is a schematic diagram for explaining a method of obtaining a reliability index (CI value) by performing a crystal orientation analysis by an EBSD method on a copper alloy sheet material of the present invention in a longitudinal section parallel to the rolling direction. .. 図2は、本発明の実施形態に従う2種類の銅合金板材に対し、W曲げ試験をGoodway方向にr/t=0で行った後の、曲げ加工部の屈曲外面状態を、走査型電子顕微鏡(SEM)を用いて観察したときのSEM写真であって、(a)が実施例12(Rq=5.7μm)である場合、(b)が実施例9(Rq=3.0μm)である場合を示す。FIG. 2 is a scanning electron microscope showing the bending outer surface state of the bent portion after the W bending test was performed in the Goodway direction at r/t=0 for the two types of copper alloy sheet materials according to the embodiment of the present invention. It is a SEM photograph when observed using (SEM), when (a) is Example 12 (Rq=5.7 μm), (b) is Example 9 (Rq=3.0 μm). Indicate the case.
 以下、本発明の銅合金板材の好ましい実施形態について、詳細に説明する。
 本発明に従う銅合金板材は、Coを0.3~2.5質量%およびSiを0.1~0.7質量%含有し、残部がCuおよび不可避不純物からなる合金組成を有する銅合金板材であって、該銅合金板材の圧延方向に平行な縦断面に対し、電子後方散乱回折(EBSD)法によって行なった結晶方位解析は、信頼性指数(CI値)の数値が0.2以下となる面積率が40%以下であり、かつ、前記縦断面を、板材の両表面をそれぞれ含む1対の表層部と、該1対の表層部に挟まれて位置する中央部とに区分し、前記1対の表層部の前記信頼性指数(CI値)の平均値をCIとし、前記中央部の前記信頼性指数(CI値)の平均値をCIとするとき、CIに対するCIの比(CI/CI比)が、0.8以上2.0以下である。
Hereinafter, preferred embodiments of the copper alloy sheet material of the present invention will be described in detail.
The copper alloy sheet according to the present invention is a copper alloy sheet containing Co in an amount of 0.3 to 2.5% by mass and Si in an amount of 0.1 to 0.7% by mass, with the balance being Cu and inevitable impurities. Therefore, in the crystal orientation analysis performed by the electron backscattering diffraction (EBSD) method on the longitudinal section parallel to the rolling direction of the copper alloy sheet material, the numerical value of the reliability index (CI value) is 0.2 or less. The area ratio is 40% or less, and the longitudinal section is divided into a pair of surface layer portions each including both surfaces of the plate material, and a central portion located between the pair of surface layer portions, the average value of the reliability index (CI value) of the surface layer portion of the pair and CI S, the average value of the reliability index (CI value) of the central portion when the CI C, the CI S for CI C The ratio (CI S /CI C ratio) is 0.8 or more and 2.0 or less.
(I)銅合金板材の組成
 まず、本発明の銅合金板材の組成を限定した理由について説明する。
 本発明の銅合金板材は、Coを0.3~2.5質量%およびSiを0.1~0.7質量%含有させたものである。
(I) Composition of Copper Alloy Sheet Material First, the reason for limiting the composition of the copper alloy sheet material of the present invention will be described.
The copper alloy sheet material of the present invention contains 0.3 to 2.5 mass% of Co and 0.1 to 0.7 mass% of Si.
<Co:0.3~2.5質量%>
 Co(コバルト)は、Cuの母相(マトリクス)中に、単体またはSiとの化合物からなる第二相粒子の析出物として、例えば50~500nm程度の大きさで微細析出し、この析出物が転位移動を抑制することにより析出硬化させ、さらに、粒成長が抑制されて結晶粒の微細化によって材料強度を上昇させるとともに、曲げ加工性も向上させる作用を有する重要な成分である。かかる作用を発揮するには、Co含有量を0.3質量%以上とすることが必要である。また、Coは、Niに比べて固溶した際の導電率の低下割合が小さいが、Co含有量が2.5質量%を超えると、導電率の低下が顕著になって、50%IACS超えの導電率が得られなくなることから、Co含有量は2.5質量%以下にする必要がある。例えば、一般的なCu-Ni-Si系合金(Cu-2.3質量%Ni-0.65質量%Si)の場合、導電率は38%IACS程度であるが、Co含有量を0.3~2.5質量%の範囲とする本発明の銅合金板材は、導電率が50%IACS超えと高い数値が得られる。また、本発明の銅合金板材の引張強度は、製造条件にもよるが、特定の製造条件を採用することによって、時効析出後に600MPa程度が得られ、Cu-Ni-Si系合金からなる銅合金板材と同等レベルの高強度が得られる。なお、引張強度と導電率の両特性をバランスよく満足させるには、Co含有量は、0.8~1.6質量%の範囲であることが好ましい。このため、Co含有量は0.3~2.5質量%の範囲とする。
<Co: 0.3 to 2.5 mass%>
Co (cobalt) is finely precipitated in the mother phase (matrix) of Cu as a second phase particle consisting of a simple substance or a compound with Si, for example, in a size of about 50 to 500 nm. It is an important component which has effects of precipitation hardening by suppressing dislocation movement, further suppressing grain growth to increase material strength by refining crystal grains, and improving bending workability. In order to exert such an effect, it is necessary that the Co content is 0.3% by mass or more. Further, Co has a smaller decrease rate of conductivity when it forms a solid solution than Ni, but when the Co content exceeds 2.5 mass %, the decrease in conductivity becomes remarkable and exceeds 50% IACS. Therefore, the Co content needs to be 2.5 mass% or less. For example, in the case of a general Cu-Ni-Si alloy (Cu-2.3 mass% Ni-0.65 mass% Si), the conductivity is about 38%IACS, but the Co content is 0.3. With the copper alloy sheet material of the present invention in the range of up to 2.5% by mass, a high numerical value is obtained in which the electrical conductivity exceeds 50% IACS. Further, the tensile strength of the copper alloy sheet material of the present invention depends on the manufacturing conditions, but by adopting specific manufacturing conditions, about 600 MPa can be obtained after aging precipitation, and a copper alloy made of a Cu-Ni-Si-based alloy High strength equivalent to plate material can be obtained. The Co content is preferably in the range of 0.8 to 1.6 mass% in order to satisfy both properties of tensile strength and conductivity in a well-balanced manner. Therefore, the Co content is set in the range of 0.3 to 2.5 mass %.
<Si:0.1~0.7質量%>
 Si(ケイ素)は、Cuの母相(マトリクス)中に、CoやCrなどとともに化合物からなる第二相粒子の析出物として微細析出し、この析出物が転位移動を抑制することにより析出硬化させ、さらに、粒成長が抑制されて結晶粒の微細化によって材料強度を上昇させる作用を有する重要な成分である。かかる作用を発揮するには、Si含有量を0.1質量%以上とすることが必要である。また、Si含有量が0.7質量%を超えると、導電率の低下が顕著になって、50%IACS超えの導電率が得られなくなることから、Si含有量は0.7質量%以下にする必要がある。このため、Si含有量は0.1~0.7質量%の範囲とする。なお、引張強度と導電率の両特性をバランスよく満足させるには、Si含有量は、0.2~0.5質量%の範囲であることが好ましい。
<Si: 0.1 to 0.7 mass%>
Si (silicon) finely precipitates in the Cu mother phase (matrix) as precipitates of second-phase particles composed of a compound together with Co, Cr, etc., and these precipitates suppress dislocation movement to cause precipitation hardening. Further, it is an important component having an action of suppressing grain growth and increasing the material strength by refining the crystal grains. In order to exert such an effect, the Si content needs to be 0.1% by mass or more. Further, when the Si content exceeds 0.7 mass %, the conductivity is remarkably lowered and the conductivity exceeding 50% IACS cannot be obtained. Therefore, the Si content is 0.7 mass% or less. There is a need to. Therefore, the Si content is set to the range of 0.1 to 0.7 mass %. The Si content is preferably in the range of 0.2 to 0.5 mass% in order to satisfy both properties of tensile strength and conductivity in a well-balanced manner.
<任意添加成分>
 本発明の銅合金板材は、CoおよびSiを必須の基本含有成分とするが、さらに、任意の副添加成分として、さらにCrを0.05~1.0質量%、Niを0.05~0.7質量%、Feを0.02~0.5質量%、Mgを0.01~0.3質量%、Mnを0.01~0.5質量%、Znを0.01~0.15質量%およびZrを0.01~0.15質量%からなる群から選択される少なくとも1種の任意添加成分を含有することができる。
<Optional additive components>
The copper alloy sheet material of the present invention contains Co and Si as essential essential contained components, and further contains 0.05 to 1.0 mass% of Cr and 0.05 to 0% of Ni as optional sub-additive components. 0.7 mass%, Fe 0.02 to 0.5 mass%, Mg 0.01 to 0.3 mass%, Mn 0.01 to 0.5 mass%, Zn 0.01 to 0.15 It may contain at least one optional additive component selected from the group consisting of mass% and Zr of 0.01 to 0.15 mass %.
(Cr:0.05~1.0質量%)
 Cr(クロム)は、Cuの母相(マトリクス)中に、化合物や単体として、例えば50~500nm程度の大きさの析出物の形で微細析出し、この析出物が転位移動を抑制することにより析出硬化させ、さらに、粒成長が抑制されて結晶粒の微細化によって材料強度を上昇させるとともに、曲げ加工性をも向上させる作用を有する成分である。この作用を発揮するには、Cr含有量を0.05質量%以上とすることが好ましい。また、Cr含有量が1.0質量%以下であれば、導電率の低下割合が小さく、50%IACS超えの導電率が得られる傾向がある。このため、Cr含有量は、0.05~1.0質量%とすることが好ましい。
(Cr: 0.05 to 1.0 mass%)
Cr (chromium) is finely precipitated as a compound or a simple substance in the matrix of Cu as a compound or a simple substance in the form of a precipitate having a size of, for example, about 50 to 500 nm, and this precipitate suppresses dislocation movement. It is a component that has the effect of precipitation hardening and further increasing the material strength by suppressing grain growth and refining the crystal grains, and also improving bendability. In order to exert this effect, the Cr content is preferably 0.05% by mass or more. Further, when the Cr content is 1.0% by mass or less, the rate of decrease in conductivity is small and the conductivity over 50% IACS tends to be obtained. Therefore, the Cr content is preferably 0.05 to 1.0% by mass.
(Ni:0.05~0.7質量%)
 Ni(ニッケル)は、Cuの母相(マトリクス)中に、化合物や単体として、例えば50~500nm程度の大きさの析出物の形で微細析出し、この析出物が転位移動を抑制することにより析出硬化させ、さらに、粒成長が抑制されて結晶粒の微細化によって材料強度を上昇させるとともに、曲げ加工性も向上させる作用を有する成分である。この作用を発揮するには、Ni含有量を0.05質量%以上とすることが好ましい。また、Ni含有量が0.7質量%以下であれば、導電率の低下割合が小さく、50%IACS超えの導電率が得られる傾向がある。このため、Ni含有量は、0.05~0.7質量%とすることが好ましい。
(Ni: 0.05 to 0.7 mass%)
Ni (nickel) is finely precipitated as a compound or simple substance in the matrix of Cu (matrix) in the form of a precipitate having a size of, for example, about 50 to 500 nm, and this precipitate suppresses dislocation movement. It is a component which has effects of precipitation hardening, further suppressing grain growth, increasing the material strength by refining the crystal grains, and improving bending workability. To exert this effect, the Ni content is preferably 0.05% by mass or more. Further, when the Ni content is 0.7% by mass or less, the rate of decrease in conductivity is small, and a conductivity over 50% IACS tends to be obtained. Therefore, the Ni content is preferably 0.05 to 0.7 mass %.
(Fe:0.02~0.5質量%)
 Fe(鉄)は、導電率、強度、応力緩和特性、めっき性等の製品特性を改善する作用を有する成分である。かかる作用を発揮させるには、Fe含有量を0.02質量%以上とすることが好ましい。また、Fe含有量を0.5質量%よりも多くすると、それ以上の向上効果が期待できないばかりか、導電率が低下する傾向がある。このため、Fe含有量は、0.02~0.5質量%とすることが好ましい。
(Fe: 0.02 to 0.5 mass%)
Fe (iron) is a component having an effect of improving product characteristics such as conductivity, strength, stress relaxation characteristics, and plating properties. In order to exert such an effect, the Fe content is preferably 0.02 mass% or more. Further, if the Fe content is more than 0.5% by mass, not only the improvement effect cannot be expected, but also the conductivity tends to decrease. Therefore, the Fe content is preferably 0.02 to 0.5 mass %.
(Mg:0.01~0.3質量%)
 Mg(マグネシウム)は、耐応力緩和特性を向上させる作用を有する成分である。かかる作用を発揮させるには、Mg含有量を0.01質量%以上とすることが好ましい。また、Mg含有量を0.3質量%よりも多くすると、導電性が低下する傾向がある。このため、Mg含有量は、0.01~0.3質量%とすることが好ましい。
(Mg: 0.01 to 0.3 mass%)
Mg (magnesium) is a component having an action of improving stress relaxation resistance. In order to exert such an effect, the Mg content is preferably 0.01% by mass or more. If the Mg content is more than 0.3% by mass, the conductivity tends to decrease. Therefore, the Mg content is preferably 0.01 to 0.3 mass %.
(Mn:0.01~0.5質量%)
 Mn(マンガン)は、母相に固溶して圧延加工性を向上させると共に、粒界反応型析出の急激な発達を抑制し、粒界反応型析出によって生じる不連続性析出セル組織の制御を可能にする作用を有する成分である。かかる作用を発揮させるには、Mn含有量を0.01質量%以上とすることが好ましい。また、Mn含有量を0.5質量%よりも多くすると、それ以上の向上効果が期待できないばかりか、導電率の低下や曲げ加工性の劣化が生じるおそれがある。このため、Mn含有量は0.01~0.5質量%とすることが好ましい。
(Mn: 0.01 to 0.5 mass%)
Mn (manganese) forms a solid solution in the parent phase to improve the rolling workability, suppresses the rapid development of grain boundary reaction type precipitation, and controls the discontinuous precipitation cell structure generated by grain boundary reaction type precipitation. It is a component that has an enabling effect. In order to exert such an effect, the Mn content is preferably 0.01% by mass or more. Further, if the Mn content is more than 0.5% by mass, not only the improvement effect cannot be expected, but also the conductivity may decrease and the bendability may deteriorate. Therefore, the Mn content is preferably 0.01 to 0.5 mass %.
(Zn:0.01~0.15質量%)
 Zn(亜鉛)は、曲げ加工性を改善するとともに、Snめっきやはんだめっきの密着性やマイグレーション特性を改善する作用を有する成分である。かかる作用を発揮させるには、Zn含有量を0.01質量%以上とすることが好ましい。また、Zn含有量を0.15質量%よりも多くすると、導電性が低下する傾向がある。このため、Zn含有量は、0.01~0.15質量%とすることが好ましい。
(Zn: 0.01 to 0.15 mass%)
Zn (zinc) is a component that has an effect of improving bending workability and improving adhesion and migration characteristics of Sn plating and solder plating. In order to exert such an effect, the Zn content is preferably 0.01% by mass or more. Further, if the Zn content is more than 0.15 mass %, the conductivity tends to decrease. Therefore, the Zn content is preferably 0.01 to 0.15 mass %.
(Zr:0.01~0.15質量%)
 Zr(ジルコニウム)は、主に結晶粒を微細化させて、強度や曲げ加工性を向上させる作用を有する成分である。かかる作用を発揮させるには、Zr含有量を0.01質量以上とすることが好ましい。また、Zr含有量を0.15質量%よりも多くすると、化合物を形成し、導電率およびプレス打ち抜き加工性が著しく低下する傾向がある。このため、Zr含有量は、0.01~0.15質量%とすることが好ましい。
(Zr: 0.01 to 0.15 mass%)
Zr (zirconium) is a component mainly having a function of refining crystal grains to improve strength and bending workability. In order to exert such an effect, the Zr content is preferably 0.01 mass or more. Further, if the Zr content is more than 0.15 mass %, a compound is formed, and the conductivity and the press punching workability tend to be remarkably lowered. Therefore, the Zr content is preferably 0.01 to 0.15% by mass.
(任意添加成分の合計含有量:1.5質量%以下)
 上述したCr、Ni、Fe、Mg、Mn、ZnおよびZrからなる群から選択される任意添加成分を2種以上含有する場合には、任意添加成分の合計含有量を1.5質量%以下とすることが好ましい。任意添加成分の合計含有量が1.5質量%以下であれば、プレス打ち抜き加工性や導電率が大きく低下することはないからである。
(Total content of optional additives: 1.5 mass% or less)
When two or more optional additive components selected from the group consisting of Cr, Ni, Fe, Mg, Mn, Zn and Zr described above are contained, the total content of the optional additive components should be 1.5% by mass or less. Preferably. This is because, if the total content of the optional additional components is 1.5% by mass or less, the press punching workability and the conductivity will not be significantly reduced.
<残部:Cuおよび不可避不純物>
 上述した必須含有成分および任意添加成分以外は、残部がCu(銅)および不可避不純物からなる。なお、ここでいう「不可避不純物」とは、おおむね金属製品において、原料中に存在するものや、製造工程において不可避的に混入するもので、本来は不要なものであるが、微量であり、金属製品の特性に影響を及ぼさないため許容されている不純物である。不可避不純物として挙げられる成分としては、例えば、銀(Ag)、スズ(Sn)、酸素(O)等が挙げられる。なお、これらの成分含有量の上限は、上記成分毎に0.05質量%、上記成分の総量で0.20質量%とすればよい。
<Remainder: Cu and inevitable impurities>
In addition to the above essential components and optional additives, the balance consists of Cu (copper) and unavoidable impurities. The term "unavoidable impurities" as used herein refers generally to metal products, which are present in the raw materials and are inevitably mixed in the manufacturing process. It is an allowable impurity because it does not affect the product characteristics. Examples of the components that can be cited as the inevitable impurities include silver (Ag), tin (Sn), oxygen (O), and the like. The upper limit of the content of these components may be 0.05 mass% for each of the above components, and 0.20 mass% for the total amount of the above components.
(II)EBSD法の信頼性指数CI
 本発明の銅合金板材は、銅合金板材の圧延方向に平行な縦断面に対し、電子後方散乱回折(EBSD)法によって行なった結晶方位解析は、信頼性指数(CI値)が0.2以下である測定スポット領域の、全測定スポット領域に占める面積率が40%以下であり、かつ、前記縦断面を、板材の両表面をそれぞれ含む1対の表層部と、該1対の表層部に挟まれて位置する中央部とに区分し、前記1対の表層部の前記信頼性指数(CI値)の平均値をCIとし、前記中央部の前記信頼性指数(CI値)の平均値をCIとするとき、CIに対するCIの比(CI/CI)が、0.8以上2.0以下である。
(II) Reliability index CI of the EBSD method
The copper alloy sheet of the present invention has a reliability index (CI value) of 0.2 or less in the crystal orientation analysis performed by the electron backscattering diffraction (EBSD) method on the longitudinal section parallel to the rolling direction of the copper alloy sheet. The area ratio of the measurement spot area occupying in all the measurement spot areas is 40% or less, and the longitudinal section is formed into a pair of surface layer portions including both surfaces of the plate material and a pair of surface layer portions. was divided into a central portion positioned pinched, the average value of the reliability index (CI value) of the surface layer portion of the pair and CI S, the average value of the reliability index (CI value) of the central portion when to the CI C, the ratio of the CI S for CI C (CI S / CI C ) is 0.8 to 2.0.
 本発明者は、Cu-Ni-Si系合金よりも高い導電率を有するCu-Co-Si系合金を用い、優れた曲げ加工性と高強度を高いレベルで両立させるための検討を行なったところ、圧延された板材、特に板材の表層部において導入される歪みが大きいほど、曲げ加工性が悪化することが判明した。 The present inventor has conducted a study to make excellent bending workability and high strength compatible with each other at a high level by using a Cu—Co—Si alloy having higher conductivity than the Cu—Ni—Si alloy. It was found that the bending workability deteriorates as the strain introduced into the rolled plate material, particularly the surface layer portion of the plate material, increases.
 また、この板材に導入される歪みの大小を評価できる手法についてさらに鋭意検討を行なったところ、銅合金板材の圧延方向に平行な縦断面に対し、電子後方散乱回折(EBSD)法によって行なった結晶方位解析にて、各測定スポット領域における信頼性指数CIを算出し、信頼性指数(CI値)が0.2以下である測定スポット領域の、全測定スポット領域に占める面積率が40%以下である場合に、比較的歪みの少ない圧延組織が維持されており、曲げ加工性が悪化せずに確保できる傾向があることを見出した。しかしながら、前記面積率が40%以下であっても、高いレベルの曲げ加工性が得られていない場合もあった。 Further, when a method for evaluating the magnitude of strain introduced into this plate material was further studied, a crystal obtained by electron backscattering diffraction (EBSD) was applied to a longitudinal section parallel to the rolling direction of the copper alloy plate material. In the azimuth analysis, the reliability index CI in each measurement spot area is calculated, and the area ratio of the measurement spot area having a reliability index (CI value) of 0.2 or less in all the measurement spot areas is 40% or less. In some cases, it has been found that a rolling structure having a relatively small strain is maintained, and bending workability tends to be ensured without deterioration. However, even when the area ratio is 40% or less, a high level of bending workability may not be obtained in some cases.
 そのため、本発明者は、さらに鋭意検討を行なったところ、前記縦断面における、表層部の信頼性指数(CI値)の平均値CIの、中央部の信頼性指数(CI値)の平均値CIに対するCIの比(CI/CI比)を0.8以上2.0以下とすることによって、優れた曲げ加工性と高強度を高いレベルで両立させることを可能にした。前記CI/CI比が0.8よりも小さいと、板材の表層部が中央部(内部)に比べて表面歪みが大きくなりすぎるため、板材の引張強度に対する曲げ加工性の割合が低くなって、引張強度と曲げ加工性をバランスよく両立させることができなくなるからである。また、前記CI/CI比が2.0よりも大きいと、板材の引張強度に対する曲げ加工性の割合は高くなるものの、板材の中央部(内部)の歪みの分布の偏りが大きくなって、プレス加工時における形状のばらつきが発生する可能性が高まるからである。このため、CI/CI比は、0.8以上2.0以下とし、好ましくは、1.0~1.8とする。 Therefore, the present inventor has further conducted intensive was conducted study, in the vertical section, the average CI S reliability index of the surface layer portion (CI value), the average value of the reliability index of the central portion (CI value) by the ratio of CI S a (CI S / CI C ratio) of 0.8 to 2.0 for CI C, it made it possible to achieve both excellent bending property and high strength at a high level. When the CI S / CI C ratio is less than 0.8, the surface distortion surface layer of the sheet material is compared to the central portion (inside) is too large, the proportion of bending workability for tensile strength of the plate becomes lower Therefore, it becomes impossible to achieve a good balance between tensile strength and bending workability. Also, the when the CI S / CI C ratio is greater than 2.0, although the bending ratio of workability is increased relative to the tensile strength of the plate material, uneven distribution of strain in the center portion of the plate (inside) is increased This is because there is a high possibility that variations in shape will occur during press working. Therefore, CI S / CI C ratio of 0.8 to 2.0, preferably 1.0 to 1.8.
 なお、信頼性指数(CI値)の算出方法は、電子後方散乱回折(EBSD)法によって測定した結晶方位を、解析ソフトを用いて、各測定スポット領域(スポットサイズ:0.5μm×0.5μm)のCI値を計算した。銅合金板材の圧延方向に平行な縦断面、換言すれば、銅合金板材の圧延方向に対して垂直な断面は、EBSD法による測定前に、耐水研磨紙、ダイヤモンド砥粒を用いて機械研磨を行った後、コロイダルシリカ溶液を用いて仕上げ研磨を行った。そして、EBSD法により、測定面積64×10μm(800μm×800μm)、スキャンステップは0.1μmの条件で測定を行った。スキャンステップは微細な結晶粒を測定するため、0.1μmステップで行った。解析では、64×10μmのEBSD測定結果から、解析にて逆極点図IPF(Inverse Pole Figure)を確認した。電子線は、走査電子顕微鏡のWフィラメントからの熱電子を発生源とした。なお、測定時のプローブ径は、約0.015μmである。EBSD法の測定装置には、(株)TSLソリューションズ製 OIM5.0(商品名)を用いた。 The calculation method of the reliability index (CI value) is as follows. The crystal orientation measured by the electron backscatter diffraction (EBSD) method is used for each measurement spot area (spot size: 0.5 μm×0.5 μm) by using analysis software. ) Was calculated. A longitudinal section parallel to the rolling direction of the copper alloy sheet, in other words, a section perpendicular to the rolling direction of the copper alloy sheet, is mechanically polished with water-resistant abrasive paper and diamond abrasive before measurement by the EBSD method. After that, finish polishing was performed using a colloidal silica solution. Then, the measurement was performed by the EBSD method under the conditions of a measurement area of 64×10 4 μm 2 (800 μm×800 μm) and a scan step of 0.1 μm. The scan step was performed in 0.1 μm steps in order to measure fine crystal grains. In the analysis, an inverse pole figure IPF (Inverse Pole Figure) was confirmed by the analysis based on the EBSD measurement result of 64×10 4 μm 2 . The electron beam was generated by thermoelectrons from the W filament of the scanning electron microscope. The probe diameter at the time of measurement is about 0.015 μm. As the measuring device for the EBSD method, OIM5.0 (trade name) manufactured by TSL Solutions Co., Ltd. was used.
 図1は、本発明の銅合金板材10を、圧延方向に平行な縦断面にて、EBSD法によって結晶方位解析(マッピング)を行ない、信頼性指数(CI値)を求める方法を説明するための模式図である。各測定スポット領域は、図1に示すように、圧延方向に平行な縦断面にて、一方の表層部11aから中央部12を通って他方の表層部11bまで電子線を走査させ、走査した全測定スポット領域に対して、信頼性指数(CI値)が0.2以下である測定スポット領域が占める面積率を算出した。 FIG. 1 illustrates a method for obtaining a reliability index (CI value) by performing crystal orientation analysis (mapping) by the EBSD method on a copper alloy sheet material 10 of the present invention in a longitudinal section parallel to the rolling direction. It is a schematic diagram. As shown in FIG. 1, each measurement spot region is scanned in the longitudinal direction parallel to the rolling direction with an electron beam from one surface layer portion 11a through the central portion 12 to the other surface layer portion 11b, and all the scanning spots are scanned. The area ratio occupied by the measurement spot region having a reliability index (CI value) of 0.2 or less was calculated with respect to the measurement spot region.
 また、本発明でいう、板材の表層部11aおよび11bは、板材両面からそれぞれ板厚の1/8厚さに相当する板材部分を意味し、また、中央部12は、1対の表層部11aおよび11bの挟まれた板材部分を意味する。 Further, the surface layer portions 11a and 11b of the plate material in the present invention mean plate material portions corresponding to ⅛ of the plate thickness respectively from both sides of the plate material, and the central portion 12 is a pair of surface layer portions 11a. And 11b means a sandwiched plate material portion.
 さらに、板材の表層部の信頼性指数(CI値)の平均値CIと、板材の中央部の信頼性指数(CI値)の平均値CIの算出方法は、板材の厚さ方向(図1の上下方向)に対して板材の縦断面上を所定間隔(例えば20μm間隔)で走査する10本の線を引き、それぞれの線上のCI値の分布から、板材の表層部と中央部のそれぞれの信頼性指数(CI値)の平均値を求めた。測定には各条材について、10視野の測定を行い、その平均値を値として用いた。このEBSD法の信頼性指数(CI値)は、EBSD装置の解析ソフトOIM Analysisにて測定される値であって、評価・解析した結果の結晶パターンが良好ではない、すなわち加工組織であり、加工に伴う歪みが大きいほど、CI値は低下する。 Further, the average value CI S reliability index of the surface layer portion of the plate member (CI value), method of calculating the average value CI C reliability index of the central portion of the plate member (CI value), the thickness direction (FIG plate material 10 vertical lines) are drawn on the longitudinal section of the plate material at predetermined intervals (for example, 20 μm intervals), and from the distribution of the CI value on each line, the surface layer portion and the central portion of the plate material are respectively extracted. The average value of the reliability index (CI value) was calculated. For the measurement, 10 fields of view were measured for each strip, and the average value was used as the value. The reliability index (CI value) of this EBSD method is a value measured by the analysis software OIM Analysis of the EBSD device, and the crystal pattern of the evaluation/analysis result is not good, that is, the processed structure is The greater the distortion associated with, the lower the CI value.
(III)引張強度
 本発明では、圧延方向と平行に引っ張ったときの引張強度が600MPa以上であることが好ましい。引張強度の測定は、圧延平行方向から切り出したJIS Z2241:2011に規定されている13B号の3本の試験片で行い、引張強度は、3本の試験片から得られた引張強度の平均値とした。
(III) Tensile Strength In the present invention, the tensile strength when pulled in parallel with the rolling direction is preferably 600 MPa or more. The measurement of the tensile strength was performed on three test pieces of No. 13B specified in JIS Z2241:2011 cut out from the rolling parallel direction, and the tensile strength was an average value of the tensile strengths obtained from the three test pieces. And
(IV)導電率(EC)
 本発明の銅合金板材は、導電率が50%IACS超えであることが好ましい。導電率は、20℃(±0.5℃)に保たれた恒温槽中で四端子法により計測した比抵抗の数値から算出することができる。
(IV) Conductivity (EC)
The copper alloy sheet material of the present invention preferably has a conductivity of more than 50% IACS. The electrical conductivity can be calculated from the numerical value of the specific resistance measured by the four-terminal method in a constant temperature bath kept at 20°C (±0.5°C).
(V)二乗平均平方根粗さRq
 本発明の銅合金板材は、日本伸銅協会(JCBA)T307:2007に準拠するW曲げ試験をGoodway方向にr/t=0で行った後の、曲げ加工部の屈曲外面における二乗平均平方根粗さRqが7.0μm以下であることが好ましい。前記二乗平均平方根粗さRqが7.0μm以下であれば、曲げ加工部の屈曲外面の表面粗さが十分に小さく、曲げ加工性が良好である傾向があるからである。各供試材に対して日本伸銅協会技術標準JCBA-T307:2007の試験方法に準拠して曲げ加工を行った。圧延方向と試験片の長手方向が平行になるように、各供試材から幅10mm×長さ30mmの試験片を複数採取し、曲げ角度が90度、曲げ半径が0mmのW型の治具を用い、W曲げ試験を行った。そして、曲げ部の外周部に対して、90°W曲げ試験片の曲げ表面をレーザー顕微鏡にて0.1μmピッチにて凹凸を測定した。二乗平均平方根粗さRqは、JIS B0601:2013に準拠し、下記の(2)式に代入することによって算出する。曲げ部の表面粗さが小さいということは、材料の曲げ加工性が良好であることを示している。
(V) root mean square roughness Rq
The copper alloy sheet material of the present invention has a root mean square roughness on the bending outer surface of the bending portion after a W bending test according to the Japan Copper and Brass Association (JCBA) T307:2007 in the Goodway direction at r/t=0. It is preferable that the thickness Rq is 7.0 μm or less. This is because when the root mean square roughness Rq is 7.0 μm or less, the surface roughness of the bending outer surface of the bending portion is sufficiently small, and the bending workability tends to be good. Each test material was bent according to the test method of Japan Copper and Brass Association technical standard JCBA-T307:2007. A plurality of test pieces with a width of 10 mm and a length of 30 mm were sampled from each test material so that the rolling direction and the longitudinal direction of the test pieces were parallel, and a W-shaped jig with a bending angle of 90 degrees and a bending radius of 0 mm. Was used to perform a W bending test. Then, with respect to the outer peripheral portion of the bent portion, unevenness of the bent surface of the 90°W bending test piece was measured with a laser microscope at a pitch of 0.1 μm. The root mean square roughness Rq is calculated in accordance with JIS B0601:2013 by substituting it into the following equation (2). The small surface roughness of the bent portion indicates that the bending workability of the material is good.
Figure JPOXMLDOC01-appb-M000001
 ただし、lは基準長さである。
Figure JPOXMLDOC01-appb-M000001
However, 1 is a reference length.
(VI)本発明の一実施例による銅合金板材の製造方法
 上述した銅合金板材は、合金組成や製造プロセスを組み合わせて制御することにより、実現できる。以下、本発明の銅合金板材の好適な製造方法について説明する。
(VI) Method of Manufacturing Copper Alloy Sheet Material According to One Embodiment of the Present Invention The copper alloy sheet material described above can be realized by controlling the alloy composition and the manufacturing process in combination. Hereinafter, a suitable method for producing the copper alloy sheet of the present invention will be described.
 このような本発明の一実施例による銅合金板材の製造方法は、上述した銅合金板材の前記合金組成と実質的に同じ合金組成を有する銅合金素材に、鋳造工程[工程1]、第1面削工程[工程2]、均質化熱処理工程[工程3]、熱間圧延工程[工程4]、水冷工程[工程5]、第2面削工程[工程6]、第1冷間圧延工程[工程7]、溶体化熱処理工程[工程8]、時効熱処理工程[工程9]、第2冷間圧延工程[工程10]および焼鈍工程[工程11]を順次行ない、前記均質化熱処理工程[工程3]における昇温速度を10~110℃/秒および保持温度を950~1250℃とし、前記冷却工程[工程5]における板材の表層部での冷却開始温度を680~850℃および平均冷却速度を5~20℃/秒とし、前記時効熱処理工程[工程9]における到達温度を450~650℃および保持時間を500~20000秒とし、そして、前記第2冷間圧延工程[工程10]は、1パスあたりの加工率が10%以上40%以下であり、かつ、圧延ロール径をR、加工量をΔhおよび最終板厚をhとするとき、パラメータMは、下記の(1)式で表され、6以上40以下である。
    M={(R・Δh)0.5}/h ・・・・(1)
In the method for manufacturing a copper alloy sheet according to the embodiment of the present invention, a copper alloy material having substantially the same alloy composition as the above-described alloy composition of the copper alloy sheet is cast in the step [step 1], Chamfering step [step 2], homogenizing heat treatment step [step 3], hot rolling step [step 4], water cooling step [step 5], second chamfering step [step 6], first cold rolling step [ Step 7], solution heat treatment step [step 8], aging heat treatment step [step 9], second cold rolling step [step 10] and annealing step [step 11] are sequentially performed, and the homogenization heat treatment step [step 3 ], the holding temperature is 950 to 1250° C., the cooling start temperature in the surface layer part of the plate material in the cooling step [step 5] is 680 to 850° C., and the average cooling rate is 5 To 20° C./sec, the temperature reached in the aging heat treatment step [step 9] is 450 to 650° C., the holding time is 500 to 20000 seconds, and the second cold rolling step [step 10] is 1 pass. When the processing rate per unit is 10% or more and 40% or less, and the rolling roll diameter is R, the processing amount is Δh, and the final plate thickness is h, the parameter M is represented by the following formula (1), It is 6 or more and 40 or less.
M={(R·Δh) 0.5 }/h ··· (1)
 本発明の銅合金板材の製造方法は、特に、均質化熱処理工程[工程3]および時効熱処理工程[工程9]を制御するとともに、(熱間圧延工程[工程4]後の)冷却工程[工程5]および第2(最終)冷間圧延工程[工程10]を制御することが重要である。すなわち、均質化熱処理工程[工程3]における昇温速度を10~110℃/秒および保持温度を950~1250℃とし、また、熱間圧延工程[工程4]後に行なう冷却工程[工程5]における板材の表層部での冷却開始温度を680~850℃および平均冷却速度を5~20℃/秒とし、さらに時効熱処理工程[工程9]における到達温度を450~650℃および保持時間を500~20000秒とし、そして、第2(最終)冷間圧延工程[工程10]において、1パスあたりの加工率を10%以上40%以下とし、かつ、M={(R・Δh)0.5}/hで表されるパラメータMを6以上40以下とすることが必要である。 In the method for producing a copper alloy sheet according to the present invention, in particular, the homogenizing heat treatment step [step 3] and the aging heat treatment step [step 9] are controlled, and the cooling step [after the hot rolling step [step 4]] is performed. 5] and controlling the second (final) cold rolling step [step 10]. That is, in the homogenizing heat treatment step [step 3], the temperature rising rate is 10 to 110° C./sec and the holding temperature is 950 to 1250° C., and in the cooling step [step 5] performed after the hot rolling step [step 4]. The cooling start temperature in the surface layer part of the plate material is 680 to 850° C., the average cooling rate is 5 to 20° C./sec, and the ultimate temperature in the aging heat treatment step [step 9] is 450 to 650° C. and the holding time is 500 to 20,000. Second, and in the second (final) cold rolling step [Step 10], the working rate per pass is 10% or more and 40% or less, and M={(R·Δh) 0.5 }/ It is necessary to set the parameter M represented by h to 6 or more and 40 or less.
(i)鋳造工程[工程1]
 鋳造工程は、大気下で高周波溶解炉により表1に示す合金成分を有する銅合金素材を溶解し、これを鋳造することによって所定形状(例えば厚さ300mm、幅500mm、長さ3000mm)の鋳塊を製造する。なお、銅合金素材の合金組成は、製造の各工程において、添加成分によっては溶解炉に付着したり揮発したりして製造される銅合金板材の合金組成とは必ずしも完全には一致しない場合があるが、銅合金板材の合金組成と実質的に同じ合金組成を有している。
(I) Casting process [Process 1]
In the casting step, a copper alloy material having the alloy components shown in Table 1 is melted in a high-frequency melting furnace in the air, and the ingot is cast into a predetermined shape (for example, thickness 300 mm, width 500 mm, length 3000 mm). To manufacture. The alloy composition of the copper alloy material may not always completely match the alloy composition of the copper alloy sheet material produced by adhering to the melting furnace or volatilizing depending on the additive components in each step of production. However, it has an alloy composition substantially the same as that of the copper alloy sheet.
(ii)第1面削工程[工程2]
 第1面削工程は、銅合金素材を溶解する鋳造工程(工程1)で得た鋳塊の表面に形成した酸化膜を除去するため、鋳塊の表裏の両面をそれぞれ0.5mm以上の厚さ分だけ削り取る工程である。
(Ii) First surface cutting step [Step 2]
The first chamfering step removes the oxide film formed on the surface of the ingot obtained in the casting step (step 1) in which the copper alloy material is melted, so that both sides of the ingot have a thickness of 0.5 mm or more. It is a process of scraping off just that much.
(iii)均質化熱処理工程[工程3]
 均質化熱処理工程は、昇温速度を10~110℃/秒および保持温度を950~1250℃とする。均質化熱処理工程の昇温速度が10℃/秒未満もしくは110℃/秒超えであるか、または保持温度が950℃未満だと、鋳造時に生じる晶出物の固溶が不十分となり、製造された銅合金板材において、満足レベルの強度と導電率が得られなくなる。一方、均質化熱処理工程の保持温度が1250℃超えだと、結晶粒界近傍が部分的に液相化し、熱間圧延時の割れが発生しやすくなって、製造できない場合があるからである。
(Iii) Homogenization heat treatment step [Step 3]
In the homogenizing heat treatment step, the temperature rising rate is 10 to 110° C./sec and the holding temperature is 950 to 1250° C. If the temperature rising rate in the homogenizing heat treatment step is less than 10°C/sec or more than 110°C/sec or the holding temperature is less than 950°C, the solid solution of the crystallized product produced during casting becomes insufficient, and the product is produced. In addition, it becomes impossible to obtain a satisfactory level of strength and conductivity in the copper alloy sheet material. On the other hand, if the holding temperature in the homogenizing heat treatment step exceeds 1250° C., the vicinity of the crystal grain boundaries is partially in the liquid phase, cracks are likely to occur during hot rolling, and production may not be possible in some cases.
(iv)熱間圧延工程[工程4]
 熱間圧延工程は、均質化熱処理の直後の鋳塊に対して、所定の厚さになるまで熱間圧延を施して熱延板を作製する工程である。熱間圧延条件は、例えば、圧延温度は600~1100℃、圧延回数は4回以上、合計圧延加工率は60%以上であることが好ましい。なおここでいう「圧延加工率」とは、圧延前の断面積から圧延後の断面積を引いた値を圧延前の断面積で除して100を乗じ、パーセントで表した値である。すなわち、下記式で表される。
 [圧延加工率]={([圧延前の断面積]-[圧延後の断面積])/[圧延前の断面積]}×100(%)
(Iv) Hot rolling process [Process 4]
The hot rolling step is a step in which the ingot immediately after the homogenizing heat treatment is hot rolled to a predetermined thickness to produce a hot rolled sheet. The hot rolling conditions are, for example, preferably a rolling temperature of 600 to 1100° C., a rolling frequency of 4 or more, and a total rolling rate of 60% or more. The term "rolling rate" as used herein means a value obtained by dividing the value obtained by subtracting the cross-sectional area after rolling from the cross-sectional area before rolling by the cross-sectional area before rolling and multiplying by 100 to express it as a percentage. That is, it is represented by the following formula.
[Rolling rate]={([Cross sectional area before rolling]−[Cross sectional area after rolling])/[Cross sectional area before rolling]}×100(%)
(v)冷却工程[工程5]
 冷却工程は、また、熱間圧延工程(工程4)後に行なうものであって、冷却工程における板材(熱延板)の表層部(板材の表面から板厚の1/8厚さに相当する板材部分)での冷却開始温度を680~850℃および平均冷却速度を5~20℃/秒とすることが必要である。冷却開始温度が680℃未満もしくは平均冷却速度が5℃/秒未満だと、冷却中に溶質元素の粗大析出が進み、製造された銅合金板材において、満足レベルの強度と導電率が得られなくからである。一方、冷却開始温度が850℃超えもしくは平均冷却速度が20℃/秒超えだと、圧延組織の形成が不十分となり、最終工程後の曲げ加工性に悪影響を及ぼす。加えて、平均冷却速度が20℃/秒超えだと、表面の析出が少なすぎて、溶体化工程にて表面の結晶粒粗大化が進行し、歪みを蓄積しやすくなり、目標とするCI値の分布を満たさず、曲げ加工性が低下する。
(V) Cooling process [Process 5]
The cooling step is also performed after the hot rolling step (step 4), and is a surface layer portion (a plate material corresponding to 1/8 of the plate thickness from the surface of the plate material) of the plate material (hot rolled plate) in the cooling step. It is necessary to set the cooling start temperature in (part) to 680 to 850°C and the average cooling rate to 5 to 20°C/sec. If the cooling start temperature is lower than 680° C. or the average cooling rate is lower than 5° C./sec, coarse precipitation of solute elements will proceed during cooling, and the copper alloy sheet produced will not have satisfactory strength and electrical conductivity. Because. On the other hand, if the cooling start temperature exceeds 850° C. or the average cooling rate exceeds 20° C./sec, the formation of the rolling structure becomes insufficient, which adversely affects the bendability after the final step. In addition, if the average cooling rate exceeds 20° C./sec, the precipitation of the surface is too small, the crystal grain coarsening of the surface progresses in the solution treatment step, and strain easily accumulates, and the target CI value is obtained. Is not satisfied, and bending workability deteriorates.
(vi)第2面削工程[工程6]
 第2面削工程は、熱延材の表面の酸化膜の除去のため、熱延材の表裏の両面をそれぞれ0.5mm以上の厚さ分だけ削り取る工程である。
(Vi) Second chamfering process [process 6]
The second chamfering step is a step of scraping both the front and back surfaces of the hot rolled material by a thickness of 0.5 mm or more in order to remove the oxide film on the surface of the hot rolled material.
(vii)第1冷間圧延工程[工程7]
 第1冷間圧延工程は、第2面削工程後に、所定の厚さになるまで冷間圧延を施して冷延板を作製する工程である。冷間圧延条件は、例えば、圧延回数2回以上、合計圧延加工率50%以上とすることが好ましい。
(Vii) First cold rolling step [Step 7]
The first cold rolling step is a step of producing a cold rolled sheet by performing cold rolling until a predetermined thickness is obtained after the second chamfering step. It is preferable that the cold rolling condition is, for example, two or more rolling cycles and a total rolling work rate of 50% or more.
(viii)溶体化熱処理工程[工程8]
 溶体化熱処理工程は、昇温速度1~150℃/秒、到達温度800~1000℃、保持時間1~300秒、冷却速度1~200℃/秒にて熱処理を施す工程である。
(Viii) Solution heat treatment step [Step 8]
The solution heat treatment step is a step of performing heat treatment at a temperature rising rate of 1 to 150° C./second, an ultimate temperature of 800 to 1000° C., a holding time of 1 to 300 seconds, and a cooling rate of 1 to 200° C./second.
(ix)追加の冷間圧延工程[工程12]
 追加の冷間圧延工程は、前記溶体化熱処理工程[工程8]の後、時効熱処理工程[工程9]の前に、必要に応じて行なう工程であって、必須の工程ではない。追加の冷間圧延工程を行なうことによって、曲げ加工性を損なわずに引張強度をより一層向上させることができる。圧延条件は、例えば、圧延回数1回以上、合計圧延加工率10~70%とすることが好ましい。
(Ix) Additional cold rolling process [Process 12]
The additional cold rolling step is a step that is optionally performed after the solution heat treatment step [step 8] and before the aging heat treatment step [step 9], and is not an essential step. By performing the additional cold rolling step, the tensile strength can be further improved without impairing the bending workability. It is preferable that the rolling conditions are, for example, one or more rolling cycles and a total rolling rate of 10 to 70%.
(x)時効熱処理工程[工程9]
 時効熱処理工程は、到達温度を450~650℃および保持時間を500~20000秒とすることが必要である。到達温度が450℃未満もしくは保持時間が500秒未満の場合、時効析出量が不十分で強度、導電率が不足する。一方、到達温度が650℃超えもしくは20000秒超えだと、析出物の粗大化が生じて、強度が不十分となる。
(X) Aging heat treatment process [Process 9]
In the aging heat treatment step, it is necessary that the ultimate temperature is 450 to 650° C. and the holding time is 500 to 20,000 seconds. When the ultimate temperature is less than 450° C. or the holding time is less than 500 seconds, the amount of aging precipitation is insufficient and the strength and conductivity are insufficient. On the other hand, if the reached temperature exceeds 650° C. or exceeds 20,000 seconds, coarsening of precipitates occurs and the strength becomes insufficient.
(xi)第2(最終)冷間圧延工程[工程10]
 第2(最終)冷間圧延工程は、1パスあたりの圧延加工率を10%以上40%以下とし、かつ、M={(R・Δh)0.5}/hで表されるパラメータMを6以上40以下とすることが必要である。1パスあたりの圧延加工率が10%未満だと、加工硬化量が少なく十分な引張強さが得られず、また、1パスあたりの圧延加工率が40%超えだと、板材全体に大きなせん断歪みが入り曲げ加工性が低下するからである。また、パラメータMが6未満であると、表面に歪みが蓄積して目標のCI値分布を満たさないからであり、一方、パラメータMが40を超えると、圧延設備への負荷が極めて大きくなり現実的ではないからである。第2冷間圧延条件としては、例えば、圧延回数2回以上、合計圧延加工率が10%以上とすることが好ましい。パラメータMは、RやΔhが小さくなり、あるいはhが大きくなるほど小さくなる。特にCI値への顕著な影響として、Rが小さくなることで、材料とロールの接触長が減少し、表面近傍のみがせん断されることで、歪量が相対的に高くなり、内部まで均一な歪状態にならないためCI/CIが低くなる傾向がある。一方、パラメータMは、RやΔhが大きくなり、あるいはhが小さくなるほど大きくなる。特にCI値への顕著な影響として、Δh、すなわち加工量が多くなるとCI値が0.2以下となる面積率が低下し、加工性が低下する傾向がある。したがって、圧延ロール径R、加工量Δhおよび最終板厚hを適正に設定することにより、CI値、CI/CI、さらには強度と曲げ加工性を制御することが可能となる。
(Xi) Second (final) cold rolling step [Step 10]
In the second (final) cold rolling step, the rolling rate per pass is set to 10% or more and 40% or less, and the parameter M represented by M={(R·Δh) 0.5 }/h is set. It is necessary to be 6 or more and 40 or less. If the rolling rate per pass is less than 10%, the amount of work hardening is small and sufficient tensile strength cannot be obtained, and if the rolling rate per pass exceeds 40%, a large shearing force is applied to the entire plate material. This is because distortion occurs and bending workability deteriorates. Also, if the parameter M is less than 6, strain accumulates on the surface and the target CI value distribution is not satisfied. On the other hand, if the parameter M exceeds 40, the load on the rolling equipment becomes extremely large, and Because it is not the target. As the second cold rolling condition, for example, it is preferable that the number of times of rolling is 2 or more and the total rolling rate is 10% or more. The parameter M becomes smaller as R and Δh become smaller or h becomes larger. In particular, as a significant effect on the CI value, when R becomes small, the contact length between the material and the roll is reduced, and only the vicinity of the surface is sheared, so that the strain amount becomes relatively high and the inside is uniform. CI S / CI C for not distorted state tends to be low. On the other hand, the parameter M increases as R or Δh increases or h decreases. In particular, as a significant effect on the CI value, Δh, that is, when the processing amount increases, the area ratio at which the CI value becomes 0.2 or less decreases, and the workability tends to decrease. Therefore, the rolling roll diameter R, by properly setting the etching amount Δh and final thickness h, CI value, CI S / CI C, more it is possible to control the strength and bending workability.
(xii)焼鈍工程[工程11]
 焼鈍工程は、第2(最終)冷間圧延工程後に行なう熱処理である。焼鈍条件としては、例えば、到達温度200~600℃、保持時間1~3600秒とすることが好ましい。
(Xii) Annealing process [Process 11]
The annealing step is a heat treatment performed after the second (final) cold rolling step. The annealing conditions are preferably, for example, an ultimate temperature of 200 to 600° C. and a holding time of 1 to 3600 seconds.
(VII)銅合金板材の用途
 本発明の銅合金板材は、例えば車載部品用や電気・電子機器用のリードフレーム、コネクタ、端子材、リレー、スイッチ、ソケットなどに用いるのに適している。
(VII) Uses of Copper Alloy Plate Material The copper alloy plate material of the present invention is suitable for use in, for example, lead frames, connectors, terminal materials, relays, switches, sockets for in-vehicle parts and electric/electronic devices.
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の概念および特許請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々に改変することができる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and includes all aspects included in the concept of the present invention and the scope of the claims, and various modifications within the scope of the present invention. Can be modified to
 次に、本発明の効果をさらに明確にするために、本発明例および比較例について説明するが、本発明はこれら実施例に限定されるものではない。 Next, in order to further clarify the effects of the present invention, examples of the present invention and comparative examples will be described, but the present invention is not limited to these examples.
 (本発明例1~16および比較例1~9)
 表1に示す合金組成を有する銅合金素材を溶解する鋳造工程(工程1)で得た鋳塊(サイズ:(厚さ300mm、幅500mm、長さ3000mm)の表面に形成した酸化膜を除去するために表裏の両面をそれぞれ0.5mm以上の厚さ分だけ削り取る第1面削工程(工程2)を行った後に、表2に示す昇温速度および保持温度の条件で均質化熱処理工程(工程3)を行い、次いで、圧延温度600~1100℃、圧延回数4回以上、合計加工率60%以上の条件下で熱間圧延工程(工程4)を行った後、表2に示す表層部での冷却開始温度および冷却速度の条件で冷却工程(工程5)を行った。次いで、表面の酸化膜の除去のため、熱延材の表裏の両面をそれぞれ0.5mm以上の厚さ分だけ削り取る第2面削工程(工程6)を行った後に、圧延回数2回以上、合計加工率50%以上の条件下で第1冷間圧延工程(工程7)を行い、その後、昇温速度1~150℃/秒、到達温度800~1000℃、保持時間1~300秒、冷却速度1~200℃/秒の条件で溶体化熱処理工程(工程8)を行う。次いで、表2に示す到達温度および保持時間の条件で時効熱処理工程(工程9)を行った後に、表2に示す1パス当たりの加工率およびパラメータMとなるように、圧延回数2回以上、合計加工率5%以上の条件下で第2冷間圧延工程(工程10)を行った。その後、到達温度200~600℃、保持時間1~3600秒にて焼鈍工程(工程11)を行った。なお、本発明例3、4、6~8および12ならびに比較例1、3、8および9については、溶体化熱処理工程の後、時効熱処理工程の前に、追加の冷間圧延工程(工程12)を合計圧延加工率5~70%でさらに行なった。このようにして、本発明の銅合金板材を作製した。
(Invention Examples 1 to 16 and Comparative Examples 1 to 9)
The oxide film formed on the surface of the ingot (size: (thickness 300 mm, width 500 mm, length 3000 mm)) obtained in the casting step (step 1) for melting the copper alloy material having the alloy composition shown in Table 1 is removed. For this purpose, after performing the first surface-polishing step (step 2) in which both the front and back surfaces are each cut by a thickness of 0.5 mm or more, the homogenization heat-treatment step (step 3) and then the hot rolling step (step 4) under the conditions of a rolling temperature of 600 to 1100° C., a rolling number of 4 times or more, and a total working rate of 60% or more. The cooling step (step 5) was performed under the conditions of the cooling start temperature and the cooling rate, and then both front and back surfaces of the hot rolled material were shaved by a thickness of 0.5 mm or more in order to remove the oxide film on the surface. After performing the second chamfering step (step 6), the first cold rolling step (step 7) is performed under the condition that the number of rolling times is 2 times or more and the total working rate is 50% or more, and then the temperature rising rate is 1 to The solution heat treatment step (step 8) is performed under the conditions of 150° C./second, ultimate temperature of 800 to 1000° C., holding time of 1 to 300 seconds, and cooling rate of 1 to 200° C./second. After performing the aging heat treatment step (step 9) under the condition of the holding time, under the conditions of the rolling rate of 2 times or more and the total working rate of 5% or more so that the processing rate per pass and the parameter M shown in Table 2 are obtained. The second cold rolling step (step 10) was performed at that temperature, and then the annealing step (step 11) was performed at an ultimate temperature of 200 to 600° C. and a holding time of 1 to 3600 seconds. , 6 to 8 and 12, and Comparative Examples 1, 3, 8 and 9, after the solution heat treatment step and before the aging heat treatment step, an additional cold rolling step (step 12) was performed at a total rolling work rate of 5 to It was further performed at 70% In this way, the copper alloy sheet material of the present invention was produced.
[各種測定および評価方法]
 上記本発明例および比較例に係る銅合金板材を用いて、下記に示す特性評価を行った。各特性の評価条件は下記の通りである。
[Various measurement and evaluation methods]
The following characteristic evaluations were performed using the copper alloy sheet materials according to the present invention example and the comparative example. The evaluation conditions for each characteristic are as follows.
[1]銅合金板材の組成の測定方法
 合金組成は、ICP分析により測定した。
[1] Method for measuring composition of copper alloy sheet material The alloy composition was measured by ICP analysis.
[2]EBSD測定方法
 作製した各供試材(銅合金板材)の圧延方向に平行な縦断面に対し、耐水研磨紙、ダイヤモンド砥粒を用いて機械研磨を行った後、コロイダルシリカ溶液を用いて仕上げ研磨を行った。そして、EBSD法により、測定面積64×10μm(800μm×800μm)、スキャンステップは0.1μmの条件で測定を行った。スキャンステップは微細な結晶粒を測定するため、0.1μmステップで行った。解析では、64×10μmのEBSD測定結果から、解析にて逆極点図 IPF(Inverse Pole Figure)を確認した。電子線は、走査電子顕微鏡のWフィラメントからの熱電子を発生源とした。なお、測定時のプローブ径は、約0.015μmである。EBSD法の測定装置には、(株)TSLソリューションズ製 OIM5.0(商品名)を用いた。
[2] EBSD measurement method After mechanically polishing a vertical section parallel to the rolling direction of each of the prepared test materials (copper alloy plate materials) with water-resistant abrasive paper and diamond abrasive grains, a colloidal silica solution is used. Finish polishing was performed. Then, the measurement was performed by the EBSD method under the conditions of a measurement area of 64×10 4 μm 2 (800 μm×800 μm) and a scan step of 0.1 μm. The scan step was performed in 0.1 μm steps in order to measure fine crystal grains. In the analysis, an inverse pole figure IPF (Inverse Pole Figure) was confirmed by the analysis from the EBSD measurement result of 64×10 4 μm 2 . The electron beam was generated by thermoelectrons from the W filament of the scanning electron microscope. The probe diameter at the time of measurement is about 0.015 μm. As the measuring device for the EBSD method, OIM5.0 (trade name) manufactured by TSL Solutions Co., Ltd. was used.
[3]信頼性指数CIの測定方法
 信頼性指数(CI値)が0.2以下である測定スポット領域の、全測定スポット領域に占める面積率は、図1に示すように、圧延方向に平行な縦断面にて、一方の表層部11aから中央部12を通って他方の表層部11bまで電子線を走査させ、走査した全測定スポット領域から算出した。また、供試材の表層部の信頼性指数(CI値)の平均値CIと、供試材の中央部の信頼性指数(CI値)の平均値CIの算出方法は、板材の厚さ方向(図1の上下方向)に対して板材の縦断面上を所定間隔(例えば20μm間隔)で走査する10本の線を引き、それぞれの線上のCI値の分布から、板材の表層部と中央部のそれぞれの信頼性指数(CI値)の平均値を求めた。測定には各条材について、10視野の測定を行い、その平均値を値として用いた。このEBSD法の信頼性指数(CI値)は、EBSD装置の解析ソフトOIM Analysisにて測定される値である。
[3] Method of measuring reliability index CI The area ratio of the measurement spot area having a reliability index (CI value) of 0.2 or less to the entire measurement spot area is parallel to the rolling direction as shown in FIG. In a vertical cross section, an electron beam was scanned from one surface layer portion 11a through the central portion 12 to the other surface layer portion 11b, and calculation was performed from all the scanned measurement spot regions. Further, the average value CI S reliability index of the surface layer portion of the sample material (CI value), method of calculating the average value CI C reliability index of the central portion of the test material (CI value), the sheet thickness Draw 10 lines that scan the vertical cross section of the plate at predetermined intervals (for example, 20 μm intervals) in the vertical direction (vertical direction in FIG. 1), and from the distribution of the CI value on each line, determine the surface layer of the plate. The average value of each reliability index (CI value) in the central part was obtained. For the measurement, 10 fields of view were measured for each strip, and the average value was used as the value. The reliability index (CI value) of the EBSD method is a value measured by the analysis software OIM Analysis of the EBSD device.
[4]引張強度
 引張強度の測定は、圧延平行方向から切り出したJIS Z2241:2011に規定されている13B号の3本の試験片で行い、引張強度は、3本の試験片から得られた引張強度の平均値とした。なお、本実施例では、引張強度が600MPa以上を合格レベルとした。
[4] Tensile Strength Tensile strength was measured with three test pieces of No. 13B specified in JIS Z2241:2011 cut out from the rolling parallel direction, and the tensile strength was obtained from the three test pieces. The average value of tensile strength was used. In this example, a tensile strength of 600 MPa or more was regarded as a pass level.
[5]導電率(EC)の測定方法
 導電率は、20℃(±0.5℃)に保たれた恒温槽中で四端子法により計測した比抵抗の数値から算出することができる。なお、端子間距離は100mmとした。本実施例では、導電率が50%IACS超えの場合を合格レベルとした。
[5] Method of measuring conductivity (EC) The conductivity can be calculated from the numerical value of the specific resistance measured by the four probe method in a constant temperature bath kept at 20°C (±0.5°C). The distance between the terminals was 100 mm. In the present embodiment, the case where the conductivity exceeds 50% IACS was regarded as the pass level.
[6]二乗平均平方根粗さRqの測定方法
 各供試材に対して、日本伸銅協会技術標準JCBA-T307:2007の試験方法に準拠して曲げ加工を行った。と試験片の長手方向が平行になるように、各供試材から幅10mm×長さ30mmの試験片を複数採取し、曲げ角度が90度、曲げ半径が0mmのW型の治具を用い、W曲げ試験を行った。そして、曲げ部の外周部に対して、90°W曲げ試験片の曲げ表面をレーザー顕微鏡にて0.1μmピッチにて凹凸を測定した。二乗平均平方根粗さRqは、JIS B0601:2013に準拠し、下記の(2)式に代入することによって算出した。なお、本実施例では、二乗平均平方根粗さRqが、7.0μm以下である場合を合格レベルとした。
[6] Method of Measuring Root Mean Square Roughness Rq Each of the test materials was bent according to the test method of Japan Copper and Brass Association Technical Standard JCBA-T307:2007. And 10 mm wide x 30 mm long test pieces were sampled from each test material so that the longitudinal direction of the test pieces and the longitudinal direction of the test pieces were parallel, and a W-shaped jig with a bending angle of 90 degrees and a bending radius of 0 mm was used. , W bending test was performed. Then, with respect to the outer peripheral portion of the bent portion, the unevenness of the bent surface of the 90°W bending test piece was measured with a laser microscope at a pitch of 0.1 μm. The root mean square roughness Rq was calculated according to JIS B0601:2013 by substituting it into the following equation (2). In this example, the case where the root mean square roughness Rq was 7.0 μm or less was regarded as the pass level.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1~3の結果から、本発明例1~16の銅合金板材はいずれも、合金組成が本発明の適正範囲内であり、信頼性指数(CI値)が0.2以下である測定スポット領域の、全測定スポット領域に占める面積率が40%以下であり、かつCI/CI比が0.8以上2.0以下であるため、引張強度と曲げ加工性のバランス性能が優れており、導電率も50%IACS超えであった。 From the results of Tables 1 to 3, all of the copper alloy sheet materials of Examples 1 to 16 of the present invention have an alloy composition within the appropriate range of the present invention and a measurement spot whose reliability index (CI value) is 0.2 or less. region, the area ratio to the total measurement spot area is not more than 40%, and CI for S / CI C ratio is 0.8 to 2.0, processability balance performance and tensile bending strength is superior And the conductivity was more than 50% IACS.
 一方、比較例1~9の銅合金板材はいずれも、合金組成、前記面積率およびCI/CI比の少なくとも1つが本発明の適正範囲外であるため、引張強度と曲げ加工性の少なくとも一方が合格レベルに達していなかった。 On the other hand, none of the copper alloy sheet of Comparative Example 1-9, the alloy composition, since at least one of the area ratio and CI S / CI C ratio is outside the appropriate range of the present invention, at least the bending workability and tensile strength One did not reach the passing level.
 10 銅合金板材
 11a、11b 銅合金板材の表層部
 12 銅合金板材の中央部
10 Copper alloy plate material 11a, 11b Surface layer part of copper alloy plate material 12 Central part of copper alloy plate material

Claims (6)

  1.  Coを0.3~2.5質量%およびSiを0.1~0.7質量%含有し、残部がCuおよび不可避不純物からなる合金組成を有する銅合金板材であって、
     該銅合金板材の圧延方向に平行な縦断面に対し、電子後方散乱回折(EBSD)法によって行なった結晶方位解析は、
     信頼性指数(CI値)が0.2以下である測定スポット領域の、全測定スポット領域に占める面積率が40%以下であり、かつ、
     前記縦断面を、板材の両表面をそれぞれ含む1対の表層部と、該1対の表層部に挟まれて位置する中央部とに区分し、前記1対の表層部の前記信頼性指数(CI値)の平均値をCIとし、前記中央部の前記信頼性指数(CI値)の平均値をCIとするとき、CIに対するCIの比(CI/CI比)が、0.8以上2.0以下であることを特徴とする銅合金板材。
    A copper alloy plate material containing 0.3 to 2.5% by mass of Co and 0.1 to 0.7% by mass of Si, with the balance being Cu and unavoidable impurities.
    A crystal orientation analysis performed by an electron backscattering diffraction (EBSD) method on a longitudinal section parallel to the rolling direction of the copper alloy sheet material is
    The area ratio of the measurement spot area having a reliability index (CI value) of 0.2 or less to all the measurement spot areas is 40% or less, and
    The vertical cross section is divided into a pair of surface layer portions each including both surfaces of the plate material and a central portion located between the pair of surface layer portions, and the reliability index of the pair of surface layer portions ( when the average value of the CI value) and CI S, the average value of the reliability index (CI value) of the central portion and CI C, the ratio of the CI S for CI C (CI S / CI C ratio), A copper alloy plate material, which is 0.8 or more and 2.0 or less.
  2.  Coを0.3~2.5質量%およびSiを0.1~0.7質量%含有し、さらにCrを0.05~1.0質量%、Niを0.05~0.7質量%、Feを0.02~0.5質量%、Mgを0.01~0.3質量%、Mnを0.01~0.5質量%、Znを0.01~0.15質量%およびZrを0.01~0.15質量%からなる群から選択される少なくとも1種の任意添加成分を含有し、残部がCuおよび不可避不純物からなる合金組成を有する銅合金板材であって、
     該銅合金板材の長手方向に平行な縦断面に対し、電子後方散乱回折(EBSD)法によって行なった結晶方位解析は、
     信頼性指数(CI値)が0.2以下である測定スポット領域の、全測定スポット領域に占める面積率が40%以下であり、かつ、
     前記縦断面を、板材の両表面をそれぞれ含む1対の表層部と、該1対の表層部に挟まれて位置する中央部とに区分し、前記1対の表層部の前記信頼性指数(CI値)の平均値をCIとし、前記中央部の前記信頼性指数(CI値)の平均値をCIとするとき、CIに対するCIの比(CI/CI比)が、0.8以上2.0以下であることを特徴とする銅合金板材。
    Contains 0.3 to 2.5% by mass of Co and 0.1 to 0.7% by mass of Si, further contains 0.05 to 1.0% by mass of Cr and 0.05 to 0.7% by mass of Ni. , Fe 0.02 to 0.5% by mass, Mg 0.01 to 0.3% by mass, Mn 0.01 to 0.5% by mass, Zn 0.01 to 0.15% by mass and Zr Is a copper alloy sheet containing at least one optional additive component selected from the group consisting of 0.01 to 0.15% by mass, the balance being Cu and unavoidable impurities.
    A crystal orientation analysis performed by an electron backscattering diffraction (EBSD) method on a longitudinal section parallel to the longitudinal direction of the copper alloy plate material is as follows.
    The area ratio of the measurement spot area having a reliability index (CI value) of 0.2 or less to all the measurement spot areas is 40% or less, and
    The vertical cross section is divided into a pair of surface layer portions each including both surfaces of the plate material and a central portion located between the pair of surface layer portions, and the reliability index of the pair of surface layer portions ( when the average value of the CI value) and CI S, the average value of the reliability index (CI value) of the central portion and CI C, the ratio of the CI S for CI C (CI S / CI C ratio), A copper alloy plate material, which is 0.8 or more and 2.0 or less.
  3.  前記任意添加成分は、合計で1.5質量%以下含有する、請求項2に記載の銅合金板材。 The copper alloy sheet material according to claim 2, wherein the total amount of the optional additive components is 1.5% by mass or less.
  4.  前記圧延方向と平行に引っ張ったときの引張強度が600MPa以上であり、
     導電率が50%IACS超えであり、かつ、
     日本伸銅協会(JCBA)T307:2007に準拠するW曲げ試験をGoodway方向にr/t=0で行った後の、曲げ加工部の屈曲外面における二乗平均平方根粗さRqが7.0μm以下である、請求項1~3のいずれか1項に記載の銅合金板材。
    The tensile strength when stretched parallel to the rolling direction is 600 MPa or more,
    Conductivity is above 50% IACS, and
    The root mean square roughness Rq of the bent outer surface of the bent portion was 7.0 μm or less after the W bending test according to the Japan Copper and Brass Association (JCBA) T307:2007 was performed at r/t=0 in the Goodway direction. The copper alloy sheet material according to any one of claims 1 to 3.
  5.  請求項1~4のいずれか1項に記載の銅合金板材を製造する方法であって、
     前記銅合金板材の前記合金組成と実質的に同じ合金組成を有する銅合金素材に、鋳造工程[工程1]、第1面削工程[工程2]、均質化熱処理工程[工程3]、熱間圧延工程[工程4]、冷却工程[工程5]、第2面削工程[工程6]、第1冷間圧延工程[工程7]、溶体化熱処理工程[工程8]、時効熱処理工程[工程9]、第2冷間圧延工程[工程10]および焼鈍工程[工程11]を順次行ない、
     前記均質化熱処理工程[工程3]における昇温速度を10~110℃/秒および保持温度を950~1250℃とし、
     前記冷却工程[工程5]における板材の表層部での冷却開始温度を680~850℃および平均冷却速度を5~20℃/秒とし、
     前記時効熱処理工程[工程9]における到達温度を450~650℃および保持時間を500~20000秒とし、そして、
     前記第2冷間圧延工程[工程10]は、1パスあたりの加工率が10%以上40%以下であり、かつ、圧延ロール径をR、加工量をΔhおよび最終板厚をhとするとき、パラメータMは、下記の(1)式で表され、6以上40以下であることを特徴とする銅合金板材の製造方法。
        M={(R・Δh)0.5}/h ・・・・(1)
    A method for manufacturing the copper alloy sheet according to any one of claims 1 to 4,
    A copper alloy material having an alloy composition that is substantially the same as the alloy composition of the copper alloy sheet material is added to a casting step [step 1], a first chamfering step [step 2], a homogenizing heat treatment step [step 3], and a hot work. Rolling process [process 4], cooling process [process 5], second chamfering process [process 6], first cold rolling process [process 7], solution heat treatment process [process 8], aging heat treatment process [process 9] ], the second cold rolling step [step 10] and the annealing step [step 11] are sequentially performed,
    In the homogenizing heat treatment step [step 3], the temperature rising rate is 10 to 110° C./sec and the holding temperature is 950 to 1250° C.
    In the cooling step [step 5], the cooling start temperature in the surface layer portion of the plate material is 680 to 850° C., and the average cooling rate is 5 to 20° C./sec.
    In the aging heat treatment step [step 9], the ultimate temperature is 450 to 650° C., the holding time is 500 to 20,000 seconds, and
    In the second cold rolling step [Step 10], when the working rate per pass is 10% or more and 40% or less, and the rolling roll diameter is R, the working amount is Δh, and the final plate thickness is h. The parameter M is represented by the following equation (1), and is 6 or more and 40 or less, the manufacturing method of the copper alloy sheet material.
    M={(R·Δh) 0.5 }/h ··· (1)
  6.  前記溶体化熱処理工程[工程8]の後、時効熱処理工程[工程9]の前に、追加の冷間圧延工程[工程12]をさらに行なう、請求項5に記載の銅合金板材の製造方法。 The method for producing a copper alloy sheet according to claim 5, further comprising an additional cold rolling step [step 12] after the solution heat treatment step [step 8] and before the aging heat treatment step [step 9].
PCT/JP2019/045713 2019-01-22 2019-11-21 Copper alloy plate material and method for manufacturing same WO2020152967A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217016901A KR20210117252A (en) 2019-01-22 2019-11-21 Copper alloy plate and its manufacturing method
CN201980080952.XA CN113166850B (en) 2019-01-22 2019-11-21 Copper alloy sheet and method for producing same
JP2020513364A JP6762453B1 (en) 2019-01-22 2019-11-21 Copper alloy plate material and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019008722 2019-01-22
JP2019-008722 2019-01-22

Publications (1)

Publication Number Publication Date
WO2020152967A1 true WO2020152967A1 (en) 2020-07-30

Family

ID=71736334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045713 WO2020152967A1 (en) 2019-01-22 2019-11-21 Copper alloy plate material and method for manufacturing same

Country Status (5)

Country Link
JP (1) JP6762453B1 (en)
KR (1) KR20210117252A (en)
CN (1) CN113166850B (en)
TW (1) TWI818122B (en)
WO (1) WO2020152967A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011219843A (en) * 2010-04-14 2011-11-04 Jx Nippon Mining & Metals Corp Cu-Si-Co ALLOY FOR ELECTRONIC MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP2012207264A (en) * 2011-03-29 2012-10-25 Jx Nippon Mining & Metals Corp Cu-Co-Si-BASED ALLOY HAVING EXCELLENT BENDING WORKABILITY
JP2015203141A (en) * 2014-04-15 2015-11-16 三菱電機株式会社 Cu-Co-Si ALLOY AND PRODUCTION METHOD THEREOF
JP2016060957A (en) * 2014-09-19 2016-04-25 Jx金属株式会社 Titanium copper for electronic component and manufacturing method therefor
WO2018198995A1 (en) * 2017-04-26 2018-11-01 古河電気工業株式会社 Copper alloy sheet and method for manufacturing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5534610B2 (en) 1974-03-13 1980-09-08
US4013867A (en) 1975-08-11 1977-03-22 Westinghouse Electric Corporation Polyphase arc heater system
WO2009148101A1 (en) * 2008-06-03 2009-12-10 古河電気工業株式会社 Copper alloy sheet material and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011219843A (en) * 2010-04-14 2011-11-04 Jx Nippon Mining & Metals Corp Cu-Si-Co ALLOY FOR ELECTRONIC MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP2012207264A (en) * 2011-03-29 2012-10-25 Jx Nippon Mining & Metals Corp Cu-Co-Si-BASED ALLOY HAVING EXCELLENT BENDING WORKABILITY
JP2015203141A (en) * 2014-04-15 2015-11-16 三菱電機株式会社 Cu-Co-Si ALLOY AND PRODUCTION METHOD THEREOF
JP2016060957A (en) * 2014-09-19 2016-04-25 Jx金属株式会社 Titanium copper for electronic component and manufacturing method therefor
WO2018198995A1 (en) * 2017-04-26 2018-11-01 古河電気工業株式会社 Copper alloy sheet and method for manufacturing same

Also Published As

Publication number Publication date
CN113166850B (en) 2022-09-06
TWI818122B (en) 2023-10-11
JP6762453B1 (en) 2020-09-30
TW202028487A (en) 2020-08-01
JPWO2020152967A1 (en) 2021-02-18
KR20210117252A (en) 2021-09-28
CN113166850A (en) 2021-07-23

Similar Documents

Publication Publication Date Title
JP4937815B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5170881B2 (en) Copper alloy material for electrical and electronic equipment and method for producing the same
JP4596493B2 (en) Cu-Ni-Si alloy used for conductive spring material
JP5224415B2 (en) Copper alloy material for electric and electronic parts and manufacturing method thereof
TWI447239B (en) Copper alloy sheet and method of manufacturing the same
JP5153949B1 (en) Cu-Zn-Sn-Ni-P alloy
JP4913902B2 (en) Method for producing copper alloy material for electric / electronic parts
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
JP5619389B2 (en) Copper alloy material
JP2012177197A (en) Copper alloy sheet material and method for producing the same
KR20120104548A (en) Copper alloy sheet
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
KR20190018661A (en) Copper alloy sheet and method for manufacturing copper alloy sheet
WO2017043577A1 (en) Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
KR101917416B1 (en) Copper-cobalt-silicon alloy for electrode material
KR101338710B1 (en) Ni-si-co copper alloy and manufacturing method therefor
JP6799933B2 (en) Manufacturing method of copper alloy plate and connector and copper alloy plate
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
WO2020152967A1 (en) Copper alloy plate material and method for manufacturing same
TW201714185A (en) Cu-Co-Ni-Si Alloy for Electronic Components
JP2021127491A (en) Copper alloy material and producing method thereof
JP7547056B2 (en) Copper alloy material and its manufacturing method
WO2023140314A1 (en) Copper alloy sheet material and method for manufacturing same
JP2021138998A (en) Copper alloy material and production method of the same
JP2015203141A (en) Cu-Co-Si ALLOY AND PRODUCTION METHOD THEREOF

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020513364

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911244

Country of ref document: EP

Kind code of ref document: A1