JPS6187838A - Copper alloy having superior hot workability - Google Patents
Copper alloy having superior hot workabilityInfo
- Publication number
- JPS6187838A JPS6187838A JP20875984A JP20875984A JPS6187838A JP S6187838 A JPS6187838 A JP S6187838A JP 20875984 A JP20875984 A JP 20875984A JP 20875984 A JP20875984 A JP 20875984A JP S6187838 A JPS6187838 A JP S6187838A
- Authority
- JP
- Japan
- Prior art keywords
- hot workability
- alloy
- copper alloy
- content
- hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Conductive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野1
本発明は熱間加工性の優れた銅合金に関し、さらに詳し
くは、熱間加工が難かしいとされているCu Co−
Si系合金、所謂、コルソン合金の熱間加工性を向上さ
せた銅合金に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a copper alloy with excellent hot workability, and more specifically, to a copper alloy having excellent hot workability.
This invention relates to a copper alloy that has improved hot workability over Si-based alloys, so-called Corson alloys.
[従来技術1
一般に、Cu−Co−Si系合金は以前から比較的導電
性が良好で、高強度、耐熱性を有するm合金として知ら
れている。しかし、熱間加工性が劣るということから実
用化が困難とされ、特に、薄板の製品化は着しく遅れて
いた。[Prior Art 1 Generally, Cu-Co-Si alloys have long been known as m-alloys that have relatively good electrical conductivity, high strength, and heat resistance. However, its poor hot workability made it difficult to put it into practical use, and the commercialization of thin sheets in particular was severely delayed.
[発明が解決しようとする問題点1
本発明は上記に説明したCuCo−Si系合金が、熱間
加工が難かしく実用化が遅れていることに鑑みなされた
ものであって、即ち、本発明者の鋭意研究の結果、この
種Cu−Co−8i系合金を熱間加工、焼入れ、冷間加
工、時効処理等の工程により加工することにより、条、
板、管、棒、線等の如何なる形状にも容易に量産ができ
るようになれば、多くの用途が拓けることを知見し、熱
間加工性の優れた錫合金を開発したのである。[Problem to be Solved by the Invention 1] The present invention was made in view of the fact that the CuCo-Si alloy described above is difficult to hot work and its practical application has been delayed. As a result of intensive research by researchers, we have found that by processing this type of Cu-Co-8i alloy through processes such as hot working, quenching, cold working, and aging treatment, it is possible to form strips,
He realized that if it could be easily mass-produced into any shape such as plates, tubes, rods, wires, etc., many uses would open up, and he developed a tin alloy with excellent hot workability.
[問題点をハ了決するだめの手段1
本発明に係る熱間加工性の優れた銅合金の1.!徴とす
るところは、
Co 0.4〜4.0w1%、Si O,1−1,0m
L%、Zn O,05−1,Owt%、Mg0.001
−0,01w1%、S 0.003u+1%以下
を含有し、かつ、
Cr O,001−0,01wt%、Ti O,001
−0,01u+L%、Zr 00001−0.01u+
L%
の中から選んh6種または2種以上を合計で0.001
〜0.01u+L%
を含有し、残部Cuおよび不可避不純物からなることに
ある。[Means to resolve the problem 1] 1 of the copper alloy with excellent hot workability according to the present invention. ! The characteristics are: Co 0.4-4.0w1%, SiO, 1-1.0m
L%, ZnO, 05-1, Owt%, Mg0.001
-0,01w1%, S 0.003u+1% or less, and CrO,001-0,01wt%, TiO,001
-0,01u+L%, Zr 00001-0.01u+
Select h6 types or 2 or more types from L% total 0.001
~0.01u+L%, with the remainder consisting of Cu and unavoidable impurities.
本発明に係る熱間加工性の優れた1F!合金について、
以下詳細に説明する。1F with excellent hot workability according to the present invention! Regarding alloys,
This will be explained in detail below.
先ず、本発明に係る熱間加工性の優れた銅合金の含有成
分および成分割合について説明する。First, the components and component ratios of the copper alloy with excellent hot workability according to the present invention will be explained.
Coは含有量が0.4u+L%未T:(iではSiが0
.1〜1、Ou+j%の範囲において含有されていても
、強度の向上は期待できず、また、4.Owj%を越え
て含有されると加工性が悪くなり、かつ、地合せ価格が
上昇する割には強度の向上は期待できない。よって、C
o含有量は0.4〜4.(lut%とする。Co content is 0.4u+L% unT:(i, Si is 0
.. Even if it is contained in the range of 1 to 1.0+j%, no improvement in strength can be expected, and 4. If the content exceeds Owj%, workability deteriorates, and no improvement in strength can be expected, although the forming price increases. Therefore, C
o content is 0.4 to 4. (Let it be lut%.
Siは含有量が0.1wt%未)1うではCoが0.4
〜4.0u+t%の範囲で含有されていても、強度の向
上は望むことができず、かつ、導電性を備えることがで
きず、また、1.Owt%を越えて含有されると加工性
が低下すると共に導電性およびはんだ付は性が低下する
。よって、Si含有量は0.1〜1,0w1%とする。Si content is less than 0.1 wt%) 1 Co is 0.4
Even if it is contained in the range of ~4.0u+t%, no improvement in strength can be expected, and conductivity cannot be achieved.1. If the content exceeds Owt%, processability will be reduced, as well as conductivity and soldering properties will be reduced. Therefore, the Si content is set to 0.1 to 1.0w1%.
Znは電子部品材料の錫めっき或いははんだ付けされて
1重用される際に、錫めっきやはんだの剥離を抑制する
のに必須の元素であり、含有量が0.05wt%未満で
は錫、はんだの剥離抑制効果が乏しく、また、1.O+
ut%を越えて含有されるとはんだ付は性そのものが劣
るようになる。よって、Zn含有量は0.05−1.0
wt%とする。Zn is an essential element for suppressing peeling of tin plating or solder when tin plating or soldering of electronic component materials is used. If the content is less than 0.05 wt%, tin and solder The peeling suppressing effect is poor, and 1. O+
If the content exceeds ut%, the soldering performance itself becomes poor. Therefore, the Zn content is 0.05-1.0
Let it be wt%.
M、は原料、炉材および雰囲気中の硫黄或いは硫黄化合
物から混入してくるSを安定したMgとの化合物の形で
合金中に固定し、熱間加工性を向上させるのに必須の元
素であり、含有量が0,001wt%未11うではSは
単体状態で存在するようになり、熱間加工に際しての加
熱中或いは熱間加工中に溶解して粒界を移動し、粒界割
れを生じ、また、0、Olu+L%を越えて含有される
と融点722’CのCu+MgCu□の共晶を生じ、最
適熱間加工温度の’a l> (、)〜900 ’Cに
加熱するのが不可能になる。M is an essential element that fixes S mixed in from raw materials, furnace materials, and sulfur or sulfur compounds in the atmosphere into the alloy in the form of a stable compound with Mg, improving hot workability. If the content is less than 0,001 wt%, S will exist as a simple substance, and it will dissolve during heating or during hot working and move through the grain boundaries, causing intergranular cracking. Also, if the content exceeds 0, Olu+L%, a eutectic of Cu+MgCu□ with a melting point of 722'C will be produced, and heating to the optimum hot working temperature of 'a l> (,) ~ 900'C will result. becomes impossible.
よって、Mg含有量は0.001〜0.01wt%とす
る。Therefore, the Mg content is set to 0.001 to 0.01 wt%.
なお、このh旬の代りにCaを0.001−0.O1u
+L%含有させても同様な効果が得られる。In addition, instead of this h season, Ca should be added at 0.001-0. O1u
A similar effect can be obtained even if +L% is included.
Sは原料、炉樋等の耐火材、燃料、大気等から混入し、
金属との化合物或いは阜独Sとして存在し、加熱割れ或
いは熱間加工割れを発生させる主原因となり、含有量が
帆003すt%を越えて含有されるとMgを0.011
ML%含有していてもMgとの化合物の形成は難しく、
単体Sが残留し、加熱だけでも5JJ塊の粒界割れが生
じ易くなる。そのため、原料規制、炉価の耐火物の管理
、溶角Ir雰囲気の管理が必要となる。従って、S含有
量は0,003u+t%以下としなければならない。S is mixed in from raw materials, refractory materials such as furnace gutters, fuel, the atmosphere, etc.
It exists as a compound with metal or as a metal, and is the main cause of heat cracking or hot working cracking, and if the content exceeds 0.03 t%, Mg
Even if it contains ML%, it is difficult to form a compound with Mg.
The elemental S remains, and even by heating alone, intergranular cracking of the 5JJ lump tends to occur. Therefore, it is necessary to control raw materials, control the furnace value of refractories, and control the molten Ir atmosphere. Therefore, the S content must be 0,003 u+t% or less.
Cr、TiおよびZrは何れも含有量は0.001〜0
:01wt%であり、これらの1種または2種以上の合
計で0.001〜O,O1u+t%とするのであり、そ
して、上記した必須成分か特定割合に含有されていても
、熱間加工時の割れは完全には防止できず、これらの元
素を含有させることによりへ〒決できるものであり、C
r、Ti、Zr含有量が0.001wt%未満では熱間
加工時の割れの抑制効果がなく、また、0.01wt%
を越えて含有されると熱間加工割れは発生しなくなるが
、溶湯が酸化し、健全な鋳肌のダj塊が得られなくなる
。よって、Cr含有量は0.001−0.Oht%、T
i含有量は0.001〜0.01ult%、Zr含有量
はo、oot〜0.0LlIL%とし、これらの2種以
上含有する場合にもCr、Ti、Zrの限定理由から合
計でも0.001−0.0but%とする。The content of Cr, Ti and Zr is 0.001 to 0.
:01 wt%, and the total of one or more of these is 0.001 to O, O1u+t%, and even if the above essential components are contained in a specific proportion, they will not be used during hot processing. C cracking cannot be completely prevented, but it can be prevented by including these elements.
If the r, Ti, and Zr contents are less than 0.001 wt%, there is no effect of suppressing cracking during hot working, and 0.01 wt%
If the content exceeds the above range, hot working cracks will not occur, but the molten metal will oxidize, making it impossible to obtain a lump with a healthy cast surface. Therefore, the Cr content is 0.001-0. Oht%, T
The i content is 0.001 to 0.01 ult%, and the Zr content is o,oot to 0.0LlIL%.Even if two or more of these are contained, the total is 0. 001-0.0but%.
また、本発明に係る熱間加工性の優れた1目合金におい
て、Mn%Fe5Ni或いはSnを1種または2種以上
を合計で0.2wt%まで含有させても熱間加工性およ
び製品における必要な緒特性、即ち、導電性、強度、耐
熱性、はんだ1・1け外、はんだの耐熱剥SIt性等は
実用上問題なく4[i持することができる。In addition, in the first alloy with excellent hot workability according to the present invention, even if one or more of Mn%Fe5Ni or Sn is contained up to a total of 0.2wt%, the hot workability and product requirements will be improved. The properties, ie, electrical conductivity, strength, heat resistance, solder resistance of 1.1, heat peeling resistance of solder, etc. can be maintained at 4[i] without any practical problems.
[実施例1
次に、本発明に係る熱間加工性の優れた銅合金の実施例
を説明する。[Example 1] Next, an example of a copper alloy having excellent hot workability according to the present invention will be described.
実施例
第1表に示す含有成分および成分割合の銅合金を、クリ
プトル炉において大気中で木炭被覆下に溶解し、厚さ0
0+nmX幅61)mmX長さ180mmのSi3塊作
成した。Example A copper alloy having the components and proportions shown in Table 1 was melted under a charcoal coating in the atmosphere in a Kryptor furnace to form a charcoal coating with a thickness of 0.
A Si3 lump of 0+nm x width 61) mm x length 180 mm was prepared.
次に、各鋳塊を切断し、厚3 G 111111のA
S T M E8の高温引張試験片、1!7さ5 mm
Xl1’i+120 +n+oX長さ180mmの中温
下での脱化特性評価用の試験片および厚さ40mmX幅
50m…×長さ180開の熱間圧延性の評価用の試験片
を作成した。Next, each ingot was cut into A with a thickness of 3 G 111111.
High temperature tensile test piece of STM E8, 1!7 length 5 mm
Xl1'i+120 +n+oX A test piece with a length of 180 mm for evaluating deoxidization characteristics at medium temperature and a test piece with a thickness of 40 mm x width of 50 m x length of 180 mm for evaluating hot rollability were prepared.
高温引張試験の温度は880°C1引張速度20mm/
minとした。The temperature of the high temperature tensile test was 880°C1 tensile speed 20mm/
It was set to min.
脆化特性の評価試験は三点曲げ方法で20に8f/mm
2の応力を付加し、真空炉中で600℃の温度に1時間
保持し、室温で内側曲げ半径30mmで90°曲げをし
、割れ発生の有無を調査した。The evaluation test for embrittlement characteristics was conducted using a three-point bending method at 20 to 8 f/mm.
A stress of 2 was applied, the temperature was maintained at 600° C. for 1 hour in a vacuum furnace, and the sample was bent at 90° with an inner bending radius of 30 mm at room temperature, and the presence or absence of cracking was investigated.
熱間圧延試験はその開始温度を880°Cとし、1パス
毎の圧下率は大略20%とし、4パスで厚¥15n+m
に仕上げ、割れ発生状況を調べた。In the hot rolling test, the starting temperature was 880°C, the reduction rate for each pass was approximately 20%, and the thickness was ¥15n+m in 4 passes.
The condition of crack occurrence was investigated.
ただし、圧延終了温度は650“C1ジ、−Lとした。However, the rolling end temperature was 650"C1di,-L.
この結果、本発明に係る熱間加工性の優れた銅合金は、
鋳塊の加熱時の昇温途中の一番脆化し易い領域に属する
温度600°Cで、室温で20kgf/mm2の応力を
付加した状態で1時間保持されても割れを生じることが
ないことがわかる。As a result, the copper alloy with excellent hot workability according to the present invention has
At a temperature of 600°C, which is the region most likely to become brittle during heating of an ingot, no cracks will occur even if the ingot is held at room temperature for 1 hour with a stress of 20 kgf/mm2 applied. Recognize.
また、880“Cの温度において高温引張試験および熱
間圧延試験を行なった場合にも、何れも異常な破断およ
び割れを生じることがないことも明らかである。It is also clear that no abnormal fractures or cracks occur even when a high temperature tensile test and a hot rolling test are conducted at a temperature of 880"C.
この本発明に係る熱間加工性の優れた銅合金に対して、
比較合金は880℃の高温引張試験において全べてにお
いて粒界割れが発生しており、熱間圧延試験においても
耳割れが発生していることが明らかである。Regarding the copper alloy with excellent hot workability according to the present invention,
In all of the comparative alloys, intergranular cracking occurred in the high-temperature tensile test at 880° C., and it is clear that edge cracking also occurred in the hot rolling test.
[発明の効果1
以上説明したように、本発明に係る熱間加工性の優れた
銅合金は上記の(,5成を有しているものであるから、
高温において優れた熱間加工性を示しており、板、条、
管、棒および線に加工することが可能となり、半導体リ
ードフレーム、抵抗器リード、コンデンサーリード、端
子、コネクター、制御は器等の開閉器部品、スイッチ部
品、モーター回転子等の電子部品および鋼電磁撹什鋳造
用モールド、鋳物鋳造用金型等の広い用途に適用するこ
とができるという効果を有する。[Effect of the invention 1 As explained above, the copper alloy with excellent hot workability according to the present invention has the above-mentioned (, 5 components,
It shows excellent hot workability at high temperatures and can be used to form plates, strips,
It is now possible to process into tubes, rods, and wires, including semiconductor lead frames, resistor leads, capacitor leads, terminals, connectors, switch parts such as control devices, switch parts, electronic parts such as motor rotors, and steel electromagnetic parts. It has the effect of being applicable to a wide range of applications such as stirrer casting molds and foundry casting molds.
Claims (1)
、Zn0.05〜1.0wt%、Mg0.001〜0.
01wt%、S0.003wt% を含有し、かつ、 Cr0.001〜0.01wt%、Ti0.001〜0
.01wt%、Zr0.001〜0.01wt% の中から選んだ1種または2種以上を合計で0.001
〜0.01wt% を含有し、残部Cuおよび不可避不純物からなることを
特徴とする熱間加工性の優れた銅合金。[Claims] Co0.4-4.0wt%, Si0.1-1.0wt%
, Zn0.05-1.0wt%, Mg0.001-0.
01wt%, S0.003wt%, and Cr0.001~0.01wt%, Ti0.001~0
.. 0.01wt%, one or more selected from Zr0.001~0.01wt% for a total of 0.001wt%
A copper alloy with excellent hot workability, characterized in that it contains Cu and unavoidable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20875984A JPS6187838A (en) | 1984-10-03 | 1984-10-03 | Copper alloy having superior hot workability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20875984A JPS6187838A (en) | 1984-10-03 | 1984-10-03 | Copper alloy having superior hot workability |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6187838A true JPS6187838A (en) | 1986-05-06 |
Family
ID=16561609
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20875984A Pending JPS6187838A (en) | 1984-10-03 | 1984-10-03 | Copper alloy having superior hot workability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6187838A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009096546A1 (en) | 2008-01-31 | 2009-08-06 | The Furukawa Electric Co., Ltd. | Copper alloy material for electric/electronic component and method for manufacturing the copper alloy material |
WO2010013790A1 (en) | 2008-07-31 | 2010-02-04 | 古河電気工業株式会社 | Copper alloy material for electrical and electronic components, and manufacturing method therefor |
WO2010016429A1 (en) | 2008-08-05 | 2010-02-11 | 古河電気工業株式会社 | Copper alloy material for electrical/electronic component |
WO2011068135A1 (en) * | 2009-12-02 | 2011-06-09 | 古河電気工業株式会社 | Copper alloy sheet and process for producing same |
CN103080347A (en) * | 2010-08-27 | 2013-05-01 | 古河电气工业株式会社 | Copper alloy sheet and method for producing same |
CN113881910A (en) * | 2021-10-28 | 2022-01-04 | 西北工业大学 | Method for regulating immiscible alloy structure by using strong magnetic field |
-
1984
- 1984-10-03 JP JP20875984A patent/JPS6187838A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009096546A1 (en) | 2008-01-31 | 2009-08-06 | The Furukawa Electric Co., Ltd. | Copper alloy material for electric/electronic component and method for manufacturing the copper alloy material |
WO2010013790A1 (en) | 2008-07-31 | 2010-02-04 | 古河電気工業株式会社 | Copper alloy material for electrical and electronic components, and manufacturing method therefor |
WO2010016429A1 (en) | 2008-08-05 | 2010-02-11 | 古河電気工業株式会社 | Copper alloy material for electrical/electronic component |
WO2011068135A1 (en) * | 2009-12-02 | 2011-06-09 | 古河電気工業株式会社 | Copper alloy sheet and process for producing same |
JP4885332B2 (en) * | 2009-12-02 | 2012-02-29 | 古河電気工業株式会社 | Copper alloy sheet and manufacturing method thereof |
CN103080347A (en) * | 2010-08-27 | 2013-05-01 | 古河电气工业株式会社 | Copper alloy sheet and method for producing same |
CN113881910A (en) * | 2021-10-28 | 2022-01-04 | 西北工业大学 | Method for regulating immiscible alloy structure by using strong magnetic field |
CN113881910B (en) * | 2021-10-28 | 2022-07-29 | 西北工业大学 | Method for regulating immiscible alloy structure by using strong magnetic field |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3797882B2 (en) | Copper alloy sheet with excellent bending workability | |
JP2000080428A (en) | Copper alloy sheet excellent in bendability | |
JP3800279B2 (en) | Copper alloy sheet with excellent press punchability | |
JP3800269B2 (en) | High strength copper alloy with excellent stamping workability and silver plating | |
JPS6158541B2 (en) | ||
JP2521880B2 (en) | Copper alloy for electronic and electrical equipment and its manufacturing method | |
JPS6187838A (en) | Copper alloy having superior hot workability | |
JPS59170231A (en) | High tension conductive copper alloy | |
JPH03111529A (en) | High-strength and heat-resistant spring copper alloy | |
JPS6256937B2 (en) | ||
JPS6215622B2 (en) | ||
JPH0242889B2 (en) | ||
JPS594493B2 (en) | Copper alloy for lead material of semiconductor equipment | |
JP2971238B2 (en) | High strength copper alloy excellent in hot workability and method for producing the same | |
JP3050763B2 (en) | Heat resistant automotive terminal materials | |
JPS5952941B2 (en) | Highly conductive heat-resistant Cu alloy | |
KR890001013B1 (en) | Method of producing copper alloy wire connector | |
JPS5952943B2 (en) | Cu alloy with high heat resistance and high conductivity | |
JPH0118978B2 (en) | ||
JPH1081927A (en) | Terminal-connector material made of cu alloy | |
JPS5948854B2 (en) | Cu alloy with high heat resistance and high conductivity | |
JPH0524217B2 (en) | ||
JPS6157379B2 (en) | ||
JPS60218442A (en) | Copper alloy for lead frame | |
JPS5821015B2 (en) | Conductive copper alloy |