JP6402043B2 - High strength copper alloy tube - Google Patents

High strength copper alloy tube Download PDF

Info

Publication number
JP6402043B2
JP6402043B2 JP2015024315A JP2015024315A JP6402043B2 JP 6402043 B2 JP6402043 B2 JP 6402043B2 JP 2015024315 A JP2015024315 A JP 2015024315A JP 2015024315 A JP2015024315 A JP 2015024315A JP 6402043 B2 JP6402043 B2 JP 6402043B2
Authority
JP
Japan
Prior art keywords
copper alloy
tube
grain boundary
mass
alloy tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015024315A
Other languages
Japanese (ja)
Other versions
JP2016148067A (en
Inventor
友己 田中
友己 田中
雅人 渡辺
雅人 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Kobelco and Materials Copper Tube Ltd
Original Assignee
Kobe Steel Ltd
Kobelco and Materials Copper Tube Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Kobelco and Materials Copper Tube Ltd filed Critical Kobe Steel Ltd
Priority to JP2015024315A priority Critical patent/JP6402043B2/en
Publication of JP2016148067A publication Critical patent/JP2016148067A/en
Application granted granted Critical
Publication of JP6402043B2 publication Critical patent/JP6402043B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conductive Materials (AREA)
  • Metal Extraction Processes (AREA)

Description

本発明は、空調機や給湯器等の熱交換器用伝熱管として用いられる銅合金管に関する。   The present invention relates to a copper alloy tube used as a heat transfer tube for a heat exchanger such as an air conditioner or a water heater.

一般に、熱交換器の熱媒体を流通させる伝熱管には、熱伝導性および加工性に優れる銅合金管が適用される。例えば空調機の熱交換器は、板状のアルミニウムフィンを多数重ねて、これに蛇行する銅合金管を貫通させた構造である。このような熱交換器を製造するためには、まず、銅合金管をヘアピン状に曲げ加工してU字形銅合金管とし、両端共にアルミニウムフィンに形成した貫通孔に通し、内側から治具により拡管してアルミニウムフィンの貫通孔の縁に形成されているフィンカラーに密着させる。アルミニウムフィンに貫通させた複数のU字形銅合金管は、端(開放端)を拡管して、別のU字形銅合金管(リターンベンド銅管)の端を挿入されることで互いに連結され、連結部をりん銅ろう(例えばJISZ3264、BCuP−2)等のろう材でろう付けされることにより接合される。   In general, a copper alloy tube excellent in heat conductivity and workability is applied to a heat transfer tube through which a heat medium of a heat exchanger flows. For example, a heat exchanger of an air conditioner has a structure in which a large number of plate-like aluminum fins are stacked and a copper alloy tube meandering is passed therethrough. In order to manufacture such a heat exchanger, first, a copper alloy tube is bent into a hairpin shape to form a U-shaped copper alloy tube, and both ends are passed through through holes formed in aluminum fins. The tube is expanded and brought into close contact with the fin collar formed at the edge of the through hole of the aluminum fin. A plurality of U-shaped copper alloy pipes penetrated by aluminum fins are connected to each other by expanding the end (open end) and inserting the end of another U-shaped copper alloy pipe (return bend copper pipe), The connecting portion is joined by brazing with a brazing material such as phosphor copper brazing (for example, JISZ3264, BCuP-2).

また、エコキュート(関西電力株式会社の登録商標)の愛称で知られる自然冷媒ヒートポンプ給湯機は、水を流通させる配管(水配管)に、冷媒とするCOを流通させるための銅合金管(CO冷媒管)を螺旋状に巻き付けた構造である。したがって、まず、銅合金管を螺旋状に加工してこれに水配管を通し、CO冷媒管が巻き付けられた状態の水配管をコの字型に加工した後、りん銅ろう等による炉中ろう付けで一括ろう付けすることにより、水配管とCO冷媒管とが密着される。さらに、水配管、CO冷媒管等を同じく銅合金管の機内配管を用いて、アキュームレーターおよびコンプレッサー等とろう付けすることにより接続して製造される。 In addition, a natural refrigerant heat pump water heater known by the nickname of Ecocute (registered trademark of Kansai Electric Power Co., Inc.) is a copper alloy pipe (CO) for circulating CO 2 as a refrigerant in a pipe (water pipe) through which water flows. 2 refrigerant pipes) are spirally wound. Accordingly, first, a copper alloy tube is processed into a spiral shape, a water pipe is passed through it, and the water pipe with the CO 2 refrigerant pipe wound is processed into a U-shape, and then in a furnace with a phosphor copper braze or the like. By brazing together by brazing, the water pipe and the CO 2 refrigerant pipe are brought into close contact with each other. Further, it is manufactured by connecting a water pipe, a CO 2 refrigerant pipe, and the like by brazing with an accumulator, a compressor, and the like using an in-machine pipe of a copper alloy pipe.

このように、熱交換器に用いられる銅合金管には、熱伝導性やろう付け性の他に、曲げ加工性が良好であることが要求される。一方、近年は、省資源化の観点から、銅合金管の薄肉化および長寿命化が求められ、これらの要求を満足するために、過酷な内圧に長期間耐え得る強度を有する銅合金管が求められている。   Thus, the copper alloy tube used in the heat exchanger is required to have good bending workability in addition to thermal conductivity and brazing. On the other hand, in recent years, from the viewpoint of resource saving, copper alloy pipes have been required to be thin and have a long life, and in order to satisfy these requirements, copper alloy pipes having a strength that can withstand severe internal pressure for a long period of time have been developed. It has been demanded.

例えば、特許文献1には、所定量のCo、P、SnおよびZnを含有し、残部がCuおよび不可避不純物からなり、Coの含有量[Co]とPの含有量[P]とSnの含有量[Sn]とZnの含有量[Zn]との間に2.4≦([Co]−0.02)/[P]≦5.2および0.20≦[Co]+0.5[P]+0.9[Sn]+0.1[Zn]≦0.54の関係を有する耐熱性銅合金材が記載されている。また、特許文献1には、前記耐熱性銅合金材が継目無銅合金管であることが記載されている。   For example, Patent Document 1 contains a predetermined amount of Co, P, Sn, and Zn, and the balance is made of Cu and inevitable impurities. The Co content [Co], the P content [P], and the Sn content Between the amount [Sn] and the Zn content [Zn] 2.4 ≦ ([Co] −0.02) / [P] ≦ 5.2 and 0.20 ≦ [Co] +0.5 [P ] A heat-resistant copper alloy material having a relationship of +0.9 [Sn] +0.1 [Zn] ≦ 0.54 is described. Patent Document 1 describes that the heat-resistant copper alloy material is a seamless copper alloy tube.

特許文献2には、所定量のCo、P、SnおよびOを含有し、残部がCuおよび不可避不純物からなり、Coの含有量[Co]とPの含有量[P]との間に2.9≦([Co]−0.007)/([P]−0.008)≦6.1の関係を有し、熱間押出を含む工程によって造られた高強度高導電銅合金管が記載されている。また、特許文献2には、高強度高導電銅合金管を透過型電子顕微鏡(TEM)で観察した際に、結晶粒内に微細な析出物が均一に分散し、その粒内析出物の平均粒径が1.5〜20nmであるか、または全ての粒内析出物の90%以上が30nm以下であることが記載されている。   Patent Document 2 contains a predetermined amount of Co, P, Sn, and O, the balance is made of Cu and inevitable impurities, and 2. between the Co content [Co] and the P content [P]. A high-strength, high-conductivity copper alloy tube having a relationship of 9 ≦ ([Co] −0.007) / ([P] −0.008) ≦ 6.1 and made by a process including hot extrusion is described. Has been. Patent Document 2 discloses that when a high-strength, high-conductivity copper alloy tube is observed with a transmission electron microscope (TEM), fine precipitates are uniformly dispersed in crystal grains, and the average of the intra-grain precipitates. It is described that the particle diameter is 1.5 to 20 nm, or 90% or more of all intragranular precipitates are 30 nm or less.

国際公開第2004/079026号International Publication No. 2004/079026 国際公開第2009/119222号International Publication No. 2009/119222

従来の銅合金管においては、成分組成および粒内析出物を制御することによって引張試験により得られる引張強度を大きくすることができる。しかしながら、従来の銅合金管においては、粒界析出物が制御されていないため、引張試験により得られる伸びは小さいものであった。そのため、薄肉化された銅合金管においては、ヘアピン状あるいは螺旋状に曲げ加工された際に割れ等が発生するという問題がある。
そこで、本発明は、このような問題を解決すべく創案されたもので、その課題は薄肉化された際にも、曲げ加工時に割れ等が発生しない、曲げ加工性に優れた高強度銅合金管を提供することにある。
In conventional copper alloy tubes, the tensile strength obtained by a tensile test can be increased by controlling the component composition and intragranular precipitates. However, in the conventional copper alloy pipe, since the grain boundary precipitates are not controlled, the elongation obtained by the tensile test was small. Therefore, the thinned copper alloy tube has a problem that cracking or the like occurs when it is bent into a hairpin shape or a spiral shape.
Therefore, the present invention was devised to solve such problems, and the problem is that even when the wall thickness is reduced, cracks and the like do not occur during bending, and the high-strength copper alloy has excellent bending workability. To provide a tube.

前記課題を解決するために、本発明に係る高強度銅合金管は、Co:0.05〜0.40質量%、P:0.02〜0.10質量%を含有し、残部がCuおよび不可避的不純物である銅合金からなる高強度銅合金管であって、管側面に平行な面での管厚中心部における粒界析出物の平均直径が150nm以下であり、前記粒界析出物の粒界長さあたりの平均個数が5000個/mm以下であることを特徴とする。   In order to solve the above problems, a high-strength copper alloy tube according to the present invention contains Co: 0.05 to 0.40 mass%, P: 0.02 to 0.10 mass%, with the balance being Cu and A high-strength copper alloy tube made of a copper alloy that is an unavoidable impurity, the average diameter of the grain boundary precipitates at the center of the tube thickness in a plane parallel to the side surface of the tube being 150 nm or less, The average number per grain boundary length is 5000 pieces / mm or less.

このように、本発明の高強度銅合金管は、CoおよびPを所定量含有し、かつ、粒界析出物の平均直径および粒界長さあたりの平均個数が所定量であることによって、高い引張強度を有する合金管であっても、伸びを維持することができる。それによって、本発明の高強度銅合金管は、その曲げ加工性が向上する。   Thus, the high-strength copper alloy tube of the present invention contains a predetermined amount of Co and P, and the average number of grain boundary precipitates and the average number per grain boundary length are high. Even an alloy tube having a tensile strength can maintain its elongation. Thereby, the bending workability of the high-strength copper alloy tube of the present invention is improved.

本発明に係る高強度銅合金管は、前記銅合金が、Ni:0.005〜0.100質量%、Zn:0.005〜1.000質量%およびSn:0.05〜1.00質量%の少なくとも1種をさらに含有することが好ましい。また、本発明に係る高強度銅合金管は、前記銅合金が、Fe、Mn、Mg、Cr、Ti、ZrおよびAgから選択された1種以上を合計で0.10質量%未満さらに含有することが好ましい。   In the high-strength copper alloy tube according to the present invention, the copper alloy contains Ni: 0.005 to 0.100 mass%, Zn: 0.005 to 1.000 mass%, and Sn: 0.05 to 1.00 mass%. It is preferable to further contain at least one of%. In the high-strength copper alloy tube according to the present invention, the copper alloy further contains one or more selected from Fe, Mn, Mg, Cr, Ti, Zr and Ag in total less than 0.10% by mass. It is preferable.

このように、本発明の高強度銅合金管は、前記銅合金がNi、ZnおよびSnのいずれか1種以上を所定量さらに含有すること、また、前記銅合金がFe、Mn、Mg、Cr、Ti、ZrおよびAgから選択された1種以上を合計で所定量さらに含有することによって、薄肉化された合金管であっても引張強度がさらに向上する。   Thus, in the high-strength copper alloy tube of the present invention, the copper alloy further contains a predetermined amount of any one or more of Ni, Zn and Sn, and the copper alloy is Fe, Mn, Mg, Cr. By further including a predetermined amount of one or more selected from Ti, Zr and Ag, the tensile strength is further improved even in the case of a thinned alloy tube.

本発明に係る高強度銅合金管によれば、薄肉化された際にも、曲げ加工時に割れ等が発生しない、曲げ加工性に優れたものとなる。   According to the high-strength copper alloy tube according to the present invention, even when it is thinned, it does not generate cracks during bending and has excellent bending workability.

透過型電子顕微鏡写真における粒界析出物を模式的に示す図である。It is a figure which shows typically the grain boundary precipitate in a transmission electron micrograph. 本発明に係る高強度銅合金管の製造方法の工程フローを示す図である。It is a figure which shows the process flow of the manufacturing method of the high intensity | strength copper alloy pipe | tube which concerns on this invention. 粒界析出物測定用の薄膜を作製する手順を模式的に示す図である。It is a figure which shows typically the procedure which produces the thin film for a grain boundary precipitate measurement.

本発明に係る高強度銅合金管(以下、銅合金管と称す)の実施形態について説明する。
本発明の銅合金管は、所定の成分組成である銅合金からなり、所定の合金組織を有する。
まず、本発明の銅合金管の成分組成について説明する。
第1の成分組成は、所定量のCoおよびPを含有し、残部はCuおよび不可避的不純物からなる。以下に、各成分の数値限定理由について説明する。
An embodiment of a high-strength copper alloy tube (hereinafter referred to as a copper alloy tube) according to the present invention will be described.
The copper alloy tube of the present invention is made of a copper alloy having a predetermined component composition and has a predetermined alloy structure.
First, the component composition of the copper alloy pipe of the present invention will be described.
The first component composition contains a predetermined amount of Co and P, and the balance consists of Cu and inevitable impurities. The reason for limiting the numerical values of each component will be described below.

(Co:0.05〜0.40質量%)
Coは、銅合金中でPとの化合物(適宜、Co−P化合物という)を生成し、結晶粒内および粒界に析出する。特に、結晶粒内に析出したCo−P化合物は、銅合金管の引張強度を大きくする作用を有する。また、Co−P化合物は、ろう付けのための熱処理において、結晶粒の粗大化を抑制するピンニング粒子として作用するため、熱処理による引張強度低下を抑制し、特に800℃以上の高温でのろう付け処理後の引張強度を確保する。
(Co: 0.05-0.40 mass%)
Co forms a compound with P (suitably referred to as a Co—P compound) in a copper alloy, and precipitates in crystal grains and in grain boundaries. In particular, the Co—P compound precipitated in the crystal grains has an effect of increasing the tensile strength of the copper alloy tube. In addition, the Co—P compound acts as pinning particles that suppress the coarsening of crystal grains in the heat treatment for brazing, and therefore suppresses the decrease in tensile strength due to the heat treatment, particularly brazing at a high temperature of 800 ° C. or higher. Ensure tensile strength after treatment.

これらの効果はCo−P化合物の粒内析出量が多いほど向上し、Coの含有量が0.05質量%未満では、粒内析出量が少なく、前記効果が十分に得られない。一方、Coの含有量が0.40質量%を超えると、Co−P化合物が結晶粒内、粒界に過剰に析出するため、引張強度が過大となったり、伸びが低下したりして曲げ加工性が不足したり、熱間押出等にて変形抵抗が過大となって割れを生じる虞がある。したがって、Coの含有量は0.05〜0.40質量%とする。また、Co含有量は、引張強度を改善する観点から0.15質量%以上が好ましく、伸び等の改善の観点から0.30質量%以下が好ましい。   These effects are improved as the amount of intra-granular precipitation of the Co—P compound increases. When the Co content is less than 0.05% by mass, the amount of intra-granular precipitation is small, and the above effect cannot be obtained sufficiently. On the other hand, if the Co content exceeds 0.40% by mass, the Co—P compound is excessively precipitated in the crystal grains and at the grain boundaries, so that the tensile strength becomes excessive or the elongation decreases and bending occurs. There is a possibility that the workability is insufficient or the deformation resistance becomes excessive due to hot extrusion or the like, resulting in cracks. Therefore, the Co content is 0.05 to 0.40 mass%. The Co content is preferably 0.15% by mass or more from the viewpoint of improving the tensile strength, and preferably 0.30% by mass or less from the viewpoint of improvement of elongation and the like.

(P:0.02〜0.10質量%)
Pは、一般に銅合金の脱酸のために添加される。また、Pは、銅合金中でCoとの化合物(Co−P化合物)を生成し、結晶粒内および粒界に析出し、前記の通り引張強度を向上させる効果を有する。Pの含有量が0.02質量%未満では、Co−P化合物の粒内析出量が少なく、前記効果が十分に得られない。また、脱酸が不十分となり、酸化物が鋳塊に巻き込まれ、鋳塊の健全性が低下すると共に、製造された管の曲げ加工性が低下する。一方、Pの含有量が0.10質量%を超えると、熱間加工や冷間加工において割れが生じる虞がある。したがって、Pの含有量は0.02〜0.10質量%とする。また、P含有量は、引張強度等を改善する観点から0.03質量%以上が好ましく、割れ防止の観点から0.07質量%以下が好ましい。
(P: 0.02-0.10 mass%)
P is generally added for deoxidation of copper alloys. Moreover, P produces | generates the compound (Co-P compound) with Co in a copper alloy, precipitates in a crystal grain and a grain boundary, and has the effect of improving tensile strength as above-mentioned. When the P content is less than 0.02 mass%, the amount of intra-grain precipitation of the Co—P compound is small, and the above effects cannot be obtained sufficiently. In addition, deoxidation becomes insufficient, oxide is caught in the ingot, the soundness of the ingot is lowered, and the bending workability of the manufactured pipe is lowered. On the other hand, if the content of P exceeds 0.10% by mass, cracks may occur in hot working or cold working. Therefore, the content of P is set to 0.02 to 0.10% by mass. The P content is preferably 0.03% by mass or more from the viewpoint of improving tensile strength and the like, and preferably 0.07% by mass or less from the viewpoint of preventing cracking.

(不可避的不純物)
不可避的不純物は、銅合金地金に不可避的に含有されるもので、銅合金管の諸特性を害さない程度に含有される。不可避的不純物は、S、As、Bi、Sb、Pb、Se、Te、O等である。その含有量は、S:0.005質量%以下、As、Bi、Sb、Pb、Se、Teの合計(総量)が0.0015質量%以下、O:0.003質量%以下であることが好ましい。また、溶解、鋳造時に溶湯に取り込まれるHも、その量が多くなると凝固時に固溶量が減少したHが鋳塊の粒界に析出し、多数のピンホールを形成し、熱間押出時に割れを発生させる虞がある。したがって、H含有量は0.0002質量%以下であることが好ましい。
(Inevitable impurities)
Inevitable impurities are inevitably contained in the copper alloy ingot and are contained to such an extent that they do not impair the various characteristics of the copper alloy tube. Inevitable impurities are S, As, Bi, Sb, Pb, Se, Te, O, and the like. The content is S: 0.005 mass% or less, the total (total amount) of As, Bi, Sb, Pb, Se, Te is 0.0015 mass% or less, and O: 0.003 mass% or less. preferable. In addition, when the amount of H taken into the molten metal at the time of melting and casting increases, the amount of H that has decreased in solid solution during solidification precipitates at the grain boundaries of the ingot, forming a large number of pinholes and cracking during hot extrusion. May occur. Therefore, the H content is preferably 0.0002% by mass or less.

第2の成分組成は、前記第1の成分組成に加えて、Ni、ZnおよびSnの少なくとも1種を所定量さらに含有することが好ましい。以下、各成分の数値限定理由について説明する。   The second component composition preferably further contains a predetermined amount of at least one of Ni, Zn and Sn in addition to the first component composition. Hereinafter, the reason for limiting the numerical value of each component will be described.

(Ni:0.005〜0.100質量%)
Niは、銅合金中でCo,Pとの三元化合物(適宜、(Co,Ni)−P化合物という)を生成し、結晶粒内および粒界に析出する。この三元化合物(析出物)は、Co−P化合物と同様に、銅合金管の引張強度を向上させる。また、(Co,Ni)−P化合物は、熱処理においてピンニング粒子として作用してろう付け後の引張強度を確保する作用を有する。したがって、Niは、Coの含有量を増大させることなく、引張強度をいっそう向上させることができる。
(Ni: 0.005-0.100 mass%)
Ni forms a ternary compound with Co and P (suitably referred to as (Co, Ni) -P compound) in a copper alloy and precipitates in crystal grains and in grain boundaries. This ternary compound (precipitate) improves the tensile strength of the copper alloy tube, like the Co-P compound. Further, the (Co, Ni) -P compound acts as pinning particles in the heat treatment and has an action of securing the tensile strength after brazing. Therefore, Ni can further improve the tensile strength without increasing the Co content.

(Co,Ni)−P化合物を十分に析出させて前記効果を得るために、Niの含有量は0.005質量%以上とすることが好ましい。一方、Niの含有量が0.100質量%を超えると、(Co,Ni)−P化合物が過剰に析出するため引張強度が過大となって伸びが低下して、曲げ加工性が不足する。したがって、Ni含有量は、0.005〜1.000質量%が好ましい。   In order to sufficiently precipitate the (Co, Ni) -P compound and obtain the above effect, the Ni content is preferably 0.005% by mass or more. On the other hand, if the Ni content exceeds 0.100% by mass, the (Co, Ni) -P compound precipitates excessively, so that the tensile strength becomes excessive and the elongation decreases, resulting in insufficient bending workability. Therefore, the Ni content is preferably 0.005 to 1.000% by mass.

Ni含有量は、NiがCoを超えて多くなると、析出する三元化合物が、Coに対してNiが多い組成の(Ni,Co)−P化合物になり易い。そして、三元化合物が固溶温度の低いNi−P化合物(NiP)の性質に近付き、ろう付け処理にて溶融し易いため、ピンニング粒子としての効果が小さくなる。したがって、Ni含有量は、0.100質量%以下、かつCoの含有量以下であることがさらに好ましい。 When the Ni content is increased beyond Ni, the precipitated ternary compound tends to be a (Ni, Co) -P compound having a composition with more Ni than Co. The ternary compound is closer to the nature of the lower Ni-P compounds of the solid solution temperature (Ni 2 P), liable melted at the brazing process, the effect of the pinning particles is reduced. Therefore, the Ni content is more preferably 0.100% by mass or less and the Co content or less.

(Zn:0.005〜1.000質量%)
Znは、銅合金管の引張強度、耐熱性、および疲労強度を向上させる作用を有する。また、Znを含有することにより、銅合金管のろう付けにおいてりん銅ろう等のろう材の濡れ性を向上させる。さらに、Znを含有することにより、冷間圧延、抽伸、転造等に用いる工具の磨耗を低減させて、抽伸プラグや溝付プラグ等を長寿命化する効果があり、生産コストの低減に寄与する。また、銅合金管の熱交換器への組立てにおいても、曲げ加工時のマンドレルの磨耗を低減し、さらにアルミニウムフィンの貫通孔のフィンカラーに密着させる際の拡管加工時の拡管ビュレットの磨耗も低減することができる。これらの効果を得るために、Znの含有量は0.005質量%以上とすることが好ましい。一方、Znの含有量が1.000質量%を超えると、応力腐食割れ感受性が高くなる。したがって、Znの含有量は、0.005〜1.000質量%が好ましい。
(Zn: 0.005 to 1.000% by mass)
Zn has the effect of improving the tensile strength, heat resistance, and fatigue strength of the copper alloy tube. Further, by containing Zn, the wettability of a brazing material such as phosphor copper brazing is improved in brazing a copper alloy tube. Furthermore, containing Zn has the effect of reducing the wear of tools used for cold rolling, drawing, rolling, etc., extending the life of drawing plugs and grooved plugs, etc., contributing to the reduction of production costs To do. In addition, when assembling copper alloy tubes into heat exchangers, the wear of the mandrel during bending is reduced, and the wear of the expanded burette is reduced during tube expansion when contacting the fin collar of the through hole of the aluminum fin. can do. In order to obtain these effects, the Zn content is preferably 0.005% by mass or more. On the other hand, when the Zn content exceeds 1.000 mass%, the stress corrosion cracking sensitivity increases. Therefore, the content of Zn is preferably 0.005 to 1.000% by mass.

(Sn:0.05〜1.00質量%)
Snは、銅合金中で固溶強化によって引張強度を向上させる。また、Snは、銅合金管の焼鈍やろう付けによる熱影響に対して、結晶粒度の粗大化を抑制して、耐熱性を向上させる。これらの効果を得るために、Snの含有量は0.05質量%以上とすることが好ましい。一方、Snの含有量が1.00質量%を超えると、鋳塊における凝固偏析が激しくなって、通常の熱間押出や加工熱処理において偏析が完全に解消しないことがあり、ろう付け前の組織、機械的性質および曲げ加工性、ろう付け後の組織および機械的性質が不均一となる。また、熱間押出における熱間変形抵抗が高くなり、押出材が作製できない虞があり、Snの含有量が1.00質量%以下の銅合金と同一の押出圧力とするためには熱間押出温度を高くする必要があり、高温で押出材の表面酸化が増加し、生産性の低下や銅合金管の表面欠陥が増加する。したがって、Snの含有量は、0.05〜1.00質量%とする。
(Sn: 0.05 to 1.00% by mass)
Sn improves the tensile strength by solid solution strengthening in the copper alloy. Moreover, Sn suppresses the coarsening of the crystal grain size and improves the heat resistance against the thermal effect due to annealing and brazing of the copper alloy tube. In order to obtain these effects, the Sn content is preferably 0.05% by mass or more. On the other hand, if the Sn content exceeds 1.00% by mass, solidification segregation in the ingot becomes severe, and segregation may not be completely eliminated in normal hot extrusion or thermomechanical processing. , Mechanical properties and bending workability, texture after brazing and mechanical properties become non-uniform. In addition, hot deformation resistance in hot extrusion becomes high, and there is a possibility that an extruded material cannot be produced. In order to obtain the same extrusion pressure as that of a copper alloy having a Sn content of 1.00% by mass or less, hot extrusion is performed. It is necessary to increase the temperature, the surface oxidation of the extruded material increases at a high temperature, and the productivity decreases and the surface defects of the copper alloy tube increase. Therefore, the Sn content is 0.05 to 1.00% by mass.

第3の成分組成は、第1または第2の成分組成に加えて、Fe、Mn、Mg、Cr、Ti、ZrおよびAgから選択された1種以上を合計で所定量さらに含有することが好ましい。以下、Fe等の成分の数値限定理由について説明する。   In addition to the first or second component composition, the third component composition preferably further contains a predetermined amount in total of one or more selected from Fe, Mn, Mg, Cr, Ti, Zr and Ag. . The reason for limiting the numerical values of components such as Fe will be described below.

(Fe、Mn、Mg、Cr、Ti、ZrおよびAg:合計0.10質量%未満)
Fe、Mn、Mg、Cr、Ti、ZrおよびAgはそれぞれ、単体で、またはFeP、Mn等のP化合物として結晶粒内および粒界に析出することで、前記のCo−P化合物等と同様に、銅合金管の引張強度およびろう付け後の引張強度を向上させる効果がある。一方、これらの元素が合計で0.10質量%以上含有されると、FeP、Mn等のP化合物が過剰に析出するため伸びが低下して、曲げ加工性が不足する。また、熱間押出における熱間変形抵抗が高くなり、当該元素を含有しない銅合金と同一の押出圧力とするためには熱間押出温度を高くする必要があり、高温で押出材の表面酸化が増加し、生産性の低下や銅合金管の表面欠陥が増加する。したがって、Fe,Mn,Mg,Cr,Ti,Zr,Agから選択された1種以上の含有量は合計で0.10質量%未満とする。
(Fe, Mn, Mg, Cr, Ti, Zr and Ag: less than 0.10 mass% in total)
Each of Fe, Mn, Mg, Cr, Ti, Zr and Ag is precipitated as a single compound or as a P compound such as Fe 2 P and Mn 3 P 2 in the crystal grains and in the grain boundaries, thereby allowing the Co—P Like a compound etc., there exists an effect which improves the tensile strength of a copper alloy pipe, and the tensile strength after brazing. On the other hand, when these elements are contained in a total of 0.10% by mass or more, P compounds such as Fe 2 P and Mn 3 P 2 are excessively precipitated, so that the elongation is lowered and bending workability is insufficient. In addition, the hot deformation resistance in hot extrusion becomes high, and in order to obtain the same extrusion pressure as that of the copper alloy not containing the element, it is necessary to increase the hot extrusion temperature. It increases, resulting in decreased productivity and increased surface defects in copper alloy tubes. Accordingly, the total content of one or more selected from Fe, Mn, Mg, Cr, Ti, Zr, and Ag is less than 0.10% by mass.

次に、本発明の銅合金管の合金組織について説明する。
本発明の銅合金管は、管側面に平行な面での管厚中心部における粒界析出物の平均直径が150nm以下であり、前記粒界析出物の粒界長さあたりの平均個数が5000個/mm以下である合金組織を有する。ここで、管厚中心部とは、管厚方向1/2の部位を中心として両厚さ方向に50nmずつ、合計100nmに相当する範囲をいう。なお、合金組織は、前記成分組成に加えて、以下に示す銅合金管を製造する際の中間焼鈍を制御することによって調整される。
Next, the alloy structure of the copper alloy tube of the present invention will be described.
In the copper alloy pipe of the present invention, the average diameter of grain boundary precipitates at the center of the pipe thickness in a plane parallel to the pipe side surface is 150 nm or less, and the average number of grain boundary precipitates per grain boundary length is 5000. It has an alloy structure that is not more than pieces / mm. Here, the tube thickness center portion refers to a range corresponding to a total of 100 nm, 50 nm in both thickness directions centering on a portion in the tube thickness direction 1/2. In addition to the component composition, the alloy structure is adjusted by controlling the intermediate annealing when manufacturing the copper alloy tube shown below.

本発明において、粒界析出物は、前記したCo−P化合物、(Co,Ni)−P化合物、Fe等の単体、および、Fe等とPとの化合物である。また、粒界析出物の測定には、透過型電子顕微鏡を用いて行い、図1に示すように、結晶粒1の粒界2の上に析出した析出物と、粒界2から所定距離離れた粒界2の近傍に析出した析出物との両者を合わせて粒界析出物3とする。具体的には、粒界析出物3は、結晶粒1の粒界2を中心にして幅200nmの領域に析出した析出物とする。ここで、粒界2は、結晶方位解析法によって測定される隣り合う結晶粒1の方位差が15°以上の結晶粒1の境界である。以下、粒界析出物の平均直径および平均個数の数値限定理由について説明する。   In the present invention, the grain boundary precipitate is the above-described Co—P compound, (Co, Ni) —P compound, simple substance such as Fe, or a compound of Fe and the like and P. The grain boundary precipitates are measured using a transmission electron microscope. As shown in FIG. 1, the precipitates deposited on the grain boundaries 2 of the crystal grains 1 are separated from the grain boundaries 2 by a predetermined distance. Together with the precipitate deposited in the vicinity of the grain boundary 2, the grain boundary precipitate 3 is obtained. Specifically, the grain boundary precipitate 3 is a precipitate deposited in a region having a width of 200 nm with the grain boundary 2 of the crystal grain 1 as the center. Here, the grain boundary 2 is a boundary between crystal grains 1 in which the orientation difference between adjacent crystal grains 1 measured by a crystal orientation analysis method is 15 ° or more. Hereinafter, the reason for limiting the numerical values of the average diameter and the average number of grain boundary precipitates will be described.

(平均直径:150nm以下)
粒界析出物の平均直径が150nmを超えると、粒界破断が生じやすくなり、銅合金管の伸びが低下して曲げ加工性が低下する。したがって、本発明の銅合金管では、粒界析出物の平均直径を150nm以下とし、好ましくは80nm以下とする。また、粒界析出物の直径の下限値は、透過型電子顕微鏡での測定限界である5nmとする。なお、本発明においては、粒界析出物の直径は、析出物の粒子面積と同一の円における直径、すなわち、円相当径とする。
(Average diameter: 150 nm or less)
If the average diameter of the grain boundary precipitates exceeds 150 nm, the grain boundary breakage tends to occur, the elongation of the copper alloy tube is lowered, and the bending workability is lowered. Therefore, in the copper alloy tube of the present invention, the average diameter of the grain boundary precipitate is 150 nm or less, preferably 80 nm or less. In addition, the lower limit of the diameter of the grain boundary precipitate is 5 nm, which is the measurement limit with a transmission electron microscope. In the present invention, the diameter of the grain boundary precipitates is the diameter of the same circle as the particle area of the precipitates, that is, the equivalent circle diameter.

(平均個数:5000個/mm以下)
粒界析出物の平均個数が5000個/mmを超えると、粒界破断が生じやすくなり、銅合金管の伸びが低下して曲げ加工性が低下する。したがって、本発明の銅合金管では、粒界析出物の平均個数を5000個/mm以下とし、好ましくは3000個/mm以下とする。また、粒界析出物の個数は、透過型電子顕微鏡の視野内に析出した粒界析出物の数(個)を、視野内に存在する結晶粒の粒界の全長で除した値とし、その値を1mmあたりの個数に換算したものとする。
(Average number: 5000 pieces / mm or less)
When the average number of grain boundary precipitates exceeds 5000 / mm, grain boundary breakage tends to occur, the elongation of the copper alloy tube is lowered, and the bending workability is lowered. Therefore, in the copper alloy tube of the present invention, the average number of grain boundary precipitates is set to 5000 pieces / mm or less, preferably 3000 pieces / mm or less. The number of grain boundary precipitates is the value obtained by dividing the number (number) of grain boundary precipitates deposited in the field of view of the transmission electron microscope by the total length of the grain boundaries of the crystal grains present in the field of view. It shall be converted into the number per 1 mm.

つぎに、前記銅合金管の製造方法について説明する。
前記銅合金管の製造方法は、図2に示すように、鋳造工程S1と、均質化熱処理工程S2と、熱間押出工程S3と、圧延抽伸加工工程S4と、中間焼鈍工程S5と、加工工程S6と、最終焼鈍工程S7と、を含む。以下、各工程について説明する。
Next, a method for producing the copper alloy tube will be described.
As shown in FIG. 2, the copper alloy tube manufacturing method includes a casting step S1, a homogenization heat treatment step S2, a hot extrusion step S3, a rolling drawing step S4, an intermediate annealing step S5, and a processing step. S6 and final annealing step S7 are included. Hereinafter, each step will be described.

(鋳造工程)
鋳造工程S1は、前記した成分組成の銅合金を溶解、鋳造して鋳塊とする工程である。溶解の方法および条件、鋳造の方法および条件については、従来公知の方法および条件が用いられる。
(Casting process)
The casting step S1 is a step of melting and casting the copper alloy having the above component composition to form an ingot. As the melting method and conditions and the casting method and conditions, conventionally known methods and conditions are used.

(均質化熱処理工程)
均質化熱処理工程S2は、前記鋳塊に均質化熱処理を施して、鋳塊の偏析を改善する工程である。均質化熱処理の方法および条件については従来公知の方法および条件が用いられるが、均質化熱処理温度については680〜800℃、保持時間については1分〜2時間が好ましい。
(Homogenization heat treatment process)
The homogenization heat treatment step S2 is a step of improving the segregation of the ingot by subjecting the ingot to a homogenization heat treatment. Conventionally known methods and conditions are used as the method and conditions for the homogenization heat treatment, and the homogenization heat treatment temperature is preferably 680 to 800 ° C. and the holding time is preferably 1 minute to 2 hours.

(熱間押出工程)
熱間押出工程S3は、均質化熱処理を施された前記鋳塊を熱間押出して押出材とする工程である。熱間押出の方法および条件については、従来公知の方法および条件が用いられるが、押出温度については680〜800℃、熱間押出による断面減少率については80%以上であることが好ましい。また、熱間押出後の押出材を、水冷等の方法により、押出材の表面温度が300℃になるまで冷却速度10℃/秒以上で急速冷却することが好ましい。
(Hot extrusion process)
The hot extrusion step S3 is a step of hot extruding the ingot that has been subjected to the homogenization heat treatment to obtain an extruded material. Conventionally known methods and conditions are used for the hot extrusion method and conditions. The extrusion temperature is preferably 680 to 800 ° C., and the cross-sectional reduction rate by hot extrusion is preferably 80% or more. Moreover, it is preferable to rapidly cool the extruded material after hot extrusion at a cooling rate of 10 ° C./second or more until the surface temperature of the extruded material reaches 300 ° C. by a method such as water cooling.

(圧延抽伸加工工程)
圧延抽伸加工工程S4は、前記押出材に冷間圧延および抽伸加工を施して抽伸管とする工程である。冷間圧延の方法および条件、抽伸加工の方法および条件については、従来公知の方法および条件が用いられるが、冷間圧延の加工率は、加工時の製品不良を低減するために、断面減少率で95%以下とすることが好ましく、90%以下とすることがさらに好ましい。また、抽伸加工の加工率は、40%以下とすることが好ましい。通常、抽伸加工は何台かの抽伸機を用いるが、各抽伸機による加工率(断面減少率)を40%以下にすることにより、表面欠陥や内部割れを低減することができる。
(Rolling drawing process)
Rolling drawing process S4 is a process which performs cold rolling and drawing processing on the extruded material to obtain a drawing tube. Conventionally known methods and conditions are used for the cold rolling method and conditions, and the drawing method and conditions, but the cold rolling processing rate is reduced in cross section to reduce product defects during processing. Is preferably 95% or less, and more preferably 90% or less. Moreover, it is preferable that the processing rate of a drawing process shall be 40% or less. Usually, several drawing machines are used for drawing, but surface defects and internal cracks can be reduced by making the processing rate (cross-sectional reduction rate) by each drawing machine 40% or less.

(中間焼鈍工程)
中間焼鈍工程S5は、前記抽伸管に焼鈍を施す工程である。焼鈍方法については、従来公知の方法が用いられる。そして、中間焼鈍工程S5は、焼鈍条件を調整することによって、銅合金管の粒界析出物を制御する。
(Intermediate annealing process)
The intermediate annealing step S5 is a step of annealing the drawing pipe. Conventionally known methods are used for the annealing method. And intermediate annealing process S5 controls the grain-boundary precipitate of a copper alloy pipe | tube by adjusting annealing conditions.

粒界析出物の制御、すなわち、粒界析出物の平均直径を150nm以下とし、粒界長さあたりの個数を5000個/mm以下に制御するためには、前記抽伸管を800〜950℃、10秒以上5分以下で焼鈍処理し、その処理温度までの昇温速度を50℃/秒以上、室温までの冷却速度を100℃/秒以上とする必要がある。そして、粒界析出物が制御されることによって、銅合金管の伸びを大きくすることが可能となる。   In order to control the grain boundary precipitates, that is, to control the average diameter of the grain boundary precipitates to 150 nm or less and the number per grain boundary length to 5000 pieces / mm or less, the drawing tube is set to 800 to 950 ° C., It is necessary to carry out the annealing treatment for 10 seconds or more and 5 minutes or less, the temperature increase rate to the treatment temperature is 50 ° C./second or more, and the cooling rate to room temperature is 100 ° C./second or more. And it becomes possible to enlarge elongation of a copper alloy pipe | tube by controlling a grain boundary precipitate.

(処理温度:800〜950℃)
処理温度が800℃未満の場合には、粒界析出物の平均直径が大きくなり、銅合金管の伸びが小さくなる。そのため、銅合金管の曲げ加工性が低下する。一方、処理温度が950℃を超える場合には、結晶粒径が大きくなるため、最終焼鈍後の銅合金管に加工組織が残存する。そのため、銅合金管の伸びが小さくなり、曲げ加工性が低下する。したがって、中間焼鈍工程S5の処理温度は800〜950℃とする。また、銅合金管の伸びを改善する観点から、処理温度の上限値は900℃が好ましい。
(Processing temperature: 800-950 ° C)
When the treatment temperature is less than 800 ° C., the average diameter of the grain boundary precipitates increases and the elongation of the copper alloy tube decreases. For this reason, the bending workability of the copper alloy tube is lowered. On the other hand, when the processing temperature exceeds 950 ° C., the crystal grain size increases, so that the processed structure remains in the copper alloy tube after the final annealing. Therefore, the elongation of the copper alloy tube is reduced and the bending workability is lowered. Therefore, the processing temperature in the intermediate annealing step S5 is set to 800 to 950 ° C. Further, from the viewpoint of improving the elongation of the copper alloy tube, the upper limit value of the processing temperature is preferably 900 ° C.

(保持時間:10秒以上5分以下)
保持時間が10秒未満の場合には、粒界析出物の平均個数が多くなり銅合金管の伸びが小さくなる。そのため、銅合金管の曲げ加工性が低下する。一方、保持時間が5分を超える場合には、粒界析出物の平均直径が大きくなり、銅合金管の伸びが小さくなる。そのため、銅合金管の曲げ加工性が低下する。したがって、中間焼鈍工程S5の保持時間は10秒以上5分以下とする。また、銅合金管の伸びを改善する観点から、保持時間の上限値は3分が好ましい。
(Retention time: 10 seconds to 5 minutes)
When the holding time is less than 10 seconds, the average number of grain boundary precipitates increases and the elongation of the copper alloy tube decreases. For this reason, the bending workability of the copper alloy tube is lowered. On the other hand, when the holding time exceeds 5 minutes, the average diameter of the grain boundary precipitates increases and the elongation of the copper alloy tube decreases. For this reason, the bending workability of the copper alloy tube is lowered. Accordingly, the holding time in the intermediate annealing step S5 is set to 10 seconds or more and 5 minutes or less. Further, from the viewpoint of improving the elongation of the copper alloy tube, the upper limit value of the holding time is preferably 3 minutes.

(昇温速度:50℃/秒以上)
昇温速度が50℃/秒未満では、粒界析出物の平均個数が多くなり、銅合金管の伸びが小さくなる。そのため、銅合金管の曲げ加工性が低下する。したがって、中間焼鈍工程S5の昇温速度は50℃/秒以上とする。また、銅合金管の伸びを改善する観点から、昇温速度は100℃/秒以上が好ましい。
(Temperature increase rate: 50 ° C / second or more)
When the heating rate is less than 50 ° C./second, the average number of grain boundary precipitates increases and the elongation of the copper alloy tube decreases. For this reason, the bending workability of the copper alloy tube is lowered. Therefore, the temperature increase rate in the intermediate annealing step S5 is set to 50 ° C./second or more. Further, from the viewpoint of improving the elongation of the copper alloy tube, the temperature rising rate is preferably 100 ° C./second or more.

(冷却速度:100℃/秒以上)
冷却速度が100℃/秒未満である場合には、粒界析出物の平均直径が大きくなり、銅合金管の伸びが小さくなる。そのため、銅合金管の曲げ加工性が低下する。したがって、中間焼鈍工程S5の冷却速度は100℃/秒以上とする。また、銅合金管の伸びを改善する観点から、冷却速度は500℃/秒以上が好ましい。
(Cooling rate: 100 ° C / second or more)
When the cooling rate is less than 100 ° C./second, the average diameter of the grain boundary precipitate is increased and the elongation of the copper alloy tube is decreased. For this reason, the bending workability of the copper alloy tube is lowered. Therefore, the cooling rate in the intermediate annealing step S5 is set to 100 ° C./second or more. Further, from the viewpoint of improving the elongation of the copper alloy tube, the cooling rate is preferably 500 ° C./second or more.

(加工工程)
加工工程S6は、焼鈍された前記抽伸管に加工を施して加工管とする工程である。ここで、本発明の銅合金管として平滑管を使用する場合には、加工管は抽伸加工管であり、焼鈍された前記抽伸管にさらに抽伸加工を施して、管外径を製品外径まで縮径する。また、本発明の銅合金管として内面溝付管を使用する場合には、加工管は転造加工管であり、焼鈍された前記抽伸管に転造加工を施して、管内面に所定形状の溝付けを行う。なお、抽伸加工の方法および条件は前記圧延抽伸加工工程S4と同様とし、転造加工の方法および条件は、従来公知の方法および条件が用いられる。
(Processing process)
The processing step S6 is a step in which the annealed drawing tube is processed to form a processed tube. Here, when a smooth tube is used as the copper alloy tube of the present invention, the processed tube is a drawn tube, and the drawn drawing tube is further subjected to drawing to reduce the tube outer diameter to the product outer diameter. Reduce diameter. Further, when an internally grooved tube is used as the copper alloy tube of the present invention, the processed tube is a rolled tube, and the annealed drawing tube is subjected to a rolling process so that a predetermined shape is formed on the tube inner surface. Groove. The drawing method and conditions are the same as those in the rolling drawing step S4, and conventionally known methods and conditions are used as the rolling method and conditions.

(最終焼鈍工程)
最終焼鈍工程S7は、前記加工管に焼鈍を施す工程である。焼鈍の方法および条件は、従来公知の方法および条件が用いられるが、処理温度については450℃超え700℃未満、焼鈍時間については5分〜1時間が好ましい。そして、この焼鈍工程S7を行うことによって、加工管の粒内析出物の平均直径および数密度が制御されると共に、加工硬化した前記加工管が軟質化して曲げ加工が可能となる。
(Final annealing process)
The final annealing step S7 is a step of annealing the processed tube. As the annealing method and conditions, conventionally known methods and conditions are used, but the processing temperature is preferably more than 450 ° C. and less than 700 ° C., and the annealing time is preferably 5 minutes to 1 hour. By performing this annealing step S7, the average diameter and number density of the intragranular precipitates in the processed tube are controlled, and the processed and hardened processed tube is softened and can be bent.

次に、本発明の実施例について説明する。
電気銅を原料として、所定量のCo、P、Ni、Zn、SnおよびFe等のその他の成分を必要に応じて添加することにより、表1に示す成分組成の溶湯を作製した。作製した溶湯から鋳造温度1200℃で、直径300mm×長さ3000mmの鋳塊を半連続鋳造し、得られた鋳塊から、長さ475mmのビレットを切り出した。ビレットを680〜800℃の範囲に加熱して1時間保持した後、直ちに、熱間押出機で外径100mm、肉厚10mmの押出素管を作製し、水冷にて表面温度が300℃になるまで冷却した。押出素管を冷間圧延、抽伸加工により、外径10mm、肉厚0.41mmの抽伸管を作製した。抽伸管に表1に示す中間焼鈍を施して、次いで、断面減少率40%の転造加工を行い、外径7mm、溝底肉厚0.36mmの転造加工管を作製した。転造加工管に650℃、30分の最終焼鈍を施して、銅合金管(供試管No.1〜15)を作製した。なお、表1において、「−」は、成分を含有しないことを表す。
Next, examples of the present invention will be described.
Using electrolytic copper as a raw material, a predetermined amount of other components such as Co, P, Ni, Zn, Sn, and Fe was added as necessary to prepare molten metal having the composition shown in Table 1. An ingot having a diameter of 300 mm and a length of 3000 mm was semi-continuously cast from the produced molten metal at a casting temperature of 1200 ° C., and a billet having a length of 475 mm was cut out from the obtained ingot. After heating the billet in the range of 680 to 800 ° C. and holding it for 1 hour, immediately, an extruded element tube having an outer diameter of 100 mm and a wall thickness of 10 mm is produced by a hot extruder, and the surface temperature becomes 300 ° C. by water cooling. Until cooled. A drawn tube having an outer diameter of 10 mm and a wall thickness of 0.41 mm was produced by subjecting the extruded tube to cold rolling and drawing. The drawn pipe was subjected to the intermediate annealing shown in Table 1, and then subjected to a rolling process with a cross-section reduction rate of 40% to produce a rolled pipe having an outer diameter of 7 mm and a groove bottom thickness of 0.36 mm. The rolled tube was subjected to a final annealing at 650 ° C. for 30 minutes to prepare copper alloy tubes (test tubes No. 1 to 15). In Table 1, “-” indicates that no component is contained.

作製した供試管について、以下に示す手順で粒界析出物の平均直径および平均個数を測定した。その結果を表1に示す。   About the produced test tube, the average diameter and average number of grain boundary precipitates were measured by the following procedure. The results are shown in Table 1.

(粒界析出物の平均直径および平均個数)
図3に示すように、供試管10の管側面から試料11を切り出し、管厚t方向の上下から機械研磨して管厚t方向1/2(1/2t)の部位を中心として両厚さ方向に0.05mm(合計0.1mm)とした後、ツインジェット式電解研磨にて100nmの薄膜12にした。薄膜12の供試管側面と平行な面を観察面とした。透過型電子顕微鏡(TEM)にて倍率3万倍で観察し、約5μm×4μmの視野を4視野、画像写真を撮影した。画像写真を画像解析ソフトImage−Pro Plusにて解析して、図1に示すように、結晶粒1の粒界2の長さと、粒界2の上および粒界2の近傍、すなわち、粒界2を中心して幅200nmの範囲に析出している粒界析出物3の数をカウントした。粒界析出物3の数を、視野内に撮影された粒界2の全長で除して、粒界2の長さあたりの粒界析出物3の個数を算出し、単位長さ(1mm)あたりに換算した。また、粒界析出物3の粒子面積を測定し、前記粒子面積より円相当直径を算出した。さらに、4視野の平均値を算出した。その結果を表1に示す。
(Average diameter and average number of grain boundary precipitates)
As shown in FIG. 3, the sample 11 is cut out from the side surface of the test tube 10, and mechanically polished from above and below in the tube thickness t direction, both thicknesses are centered on a portion in the tube thickness t direction 1/2 (1/2 t). After setting the thickness to 0.05 mm (total 0.1 mm), the thin film 12 having a thickness of 100 nm was formed by twin jet electrolytic polishing. A surface parallel to the side surface of the test tube of the thin film 12 was used as an observation surface. Observation was carried out with a transmission electron microscope (TEM) at a magnification of 30,000, and four fields of view of about 5 μm × 4 μm were taken and image photographs were taken. The image photograph is analyzed by image analysis software Image-Pro Plus, and as shown in FIG. 1, the length of the grain boundary 2 of the crystal grain 1 and the vicinity of the grain boundary 2 above the grain boundary 2, that is, the grain boundary The number of grain boundary precipitates 3 centering on 2 and precipitated in a range of 200 nm in width was counted. The number of grain boundary precipitates 3 is divided by the total length of the grain boundary 2 photographed in the field of view to calculate the number of grain boundary precipitates 3 per length of the grain boundary 2, and the unit length (1 mm) Converted to per. Further, the particle area of the grain boundary precipitate 3 was measured, and the equivalent circle diameter was calculated from the particle area. Furthermore, the average value of 4 visual fields was calculated. The results are shown in Table 1.

次に、作製した供試管について、以下の手順で引張強度および伸びを測定すると共に、以下の基準で曲げ加工性を評価した。その結果を表1に示す。   Next, the prepared test tube was measured for tensile strength and elongation by the following procedure, and evaluated for bending workability according to the following criteria. The results are shown in Table 1.

(引張強度および伸び)
供試管からJIS11号試験片を切り出した。その試験片を用いて、室温、引張速度:10.0mm/分、標点距離:20mmの条件で引張試験を行い、引張強度(MPa)および伸び(%)を測定した。同一条件の試験片を2本試験し、それらの平均値を採用した。その結果を表1に示す。
(Tensile strength and elongation)
A JIS No. 11 test piece was cut out from the test tube. Using the test piece, a tensile test was performed under the conditions of room temperature, tensile speed: 10.0 mm / min, and gauge distance: 20 mm, and tensile strength (MPa) and elongation (%) were measured. Two test pieces under the same conditions were tested, and the average value was adopted. The results are shown in Table 1.

(曲げ加工性)
供試管を、曲げピッチ25mm(管軸における曲げ半径が12.5mm)のU字形に曲げ加工し、外側表面の曲げ部を目視にて観察した。供試管毎に10本行い、10本すべてに割れ等のないものを合格として「○」、1本でも割れ等が観察されたものを不合格として「×」とした。
(Bending workability)
The test tube was bent into a U shape with a bending pitch of 25 mm (bending radius at the tube axis was 12.5 mm), and the bent portion on the outer surface was visually observed. Ten test tubes were used for each test tube, and all of the ten tubes had no cracks, etc., were accepted as “◯”, and one in which even one crack was observed was rejected as “x”.

Figure 0006402043
Figure 0006402043

表1の結果から、本発明の要件を満足する供試管No.1〜9(実施例)は、引張強度および伸びが大きく、曲げ加工性が良好であった。これに対して、本発明の要件を満足しない供試管No.10〜15(比較例)は、伸びが小さく、曲げ加工性が不良であった。   From the results in Table 1, the test tube No. satisfying the requirements of the present invention was obtained. Nos. 1 to 9 (Examples) had large tensile strength and elongation and good bending workability. On the other hand, test tube No. which does not satisfy the requirements of the present invention. 10-15 (comparative example) had small elongation and bending workability was poor.

具体的には、供試管No.10(比較例)は、中間焼鈍の処理温度が低いため、粒界析出物の平均直径が上限値を超えて大きかった。その結果、供試管No.10(比較例)は、伸びが小さく、曲げ加工性が不良であった。   Specifically, the test tube No. In No. 10 (Comparative Example), since the treatment temperature of the intermediate annealing was low, the average diameter of the grain boundary precipitates was larger than the upper limit value. As a result, the test tube No. No. 10 (Comparative Example) had a small elongation and a poor bending workability.

供試管No.11(比較例)は、中間焼鈍の処理温度が低い、保持時間が長い、冷却速度が遅いため、粒界析出物の平均直径が上限値を超えて大きかった。また、中間焼鈍の昇温速度が遅いため、粒界析出物の平均個数が上限値を超えて多かった。その結果、伸びが小さかった。それにより、供試管No.11(比較例)は、曲げ加工性が不良であった。   Test tube No. No. 11 (Comparative Example) had a low intermediate annealing treatment temperature, a long holding time, and a slow cooling rate, so the average diameter of the grain boundary precipitates was larger than the upper limit. Moreover, since the temperature increase rate of the intermediate annealing was slow, the average number of grain boundary precipitates exceeded the upper limit. As a result, the elongation was small. As a result, the test tube No. No. 11 (comparative example) had poor bending workability.

供試管No.12(比較例)は、Ni含有量が上限値を超えて多かったため、伸びが小さく、曲げ加工性が不良であった。供試管No.13(比較例)は、Sn含有量が上限値を超えて多かったため、熱間押出工程で押出材を作製することができなかった。供試管No.14(比較例)は、Cr含有量が上限値を超えて多かったため、伸びが小さく、曲げ加工性が不良であった。   Test tube No. In No. 12 (Comparative Example), since the Ni content exceeded the upper limit, the elongation was small and the bending workability was poor. Test tube No. In No. 13 (Comparative Example), the Sn content was higher than the upper limit, so that an extruded material could not be produced in the hot extrusion process. Test tube No. No. 14 (Comparative Example) had a large Cr content exceeding the upper limit, so the elongation was small and the bending workability was poor.

供試管No.15(比較例)は、特許文献2に記載された製造方法で作製されたもので、中間焼鈍の処理温度が低い、保持時間が長い、冷却速度が遅いため、粒界析出物の平均直径が上限値を超えて大きかった。また、中間焼鈍の昇温速度が遅いため、粒界析出物の平均個数が上限値を超えて多かった。その結果、供試管No.15(比較例)は、伸びが小さく、曲げ加工性が不良であった。   Test tube No. No. 15 (Comparative Example) was produced by the manufacturing method described in Patent Document 2, and since the intermediate annealing treatment temperature is low, the holding time is long, and the cooling rate is slow, the average diameter of the grain boundary precipitates is It was larger than the upper limit. Moreover, since the temperature increase rate of the intermediate annealing was slow, the average number of grain boundary precipitates exceeded the upper limit. As a result, the test tube No. No. 15 (Comparative Example) had low elongation and poor bending workability.

1 結晶粒
2 粒界
3 粒界析出物
S1 鋳造工程
S2 均質化熱処理工程
S3 熱間押出工程
S4 圧延抽伸加工工程
S5 中間焼鈍工程
S6 加工工程
S7 最終焼鈍工程
10 供試管
11 試料
12 薄膜
DESCRIPTION OF SYMBOLS 1 Crystal grain 2 Grain boundary 3 Grain boundary precipitate S1 Casting process S2 Homogenization heat treatment process S3 Hot extrusion process S4 Rolling drawing process S5 Intermediate annealing process S6 Processing process S7 Final annealing process 10 Test tube 11 Sample 12 Thin film

Claims (3)

Co:0.05〜0.40質量%、P:0.02〜0.10質量%を含有し、残部がCuおよび不可避的不純物である銅合金からなる高強度銅合金管であって、
管側面に平行な面での管厚中心部における粒界析出物の平均直径が150nm以下であり、前記粒界析出物の粒界長さあたりの平均個数が5000個/mm以下であることを特徴とする高強度銅合金管。
Co: 0.05 to 0.40% by mass, P: 0.02 to 0.10% by mass, and the balance is a high strength copper alloy tube made of a copper alloy with Cu and inevitable impurities,
The average diameter of grain boundary precipitates at the center of the tube thickness in a plane parallel to the pipe side surface is 150 nm or less, and the average number per grain boundary length of the grain boundary precipitates is 5000 pieces / mm or less. High strength copper alloy tube.
前記銅合金が、Ni:0.005〜0.100質量%、Zn:0.005〜1.000質量%およびSn:0.05〜1.00質量%の少なくとも1種をさらに含有することを特徴とする請求項1に記載の高強度銅合金管。   The copper alloy further contains at least one of Ni: 0.005 to 0.100 mass%, Zn: 0.005 to 1.000 mass%, and Sn: 0.05 to 1.00 mass%. The high-strength copper alloy tube according to claim 1, wherein 前記銅合金が、Fe、Mn、Mg、Cr、Ti、ZrおよびAgから選択された1種以上を合計で0.10質量%未満さらに含有することを特徴とする請求項1または請求項2に記載の高強度銅合金管。   The copper alloy further contains at least one selected from Fe, Mn, Mg, Cr, Ti, Zr, and Ag and less than 0.10% by mass in total. High strength copper alloy tube as described.
JP2015024315A 2015-02-10 2015-02-10 High strength copper alloy tube Expired - Fee Related JP6402043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015024315A JP6402043B2 (en) 2015-02-10 2015-02-10 High strength copper alloy tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015024315A JP6402043B2 (en) 2015-02-10 2015-02-10 High strength copper alloy tube

Publications (2)

Publication Number Publication Date
JP2016148067A JP2016148067A (en) 2016-08-18
JP6402043B2 true JP6402043B2 (en) 2018-10-10

Family

ID=56688237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015024315A Expired - Fee Related JP6402043B2 (en) 2015-02-10 2015-02-10 High strength copper alloy tube

Country Status (1)

Country Link
JP (1) JP6402043B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6034727B2 (en) * 2013-03-08 2016-11-30 株式会社神戸製鋼所 High strength copper alloy tube
JP5968816B2 (en) * 2013-03-26 2016-08-10 株式会社神戸製鋼所 High strength copper alloy tube and manufacturing method thereof

Also Published As

Publication number Publication date
JP2016148067A (en) 2016-08-18

Similar Documents

Publication Publication Date Title
JP5145331B2 (en) High strength and high thermal conductivity copper alloy tube and method for producing the same
KR101037809B1 (en) Copper Alloy Tube For Heat Exchanger Excellent in Fracture Strength
JP4817693B2 (en) Copper alloy tube for heat exchanger and manufacturing method thereof
JP5464659B2 (en) Copper tube for heat exchanger with excellent fracture strength and bending workability
JP2003268467A (en) Copper alloy tube for heat exchanger
JP5534777B2 (en) Copper alloy seamless pipe
JP4818179B2 (en) Copper alloy tube
JP6034727B2 (en) High strength copper alloy tube
JP5078368B2 (en) Method for producing copper alloy tube for heat exchanger
JP5960672B2 (en) High strength copper alloy tube
JP6244588B2 (en) Copper alloy seamless pipe for heat transfer tubes
JP6402043B2 (en) High strength copper alloy tube
JP5499300B2 (en) Copper alloy tube for heat exchanger
JP5602707B2 (en) High strength copper tube with excellent strength after brazing
JP5792696B2 (en) High strength copper alloy tube
JP6238274B2 (en) Copper alloy seamless pipe for hot and cold water supply
JP2017036468A (en) Copper alloy tube
JP5208562B2 (en) Seamless pipe
JP2011094176A (en) Copper alloy seamless tube
JP2011094175A (en) Copper alloy seamless tube
JP6360363B2 (en) Copper alloy tube
JP6101969B2 (en) Level-wound coil, method for manufacturing level-wound coil, cross-fin tube type heat exchanger, and method for manufacturing cross-fin tube type heat exchanger
JP2013189664A (en) Copper alloy tube
JP2016180169A (en) Copper alloy tube
JPWO2013157461A1 (en) Level-wound coil, method for manufacturing level-wound coil, cross-fin tube type heat exchanger, and method for manufacturing cross-fin tube type heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180724

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180910

R150 Certificate of patent or registration of utility model

Ref document number: 6402043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees