JP2758536B2 - Welded copper alloy pipe with inner groove - Google Patents

Welded copper alloy pipe with inner groove

Info

Publication number
JP2758536B2
JP2758536B2 JP4214391A JP21439192A JP2758536B2 JP 2758536 B2 JP2758536 B2 JP 2758536B2 JP 4214391 A JP4214391 A JP 4214391A JP 21439192 A JP21439192 A JP 21439192A JP 2758536 B2 JP2758536 B2 JP 2758536B2
Authority
JP
Japan
Prior art keywords
welded
copper alloy
copper
grain size
inner groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4214391A
Other languages
Japanese (ja)
Other versions
JPH0658688A (en
Inventor
竹四 鈴木
錬成 二塚
誠司 熊谷
清慥 桝川
俊▲緑▼ ▲すくも▼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16655017&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2758536(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP4214391A priority Critical patent/JP2758536B2/en
Publication of JPH0658688A publication Critical patent/JPH0658688A/en
Application granted granted Critical
Publication of JP2758536B2 publication Critical patent/JP2758536B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、熱交換器用伝熱管等と
して使用される内面溝付溶接銅合金管に関し、特に加工
特性を向上するための改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internally grooved welded copper alloy tube used as a heat exchanger tube or the like for a heat exchanger, and more particularly to an improvement for improving processing characteristics.

【0002】[0002]

【従来の技術】一般に、熱交換器用伝熱管としては、熱
伝導性の観点から無酸素銅やリン脱酸銅等の純銅を素材
とした内面溝付継目無銅管が多く用いられている。これ
ら伝熱管をエアコン等に用いる場合には、放熱および吸
熱効果を高めるために、貫通孔を有するアルミフィンを
伝熱管の外周に通したうえ、伝熱管にプラグを通して拡
管し、アルミフィンを固定する拡管加工が行なわれる。
さらに、伝熱管同士を接続するために、伝熱管の端部を
押し広げるフレア加工、およびフレア加工された部分を
再び押し広げるリフレア加工が順次施される。
2. Description of the Related Art In general, as a heat exchanger tube for a heat exchanger, a seamless copper tube with an inner groove made of pure copper such as oxygen-free copper or phosphorous deoxidized copper is often used from the viewpoint of thermal conductivity. When these heat transfer tubes are used in an air conditioner or the like, in order to enhance the heat radiation and heat absorption effects, an aluminum fin having a through hole is passed through the outer periphery of the heat transfer tube, and then expanded through a plug in the heat transfer tube to fix the aluminum fin. Pipe expansion is performed.
Further, in order to connect the heat transfer tubes, a flare process for expanding the ends of the heat transfer tubes and a refrea process for expanding the flared portions again are sequentially performed.

【0003】ところで最近では、熱交換機の小型化、高
性能化の要求が強くなっていることから、それに使われ
る伝熱管にも、管肉厚が均一かつ薄肉で、しかもフロン
等の熱媒体の蒸発および凝縮性能が良いことが望まれて
いる。しかし、前記内面溝付継目無銅管では、加工工程
で偏肉を起こし、それが原因でリフレア加工時に割れを
生じることがあるうえ、引き抜き加工で内面溝を形成す
るために薄肉化および細径化に限界があり、前記要望に
十分応えられるとはいい難かった。
[0003] In recent years, the demand for downsizing and high performance of heat exchangers has been increasing. Therefore, the heat transfer tubes used for the heat exchangers have a uniform and thin wall thickness, and a heat transfer medium such as Freon. Good evaporation and condensation performance is desired. However, in the seamless copper pipe with an inner groove, the uneven thickness is caused in a processing step, which may cause a crack during a refrea processing.In addition, a thinner wall and a smaller diameter are formed in order to form an inner groove by a drawing process. However, it was difficult to meet the above-mentioned demand.

【0004】そこで、一般的な継目無伝熱管の代わり
に、金属条材の段階で複雑な溝加工ができ、そのため良
好な蒸発・凝縮性能を付与しやすく、かつ素材厚さも均
一である内面溝付溶接銅管が多用され始めている。この
ような溶接管においても、前記継目無伝熱管と同様に、
その材質として、導電率の高い(銅および銅合金の場合
は、測定の容易な導電率を熱伝導性の尺度として用いる
ことができる)無酸素銅あるいはリン脱酸銅等の純銅が
多く用いられている。
[0004] Therefore, instead of a general seamless heat transfer tube, a complicated groove can be formed at the stage of a metal strip, so that good evaporation / condensation performance can be easily provided and the inner surface groove having a uniform material thickness. Welded copper tubes are beginning to be used extensively. In such a welded pipe, like the seamless heat transfer pipe,
As the material, pure copper such as oxygen-free copper or phosphorus deoxidized copper having high conductivity (in the case of copper and copper alloys, the conductivity that can be easily measured can be used as a measure of thermal conductivity) is often used. ing.

【0005】[0005]

【発明が解決しようとする課題】現在の多くのユーザー
の使用規格においては、前記純銅製の内面溝付溶接銅管
でも、加工時に割れの問題はほとんど起きておらず、十
分な信頼性が得られている。しかし、今後さらに伝熱管
の細径化および薄肉化が進み、より厳しい加工条件が採
られた場合には、前記純銅製の溶接管では、溶接時の熱
影響により溶接部の近傍で再結晶化が起こり、結晶粒径
の大径化が起こりやすく、リフレア加工条件を厳しくす
ると溶接部から割れが生じる可能性がある。
According to the current standard of use of many users, even with the pure copper inner grooved welded copper pipe, there is almost no cracking problem during processing, and sufficient reliability can be obtained. Have been. However, when the diameter and thickness of the heat transfer tube are further reduced in the future and more severe processing conditions are adopted, the pure copper welded tube is recrystallized in the vicinity of the welded portion due to the heat effect at the time of welding. Occurs, and the crystal grain size tends to increase, and cracking may occur from the welded portion if the refrea processing conditions are strict.

【0006】したがって、将来的には、内面溝付溶接管
のリフレア加工性をいっそう向上することが必要になる
と予想される。本発明は上記事情に鑑みてなされたもの
で、内面溝付溶接銅管においてリフレア加工性をより向
上することを課題としている。
Therefore, in the future, it is expected that it is necessary to further improve the refreaability of the welded pipe with an inner groove. The present invention has been made in view of the above circumstances, and it is an object of the present invention to further improve the refreaability in an internally grooved welded copper pipe.

【0007】[0007]

【課題を解決するための手段】本発明者らは、無酸素銅
およびリン脱酸銅等の内面溝付溶接銅管に比べてリフレ
ア加工性にすぐれ、かつ、熱伝導性との関連で導電率7
0%IACS以上の銅合金素材よりなる内面溝付溶接銅
合金管を開発すべく研究を行なった。その結果、無酸素
銅およびリン脱酸銅をベースとし、それにFe,Cr,
Mn,Ni,Ag,Zn,Sn,Al,Si,Pb,M
g,Te,Zr,BおよびTiの中から選ばれる1種ま
たは2種以上の元素を合わせて0.01〜0.5重量%
含み、残部Cu及び不可避不純物からなる組成を有する
銅合金製の内面溝付溶接銅合金管は、70%IACS以
上の導電率を有し、強度的にも従来の内面溝付溶接銅管
にくらべて優れ、さらに溶接部の近傍と周辺部とで結晶
粒径の差が生じにくく、リフレア加工性に優れていると
いう知見を得るに至った。
Means for Solving the Problems The present inventors have found that, compared to welded copper pipes having an inner surface groove such as oxygen-free copper and phosphorus deoxidized copper, the present invention has an excellent refining workability, and has a conductive property in relation to thermal conductivity. Rate 7
Research was conducted to develop a welded copper alloy tube with an inner groove made of a copper alloy material of 0% IACS or more. As a result, it is based on oxygen-free copper and phosphorous deoxidized copper, with Fe, Cr,
Mn, Ni, Ag, Zn, Sn, Al, Si, Pb, M
g, Te, Zr, B, and one or more elements selected from the group consisting of Ti and 0.01 to 0.5% by weight in total.
A copper alloy welded copper alloy pipe with an inner groove having a composition comprising the balance of Cu and inevitable impurities has a conductivity of 70% IACS or more, and is also stronger in strength than a conventional welded copper pipe with an inner groove. It has been found that there is little difference in the crystal grain size between the vicinity and the peripheral portion of the welded portion, and that it is excellent in refreaability.

【0008】本発明は上記知見に基づいてなされたもの
で、本発明に係る内面溝付溶接銅合金管は、無酸素銅あ
るいはPを0.005〜0.05重量%含むリン脱酸銅
に対し、さらにFe,Cr,Mn,Ni,Ag,Zn,
Sn,Al,Si,Pb,Mg,Te,Zr,Bおよび
Tiの中から選ばれる1種または2種以上の元素を合わ
せて0.01〜0.5重量%含む成分からなり、しかも
溶接部の結晶粒径が溶接部以外の部分の結晶粒径の2倍
以内であることを特徴としている。
The present invention has been made based on the above findings. The welded copper alloy pipe with an inner groove according to the present invention is made of anoxic copper or phosphorus-deoxidized copper containing 0.005 to 0.05% by weight of P. On the other hand, Fe, Cr, Mn, Ni, Ag, Zn,
It consists of a component containing 0.01 to 0.5% by weight in total of one or two or more elements selected from Sn, Al, Si, Pb, Mg, Te, Zr, B and Ti. Is characterized in that the crystal grain size is within twice the crystal grain size of the portion other than the welded portion.

【0009】次に、本発明の内面溝付溶接銅合金管の成
分組成を上記の通りに限定した理由を説明する。Fe,
Cr,Mn,Ni,Ag,Zn,Sn,Al,Si,P
b,Mg,Te,Zr,BおよびTiの各成分は、純銅
あるいはリン脱酸銅母相に固溶し、あるいは化合物相を
形成し、高温加熱に伴う結晶粒の粗大化を抑制するとと
もに、銅合金素材の強度を高め、リフレア加工性を向上
させる作用があるが、上記添加元素の総量が0.01重
量%未満では、前記作用が得られない。
Next, the reason why the composition of the welded copper alloy pipe with an inner groove according to the present invention is limited as described above will be described. Fe,
Cr, Mn, Ni, Ag, Zn, Sn, Al, Si, P
Each component of b, Mg, Te, Zr, B and Ti forms a solid solution in a pure copper or phosphorus deoxidized copper matrix or forms a compound phase, and suppresses coarsening of crystal grains due to high temperature heating. It has the effect of increasing the strength of the copper alloy material and improving the refining processability. However, if the total amount of the additional elements is less than 0.01% by weight, the above effect cannot be obtained.

【0010】一方、上記添加元素の総量が0.5重量%
を超えると、導電率が70%IACS未満となって伝熱
特性が悪化する場合が多くなるうえ、酸化物等の巻き込
みによる溶接部の不健全性が増し、溶接部とそれ以外の
部分との強度差が増大し、拡管加工およびリフレア加工
後の管形状の不均一性が増加して好ましくない。このた
め、上記各成分の総添加量を0.01〜0.5重量%と
定めた。
On the other hand, the total amount of the above-mentioned additional elements is 0.5% by weight.
If it exceeds, the conductivity will be less than 70% IACS, and the heat transfer characteristics will often deteriorate. In addition, the unhealthyness of the welded portion due to entrapment of oxides and the like will increase, and the connection between the welded portion and the other portions will be increased. The strength difference is increased, and the unevenness of the pipe shape after the pipe expansion processing and the refrea processing is increased, which is not preferable. For this reason, the total amount of each of the above components was determined to be 0.01 to 0.5% by weight.

【0011】内面溝付溶接銅合金管は、熱交換機の伝熱
用パイプとして用いられるのであるから導電率は高いほ
ど望ましいが、導電率70%IACS以上であれば、リ
ン脱酸銅(85%IACS以下)と比較して実用上問題
がなく、この程度の導電率(すなわち伝熱性)の差は、
伝熱管の内面溝の形状、その他の設定により十分に補え
る。したがって、本発明に係る内面溝付銅合金管の銅合
金素材の導電率下限は70%IACSに定めた。
The inner grooved welded copper alloy tube is used as a heat transfer pipe for a heat exchanger, and therefore, the higher the conductivity is, the better. However, if the conductivity is 70% IACS or more, the phosphorous deoxidized copper (85% IACS or less), there is no problem in practical use, and this difference in conductivity (that is, heat conductivity) is
The shape of the inner surface groove of the heat transfer tube and other settings can sufficiently compensate for it. Therefore, the lower limit of the electrical conductivity of the copper alloy material of the copper alloy tube with an inner groove according to the present invention was set to 70% IACS.

【0012】さらに、溶接部の結晶粒径がそれ以外の部
分の結晶粒径の2倍以内であれば、リフレア加工性に対
する影響が大きなものとならないことから、両者の結晶
粒径の差を2倍以内と定めた。
Further, if the crystal grain size of the welded portion is less than twice the crystal grain size of the other portions, the influence on the refining workability will not be so large, so that the difference between the two crystal grain sizes is not more than 2 times. It is determined to be within double.

【0013】[0013]

【実施例】次に、本発明に係る内面溝付溶接銅合金管の
実施例を具体的に説明する。表1〜4にそれぞれ示す組
成の銅合金を水冷鋳型を用いて半連続鋳造し、800℃
〜950℃の温度で熱間圧延後、平面研削を行い、厚さ
9mmの板を製造した。この面削した熱延板を厚さ0.
8mmまで冷間圧延し、250℃〜550℃の温度で1
時間焼純後、50%の加工率で厚さ0.4mmまで冷間
圧延し、さらに250℃〜550℃の温度で1時間の焼
純を施した。
Next, an embodiment of a welded copper alloy pipe with an inner groove according to the present invention will be described in detail. Copper alloys of the compositions shown in Tables 1 to 4 were semi-continuously cast using a water-cooled mold,
After hot rolling at a temperature of 9950 ° C., surface grinding was performed to produce a 9 mm thick plate. This hot-rolled sheet with a thickness of 0.
Cold-rolled to 8 mm, 1 at 250-550 ° C
After the time sintering, it was cold-rolled to a thickness of 0.4 mm at a processing rate of 50%, and further subjected to sintering at a temperature of 250 ° C to 550 ° C for 1 hour.

【0014】得られた各銅合金製の素条を、スリッター
により幅31mm間隔で裁断し、溝付圧延ロールによっ
てエンボス加工し、図1(管に成形した状態)に示す山
部2および溝部3を形成した後、板条材を溝形成面を内
面側に向けた状態で電縫装置にセットし、多段階に駆動
ロールおよびアイドラの間を通して板条材を幅方向に丸
めていき、最終的に板条材の両側縁部を溶接して管形に
成形した。図1中符号4が溶接部であり、管の軸線方向
へ延びて形成される(内面溝付溶接管の製造方法につい
ては、特開平4−157036号公報参照)。
Each of the obtained copper alloy strips is cut at a width of 31 mm by a slitter, embossed by a grooved rolling roll, and has a crest 2 and a groove 3 shown in FIG. After forming the sheet material, the sheet material is set in the ERW device with the groove forming surface facing the inner surface side, and the sheet material is rolled in the width direction through the drive roll and the idler in multiple stages, and finally, Then, both side edges of the strip material were welded and formed into a tubular shape. In FIG. 1, reference numeral 4 denotes a welded portion, which is formed to extend in the axial direction of the tube (for a method of manufacturing a welded tube having an inner groove, see Japanese Patent Application Laid-Open No. 4-157636).

【0015】成形した管を伸管加工により外径9.52
mmの管体とし、最終的に250℃〜550℃の温度で
1時間の焼純を行い、本発明に係る実施例1〜15の内
面溝付溶接銅合金管、および添加元素の含有率が本発明
の範囲から外れた比較例1〜4の内面溝付溶接銅合金管
を製造した。一方、無酸素銅およびリン脱酸銅をそれぞ
れ使用し、前記と全く同じ方法で比較例5,6の内面溝
付溶接銅管をそれぞれ製造した。また、市販されている
同一寸法のリン脱酸銅製継目無銅管を比較例7とした。
The outer diameter of the formed tube is 9.52 by drawing.
mm, and finally subjected to refining for 1 hour at a temperature of 250 ° C. to 550 ° C., and the content of the inner grooved welded copper alloy pipe of Examples 1 to 15 according to the present invention and the content of the additive element is The welded copper alloy tubes with inner grooves of Comparative Examples 1 to 4 which were out of the range of the present invention were produced. On the other hand, welded copper pipes with inner surface grooves of Comparative Examples 5 and 6 were produced in exactly the same manner as described above, using oxygen-free copper and phosphorus deoxidized copper, respectively. In addition, a commercially available seamless copper tube made of phosphorus-deoxidized copper having the same dimensions and being commercially available was used as Comparative Example 7.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【表3】 [Table 3]

【0019】[0019]

【表4】 [Table 4]

【0020】実施例1〜15、比較例1〜7の各伝熱管
について、以下のような試験および測定を行った。これ
らの結果を表5に示す。
The following tests and measurements were performed on the heat transfer tubes of Examples 1 to 15 and Comparative Examples 1 to 7. Table 5 shows the results.

【0021】(1)引張試験 JIS−Z2241およびJIS−Z2201に準じた
方法により引張試験を行い、引張強さおよび伸びを測定
した。 (2)導電率測定 JIS−H0505の方法により、エンボス加工前の各
銅合金素条について、導電率を測定した。
(1) Tensile test A tensile test was performed by a method according to JIS-Z2241 and JIS-Z2201, and the tensile strength and elongation were measured. (2) Conductivity Measurement The conductivity of each copper alloy strip before embossing was measured by the method of JIS-H0505.

【0022】(3)結晶粒径比の測定 溶接部(溶接部中心から0.15mm以内)とそれ以外
の部分(溶接時の熱影響を受けていない部位)との結晶
粒径の差は、結晶粒の大きい部位の粒径を分子、小さい
部位の粒径を分母とする結晶粒径比で表した。
(3) Measurement of crystal grain size ratio The difference in crystal grain size between the welded portion (within 0.15 mm from the center of the welded portion) and the other portion (the portion not affected by heat during welding) is as follows. The grain size at a portion where a crystal grain is large is represented by a numerator, and the grain size at a portion where a crystal grain is small is a denominator.

【0023】(4)リフレア加工性 現在採用されている規格ではリフレア加工割れがほとん
ど発生しないので、判定基準をより厳しくして、実施例
1〜15および比較例1〜7の同一寸法の内面溝付継目
無銅管各20本について、円錐形のプラグを端部から挿
入し、押拡倍率1.70にて押拡げ試験を行い、割れ不
良発生率(%)を求めた。
(4) Refrea workability Since the refrea work cracking hardly occurs in the currently adopted standard, the criterion is made stricter, and the inner surface grooves of the same dimensions in Examples 1 to 15 and Comparative Examples 1 to 7 are used. For each of the 20 seamless copper tubes, a conical plug was inserted from the end, and a spreading test was performed at a expansion ratio of 1.70 to determine the crack occurrence rate (%).

【0024】[0024]

【表5】 [Table 5]

【0025】表5に示される結果から明らかなように、
本発明に係る実施例1〜15の内面溝付溶接銅合金管
は、各比較例1〜7に比して溶接熱による結晶粒径の大
形化も起きにくく、押拡げ試験結果も良好で、リフレア
加工性に優れている。それにも拘らず、導電率(熱伝導
率)の点で殆ど遜色がなく、強度も十分に高い。
As is clear from the results shown in Table 5,
The welded copper alloy pipes with inner grooves of Examples 1 to 15 according to the present invention are less likely to have a large crystal grain size due to welding heat as compared with Comparative Examples 1 to 7, and have good spread test results. , Excellent in refrea workability. Nevertheless, there is almost no difference in electrical conductivity (thermal conductivity) and the strength is sufficiently high.

【0026】[0026]

【発明の効果】以上説明したように、本発明の内面溝付
溶接銅合金管によれば、拡径率が大きいリフレア加工等
を行った場合にも管端部に割れが生じにくく、伝熱管の
信頼性向上および製造歩留まりが向上できる。また、伝
熱管の加工特性が改善される分、その細径化および薄肉
化が可能である。
As described above, according to the welded copper alloy pipe with an inner surface groove of the present invention, even when refrearing or the like having a large diameter expansion rate is performed, cracks are less likely to occur at the pipe end, and the heat transfer pipe And the manufacturing yield can be improved. In addition, as the processing characteristics of the heat transfer tube are improved, the diameter and the thickness of the heat transfer tube can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る内面溝付溶接銅合金管の断面図で
ある。
FIG. 1 is a sectional view of a welded copper alloy pipe with an inner surface groove according to the present invention.

【符号の説明】[Explanation of symbols]

1 内面溝付溶接銅合金管 2 山部 3 溝部 4 溶接部 DESCRIPTION OF SYMBOLS 1 Internally grooved welded copper alloy pipe 2 Crest 3 Groove 4 Weld

───────────────────────────────────────────────────── フロントページの続き (72)発明者 桝川 清慥 福島県会津若松市扇町128の7 三菱伸 銅株式会社 若松製作所内 (72)発明者 ▲すくも▼田 俊▲緑▼ 福島県会津若松市扇町128の7 三菱伸 銅株式会社 若松製作所内 (56)参考文献 特開 昭52−156719(JP,A) 実開 平3−106206(JP,U) 特公 昭58−39900(JP,B2) (58)調査した分野(Int.Cl.6,DB名) C22C 9/00 - 9/10 F28F 1/40──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kiyosu Masukawa 128-7 Ogimachi, Aizuwakamatsu-shi, Fukushima Prefecture Mitsubishi Shindo Copper Co., Ltd. Wakamatsu Works (72) Inventor ▲ Sukumo ▼ Shun Tadashi ▲ Green ▼ 128-7, Ogimachi Mitsubishi Shindo Copper Co., Ltd. Wakamatsu Works (56) References JP-A-52-156719 (JP, A) JP-A-3-106206 (JP, U) JP-B-58-39900 (JP, B2) (58) Field surveyed (Int. Cl. 6 , DB name) C22C 9/00-9/10 F28F 1/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 板条材を管状に丸めその両側縁を突き合
わせて溶接した内面溝付溶接銅合金管であって、Fe,
Cr,Mn,Ni,Ag,Zn,Sn,Al,Si,P
b,Mg,Te,Zr,BおよびTiから選ばれる1種
または2種以上の元素を合わせて0.01〜0.5重量
%含み、残部Cuおよび不可避不純物からなり、かつ溶
接部の結晶粒径が溶接部以外の部分の結晶粒径の2倍以
内であることを特徴とする内面溝付溶接銅合金管。
1. A sheet material is rolled into a tube and its both edges are butted together.
A welded copper alloy pipe with an inner groove welded together ,
Cr, Mn, Ni, Ag, Zn, Sn, Al, Si, P
b, Mg, Te, Zr, B, and one or more elements selected from the group consisting of Ti and 0.01 to 0.5% by weight in total, the balance being Cu and unavoidable impurities, and the crystal grains of the welded portion An inner grooved welded copper alloy tube having a diameter within two times the crystal grain size of a portion other than the welded portion.
【請求項2】 板条材を管状に丸めその両側縁を突き合
わせて溶接した内面溝付溶接銅合金管であって、Pを
0.005〜0.05重量%含み、さらにFe,Cr,
Mn,Ni,Ag,Zn,Sn,Al,Si,Pb,M
g,Te,Zr,BおよびTiから選ばれる1種または
2種以上の元素を合わせて0.01〜0.5重量%含
み、残部Cuおよび不可避不純物からなり、かつ溶接部
の結晶粒径が溶接部以外の部分の結晶粒径の2倍以内で
あることを特徴とする内面溝付溶接銅合金管。
2. A sheet material is rolled into a tubular shape and its side edges are butted together.
A welded copper alloy tube with an inner groove, which is welded together, containing 0.005 to 0.05% by weight of P, and further containing Fe, Cr,
Mn, Ni, Ag, Zn, Sn, Al, Si, Pb, M
g, Te, Zr, B and one or more elements selected from the group consisting of Ti and 0.01 to 0.5% by weight in total, the balance being Cu and unavoidable impurities, and the grain size of the welded portion is An internally grooved welded copper alloy pipe having a grain size within twice the grain size of a portion other than a welded portion.
JP4214391A 1992-08-11 1992-08-11 Welded copper alloy pipe with inner groove Expired - Fee Related JP2758536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4214391A JP2758536B2 (en) 1992-08-11 1992-08-11 Welded copper alloy pipe with inner groove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4214391A JP2758536B2 (en) 1992-08-11 1992-08-11 Welded copper alloy pipe with inner groove

Publications (2)

Publication Number Publication Date
JPH0658688A JPH0658688A (en) 1994-03-04
JP2758536B2 true JP2758536B2 (en) 1998-05-28

Family

ID=16655017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4214391A Expired - Fee Related JP2758536B2 (en) 1992-08-11 1992-08-11 Welded copper alloy pipe with inner groove

Country Status (1)

Country Link
JP (1) JP2758536B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2716403A1 (en) 2012-09-12 2014-04-09 KME France SAS Copper alloys for heat exchangers

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2316685B (en) 1996-08-29 2000-11-15 Outokumpu Copper Oy Copper alloy and method for its manufacture
DK1777305T3 (en) 2004-08-10 2011-01-03 Mitsubishi Shindo Kk Copper base alloy casting with refined crystal grains
JP4951517B2 (en) * 2005-09-30 2012-06-13 三菱伸銅株式会社 Melt-solidified product, copper alloy material for melt-solidification, and method for producing the same
US20100008817A1 (en) * 2006-10-04 2010-01-14 Tetsuya Ando Copper alloy for seamless pipes
JP5260109B2 (en) * 2007-03-31 2013-08-14 株式会社コベルコ マテリアル銅管 Copper alloy member and heat exchanger
JP5208562B2 (en) * 2008-04-04 2013-06-12 住友軽金属工業株式会社 Seamless pipe
JP5544591B2 (en) * 2011-01-20 2014-07-09 株式会社神戸製鋼所 Copper alloy tube

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52156719A (en) * 1976-06-23 1977-12-27 Furukawa Metals Co Copper alloy with anti softening property
JPS5839900A (en) * 1981-09-01 1983-03-08 Nippon Kokan Kk <Nkk> Emergency control method and device for oil leakage from submarine pipeline
JP3106206U (en) * 2004-05-24 2004-12-16 立 澤口 A device that blocks birds from entering the jet engine and removes birds from the intake area

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2716403A1 (en) 2012-09-12 2014-04-09 KME France SAS Copper alloys for heat exchangers

Also Published As

Publication number Publication date
JPH0658688A (en) 1994-03-04

Similar Documents

Publication Publication Date Title
US20160363397A1 (en) Copper alloy for heat exchanger tube
US20160298914A1 (en) Aluminum Alloy Heat Exchanger
JP3847077B2 (en) Aluminum alloy fin material for heat exchangers with excellent formability and brazing
WO2009081664A1 (en) High-strength highly heat-conductive copper alloy pipe and process for producing the same
JP3794971B2 (en) Copper alloy tube for heat exchanger
JP2758536B2 (en) Welded copper alloy pipe with inner groove
JPS6256228B2 (en)
JP3414294B2 (en) ERW welded copper alloy tube for heat exchanger with excellent 0.2% proof stress and fatigue strength
JPS6245301B2 (en)
JP3347001B2 (en) Heat-resistant copper-based alloy
JP3345845B2 (en) Aluminum alloy brazing sheet strip for ERW processing
JP3256904B2 (en) Aluminum alloy extrusion tube for heat exchanger of O material type
JP3396523B2 (en) Al alloy fin material with excellent post-brazing strength and brazing properties
JP2002161324A (en) Aluminum alloy fin-material for heat exchanger superior in formability and brazability
US20080251162A1 (en) Copper alloy and method for its manufacture
JPH03197652A (en) Production of aluminum alloy fin material for brazing
JP3291042B2 (en) Aluminum alloy fin material and method for manufacturing aluminum alloy heat exchanger
JP3396521B2 (en) Al alloy fin material with excellent post-brazing strength and brazing properties
JPH0472032A (en) Aluminum fin material for automobile heat exchanger
JPH0357177B2 (en)
JP2002155332A (en) Aluminum alloy fin material for heat exchanger having excellent formability and brazability
JP2002235132A (en) Internally grooved welded tube made of copper alloy and fin tube type heat exchanger using the same
JPH0371495B2 (en)
JPS6323260B2 (en)
JP3014413B2 (en) Aluminum fin material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980217

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees