JPH0357177B2 - - Google Patents

Info

Publication number
JPH0357177B2
JPH0357177B2 JP59041371A JP4137184A JPH0357177B2 JP H0357177 B2 JPH0357177 B2 JP H0357177B2 JP 59041371 A JP59041371 A JP 59041371A JP 4137184 A JP4137184 A JP 4137184A JP H0357177 B2 JPH0357177 B2 JP H0357177B2
Authority
JP
Japan
Prior art keywords
brazing
alloy
fin
tube
fin material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59041371A
Other languages
Japanese (ja)
Other versions
JPS60187653A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4137184A priority Critical patent/JPS60187653A/en
Priority to AU39033/85A priority patent/AU582139B2/en
Priority to US06/706,140 priority patent/US4749627A/en
Priority to DE19853507956 priority patent/DE3507956A1/en
Publication of JPS60187653A publication Critical patent/JPS60187653A/en
Publication of JPH0357177B2 publication Critical patent/JPH0357177B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ろう付け接合によるAl製熱交換器
のフイン材用Al合金に関し、さらに詳しくは、
要求される性能のなかで、とりわけ熱伝導性を高
め、熱交換器の熱交換率(冷房能力)の向上を図
ることのできるようにしたフイン材用Al合金に
関するものである。 一般にろう付け接合によるAl製熱交換器は、
水等の冷媒を通す通路(以下チユーブという)と
熱を放射するフインとからなり、チユーブとして
は、熱交換器の用途に応じて、押出偏平多穴管、
又はAl−Si系ろう材をクラツドしたブレージン
グシートによる電縫偏平管が用いられている。ま
た、フイン材としては第1図に示すような、芯材
1の両面にAl−Si系ろう材2をクラツドしてな
るブレージングシート、又はろう材をクラツドし
ない裸のフイン材が用いられている。 ろう付けによるAl製熱交換器の具体例は第2
図に示される。第2図イはエバポレーター、ロは
コンデンサーであり、いずれも押出偏平多穴管3
と第1図のブレージングシートのフイン材を組合
せたものである。ハはラジエーターであり、片面
にAl−Si系ろう材をクラツドしたブレージング
シートで電縫偏平管3を製作し、この管(管の外
側にろう材がくる)と裸のフイン材と組合せたも
のである。これらの熱交換器の管とコルゲートフ
インは約600℃前後の温度でフラツクスろう付け、
真空ろう付け又は不活性ガス雰囲気ろう付けによ
り組立てられている。 ところで従来このようなろう付けによるAl製
熱交換器においてはフイン材4として耐座屈性の
良いAl−Mn系合金、例えば3003合金(Al−0.05
〜0.20wt%Cu−1.0〜1.5wt%Mn合金〔以下wt%
を単に%と略記〕)又は3203合金(Al−1.0〜1.5
%Mn合金)を芯材として、その両面にAl−Si合
金ろう材(Al−5〜12%Si合金)Al−Si−Mg合
金ろう材(Al−5〜12%Si−0.5〜2%Mg合金)
等をクラツドした厚さ0.1〜0.2mmの薄板(ブレー
ジングシート)、又は厚さ0.1〜0.2mmの前記3003、
3203合金からなる裸の薄板が使用されている。 しかしながら3003合金、3203合金のようなAl
−Mn系合金からなるフイン材4は、耐座屈性は
優れるものの熱伝導性が必ずしも高いとは言え
ず、これがこのフイン材を用いた熱交換器の放熱
性を悪くする原因となつていた。 一方、熱交換器の中でも特に自動車用熱交換器
は近年重量軽減、小型化の方向にありフインの薄
肉化と共に、熱交換器の性能向上すなわち熱交換
率(冷房能力)の向上が求められてきている。 したがつて、(1)熱伝導性が優れ、(2)ブレージン
グ接合を行う際のフインのへたりや変形がなく(3)
さらにチユーブの腐食を防止するいわゆる犠牲陽
極効果(チユーブの陰極防食効果)が優れる−な
どの各種性能を具備するフイン材の開発に対する
要望が高まつている。 本発明者らは、このような要求に合致するフイ
ン材を開発するため鋭意研究を重ねた結果、Al
中のFe及びSi成分の含有量を所定量以下に規制
したAlを用いることにより、フイン材の熱伝導
性を向上し得ること、さらにはこれにZn、Inを
所定量添加することによりフイン材の耐座屈性及
び犠牲陽極効果を一層向上し得ることを見出し
た。本発明はこの知見に基づいてなされるに至つ
たものである。 すなわち本発明は Fe0.2%以下、Si0.1%以下で、Cr0.01〜0.3%を
含み、さらにZn0.2〜2.0%、In0.01〜0.1%のうち
1種又は2種を含有し、残部がAl及び不可避不
純物からなることを特徴とする熱交換器フイン材
用Al合金、 を提供するものである。 以下本発明における各成分の作用とその含有量
を上記の如く限定した理由を記す。 (a) Fe、Si Feを0.20%以下、Siを0.10%以下の範囲に規
制することにより、Alの熱伝導性を高め、ろ
う付け時の耐座屈性を著しく向上させることが
できる。Fe、Siをこの範囲に抑えることによ
り、ブレージングシートフイン材においてはろ
う付け直前の芯材の再結晶粒径を大きくでき、
ろう材中のSiの芯材粒界への拡散を低減してフ
イン材の耐座屈性を向上させることができる。
Fe、Siの含有量が上記範囲を超えると熱伝導
性、耐座屈性が劣化する。 (b) Cr Fe、Si量を上記範囲に規制したAlにCr0.01
〜0.3%を添加した合金は、熱伝導性を保持し
ながらさらに耐座屈性を向上せしめたものとな
る。この添加量が0.01%未満では耐座屈性の向
上が十分でなく0.3%を超えると大きな金属間
化合物が晶出して、塑性加工性が低下するとと
もに熱伝導性能が低下する。 (c) Zn、In Fe及びSi量を前記の如く規制したAl及びこ
れにCrを添加した合金に、Zn0.2〜2.0%、
In0.01〜0.1%を単独又は併用で添加することに
より、熱伝導性を保持しながら犠牲陽極効果を
向上させることができる。Zn又はInが上記範
囲の下限未満では、その犠牲陽極効果が得られ
なく、上限を超えると塑性加工性が低下すると
ともに、熱伝導性が低下する。 なお本発明においてCu、Ti、Mn等の不可避の
不純物はAl分99%以上のAl地金相当(Cu0.02%
以下、Ti、Mnは各々0.03%以下)であれば問題
ない。 本発明のフイン材用Al合金を用いたフイン材
は、芯材の両面にろう材を被覆した合せ板(ブレ
ージングシート)もしくは裸板で、半硬質板とし
て使用される。厚さは通常約0.1〜0.2mm、幅約20
〜100mmの範囲である。 本発明に係るAl合金は、耐座屈性が特にすぐ
れるため、第2図イのエバポレーター用フインは
もちろん、第2図ロ及びハのコンデンサーもしく
はラジエーター用フイン(通常、フイン幅20〜40
mm)にも使用することができる。 フイン材の熱伝導特性の評価は、次のようにし
て行うことができ、本発明の熱交換器フイン材用
Al及びAl合金の熱伝導特性はこの方法に従つて
試験、評価した。 (1) 材料の熱伝導度は電気伝導度に比例するので
電気伝導度の測定により、熱伝導特性を予測す
る。 (2) フイン材用薄板から実際にフインを形成し、
熱交換器に組立て、熱交換率(冷房能力)を測
定してその効果を確認する。 本発明のAl合金板の製造方法には特に制限は
なく、通常の方法により作ることができる。まず
各成分を含有する鋳塊を作り、このようにして得
られたAl及びAl合金鋳塊は、均熱処理、熱間圧
延され、続いて冷間圧延され、必要に応じて中間
焼鈍し、最終的に半硬質程度の薄板に仕上げて使
用される。 次に本発明を実施例に基づきさらに詳細に説明
する。 実施例 1 通常の溶解法により、第1表に示す組成物の
Al合金を溶製し、水冷鋳造して鋳塊とした。な
お同表に表示しないがこれらのAl合金はいずれ
も不可避の不純物としてCu0.02%以下、Ti0.03%
以下、Mn0.03%以下(従来合金のみ1.1%)を含
んでいる。 次にこの鋳塊を550℃の温度で3時間均熱処理
を行つたのち両面を面削し、この両面にろう材
4045(Al−9%Si合金)板を合せ、これを500℃
の温度に再度加熱して熱間圧延し、厚さ5mmの合
せ板とした。これを0.2mm厚まで冷間圧延し、次
いで中間焼鈍(360℃×2時間)し、0.16mm厚
(ろう材のクラツド率;片面10%)まで冷間圧延
して合せフイン材の試料を作成した。 この試料について、ろう付加熱(610℃×3分)
後の導電率、垂下量(耐座屈性)を測定した。そ
の結果を第2表に記した。 なお、導電率は純銅の導電率を100として比較
した場合の値である。また垂下量の測定は、幅22
mm×長さ50mmの試料を切出し、第3図の如く一端
を30mm突出させ他端を治具に固定し、加熱後の先
端の垂下量を測定して行つた。垂下量(h)が2
mm以下を◎、2mmを超え5mm以下を〇、5mmを超
えるものを×で表示した。 なお、ろう材4045板を合せない裸の芯材のみに
よるフイン材(圧さ0.16mm、半硬質板)を試作
し、これについても上記と同様にして導電率垂下
量を測定した。その結果を第3表に示した。
The present invention relates to an Al alloy for the fin material of an Al heat exchanger that is joined by brazing, and more specifically,
Among the required performances, this relates to an Al alloy for fin materials that has particularly high thermal conductivity and is capable of improving the heat exchange coefficient (cooling capacity) of a heat exchanger. Generally, aluminum heat exchangers are made by brazing.
It consists of a passage for passing a refrigerant such as water (hereinafter referred to as a tube) and a fin that radiates heat.The tube can be an extruded flat multi-hole tube, an extruded flat multi-hole tube, depending on the purpose of the heat exchanger.
Alternatively, an electric resistance welded flat tube made of a brazing sheet clad with an Al-Si brazing material is used. In addition, as the fin material, a brazing sheet made of a core material 1 clad with Al-Si brazing material 2 on both sides, as shown in Fig. 1, or a bare fin material without cladding the brazing material 2 is used. . A specific example of an Al heat exchanger made by brazing is shown in Part 2.
As shown in the figure. In Figure 2, A is an evaporator and B is a condenser, both of which are extruded flat multi-hole tubes.
This is a combination of the fin material of the brazing sheet shown in FIG. C is a radiator, which is made by fabricating an ERW flat tube 3 from a brazing sheet with Al-Si brazing material clad on one side, and combining this tube (brazing material is on the outside of the tube) with bare fin material. It is. The tubes and corrugated fins of these heat exchangers are flux brazed at a temperature of approximately 600℃.
Assembled by vacuum brazing or inert gas atmosphere brazing. By the way, in conventional brazed aluminum heat exchangers, the fin material 4 is made of an Al-Mn alloy with good buckling resistance, such as 3003 alloy (Al-0.05
~0.20wt%Cu−1.0~1.5wt%Mn alloy [hereinafter wt%
is simply abbreviated as %]) or 3203 alloy (Al-1.0~1.5
%Mn alloy) as the core material, and Al-Si alloy brazing material (Al-5-12%Si alloy) Al-Si-Mg alloy brazing material (Al-5-12%Si-0.5-2%Mg) on both sides. alloy)
A thin plate (brazing sheet) with a thickness of 0.1 to 0.2 mm, or the above 3003 with a thickness of 0.1 to 0.2 mm,
A bare sheet of 3203 alloy is used. However, Al such as 3003 alloy and 3203 alloy
- Although the fin material 4 made of a Mn-based alloy has excellent buckling resistance, it cannot necessarily be said that it has high thermal conductivity, and this is the cause of poor heat dissipation of heat exchangers using this fin material. . On the other hand, in recent years, heat exchangers, especially those for automobiles, have become lighter and more compact.In addition to thinning the fins, there is a need to improve the performance of the heat exchanger, that is, the heat exchange rate (cooling capacity). ing. Therefore, (1) it has excellent thermal conductivity, (2) there is no sagging or deformation of the fins during brazing joints, and (3)
Furthermore, there is an increasing demand for the development of fin materials that have various properties such as excellent so-called sacrificial anode effect (cathodic protection effect of tubes) for preventing corrosion of tubes. As a result of intensive research to develop a fin material that meets these requirements, the present inventors discovered that Al
The thermal conductivity of the fin material can be improved by using Al in which the content of Fe and Si components is regulated below a specified amount, and furthermore, by adding a specified amount of Zn and In to this, the fin material can be improved. It has been found that the buckling resistance and sacrificial anode effect of the present invention can be further improved. The present invention has been made based on this knowledge. That is, the present invention contains 0.2% or less of Fe, 0.1% or less of Si, 0.01 to 0.3% of Cr, and further contains one or two of 0.2 to 2.0% of Zn and 0.01 to 0.1% of In. The present invention provides an Al alloy for a heat exchanger fin material, characterized in that the remainder consists of Al and unavoidable impurities. The effects of each component in the present invention and the reason for limiting the content thereof as described above will be described below. (a) Fe, Si By regulating Fe to 0.20% or less and Si to 0.10% or less, the thermal conductivity of Al can be increased and the buckling resistance during brazing can be significantly improved. By suppressing Fe and Si within this range, in brazing sheet fin materials, the recrystallized grain size of the core material immediately before brazing can be increased,
The buckling resistance of the fin material can be improved by reducing the diffusion of Si in the brazing filler metal to the grain boundaries of the core material.
If the content of Fe and Si exceeds the above range, thermal conductivity and buckling resistance will deteriorate. (b) Cr0.01 in Al with Cr Fe, Si content regulated within the above range
The alloy containing up to 0.3% has further improved buckling resistance while maintaining thermal conductivity. If the amount added is less than 0.01%, buckling resistance will not be sufficiently improved, and if it exceeds 0.3%, large intermetallic compounds will crystallize, resulting in a decrease in plastic workability and thermal conductivity. (c) Zn0.2 to 2.0% to Al and an alloy with Cr added thereto, with the amounts of Zn, In Fe, and Si regulated as described above.
By adding 0.01 to 0.1% In alone or in combination, the sacrificial anode effect can be improved while maintaining thermal conductivity. If Zn or In is less than the lower limit of the above range, the sacrificial anode effect cannot be obtained, and if it exceeds the upper limit, plastic workability and thermal conductivity will decrease. In addition, in the present invention, unavoidable impurities such as Cu, Ti, and Mn are equivalent to Al base metal with an Al content of 99% or more (Cu0.02%).
Below, there is no problem if Ti and Mn are each 0.03% or less. The fin material using the Al alloy for fin material of the present invention is a laminated board (brazing sheet) in which both sides of the core material are coated with a brazing material, or a bare board, and is used as a semi-rigid board. Thickness is usually about 0.1-0.2mm, width about 20mm
~100mm range. Since the Al alloy according to the present invention has particularly excellent buckling resistance, it can be used not only for the evaporator fin shown in Figure 2 A, but also for the condenser or radiator fin shown in Figure 2 B and C (usually with a fin width of 20 to 40 mm).
mm) can also be used. Evaluation of the heat conduction properties of the fin material can be performed as follows.
The thermal conductivity properties of Al and Al alloys were tested and evaluated according to this method. (1) Since the thermal conductivity of a material is proportional to its electrical conductivity, thermal conductivity characteristics can be predicted by measuring electrical conductivity. (2) Actually forming fins from thin sheets for fin material,
Assemble it into a heat exchanger and measure the heat exchange rate (cooling capacity) to confirm its effectiveness. There are no particular restrictions on the method of manufacturing the Al alloy plate of the present invention, and it can be manufactured by a conventional method. First, an ingot containing each component is made, and the thus obtained Al and Al alloy ingots are subjected to soaking treatment, hot rolling, then cold rolling, intermediate annealing as necessary, and final It is generally used by finishing it into a semi-rigid thin plate. Next, the present invention will be explained in more detail based on examples. Example 1 The compositions shown in Table 1 were prepared by conventional dissolution methods.
Al alloy was melted and water-cooled to form an ingot. Although not shown in the same table, all of these Al alloys contain Cu 0.02% or less and Ti 0.03% as unavoidable impurities.
The following contains Mn 0.03% or less (1.1% for conventional alloys). Next, this ingot was subjected to soaking treatment at a temperature of 550℃ for 3 hours, and then both sides were face-milled.
4045 (Al-9%Si alloy) plates were combined and heated to 500℃.
The sample was heated again to a temperature of 100 mL and hot-rolled to form a laminated plate with a thickness of 5 mm. This was cold rolled to a thickness of 0.2mm, then intermediate annealed (360℃ x 2 hours), and cold rolled to a thickness of 0.16mm (clud rate of brazing metal: 10% on one side) to create a sample of laminated fin material. did. For this sample, brazing heat (610℃ x 3 minutes)
The electrical conductivity and amount of droop (buckling resistance) after the test were measured. The results are shown in Table 2. Note that the electrical conductivity is a value when compared with the electrical conductivity of pure copper as 100. Also, when measuring the amount of droop, the width is 22mm.
A sample of mm x length 50 mm was cut out, one end was made to protrude 30 mm as shown in Fig. 3, the other end was fixed to a jig, and the amount of droop of the tip after heating was measured. Drooping amount (h) is 2
mm or less is indicated by ◎, greater than 2 mm and less than 5 mm is indicated by ○, and greater than 5 mm is indicated by ×. In addition, a prototype fin material (thickness 0.16 mm, semi-rigid plate) consisting of only a bare core material without a brazing material 4045 plate was made, and the amount of conductivity droop was also measured for this material in the same manner as above. The results are shown in Table 3.

【表】【table】

【表】【table】

【表】 実施例 2 実施例1で作成したフイン材用Al合金薄板試
料(No.1〜3(発明合金)及びNo.8(従来合金))
を使用して第2図イに示すコルゲートフインを有
するエバポレーターを試作した(フインの幅100
mm;チユーブは押出20穴チユーブ、1050の純Al、
外周肉厚0.8mm;弗化物系フラツクスを用いた不
活性ガスろう付)。 このコアについて、冷房能力、フインの耐座屈
性及び腐食試験によるチユーブの最大孔食深さを
測定した。なお冷房能力試験についてはフイン材
試料No.2、3及び8について行つた。 試験方法及び判定方法は次の通りである。 (1) 冷房能力試験 JIS D 1618(自動車用冷房機試験方法)に
準じて行つた。 (2) フインの耐座屈性 ろう付時にフインの座屈によるフインと押出
チユーブのろう付不良のないことを前提とし、
さらに曲げたチユーブの間隔(;ろう付け前
22mm)をろう付前後で比較し、減少量の0.3mm
以下を耐座屈性良とした。 (3) 腐食試験 15Kg/cm2の圧力でN2ガスをコアに充填しキ
ヤス試験を720Hr(1ケ月)行い、圧洩れまで
の時間を比較した。圧洩れのない場合は、チユ
ーブに発生した最大孔食深さを測定しこれを比
較した。 その結果を第4表に記した。
[Table] Example 2 Al alloy thin plate samples for fin materials prepared in Example 1 (No. 1 to 3 (invention alloy) and No. 8 (conventional alloy))
Using this, we prototyped an evaporator with corrugated fins shown in Figure 2 A (fin width 100 mm).
mm; Tube is extruded 20-hole tube, 1050 pure Al,
Outer wall thickness 0.8mm; inert gas brazing using fluoride flux). Regarding this core, the cooling capacity, the buckling resistance of the fins, and the maximum pitting depth of the tube in a corrosion test were measured. The cooling capacity test was conducted on fin material samples No. 2, 3, and 8. The test method and judgment method are as follows. (1) Cooling capacity test Conducted in accordance with JIS D 1618 (Test method for automotive air conditioners). (2) Fin buckling resistance It is assumed that there is no brazing failure between the fin and extruded tube due to buckling of the fin during brazing.
The distance between the bent tubes (before brazing)
22mm) before and after brazing, the reduction was 0.3mm.
The following were considered to have good buckling resistance. (3) Corrosion test The core was filled with N 2 gas at a pressure of 15 kg/cm 2 and a catastrophic test was conducted for 720 hours (1 month), and the time until pressure leakage was compared. If there was no pressure leakage, the maximum pitting depth that occurred in the tube was measured and compared. The results are shown in Table 4.

【表】 実施例 3 実施例1で作成したフイン材用Al合金薄板試
料No.1〜3、8を使用して第2図ロに示すコンデ
ンサーを試作した(フイン幅22mm、チユーブは押
出4穴チユーブ、純アルミ1050、外周肉厚0.8mm、
弗化物系スラツクスを用いた不活性ガスろう付)。
このコアについて冷房能力、フインの耐座屈性を
実施例2と同様にして試験した。 なお冷房能力試験についてはフイン材試料No.
1、8について行つた。その結果を第5表に記し
た。
[Table] Example 3 Using Al alloy thin plate samples No. 1 to 3 and 8 for fin materials prepared in Example 1, a capacitor shown in Figure 2 B was prototyped (fin width 22 mm, tube with extruded 4 holes). Tube, pure aluminum 1050, outer wall thickness 0.8mm,
Inert gas brazing using fluoride slacks).
This core was tested for cooling capacity and buckling resistance of the fins in the same manner as in Example 2. Regarding the cooling capacity test, fin material sample No.
I followed 1 and 8. The results are shown in Table 5.

【表】 このように本発明によれば、熱伝導性特性ばか
りでなく、耐座屈性、犠牲陽極効果のより優れた
フイン材を提供することができる。したがつて一
層のフイン材の薄肉化が可能となり耐食性が高く
放熱特性に優れた小型、軽量化した熱交換器を製
造することができる。
[Table] As described above, according to the present invention, it is possible to provide a fin material that has not only excellent thermal conductivity properties but also excellent buckling resistance and sacrificial anode effect. Therefore, it is possible to further reduce the thickness of the fin material, and it is possible to manufacture a small and lightweight heat exchanger that has high corrosion resistance and excellent heat dissipation characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はフイン用ブレージングシートの例を示
す側断面図、第2図イ,ロ,ハはそれぞれAl製
熱交換器の一例を示すもので、イはエバポレータ
ー、ロはコンデンサーハはラジエーターを示す説
明図である。第3図は耐座屈性試験装置の一例を
示す説明図である。 1…フイン材、2…ろう材、3…チユーブ、4
…コルゲート状フイン、5…治具、6…試料。
Figure 1 is a side sectional view showing an example of a brazing sheet for fins, and Figure 2 A, B, and C each show an example of an Al heat exchanger, where A is an evaporator, B is a condenser, and C is a radiator. It is an explanatory diagram. FIG. 3 is an explanatory diagram showing an example of a buckling resistance testing device. 1... Fin material, 2... Brazing material, 3... Tube, 4
... Corrugated fin, 5... Jig, 6... Sample.

Claims (1)

【特許請求の範囲】[Claims] 1 Fe0.2wt%以下、Si0.1wt%以下で、Cr0.01〜
0.3wt%を含み、さらにZn0.2〜2.0wt%、In0.01
〜0.1wt%のうち1種又は2種を含有し、残部が
Al及び不可避不純物からなることを特徴とする
熱交換器フイン材用Al合金。
1 Fe0.2wt% or less, Si0.1wt% or less, Cr0.01~
Contains 0.3wt%, additionally Zn0.2~2.0wt%, In0.01
Contains one or two of ~0.1wt%, with the remainder being
An Al alloy for heat exchanger fin material, characterized by comprising Al and inevitable impurities.
JP4137184A 1984-03-06 1984-03-06 Al and al alloy for fin material of heat exchanger Granted JPS60187653A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4137184A JPS60187653A (en) 1984-03-06 1984-03-06 Al and al alloy for fin material of heat exchanger
AU39033/85A AU582139B2 (en) 1984-03-06 1985-02-21 Aluminum and aluminum alloy for fin and heat exchanger using same
US06/706,140 US4749627A (en) 1984-03-06 1985-02-27 Brazing sheet and heat exchanger using same
DE19853507956 DE3507956A1 (en) 1984-03-06 1985-03-06 ALUMINUM AND ALUMINUM ALLOY FOR COOLING RIBS AND HEAT EXCHANGER UNDER USE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4137184A JPS60187653A (en) 1984-03-06 1984-03-06 Al and al alloy for fin material of heat exchanger

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2149469A Division JPH0617530B2 (en) 1990-06-07 1990-06-07 Al alloy for fin material of heat exchanger by brazing

Publications (2)

Publication Number Publication Date
JPS60187653A JPS60187653A (en) 1985-09-25
JPH0357177B2 true JPH0357177B2 (en) 1991-08-30

Family

ID=12606569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4137184A Granted JPS60187653A (en) 1984-03-06 1984-03-06 Al and al alloy for fin material of heat exchanger

Country Status (1)

Country Link
JP (1) JPS60187653A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186846A (en) * 1987-01-28 1988-08-02 Sumitomo Light Metal Ind Ltd Fin material for aluminum alloyed heat exchanger
JPS63274733A (en) * 1987-04-28 1988-11-11 Furukawa Alum Co Ltd Aluminum alloy for fin
JPS6475893A (en) * 1987-09-16 1989-03-22 Sumitomo Light Metal Ind Heat exchanger made of aluminum alloy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5125414A (en) * 1974-08-28 1976-03-02 Showa Aluminium Co Ltd NETSUKOKANKYOTAISHOKUARUMINIUMUAWASEZAI
JPS5595094A (en) * 1979-01-16 1980-07-18 Sumitomo Light Metal Ind Ltd Core of heat-exchanger made of aluminum alloy
JPS55119146A (en) * 1979-03-09 1980-09-12 Furukawa Alum Co Ltd Aluminum fin material for heat exchanger
JPS57123966A (en) * 1981-01-22 1982-08-02 Sukai Alum Kk Manufacture of aluminum alloy sheet undergoing small work hardening
JPS57158350A (en) * 1981-03-24 1982-09-30 Furukawa Alum Co Ltd Aluminum alloy clad material with pitting corrosion resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5125414A (en) * 1974-08-28 1976-03-02 Showa Aluminium Co Ltd NETSUKOKANKYOTAISHOKUARUMINIUMUAWASEZAI
JPS5595094A (en) * 1979-01-16 1980-07-18 Sumitomo Light Metal Ind Ltd Core of heat-exchanger made of aluminum alloy
JPS55119146A (en) * 1979-03-09 1980-09-12 Furukawa Alum Co Ltd Aluminum fin material for heat exchanger
JPS57123966A (en) * 1981-01-22 1982-08-02 Sukai Alum Kk Manufacture of aluminum alloy sheet undergoing small work hardening
JPS57158350A (en) * 1981-03-24 1982-09-30 Furukawa Alum Co Ltd Aluminum alloy clad material with pitting corrosion resistance

Also Published As

Publication number Publication date
JPS60187653A (en) 1985-09-25

Similar Documents

Publication Publication Date Title
JPS6256228B2 (en)
JPH0357177B2 (en)
JP4263160B2 (en) Aluminum alloy clad material and heat exchanger tube and heat exchanger using the same
JP2004225061A (en) Aluminum alloy clad tube material having excellent corrosion resistance, and heat exchanger with built-in clad tube material
JPH0483844A (en) Al and al alloy for heat exchanger fin material by brazing
JPH03197652A (en) Production of aluminum alloy fin material for brazing
JP2768393B2 (en) Aluminum alloy for heat exchanger fin material with excellent strength after brazing and sacrificial anode effect
JPS6323260B2 (en)
JPH0256413B2 (en)
JPH0931614A (en) Production of aluminum alloy fin material with high strength and high heat resistance for heat exchanger
JPH01198453A (en) Manufacture of high electric conductive aluminum alloy fin material
JPS60187655A (en) Heat exchanger made of aluminum alloy
JP2813479B2 (en) Aluminum brazing sheet
JPH0678579B2 (en) Aluminum alloy fin material for brazing heat
JPH02129337A (en) Aluminum fin material
JPH0841573A (en) High strength aluminum alloy fin material for heat exchanger
JPH03197639A (en) Heat-exchanger fin material made of aluminum
JP2006037137A (en) Highly corrosion resistant aluminum clad material for heat exchanger
JP2801192B2 (en) Aluminum alloy and aluminum alloy composite for heat exchanger members
JP2000160271A (en) Aluminum alloy fin material for brazing and heat exchanger using the fin material
JPH04318139A (en) Aluminum brazing sheet
JPS6136576B2 (en)
JPH02133553A (en) Manufacture of aluminum alloy fin material for heat exchanger
JPH04318141A (en) Aluminum brazing sheet
JPH0313548A (en) Production of high strength aluminum alloy fin material for heat exchanger

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees