JP2006037137A - Highly corrosion resistant aluminum clad material for heat exchanger - Google Patents

Highly corrosion resistant aluminum clad material for heat exchanger Download PDF

Info

Publication number
JP2006037137A
JP2006037137A JP2004215694A JP2004215694A JP2006037137A JP 2006037137 A JP2006037137 A JP 2006037137A JP 2004215694 A JP2004215694 A JP 2004215694A JP 2004215694 A JP2004215694 A JP 2004215694A JP 2006037137 A JP2006037137 A JP 2006037137A
Authority
JP
Japan
Prior art keywords
sacrificial anode
aluminum
heat exchanger
clad
anode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004215694A
Other languages
Japanese (ja)
Inventor
Shunji Kajikawa
俊二 梶川
Keiichi Okazaki
恵一 岡崎
Ryota Ozaki
良太 尾崎
Takahiro Koyama
高弘 小山
Hirokazu Tanaka
宏和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Sumitomo Light Metal Industries Ltd
Original Assignee
Denso Corp
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Sumitomo Light Metal Industries Ltd filed Critical Denso Corp
Priority to JP2004215694A priority Critical patent/JP2006037137A/en
Publication of JP2006037137A publication Critical patent/JP2006037137A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly corrosion resistant aluminum clad material for a heat exchanger suitably used for a tube material of a heat exchanger, particularly of an automobile heat exchanger such as a piping material (extruded clad pipe material) connected with a heat exchanger, a tube material of an automobile heat exchanger made of an aluminum alloy such as an evaporator, a condenser, a radiator, a heater core, an intercooler and an oil cooler joined by vacuum brazing or inert gas atmosphere brazing using fluoride-based flux, and a tube material for a heat exchanger connected by a non-brazing system such as adhesion, welding and soldering. <P>SOLUTION: The aluminum clad material is obtained by cladding at least one side of a core material composed of aluminum with a sacrificial anode material or obtained by cladding one side of a core material with a sacrificial anode material and cladding the other side with a brazing filler metal. The sacrificial anode material is composed of pure aluminum having an aluminum purity of ≥99.9% or an aluminum alloy at least containing Mg, wherein the total content of Al and Mg is ≥99.9%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、熱交換器とくに自動車熱交換器に使用されるアルミニウムクラッド材、とくに、熱交換器と接続される配管材(押出クラッド管材)、真空ろう付けやフッ化物系フラックスやセシウム化物系フラックスを用いた不活性ガス雰囲気ろう付けにより接合されるエバポレータ、コンデンサ、ラジエータ、ヒータコア、インタークーラ、オイルクーラなどのアルミニウム合金製自動車熱交換器用のチューブ材、接着、溶接、はんだ付けなどの非ろう付け方式で接続される熱交換器用チューブ材として好適な熱交換器用高耐食アルミニウムクラッド材に関する。   The present invention relates to aluminum clad materials used in heat exchangers, particularly automobile heat exchangers, in particular piping materials (extruded clad pipe materials) connected to heat exchangers, vacuum brazing, fluoride fluxes and cesium fluoride fluxes. Non-brazing such as tubes, bonding, welding and soldering for aluminum alloy automotive heat exchangers such as evaporators, condensers, radiators, heater cores, intercoolers, oil coolers, etc. joined by brazing in an inert gas atmosphere The present invention relates to a highly corrosion-resistant aluminum clad material for a heat exchanger suitable as a tube material for a heat exchanger to be connected in a system.

自動車熱交換器、例えばラジエータは、外面にフィンを有し、内面が作動流体(不凍液)の通路となるチューブおよびヘッダーから構成されている。このような自動車のラジエータまたはヒータコアなどのチューブ材、ヘッダープレート材としては、JIS A3003などのAl−Mn系合金を芯材とし、芯材の片面にAl−Si系合金ろう材をクラッドした二層構造のアルミニウム合金クラッド材、芯材の一方の面にろう材をクラッドし、他方の面にAl−Zn系合金またはAl−Zn−Mg系合金の犠牲陽極材をクラッドした三層構造のアルミニウム合金クラッド材が用いられている。   An automobile heat exchanger, for example, a radiator, includes a tube and a header having fins on the outer surface, and the inner surface serving as a passage for a working fluid (antifreeze). As a tube material and header plate material such as an automobile radiator or heater core, an Al-Mn alloy such as JIS A3003 is used as a core material, and an Al-Si alloy brazing material is clad on one side of the core material. Aluminum alloy clad material with a three-layer structure in which a brazing material is clad on one surface of the core material and a sacrificial anode material of Al-Zn alloy or Al-Zn-Mg alloy is clad on the other surface A clad material is used.

クラッド材のAl−Si系ろう材は、アルミニウム合金製熱交換器を製作するとき、チューブとフィンとの接合、チューブとヘッダープレートとの接合、またはクラッド板からろう付けによりチューブを製造する場合のろう付け接合のためにクラッドされている。また、犠牲陽極材は、たとえばチューブの内面側に使用され、作動流体と接して犠牲陽極作用を発揮し、芯材の孔食や隙間腐食の発生を防止する。   When manufacturing an aluminum alloy heat exchanger, the clad Al-Si brazing material is used when a tube is manufactured by joining a tube and a fin, joining a tube and a header plate, or brazing a clad plate. It is clad for brazing. The sacrificial anode material is used, for example, on the inner surface side of the tube, and exerts a sacrificial anode action in contact with the working fluid, thereby preventing pitting corrosion and crevice corrosion of the core material.

近年、自動車の軽量化の要請に伴い、自動車熱交換器においても省エネルギー、省資源の観点から構成材料の薄肉化が要請され、チューブ材についても薄肉化が進行している。チューブ材を薄肉化するためには、材料の強度をさらに高める必要があり、芯材に多量のCu、Si、Mnなどが含有されるが、これらの元素の含有により芯材の耐食性が低下するため、犠牲陽極材に多量のZnを添加して芯材との電位差を確保し、確実に犠牲陽極効果が得られるようにした材料構成が提案されている。   In recent years, with the demand for lighter automobiles, automobile heat exchangers are also required to be made thinner from the viewpoint of energy saving and resource saving, and the tube materials are also becoming thinner. In order to make the tube material thinner, it is necessary to further increase the strength of the material, and the core material contains a large amount of Cu, Si, Mn, etc., but the inclusion of these elements reduces the corrosion resistance of the core material. Therefore, a material configuration has been proposed in which a large amount of Zn is added to the sacrificial anode material to ensure a potential difference from the core material and to ensure the sacrificial anode effect.

例えば、ラジエータなど自動車用熱交換器のチューブ材として、Mn:0.2〜1.5%、Si:0.3〜1.3%を含有するAl−Mn系合金の芯材の一方の面にAl−Si系合金ろう材をクラッドし、他方の面に5%以下のZnを含有するAl−Zn合金をクラッドし、芯材のCu量を0.6%以下に規定してなり、ろう付け後の芯材と犠牲陽極材との電位差が30〜120mVであり、とくに当該熱交換器がフッ化物系フラックスを用いる不活性ガス雰囲気ろう付けに組み立てられる場合に優れた耐食性が得られるアルミニウム合金複合材が提案されている(特許文献1参照)。   For example, one surface of a core material of an Al-Mn alloy containing Mn: 0.2 to 1.5% and Si: 0.3 to 1.3% as a tube material of an automotive heat exchanger such as a radiator Clad with an Al—Si alloy brazing material, clad with an Al—Zn alloy containing 5% or less of Zn on the other surface, and the Cu content of the core material is defined as 0.6% or less. Aluminum alloy having a potential difference between the core material after sacrificing and the sacrificial anode material of 30 to 120 mV, and excellent corrosion resistance especially when the heat exchanger is assembled in an inert gas atmosphere brazing using a fluoride-based flux A composite material has been proposed (see Patent Document 1).

また、Al−Mn系合金からなる芯材にクラッドされる犠牲陽極材について、犠牲陽極材のZn含有量(1〜5%)と犠牲陽極材の厚さ(5〜50μm)を組み合わせてなり、犠牲陽極材中のCu量を0.05%以下に規制して、薄肉化を可能としながらも、ろう付け後に優れた耐食性が得られる自動車用熱交換器のチューブ材として好適なアルミニウムクラッド材も提案されている(特許文献2参照)。   Moreover, about the sacrificial anode material clad by the core material which consists of an Al-Mn type alloy, Zn content (1-5%) of sacrificial anode material and the thickness (5-50 micrometers) of sacrificial anode material are combined, There is also an aluminum clad material suitable as a tube material for automotive heat exchangers that can provide excellent corrosion resistance after brazing while regulating the amount of Cu in the sacrificial anode material to 0.05% or less and enabling thinning. It has been proposed (see Patent Document 2).

しかしながら、犠牲陽極材への多量のZnの添加は、犠牲陽極効果が達成される反面、犠牲陽極材の自己腐食速度が大きくなり犠牲陽極材の消耗を早めることがある。また、犠牲陽極材には、犠牲陽極材中に不純物として含まれているFe、SiなどがAl−Si系化合物やAl−Fe系化合物として分散しており、これらの化合物のうち表面に露出している化合物は耐食性を保持するための酸化皮膜の欠陥となり、この欠陥が腐食の起点となって腐食が生じ、腐食が生じた後は、これら化合物がカソードとなって化合物の周囲が優先的に腐食し、腐食速度を高める。   However, when a large amount of Zn is added to the sacrificial anode material, the sacrificial anode effect is achieved, but the sacrificial anode material has a high self-corrosion rate, and the sacrificial anode material may be consumed quickly. In the sacrificial anode material, Fe, Si and the like contained as impurities in the sacrificial anode material are dispersed as Al-Si compounds and Al-Fe compounds, and these compounds are exposed on the surface. These compounds become defects in the oxide film to maintain corrosion resistance, and these defects become the starting point of corrosion, causing corrosion. After corrosion occurs, these compounds become cathodes and the surroundings of the compounds are preferentially used. Corrodes and increases the corrosion rate.

上記の現象は、薄肉化された犠牲陽極材においてとくに顕著となる。従って、クラッド材を薄肉化するために犠牲陽極材を低減した場合には、上記の現象によって短期間で犠牲陽極材が消耗する。クラッド材の薄肉化に際し、犠牲陽極材は薄肉化せず芯材のみを薄くした場合には、クラッド材の剛性の維持が困難となる。
特開平6−23535号公報 特許第2572495号公報
The above phenomenon becomes particularly remarkable in the sacrificial anode material having a reduced thickness. Therefore, when the sacrificial anode material is reduced in order to reduce the thickness of the clad material, the sacrificial anode material is consumed in a short time due to the above phenomenon. When the cladding material is thinned, if the sacrificial anode material is not thinned and only the core material is thinned, it is difficult to maintain the rigidity of the cladding material.
Japanese Patent Laid-Open No. 6-23535 Japanese Patent No. 2572495

発明者らは、熱交換器のチューブ材における前記従来の問題点を解消するために、犠牲陽極材の自己耐食性を向上させるとともに、犠牲陽極効果も得られるチューブ材用アルミニウムクラッド材の構成について試験、検討を重ねた結果、芯材をMgを含有するアルミニウム合金で構成し、Mgの含有により、ろう付け加熱時に芯材中のMgを犠牲陽極材中に拡散させて、犠牲陽極材の表面に均一なMgOの酸化皮膜を形成させ、且つ犠牲陽極材中のFe、Siの濃度を低くして、Al−Fe系化合物、Al−Si系化合物の生成を少なくすることによって、クラッド材の薄肉化に伴って犠牲陽極材の厚さを低減した場合にも、犠牲陽極材の自己耐食性と犠牲陽極効果の両特性を維持することが可能であることを見出した。   The inventors tested the configuration of an aluminum clad material for a tube material that improves the self-corrosion resistance of the sacrificial anode material and also provides the sacrificial anode effect in order to eliminate the above-mentioned conventional problems in the tube material of the heat exchanger. As a result of repeated studies, the core material is composed of an aluminum alloy containing Mg, and Mg content in the core material is diffused into the sacrificial anode material during brazing heating due to the inclusion of Mg. Forming a uniform MgO oxide film and reducing the concentration of Fe and Si in the sacrificial anode material to reduce the formation of Al-Fe compounds and Al-Si compounds, thereby reducing the thickness of the cladding material Accordingly, it has been found that even when the thickness of the sacrificial anode material is reduced, both the self-corrosion resistance and the sacrificial anode effect of the sacrificial anode material can be maintained.

本発明は、上記の知見に基づいてさらに検討を加えた結果としてなされたものであり、その目的は、熱交換器とくに自動車用熱交換器のチューブ材、例えば、熱交換器と接続される配管材(押出クラッド管材)、真空ろう付けやフッ化物系フラックスやセシウム化物系フラックスを用いた不活性ガス雰囲気ろう付けにより接合されるエバポレータ、コンデンサ、ラジエータ、ヒータコア、インタークーラ、オイルクーラなどのアルミニウム合金製自動車熱交換器のチューブ材、接着、溶接、はんだ付けなどの非ろう付け方式で接続される熱交換器用チューブ材として好適に使用される熱交換器用高耐食アルミニウムクラッド材を提供することにある。   The present invention has been made as a result of further investigation based on the above-described knowledge, and the object thereof is a tube material of a heat exchanger, particularly an automobile heat exchanger, for example, a pipe connected to the heat exchanger. Aluminum alloys such as evaporators, condensers, radiators, heater cores, intercoolers and oil coolers that are joined by brazing materials (extruded clad pipe materials), vacuum brazing, and inert gas atmosphere brazing using fluoride or cesium fluxes To provide a highly corrosion-resistant aluminum clad material for a heat exchanger that is suitably used as a tube material for a heat exchanger connected by a non-brazing method such as a tube material of an automobile heat exchanger, bonding, welding, soldering, etc. .

上記の目的を達成するための請求項1による熱交換器用高耐食アルミニウムクラッド材は、芯材の少なくとも一方の面に犠牲陽極材をクラッドしたアルミニウムクラッド材であって、芯材が少なくともMgを含有するアルミニウム合金で構成され、犠牲陽極材がアルミニウム純度99.9%の純アルミニウムで構成されることを特徴とする。   A high corrosion resistance aluminum clad material for a heat exchanger according to claim 1 for achieving the above object is an aluminum clad material in which a sacrificial anode material is clad on at least one surface of a core material, and the core material contains at least Mg. The sacrificial anode material is made of pure aluminum having an aluminum purity of 99.9%.

請求項2による熱交換器用高耐食アルミニウムクラッド材は、請求項1において、前記犠牲陽極材が、少なくともMgを含有し、AlとMgとの合計含有量が99.9%以上のアルミニウム合金で構成されることを特徴とする。   A highly corrosion-resistant aluminum clad material for a heat exchanger according to claim 2 is composed of an aluminum alloy according to claim 1, wherein the sacrificial anode material contains at least Mg, and the total content of Al and Mg is 99.9% or more. It is characterized by being.

請求項3による熱交換器用高耐食アルミニウムクラッド材は、芯材の一方の面に犠牲陽極材をクラッドし、他方の面にろう材をクラッドしたアルミニウムクラッド材であって、芯材が少なくともMgを含有するアルミニウム合金で構成され、犠牲陽極材がアルミニウム純度99.9%以上の純アルミニウムで構成されることを特徴とする。   A highly corrosion-resistant aluminum clad material for a heat exchanger according to claim 3 is an aluminum clad material in which a sacrificial anode material is clad on one surface of a core material and a brazing material is clad on the other surface, and the core material contains at least Mg. The sacrificial anode material is made of pure aluminum having an aluminum purity of 99.9% or more.

請求項4による熱交換器用高耐食アルミニウムクラッド材は、請求項3において、前記犠牲陽極材が、少なくともMgを含有し、AlとMgとの合計含有量が99.9%以上のアルミニウム合金で構成されることを特徴とする。   A highly corrosion-resistant aluminum clad material for a heat exchanger according to claim 4 is composed of an aluminum alloy according to claim 3, wherein the sacrificial anode material contains at least Mg, and the total content of Al and Mg is 99.9% or more. It is characterized by being.

請求項5による熱交換器用高耐食アルミニウムクラッド材は、請求項2または4において、前記犠牲陽極材を構成するアルミニウム合金のMg含有量が0.01〜5.0%であることを特徴とする。   The highly corrosion-resistant aluminum clad material for heat exchanger according to claim 5 is characterized in that, in claim 2 or 4, the Mg content of the aluminum alloy constituting the sacrificial anode material is 0.01 to 5.0%. .

請求項6による熱交換器用高耐食アルミニウムクラッド材は、請求項1〜5のいずれかにおいて、前記芯材がMg:0.01〜5.0%を含有するアルミニウム合金で構成されることを特徴とする。   A highly corrosion-resistant aluminum clad material for a heat exchanger according to claim 6 is characterized in that in any one of claims 1 to 5, the core material is composed of an aluminum alloy containing Mg: 0.01 to 5.0%. And

本発明によれば、熱交換器とくに自動車用熱交換器のチューブ材、例えば、熱交換器と接続される配管材(押出クラッド管材)、真空ろう付けやフッ化物系フラックスやセシウム化物系フラックスを用いた不活性ガス雰囲気ろう付けにより接合されるエバポレータ、コンデンサ、ラジエータ、ヒータコア、インタークーラ、オイルクーラなどのアルミニウム合金製自動車熱交換器のチューブ材、接着、溶接、はんだ付けなどの非ろう付け方式で接続される熱交換器用チューブ材として好適に使用される熱交換器用高耐食アルミニウムクラッド材が提供される。   According to the present invention, a tube material of a heat exchanger, in particular, an automotive heat exchanger, for example, a piping material (extruded clad tube material) connected to the heat exchanger, vacuum brazing, fluoride-based flux, or cesium-based flux is used. Non-brazing methods such as tubes, bonding, welding, and soldering for aluminum alloy automotive heat exchangers such as evaporators, condensers, radiators, heater cores, intercoolers, and oil coolers that are joined by brazing using inert gas atmosphere A highly corrosion-resistant aluminum clad material for a heat exchanger that is suitably used as a tube material for a heat exchanger that is connected in the above is provided.

以下、本発明のアルミニウム合金クラッド材の構成について説明する。
(犠牲陽極材)
第1の実施形態は、アルミニウム純度が99.9%以上の純アルミニウムで構成する。この実施形態により、腐食の起点となるAl−Fe系化合物やAl−Si系化合物の生成が低減されて、皮膜欠陥がほとんど生じることなく表面の酸化皮膜(保護皮膜)が安定に保持されているため、腐食の発生が抑制される。一旦腐食が発生しても、カソードとして作用するマトリックス中のAl−Fe系化合物やAl−Si系化合物が少ないため、自己腐食速度が遅く、犠牲陽極材の犠牲陽極効果が長期間持続する。アルミニウム純度が99.9%未満ではその効果が十分でなく耐食性が低下する。より好ましいアルミニウム純度は99.99%以上であり、さらに好ましいアルミニウム純度は99.999%以上である。
Hereinafter, the structure of the aluminum alloy clad material of the present invention will be described.
(Sacrificial anode material)
The first embodiment is made of pure aluminum having an aluminum purity of 99.9% or higher. According to this embodiment, the generation of Al—Fe-based compounds and Al—Si-based compounds that are the starting point of corrosion is reduced, and the surface oxide film (protective film) is stably maintained with almost no film defects. Therefore, the occurrence of corrosion is suppressed. Even if corrosion occurs once, since there are few Al—Fe compounds and Al—Si compounds in the matrix acting as a cathode, the self-corrosion rate is slow, and the sacrificial anode effect of the sacrificial anode material lasts for a long time. If the aluminum purity is less than 99.9%, the effect is not sufficient and the corrosion resistance is lowered. A more preferable aluminum purity is 99.99% or more, and a further preferable aluminum purity is 99.999% or more.

第2の実施形態は、犠牲陽極材が、少なくともMgを含有し、MgとAlとの合計含有量が99.9%以上のアルミニウム合金で構成される。例えば、犠牲陽極材をMgを含有するAl−Mg合金で構成し、MgとAlとの合計含有量を99.9%以上とする。Mgの含有により、犠牲陽極材の表面に均一な酸化皮膜(MgO)が形成されるとともに、MgとAlとの合計含有量を99.9%以上とすることによりFeおよびSiの濃度が低くなって、Al−Fe系化合物やAl−Si系化合物の生成が低減され、且つMgO皮膜は通常のアルミニウム合金の表面に形成されるAl2 3 皮膜より防食効果に優れており、表面の酸化皮膜が保護皮膜となって安定に保持されるため、腐食の起点となる表面欠陥がほとんど存在せず、腐食の発生が抑制される。一旦腐食が発生しても、カソードとして作用するマトリックス中のAl−Fe系化合物やAl−Si系化合物が少ないため、自己腐食速度が遅くなる。 In the second embodiment, the sacrificial anode material is composed of an aluminum alloy containing at least Mg and a total content of Mg and Al of 99.9% or more. For example, the sacrificial anode material is made of an Al—Mg alloy containing Mg, and the total content of Mg and Al is 99.9% or more. By containing Mg, a uniform oxide film (MgO) is formed on the surface of the sacrificial anode material, and by making the total content of Mg and Al 99.9% or more, the concentration of Fe and Si is lowered. Thus, the production of Al-Fe-based compounds and Al-Si-based compounds is reduced, and the MgO film has a better anticorrosive effect than the Al 2 O 3 film formed on the surface of ordinary aluminum alloys, and the surface oxide film Since it becomes a protective film and is stably held, there are almost no surface defects that become the starting point of corrosion, and the occurrence of corrosion is suppressed. Even if corrosion occurs once, the self-corrosion rate becomes slow because there are few Al-Fe compounds and Al-Si compounds in the matrix acting as the cathode.

また、電位を卑にするFe、Siの濃度が低く、さらに電位を卑にするMgが添加されているため、犠牲陽極材の電位は卑に維持され、犠牲陽極効果が長期間持続する。MgとAlとの合計含有量が99.9%未満ではその効果が十分でなく耐食性が低下する。より好ましいMgとAlとの合計含有量は99.99%以上であり、さらに好ましいMgとAlとの合計含有量は99.999%以上である。   In addition, since the Fe and Si concentrations that lower the potential are low and Mg that lowers the potential is added, the potential of the sacrificial anode material is maintained at a lower level, and the sacrificial anode effect lasts for a long time. If the total content of Mg and Al is less than 99.9%, the effect is not sufficient and the corrosion resistance is lowered. A more preferable total content of Mg and Al is 99.99% or more, and a more preferable total content of Mg and Al is 99.999% or more.

犠牲陽極材中のMgは、犠牲陽極材の表面に防食作用を有する均一な酸化皮膜(MgO)を形成し、腐食の発生を抑制するよう機能する。また、犠牲陽極材の電位を卑にし、芯材に対する犠牲陽極効果を発揮させ、芯材の孔食や隙間腐食を防止する。Mgの好ましい含有量は0.01〜5.0%の範囲であり、0.01%未満ではMgOの生成が不十分となり易く、5.0%を越えると圧延性が劣り、健全なクラッド材が製造し難くなる。   Mg in the sacrificial anode material functions to form a uniform oxide film (MgO) having an anticorrosive action on the surface of the sacrificial anode material and suppress the occurrence of corrosion. Further, the potential of the sacrificial anode material is made lower, the sacrificial anode effect on the core material is exhibited, and pitting corrosion and crevice corrosion of the core material are prevented. The preferred Mg content is in the range of 0.01 to 5.0%. If it is less than 0.01%, MgO formation tends to be insufficient, and if it exceeds 5.0%, the rollability is inferior and the clad material is sound. Is difficult to manufacture.

(芯材)
芯材としては少なくともMgを含有するアルミニウムまたはアルミニウム合金が適用され、芯材用アルミニウムまたはアルミニウム合金は、熱交換器において必要とされる強度に応じて選択される。一般的には、3000系(Al−Mn系)合金、より強度が要求される場合には2000系(Al−Cu系)合金、5000系(Al−Mg系)合金、6000系(Al−Mg−Si系)合金を適用することができ、これらのアルミニウム合金にMgを添加して芯材用合金とする。Mgを含有させた8000系合金を用いることもできる。
(Core material)
Aluminum or aluminum alloy containing at least Mg is applied as the core material, and the aluminum or aluminum alloy for the core material is selected according to the strength required in the heat exchanger. Generally, a 3000 series (Al-Mn series) alloy, 2000 series (Al-Cu series) alloy, 5000 series (Al-Mg series) alloy, 6000 series (Al-Mg series) when higher strength is required. -Si-based) alloys can be applied, and Mg is added to these aluminum alloys to form a core alloy. An 8000 series alloy containing Mg can also be used.

本発明においては、芯材としてMgを含有するアルミニウムまたはアルミニウム合金を適用することにより、芯材中のMgをろう付け加熱時に犠牲陽極材中に拡散させ、犠牲陽極材の表面にMgO皮膜を形成させる。犠牲陽極材中には、不純物として含まれるFe、Siの濃度がきわめて低いから、Al−Fe系化合物やAl−Si系化合物が少なく、腐食の起点となる表面欠陥がほとんど存在しないため、MgO皮膜は均一な状態に維持され、皮膜の保護作用により腐食の発生が遅延する。一旦腐食が生じても、犠牲陽極材中にはAl−Fe系化合物やAl−Si系化合物が少ないため、腐食の進行速度が遅く耐食性を維持することができる。   In the present invention, Mg or aluminum alloy containing Mg is applied as a core material to diffuse Mg in the core material into the sacrificial anode material during brazing heating, thereby forming an MgO film on the surface of the sacrificial anode material. Let Since the concentration of Fe and Si contained as impurities in the sacrificial anode material is extremely low, there are few Al—Fe compounds and Al—Si compounds, and there are almost no surface defects that can cause corrosion. Is maintained in a uniform state, and the protective action of the film delays the occurrence of corrosion. Even if corrosion occurs once, since the sacrificial anode material contains few Al—Fe compounds and Al—Si compounds, the progress of corrosion is slow and corrosion resistance can be maintained.

芯材中のMgを犠牲陽極材中に拡散させ、犠牲陽極材の表面に均一なMgO皮膜を形成させるためには、ろう付け加熱時のヒートパターンをMgの拡散係数の時間積分、∫D(t)dt(D(t)=D0 e×p{−Q/RT(t)}、D0 :振動数項(1.24×10-42 /s)、Q:活性化エネルギー(131000J/mol)、R:気体定数(8.3145J/mol・K)、T:温度(K)、t:時間(s))が9.0×10-12 (m2 )以上になるよう制御し、ろう付け時の最高到達温度を773K以上とするのが望ましい。 In order to diffuse Mg in the core material into the sacrificial anode material and form a uniform MgO film on the surface of the sacrificial anode material, the heat pattern during brazing heating is expressed as the time integral of the diffusion coefficient of Mg, ∫D ( t) dt (D (t) = D 0 e × p {−Q / RT (t)}, D 0 : frequency term (1.24 × 10 −4 m 2 / s), Q: activation energy ( 131000 J / mol), R: gas constant (8.3145 J / mol · K), T: temperature (K), t: time (s)) are controlled to be 9.0 × 10 −12 (m 2 ) or more. In addition, it is desirable that the maximum temperature achieved during brazing is 773 K or higher.

接合をろう付けにより行わず、接着、溶接、はんだ付けなどにより接合する場合には、アルミニウムクラッド材の最終熱処理時のヒートパターンを、Mgの拡散係数の時間積分が9.0×10-12 (m2 )以上になるように制御し、熱処理時の最高到達温度を473K以上することのが望ましい。 When bonding is not performed by brazing, but by bonding, welding, soldering, or the like, the heat pattern during the final heat treatment of the aluminum clad material is set to 9.0 × 10 −12 (time integral of the diffusion coefficient of Mg) It is desirable that the temperature is controlled so as to be m 2 ) or higher, and the maximum temperature achieved during heat treatment is 473 K or higher.

本発明における好ましい芯材は、少なくともMgを含有するとともに、Mn:1.5%を越え2.0%以下を含有し、Cu:0.5%を越え1.0%以下、Si:0.6%を越え1.5%以下の1種または2種を含有するMg含有Al−Mn系合金であり、この組成において、芯材の強度がより向上して薄肉化が可能となり、犠牲陽極材との電位差を大きくしてより安定して良好な耐食性を得ることができる。0.3%以下のTi、0.3%以下のZr、0.2%以下のCrが含有されてもよい。   A preferred core material in the present invention contains at least Mg, Mn: more than 1.5% and 2.0% or less, Cu: more than 0.5% and 1.0% or less, Si: 0.00. An Mg-containing Al—Mn alloy containing one or two of more than 6% and not more than 1.5%. In this composition, the strength of the core material can be further improved and the thickness can be reduced. Therefore, the corrosion resistance can be obtained more stably and better. Ti of 0.3% or less, Zr of 0.3% or less, and Cr of 0.2% or less may be contained.

(ろう材)
ろう材としては、通常用いられているAl−Si系合金ろう材、例えば、Si:6〜13%を含有するAl−Si系合金ろう材が使用される。熱交換器の接合を真空ろう付けによって行う場合には、Mgを含有するAl−Si−Mg系合金ろう材が適用される。これらAl−Si系合金ろう材、Al−Si−Mg系合金ろう材には、例えば、0.005〜0.1%のSr、0.2%以下のBi、0.1%以下のBe、0.001〜0.05%のIn、0.001〜0.05%のSn、1〜100ppmのNa、2%以下のFe、8%以下のZn、5%以下のCuの1種または2種以上が含有されていてもよい。
(Brazing material)
As the brazing material, a commonly used Al—Si based brazing material, for example, an Al—Si based brazing material containing 6 to 13% of Si is used. When the heat exchanger is joined by vacuum brazing, an Al—Si—Mg alloy brazing material containing Mg is applied. These Al—Si based alloy brazing material and Al—Si—Mg based brazing material include, for example, 0.005 to 0.1% Sr, 0.2% or less Bi, 0.1% or less Be, One or two of 0.001 to 0.05% In, 0.001 to 0.05% Sn, 1 to 100 ppm Na, 2% or less Fe, 8% or less Zn, 5% or less Cu More than one species may be contained.

本発明のアルミニウムクラッド材は、芯材、犠牲陽極材およびろう材を構成するアルミニウム材料を、たとえば、連続鋳造により造塊し、必要に応じて均質化処理後、犠牲陽極材およびろう材の鋳塊については、それぞれ所定厚さまで熱間圧延し、ついで、芯材の鋳塊と犠牲陽極材の熱間圧延材を組み合わせ、あるいは芯材の鋳塊、犠牲陽極材の熱間圧延材、ろう材の熱間圧延材を組み合わせて、常法に従って熱間圧延によりクラッド材とし、その後冷間圧延、中間焼鈍、冷間圧延により所定の厚さとすることによって製造される。   The aluminum clad material of the present invention is formed by agglomerating the aluminum material constituting the core material, the sacrificial anode material and the brazing material, for example, by continuous casting, and after homogenizing treatment as necessary, casting of the sacrificial anode material and the brazing material. Each ingot is hot-rolled to a predetermined thickness, and then the ingot of the core material and the hot-rolled material of the sacrificial anode material are combined, or the ingot of the core material, hot-rolled material of the sacrificial anode material, brazing material These hot-rolled materials are combined into a clad material by hot rolling according to a conventional method, and then made into a predetermined thickness by cold rolling, intermediate annealing, and cold rolling.

以下、本発明の実施例を比較例と対比して説明する。これらの実施例は、本発明の一実施態様を示すものであり、本発明はこれらに限定されるものではない。   Examples of the present invention will be described below in comparison with comparative examples. These examples show one embodiment of the present invention, and the present invention is not limited to these examples.

実施例1
連続鋳造によって表1に示す組成を有する芯材用合金、表2に示す組成を有する犠牲陽極材用合金を造塊し、得られた鋳塊を均質化処理した。
Example 1
The core alloy having the composition shown in Table 1 and the sacrificial anode material alloy having the composition shown in Table 2 were ingoted by continuous casting, and the resulting ingot was homogenized.

ついで、犠牲陽極材用合金の鋳塊を所定の厚さまで熱間圧延し、得られた熱間圧延板と芯材用合金の鋳塊を組み合わせて熱間圧延した後、冷間圧延、中間焼鈍、冷間圧延によって厚さ0.20mmのクラッド材(調質H14)を得た。クラッド材の構成は、犠牲陽極材を0.010〜0.020mm厚さとした。   Next, the ingot of the sacrificial anode material alloy is hot-rolled to a predetermined thickness, and the obtained hot-rolled sheet and the core alloy ingot are hot-rolled in combination, followed by cold rolling and intermediate annealing. Then, a clad material (tempered H14) having a thickness of 0.20 mm was obtained by cold rolling. The structure of the clad material was 0.010 to 0.020 mm thick for the sacrificial anode material.

Figure 2006037137
Figure 2006037137

Figure 2006037137
Figure 2006037137

得られたクラッド材を試験材として、以下の方法により、犠牲陽極材の耐食性を評価した。結果を表3〜6に示す。   Using the obtained clad material as a test material, the corrosion resistance of the sacrificial anode material was evaluated by the following method. The results are shown in Tables 3-6.

犠牲陽極材の耐食性:得られたクラッド材(試験材)を、単板のままフッ化物系フラックスを塗布して窒素ガス雰囲気中で600℃(材料温度)のろう付け温度に加熱した後、犠牲陽極材面について下記の条件で腐食試験を行った。
腐食液:Cl- :300ppm、SO4 2- :100ppm、Cu2+:10pm
比液量:5mL/cm2
シール:芯材面と端面をシリコン樹脂でシールした。
試験方法:88℃に加熱した腐食液中に8時間浸漬した後、冷却して25℃で16時間保持するサイクルを2か月間繰り返して、最大腐食深さを測定し、最大腐食深さ0.03mm以下を耐食性良好とした。
Corrosion resistance of sacrificial anode material: The obtained clad material (test material) was applied as a single plate with fluoride-based flux and heated to a brazing temperature of 600 ° C. (material temperature) in a nitrogen gas atmosphere. A corrosion test was performed on the anode material surface under the following conditions.
Corrosion solution: Cl : 300 ppm, SO 4 2− : 100 ppm, Cu 2+ : 10 pm
Specific liquid volume: 5 mL / cm 2
Seal: The core material surface and end surface were sealed with silicon resin.
Test method: After immersing in a caustic solution heated to 88 ° C. for 8 hours, a cycle of cooling and holding at 25 ° C. for 16 hours was repeated for 2 months, the maximum corrosion depth was measured, and the maximum corrosion depth was 0. The corrosion resistance was good at 03 mm or less.

Figure 2006037137
Figure 2006037137

Figure 2006037137
Figure 2006037137

Figure 2006037137
Figure 2006037137

Figure 2006037137
Figure 2006037137

表3〜6にみられるように、本発明に従う試験材No.1〜65はいずれも、犠牲陽極材の腐食試験において、最大腐食深さはいずれも0.025mm以下であり、優れた耐食性をそなえている。   As seen in Tables 3-6, the test material No. All of Nos. 1 to 65 have a maximum corrosion depth of 0.025 mm or less in the corrosion test of the sacrificial anode material, and have excellent corrosion resistance.

比較例1
連続鋳造によって表7に示す組成を有する犠牲陽極材用合金を造塊し、得られた鋳塊を均質化処理した。
Comparative Example 1
An alloy for a sacrificial anode material having a composition shown in Table 7 was formed by continuous casting, and the resulting ingot was homogenized.

ついで、犠牲陽極材用合金の鋳塊を所定の厚さまで熱間圧延し、得られた犠牲陽極材の熱間圧延板と表1のNo.A2の芯材用合金の鋳塊を組み合わせて熱間圧延した後、冷間圧延、中間焼鈍、冷間圧延によって厚さ0.20mmのクラッド材(調質H14)を得た。クラッド材の構成は、犠牲陽極材を0.020mm厚さとした。なお、表7において、本発明の条件を外れたものには下線を付した。   Subsequently, the ingot of the alloy for sacrificial anode material was hot-rolled to a predetermined thickness, and the obtained hot-rolled plate of the sacrificial anode material and No. 1 in Table 1 were used. A hot-rolling was performed by combining ingots of the core material alloy of A2, and then a clad material (tempered H14) having a thickness of 0.20 mm was obtained by cold rolling, intermediate annealing, and cold rolling. The structure of the clad material was such that the sacrificial anode material was 0.020 mm thick. In Table 7, those outside the conditions of the present invention are underlined.

得られたクラッド材を試験材として、実施例1と同じ方法で犠牲陽極材の耐食性を評価した。結果を表8に示す。   The corrosion resistance of the sacrificial anode material was evaluated by the same method as in Example 1 using the obtained clad material as a test material. The results are shown in Table 8.

Figure 2006037137
Figure 2006037137

Figure 2006037137
Figure 2006037137

表8に示すように、試験材No.66は犠牲陽極材のMgとAlとの合計含有量が低いため、また、試験材No.67は、犠牲陽極材が2%のZnを含有し、MgとAlとの合計含有量が低くなっているため、いずれも犠牲陽極材の耐食性が劣っている。   As shown in Table 8, the test material No. No. 66 has a low total content of Mg and Al in the sacrificial anode material. In No. 67, since the sacrificial anode material contains 2% Zn and the total content of Mg and Al is low, the sacrificial anode material is inferior in corrosion resistance.

Claims (6)

芯材の少なくとも一方の面に犠牲陽極材をクラッドしたアルミニウムクラッド材であって、芯材が少なくともMgを含有するアルミニウム合金で構成され、犠牲陽極材がアルミニウム純度99.9%(質量%、以下同じ)の純アルミニウムで構成されることを特徴とする熱交換器用高耐食アルミニウムクラッド材。 An aluminum clad material in which a sacrificial anode material is clad on at least one surface of a core material, the core material is made of an aluminum alloy containing at least Mg, and the sacrificial anode material has an aluminum purity of 99.9% (mass%, below) High corrosion-resistant aluminum clad material for heat exchangers, characterized in that it is made of pure aluminum. 前記犠牲陽極材が、少なくともMgを含有し、AlとMgとの合計含有量が99.9%以上のアルミニウム合金で構成されることを特徴とする請求項1記載の熱交換器用高耐食アルミニウムクラッド材。 2. The highly corrosion-resistant aluminum clad for heat exchanger according to claim 1, wherein the sacrificial anode material is composed of an aluminum alloy containing at least Mg and a total content of Al and Mg of 99.9% or more. Wood. 芯材の一方の面に犠牲陽極材をクラッドし、他方の面にろう材をクラッドしたアルミニウムクラッド材であって、芯材が少なくともMgを含有するアルミニウム合金で構成され、犠牲陽極材がアルミニウム純度99.9%以上の純アルミニウムで構成されることを特徴とする熱交換器用高耐食アルミニウムクラッド材。 An aluminum clad material in which a sacrificial anode material is clad on one surface of a core material and a brazing material is clad on the other surface, and the core material is composed of an aluminum alloy containing at least Mg, and the sacrificial anode material has an aluminum purity A highly corrosion-resistant aluminum clad material for heat exchangers, characterized by being composed of 99.9% or more pure aluminum. 前記犠牲陽極材が、少なくともMgを含有し、AlとMgとの合計含有量が99.9%以上のアルミニウム合金で構成されることを特徴とする請求項3記載の熱交換器用高耐食アルミニウムクラッド材。 4. The highly corrosion-resistant aluminum clad for heat exchanger according to claim 3, wherein the sacrificial anode material is composed of an aluminum alloy containing at least Mg and a total content of Al and Mg of 99.9% or more. Wood. 前記犠牲陽極材を構成するアルミニウム合金のMg含有量が0.01〜5.0%であることを特徴とする請求項2または4記載の熱交換器用高耐食アルミニウムクラッド材。 The highly corrosion-resistant aluminum clad material for heat exchanger according to claim 2 or 4, wherein Mg content of the aluminum alloy constituting the sacrificial anode material is 0.01 to 5.0%. 前記芯材がMg:0.01〜5.0%を含有するアルミニウム合金で構成されることを特徴とする請求項1〜5のいずれかに記載の熱交換器用高耐食アルミニウムクラッド材。
The high corrosion-resistant aluminum clad material for heat exchanger according to any one of claims 1 to 5, wherein the core material is made of an aluminum alloy containing Mg: 0.01 to 5.0%.
JP2004215694A 2004-07-23 2004-07-23 Highly corrosion resistant aluminum clad material for heat exchanger Pending JP2006037137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004215694A JP2006037137A (en) 2004-07-23 2004-07-23 Highly corrosion resistant aluminum clad material for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004215694A JP2006037137A (en) 2004-07-23 2004-07-23 Highly corrosion resistant aluminum clad material for heat exchanger

Publications (1)

Publication Number Publication Date
JP2006037137A true JP2006037137A (en) 2006-02-09

Family

ID=35902447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004215694A Pending JP2006037137A (en) 2004-07-23 2004-07-23 Highly corrosion resistant aluminum clad material for heat exchanger

Country Status (1)

Country Link
JP (1) JP2006037137A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063841A (en) * 2009-09-16 2011-03-31 Furukawa-Sky Aluminum Corp Al ALLOY CLAD MATERIAL HAVING EXCELLENT CORROSION RESISTANCE IN ACID ENVIRONMENT
JP2011085290A (en) * 2009-10-14 2011-04-28 Furukawa-Sky Aluminum Corp Heat exchanger, and pipe material and fin material for the heat exchanger
EP3213850A4 (en) * 2014-10-28 2018-06-06 UACJ Corporation Brazing furnace and brazing method for aluminum material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063841A (en) * 2009-09-16 2011-03-31 Furukawa-Sky Aluminum Corp Al ALLOY CLAD MATERIAL HAVING EXCELLENT CORROSION RESISTANCE IN ACID ENVIRONMENT
JP2011085290A (en) * 2009-10-14 2011-04-28 Furukawa-Sky Aluminum Corp Heat exchanger, and pipe material and fin material for the heat exchanger
EP3213850A4 (en) * 2014-10-28 2018-06-06 UACJ Corporation Brazing furnace and brazing method for aluminum material

Similar Documents

Publication Publication Date Title
JP4825507B2 (en) Aluminum alloy brazing sheet
JP2007152422A (en) Method for producing aluminum alloy brazing sheet
JP2008188616A (en) Aluminum alloy-brazing sheet for heat exchanger having excellent brazability and corrosion resistance, and heat exchanger tube having excellent corrosion resistance
JP4448758B2 (en) Aluminum alloy clad material for heat exchangers with excellent brazing, corrosion resistance and hot rolling properties
JP4236183B2 (en) Aluminum alloy clad material for automotive heat exchanger
JP4236185B2 (en) Aluminum alloy clad material for automotive heat exchanger
JP2006037135A (en) Highly corrosion resistant aluminum clad material for heat exchanger
JP2000008130A (en) Member for heat exchanger made of aluminum alloy excellent in corrosion resistance
JP2000167688A (en) Aluminum alloy clad material for heat exchanger excellent in brazability and corrosion resistance
JP4236184B2 (en) Aluminum alloy clad material for automotive heat exchanger
JP4236187B2 (en) Aluminum alloy clad material for automotive heat exchanger
JP3876180B2 (en) Aluminum alloy three-layer clad material
JP4263160B2 (en) Aluminum alloy clad material and heat exchanger tube and heat exchanger using the same
JP2004225061A (en) Aluminum alloy clad tube material having excellent corrosion resistance, and heat exchanger with built-in clad tube material
JP2006037137A (en) Highly corrosion resistant aluminum clad material for heat exchanger
JP3876179B2 (en) Aluminum alloy three-layer clad material
JP4216779B2 (en) High corrosion resistance aluminum clad material for heat exchanger
JP5469323B2 (en) Automotive heat exchanger with excellent corrosion resistance
JPH1088267A (en) Aluminum alloy clad fin material and heat exchanger made of aluminum alloy using the clad fin material
JP2000135590A (en) High strength aluminum alloy clad material for heat exchanger
JP2001226729A (en) Aluminum alloy for heat exchanger excellent in corrosion resistance
JP2004232072A (en) Heat exchanger made of aluminum
JP2000202681A (en) Aluminum alloy fin material for heat exchanger excellent in brazability
JPH04198694A (en) Heat exchanger having good anticorrosion and heat transfer property
JP2813484B2 (en) Aluminum brazing sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061225

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081022