JPH04198694A - Heat exchanger having good anticorrosion and heat transfer property - Google Patents

Heat exchanger having good anticorrosion and heat transfer property

Info

Publication number
JPH04198694A
JPH04198694A JP32604390A JP32604390A JPH04198694A JP H04198694 A JPH04198694 A JP H04198694A JP 32604390 A JP32604390 A JP 32604390A JP 32604390 A JP32604390 A JP 32604390A JP H04198694 A JPH04198694 A JP H04198694A
Authority
JP
Japan
Prior art keywords
fin
less
aluminum alloy
heat exchanger
brazing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32604390A
Other languages
Japanese (ja)
Other versions
JP2691069B2 (en
Inventor
Shigenori Yamauchi
重徳 山内
Yuji Suzuki
祐治 鈴木
Kenji Kato
健志 加藤
Naoki Tokizane
直樹 時實
Kenji Nekura
根倉 健二
Sadayuki Kamiya
定行 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd, NipponDenso Co Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP32604390A priority Critical patent/JP2691069B2/en
Priority to US07/800,556 priority patent/US5148862A/en
Publication of JPH04198694A publication Critical patent/JPH04198694A/en
Application granted granted Critical
Publication of JP2691069B2 publication Critical patent/JP2691069B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a heat exchanger prominent in anticorrosion and heat transfer property by a method wherein a fin member is constituted of the core material of an aluminum alloy having a specified composition and brazing sheets on both surfaces of the core material while the fin is brazed to an operating fluid passage constituted of an extruded tube of aluminum having a specified purity. CONSTITUTION:A fin member 1 is constituted of the core material of aluminum alloy, containing Fe: 0.8-1.8% (weight % and the same hereinafter), Zn: 0.3-3.0%, Cu: 0.3% or less, one or two kinds of Zr: 0.05-0.25% and Cr: 0.05-0.25%, impurity or Mn: 0.3% or less and the remaining aluminum and the other inevitable impurities, and brazing sheets, applied on both surfaces of the core member as the skin material of Al-Si brazing material. An operating fluid passage is constituted of an extruded tube 2 consisting of the aluminum alloy of purity 99% or more of aluminum while the fin member 1 is brazed to the operating fluid passage. A heat exchanger, prominent in anticorrosion and heat transfer property, can be obtained in such a manner whereby the improvement of reliability, miniaturization and the reduction of weight of the heat exchanger can be achieved.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、カーエアコンのコンデンサやエバポレータ、
あるいはラジェータ、インタークーラ、オイルクーラな
どのようにフィンと作動流体通路構成材料とがろう付に
より接合されるAl熱交換器に関し、特に耐食性および
伝熱性にすぐれた熱交換器に関する。
[Detailed Description of the Invention] [Industrial Application Fields] The present invention is applicable to car air conditioner condensers, evaporators,
The present invention also relates to an Al heat exchanger such as a radiator, intercooler, oil cooler, etc. in which fins and working fluid passage constituent materials are joined by brazing, and particularly to a heat exchanger with excellent corrosion resistance and heat conductivity.

[従来の技術] カーエアコンのコンデンサやエバポレータ、あるいはラ
ジェータ、ヒータ、インタークーラ、オイルクーラなど
の熱交換器においては、アルミニウム合金の作動流体通
路構成材料とアルミニウム合金のフィン材とがろう付に
より組立てられている。ろう材は通路構成材料側に配置
する場合とフィン材側に配置する場合がある。後者の場
合通路構成材料として押出チューブが用いられ、フィン
材としてはアルミニウム合金を芯材とし、その両面にA
l−8t系合金ろう材をクラッドした複合材が用いられ
る。
[Prior Art] In car air conditioner condensers and evaporators, or heat exchangers such as radiators, heaters, intercoolers, and oil coolers, aluminum alloy working fluid passage constituent material and aluminum alloy fin material are assembled by brazing. It is being The brazing filler metal may be placed on the channel forming material side or on the fin material side. In the latter case, an extruded tube is used as the passage construction material, and the core material of the fin material is aluminum alloy, and A is coated on both sides of the tube.
A composite material clad with l-8t alloy brazing filler metal is used.

押出チューブとしては1050.1070.1100な
どの純アルミニウム、あるいは0.5%程度までのCu
やMnを含むアルミニウム合金が用いられる。そして、
フィン材には、押出チューブを防食するために犠牲陽極
効果か要求され、又、ろう付は時に高温加熱によって変
形したり、ろうか侵食したりしないように優れた耐高温
座屈性が要求される。ろう付は時の変形やろうの侵食を
防ぐにはMnの添加が有効であり、芯材には3003合
金や3203合金などのAl−Mn系合金が用いられる
For extruded tubes, use pure aluminum such as 1050.1070.1100 or Cu up to about 0.5%.
An aluminum alloy containing Mn or Mn is used. and,
Fin materials are required to have a sacrificial anode effect to protect extruded tubes from corrosion, and brazing requires excellent high-temperature buckling resistance to prevent deformation or corrosion due to high-temperature heating. Ru. In brazing, addition of Mn is effective in preventing deformation over time and erosion of the solder, and Al-Mn alloys such as 3003 alloy and 3203 alloy are used as the core material.

そして、犠牲陽極効果を付与するためには、Al−触合
金にZn、 Sn、 Inなどを添加して電気化学的に
卑にする方法(例えば特公昭5B−12395号公報参
照)が提案されている。そして、上記のような押出チュ
ーブとフィン材を組合せた熱交換器は、例えば特公昭5
9−52780に記述されている。
In order to impart a sacrificial anode effect, a method has been proposed in which Zn, Sn, In, etc. are added to the Al-catalytic alloy to make it electrochemically less noble (see, for example, Japanese Patent Publication No. 5B-12395). There is. A heat exchanger combining an extruded tube and fin material as described above was developed, for example, in the
9-52780.

また、本出願人らは、先にMnを含有させることなく 
Peを増量含有させることにより、強度、熱伝導度に優
れた熱交換器フィン材(特願平1−218648)を提
案した。
In addition, the present applicants have discovered that without first incorporating Mn,
We have proposed a heat exchanger fin material (Japanese Patent Application No. 1-218648) that has excellent strength and thermal conductivity by containing an increased amount of Pe.

[発明が解決しようとする課題] ところで、上述のように純アルミニウムの押出チューブ
と、Al−Mn合金にZn、 Sn、 Inなどを添加
したフィン材とを組合せると、ある程度の防食効果は期
待できるが、チューブの電位とフィンの電位が近いため
に、防食距離(犠牲陽極効果の到達距離)が短かく、フ
ィンから離れた部分のチューブに孔食が生じやすいとい
う問題があった。純アルミニウムの押出チューブに変え
てCuやMnを含む合金の押出チューブを用いると、チ
ューブの電位が責になってフィンとの電位差が大きくな
り、防食距離が長くなる傾向にある。しかし、CuやM
nを多くするとチューブ(多穴チューブ)の押出性が劣
るようになるため、CuやMnの添加量が0.5%程度
に限定され、このため根本的に解決するに至っていない
[Problems to be Solved by the Invention] By the way, as mentioned above, when a pure aluminum extruded tube is combined with a fin material made of an Al-Mn alloy with Zn, Sn, In, etc. added, a certain degree of anti-corrosion effect can be expected. However, because the potential of the tube and the fins are close, the corrosion protection distance (the distance reached by the sacrificial anode effect) is short, and there is a problem that pitting corrosion is likely to occur in the portion of the tube away from the fins. If an extruded tube made of an alloy containing Cu or Mn is used instead of an extruded tube made of pure aluminum, the electric potential of the tube becomes a liability and the potential difference between the tube and the fin increases, and the corrosion protection distance tends to become longer. However, Cu and M
If n is increased, the extrudability of the tube (multi-hole tube) becomes poor, so the amount of Cu or Mn added is limited to about 0.5%, and for this reason, no fundamental solution has been reached.

また、最近になって通路構成材料として亜鉛被覆チュー
ブが使われることが多くなり、この場合ろう付時に亜鉛
拡散層を形成しチューブの防食をはかっている。そして
、このようなチューブと従来のフィン材すなわちAl−
MnにZn−5ns1nなどを添加したフィン材とをろ
う付して用いると、フィンよりも亜鉛拡散層の方が電位
が卑であるため、フィンよりも亜鉛拡散層が先に腐食し
、チューブからフィンが離脱してしまうという問題があ
る。
In addition, recently, zinc-coated tubes have been increasingly used as passage construction materials, and in this case, a zinc diffusion layer is formed during brazing to protect the tubes from corrosion. Then, such a tube and a conventional fin material, that is, Al-
When using a fin material made by adding Zn-5ns1n to Mn, the potential of the zinc diffusion layer is less noble than that of the fins, so the zinc diffusion layer corrodes earlier than the fins, causing corrosion to occur from the tube. There is a problem with the fins coming off.

更に、近年、熱交換器の軽量化、コストの低減などの要
求が強く、これに対応するためには熱交換器の構成材料
(作動流体通路構成材やフィン材など)を薄肉化するこ
とが必要となっている。しかしフィン材を薄肉化すると
伝熱断面積が小さくなるために、熱交換性能に支障をき
たすという問題が生じている。
Furthermore, in recent years, there has been a strong demand for lighter weight and lower cost heat exchangers, and in order to meet these demands, it is necessary to make the constituent materials of heat exchangers (working fluid passage constituent materials, fin materials, etc.) thinner. It has become necessary. However, when the fin material is made thinner, the heat transfer cross-sectional area becomes smaller, which poses a problem in that heat exchange performance is impaired.

この問題を解決するためには、ろう付は後のフィン材の
熱伝導度を高めることが有効であるが、^l−Mn系合
金の芯材の場合、ろう付は時に高温てMnが固溶するた
め、熱伝導度の低下が著しい。また、熱伝導度を高める
ために、純アルミニウム(1050,1070など)に
Zn、 Sn、 InあるいはCr5Ti、 Zrなど
を添加したフィン材を使用する試みも行なわれているが
、この場合、耐高温座屈性に劣り、また熱伝導度は高い
もののろう付は後の強度が低いためにフィン倒れが生じ
やすく、問題の根本的な解決にはなっていない。
In order to solve this problem, it is effective to increase the thermal conductivity of the fin material after brazing, but in the case of the core material of ^l-Mn alloy, brazing is sometimes performed at high temperatures and the Mn becomes hard. Because it dissolves, the thermal conductivity decreases significantly. In addition, attempts have been made to use fin materials made by adding Zn, Sn, In, Cr5Ti, Zr, etc. to pure aluminum (1050, 1070, etc.) in order to increase thermal conductivity, but in this case, high temperature resistance It has poor buckling properties, and although it has high thermal conductivity, the strength after brazing is low and the fins tend to collapse, so this has not fundamentally solved the problem.

先に提案した「Mnを含有させることな(Peを増量含
有させることにより、強度、熱伝導度に優れた熱交換器
フィン材」は、芯材の両面にAl−8t系ろう材が存在
しないので、押出チューブと組合わせて熱交換器をつく
るのには適さない。
The previously proposed ``heat exchanger fin material that does not contain Mn (increased amount of Pe) provides excellent strength and thermal conductivity'' does not have Al-8t brazing filler metal on both sides of the core material. Therefore, it is not suitable for making heat exchangers in combination with extruded tubes.

本発明はこれらの点を根本的に解決せんとするものであ
る。
The present invention aims to fundamentally solve these problems.

[課題を解決するための手段] 本発明者らは、種々のアルミニウム合金について検討を
行い、従来のAl−Mn系合金を芯材とするフィン材に
比べてろう付は後の熱伝導度が大幅に向上し、強度も高
く、犠牲陽極効果および耐高温座屈性にすぐれたブレー
ジングフィン材を見出し、このフィン材と、純アルミニ
ウムまたはCus Mnを含む合金の押出チューブ、あ
るいは、これらの押出チューブの表面に亜鉛被覆を施し
た押出チューブとを組合せて熱交換器を製作すると、耐
食性および伝熱性にすぐれた熱交換器となることを見出
し、本発明を完成した。
[Means for Solving the Problems] The present inventors have studied various aluminum alloys, and found that the thermal conductivity after brazing is lower than that of conventional fin materials whose core material is Al-Mn alloy. We have discovered a brazing fin material that has significantly improved strength, sacrificial anode effect, and high-temperature buckling resistance, and we have developed this fin material and an extruded tube of pure aluminum or an alloy containing CuS Mn, or these extruded tubes. It was discovered that a heat exchanger with excellent corrosion resistance and heat conductivity can be produced by combining a heat exchanger with an extruded tube whose surface is coated with zinc, and the present invention has been completed.

すなわち、本発明は、下記のとおりである。That is, the present invention is as follows.

(1)Fe  : 0.8〜1.8%、Zn: OJ 
〜3.0%、Cu  :0.3%以下を含有し、更にZ
r : 0.05〜0.25%、Cr:0.05〜0.
25%の1種または2種を含有し、不純物としてのMn
を0.3%以下とし、残部Al及びその他不可避的不純
物からなるアルミニウム合金を芯材とし、その両面にA
l−8i系ろう材を皮材としてなるブレージングシート
をもってフィン材を構成し、Al純度99%以上のアル
ミニウム合金からなる押出チューブをもって作動流体通
路を構成し、該作動流体通路にフィンをろう付けしてな
ることを特徴とする耐食性及び伝熱性にすぐれた熱交換
器。
(1) Fe: 0.8-1.8%, Zn: OJ
~3.0%, Cu: 0.3% or less, and further Z
r: 0.05-0.25%, Cr: 0.05-0.
Contains 25% of one or two types of Mn as an impurity.
The core material is an aluminum alloy consisting of 0.3% or less and the balance is Al and other unavoidable impurities.
The fin material is composed of a brazing sheet made of l-8i brazing material as a skin material, the working fluid passage is composed of an extruded tube made of an aluminum alloy with an Al purity of 99% or more, and the fin is brazed to the working fluid passage. A heat exchanger with excellent corrosion resistance and heat transfer properties.

(2)Fe : 0.8〜IJ%、Zn : 0.3〜
3.0%、Cu :0.3%以下を含有し、更にZr:
0.05〜0.25%。
(2) Fe: 0.8~IJ%, Zn: 0.3~
3.0%, Cu: 0.3% or less, and Zr:
0.05-0.25%.

Cr : 0.05〜0.25%の1種または2種を含
有し、不純物としてのMnを0.3%以下とし、残部A
l及びその他不可避的不純物からなるアルミニウム合金
を芯材とし、その両面にAl−8i系ろう材を皮材とし
てなるブレージングシートをもってフィン材を構成し、
Cu:0.5%以下及びMn−0,5%以下の1種また
は2種を含有し、残部Al及び不可避的不純物からなる
アルミニウム合金からなる押出チューブをもって作動流
体通路を構成し、該作動流体通路にフィンをろう付けし
てなることを特徴とする耐食性及び伝熱性にすぐれた熱
交換器。
Cr: Contains one or two of 0.05 to 0.25%, Mn as an impurity is 0.3% or less, and the balance is A.
A fin material is constituted by a brazing sheet made of an aluminum alloy consisting of l and other unavoidable impurities as a core material, and a brazing sheet made of an Al-8i brazing material as a skin material on both sides,
A working fluid passage is constituted by an extruded tube made of an aluminum alloy containing one or two of Cu: 0.5% or less and Mn - 0.5% or less, and the remainder being Al and unavoidable impurities. A heat exchanger with excellent corrosion resistance and heat conductivity, characterized by having fins brazed to the passages.

(3)上記作動流体通路を構成するアルミニウム合金か
らなる押出チューブの表面に1〜25g/m2のZn被
覆層を有することを特徴とする請求項(1)記載の耐食
性及び伝熱性にすぐれた熱交換器。
(3) The extruded tube made of aluminum alloy constituting the working fluid passage has a Zn coating layer of 1 to 25 g/m2 on the surface thereof, which has excellent corrosion resistance and heat conductivity. exchanger.

(4)上記作動流体通路を構成するアルミニウム合金か
らなる押出チューブの表面に1〜25g/m2のZn被
覆層を有することを特徴とする請求項(2)記載の耐食
性及び伝熱性にすぐれた熱交換器。
(4) The extruded tube made of aluminum alloy constituting the working fluid passage has a Zn coating layer of 1 to 25 g/m2 on the surface thereof, which has excellent corrosion resistance and heat conductivity. exchanger.

本発明における各組成の限定理由は以下のとおりである
The reasons for limiting each composition in the present invention are as follows.

(1)フィン材 (a)芯材 F e : reは合金の強度すなわちろう付は前のフ
ィン材の強度とともにろう付は後の強度を向上させる。
(1) Fin material (a) Core material Fe: re is the strength of the alloy, that is, brazing improves the strength of the previous fin material as well as the strength after brazing.

本発明合金はMnを含まないために、強度向上のために
は、0.8%以上のFeが必要である。Peが多いほど
強度が向上し、1.0%以上が望ましい。一方1.8%
を超えると鋳造時に粗大な晶出物が生成し、板材の製造
が困難になる。
Since the alloy of the present invention does not contain Mn, 0.8% or more of Fe is required to improve the strength. The more Pe there is, the higher the strength is, and 1.0% or more is desirable. On the other hand, 1.8%
If this value is exceeded, coarse crystallized substances will be generated during casting, making it difficult to manufacture plate materials.

Peは訃と異なり、ろう何時に固溶して熱伝導度を下げ
たり電位を責にしたりすることがないので、熱伝導度お
よび犠牲陽極効果特に亜鉛被覆チューブに対する犠牲陽
極効果にすぐれたフィン材の芯材への添加元素として適
する。
Unlike iron, Pe does not become solid solution during soldering and does not reduce thermal conductivity or affect potential, so it is a fin material with excellent thermal conductivity and sacrificial anode effect, especially sacrificial anode effect for zinc-coated tubes. Suitable as an additive element to the core material.

Zn:Znはフィン材の電位を卑にし、犠牲陽極効果を
付与する。特に、Al−Pe系合金にZnを添加すると
効果的に電位が卑になり、裸チューブとの組合せにおい
ては防食距離(犠牲陽極効果の到達距離)が長くなり、
また亜鉛被覆チューブとの組合せにおいては亜鉛拡散層
に対する犠牲陽極効果が良好となる。下限未満では効果
が十分でなく、上限を越えると自己耐食性が劣化する。
Zn: Zn makes the potential of the fin material less noble and provides a sacrificial anode effect. In particular, when Zn is added to an Al-Pe alloy, the potential effectively becomes less noble, and when used in combination with a bare tube, the corrosion protection distance (reaching distance of the sacrificial anode effect) becomes longer.
In addition, in combination with a zinc-coated tube, the sacrificial anode effect on the zinc diffusion layer becomes better. If it is less than the lower limit, the effect will not be sufficient, and if it exceeds the upper limit, the self-corrosion resistance will deteriorate.

Cu:Cuはろう付後の強度を向上させる。上限を越え
るとフィン材の電位が責になり犠牲陽極効果が損われる
Cu: Cu improves strength after brazing. If the upper limit is exceeded, the potential of the fin material becomes a liability and the sacrificial anode effect is impaired.

Zr、Cr:ZrおよびCrは耐高温座屈性を向上させ
る。下限未満では効果が十分でなく、上限を越えるとろ
う付後の熱伝導性が低下する。
Zr, Cr: Zr and Cr improve high temperature buckling resistance. If it is less than the lower limit, the effect will not be sufficient, and if it exceeds the upper limit, the thermal conductivity after brazing will decrease.

Mn:不純物としてのHnti、前述のように含有量が
多くなると、熱伝導度が低下するほか電位を責にするの
で少ないほうが好ましい。
Mn: Hnti as an impurity. As mentioned above, if the content increases, the thermal conductivity will decrease and the electric potential will be affected, so it is preferable to have a small amount.

しかし、その含有量が、0.3%以下であれば許容され
る。
However, its content is permissible as long as it is 0.3% or less.

その他の元素では、本発明合金の効果を損わない範囲で
、St、 Mg、 Tiなどを含んでもよい。ただし、
いずれも含有量か多くなると熱伝導度か低下する。従っ
てSiは0.6%以下、Mgは0.2%以下、Tjは0
,05%以下にすることか望ましい。Mgは、フッ化物
フラックスろう付けを行う場合にはフラックスと反応す
るので更に低く、すなわち0.1%以下に抑えることか
望ましい。Tiは鋳造時の結晶微細化のために合金元素
として添加してもよいし、^1−Ti−B微細化剤とし
て添加してもよいが、上記の範囲内に抑えることが望ま
しい。
Other elements may include St, Mg, Ti, etc. within a range that does not impair the effects of the alloy of the present invention. however,
In either case, as the content increases, the thermal conductivity decreases. Therefore, Si is 0.6% or less, Mg is 0.2% or less, and Tj is 0.
,05% or less. Since Mg reacts with the flux when fluoride flux brazing is performed, it is desirable to keep it even lower, that is, to 0.1% or less. Ti may be added as an alloying element for grain refinement during casting, or as a ^1-Ti-B refiner, but it is desirable to suppress it within the above range.

(b)ろう材 ろう材としてはAl−St系合金を用いる。(b) Brazing filler metal An Al-St alloy is used as the brazing material.

通常6〜13%のStを含む合金を用いる。ろう材中の
Siの一部は、ろう材中に芯材中に拡散(固体拡散)し
、強度向上に寄与する。
Usually, an alloy containing 6 to 13% of St is used. A part of the Si in the brazing filler metal diffuses into the core material (solid diffusion) and contributes to improving the strength.

また、フィン材全体の犠牲陽極効果を高めるためにろう
材中にZnを添加してもよい。
Furthermore, Zn may be added to the brazing material in order to enhance the sacrificial anode effect of the entire fin material.

(2)チューブ材 チューブ材としては、Al純度99%以上の純アルミニ
ウムか、あるいはCuO,5%以下およびMnO、5%
以下の1種または2種を含み、残部Alおよび不可避不
純物からなるアルミニウム合金を用いる。前者の場合゛
、Al純度が99%未満になると耐食性か低下するので
好ましくない。通常は工業用純アルミニウム1050.
1070S1100などが用いられる。一方、後者の場
合、CuおよびMnはチューブ材の電位を責にしてフィ
ン材との電位差を大きくし、フィン材の犠牲陽極効果に
よる防食作用を高めるために添加する。この効果はCu
量、Mn量か多いほど大であるが、一方Cu量、Mn量
が各々 0.5%を越えるとチューブ(押出多穴チュー
ブ)の押出性が低下する。
(2) Tube material The tube material should be pure aluminum with an Al purity of 99% or more, or CuO, 5% or less, and MnO, 5%.
An aluminum alloy containing one or two of the following, with the balance being Al and unavoidable impurities is used. In the former case, if the Al purity is less than 99%, corrosion resistance will deteriorate, which is not preferable. Usually industrial pure aluminum 1050.
1070S1100 or the like is used. On the other hand, in the latter case, Cu and Mn are added in order to increase the potential difference between the tube material and the fin material, thereby increasing the anticorrosion effect due to the sacrificial anode effect of the fin material. This effect is due to Cu
The higher the amount of Cu and the amount of Mn, the higher the amount, but on the other hand, if the amount of Cu and the amount of Mn each exceed 0.5%, the extrudability of the tube (extruded multi-hole tube) decreases.

これらのチューブ(裸チューブ)と上記(本発明)のフ
ィン材を組合せると防食距離が長く、耐食性にすぐれた
熱交換器が得られる。もちろん伝熱性もすぐれている。
When these tubes (bare tubes) are combined with the fin material of the above (present invention), a heat exchanger with a long corrosion protection distance and excellent corrosion resistance can be obtained. Of course, it also has excellent heat conductivity.

また、上記のチューブ材の表面に亜鉛を被覆したチュー
ブも用いられる。この場合ろう何時に亜鉛拡散層が形成
され、チューブが防食される。被覆する亜鉛の量として
は1〜25g/m ’の範囲が良い。Ig/a ’未満
ては防食効果が不足し、25g/l112を越えると拡
散後の表面亜鉛濃度が高くなり、亜鉛拡散層の腐食か早
く、チューブからフィンが離脱してしまう。
Further, a tube in which the surface of the above-mentioned tube material is coated with zinc may also be used. In this case, a zinc diffusion layer is formed during soldering and the tube is protected from corrosion. The amount of zinc to be coated is preferably in the range of 1 to 25 g/m'. If it is less than Ig/a', the anticorrosion effect will be insufficient, and if it exceeds 25 g/l112, the surface zinc concentration after diffusion will increase, the zinc diffusion layer will corrode quickly, and the fins will separate from the tube.

チューブの表面に亜鉛を被覆する方法としては、溶射、
メツキなどがある。
Methods of coating zinc on the surface of the tube include thermal spraying,
There are such things as Metsuki.

このような亜鉛被覆チューブと上記(本発明)のフィン
材を組合せると、耐食性が良好でフィンの離脱も生しに
くい良好な熱交換器が得られる。もちろん伝熱性もすぐ
れている。
When such a zinc-coated tube is combined with the fin material of the present invention, a heat exchanger with good corrosion resistance and fins that are less likely to come off can be obtained. Of course, it also has excellent heat conductivity.

[実施例コ 実施例1 第1表に示すA−Pの芯材用合金と、ろう材用合金43
43(Al−7,5%Si)を溶解、鋳造した。芯tオ
用合金の鋳塊に均質化処理を施し、これと予め熱間圧延
しておいたろう材とを組合せて、熱間合せ圧延、冷間圧
延、中間焼鈍および仕上げ冷間圧延を行い、0.121
(ろう材クラッド率二両面lO%)のブレージングフィ
ン材No、1〜16を作製した。次にろう付は時と同様
に窒素ガス中で600℃×3分間の加熱を行った後、引
張試験、電気伝導度測定を行い、pH3に調整した3%
NaCl水溶液中に8時間浸漬後、自然電極電位を測定
した。なお、一般に金属の熱伝導度と電気伝導度は比例
関係にあるので、ここでは熱伝導度に代えて電気伝導度
(25℃において)を測定したものである。また、60
0℃×3分間の加熱の後、芯材中へのろうの侵食状況を
断面金属組織により観察し、ろう付性を判断した。
[Example 1] A-P core material alloy shown in Table 1 and brazing material alloy 43
43 (Al-7, 5% Si) was melted and cast. Homogenize the ingot of the alloy for the core, combine it with a filler metal that has been hot rolled in advance, and perform hot rolling, cold rolling, intermediate annealing and final cold rolling. 0.121
Brazing fin materials Nos. 1 to 16 (brazing fin materials No. 1 to 16 with a brazing metal cladding ratio of 10% on both sides) were produced. Next, brazing was performed by heating in nitrogen gas for 3 minutes at 600°C, followed by a tensile test and electrical conductivity measurement, and the pH was adjusted to 3%.
After immersion in the NaCl aqueous solution for 8 hours, the natural electrode potential was measured. Note that since the thermal conductivity and electrical conductivity of metals are generally in a proportional relationship, here, the electrical conductivity (at 25° C.) was measured instead of the thermal conductivity. Also, 60
After heating at 0° C. for 3 minutes, the state of corrosion of the wax into the core material was observed by cross-sectional metallographic structure, and brazeability was determined.

以上の結果を第2表に示す。The above results are shown in Table 2.

本発明例No、1〜5の場合、ろう付後の引張強さおよ
び電気伝導度が高く、従来のフィン材No、1Bよりろ
う付性も良好であり、自然電極電位も卑であって犠牲陽
極効果にすぐれている。
In the case of the present invention examples No. 1 to 5, the tensile strength and electrical conductivity after brazing are high, the brazing property is better than the conventional fin material No. 1B, and the natural electrode potential is also base and sacrificial. Excellent anode effect.

比較例No、6は芯材中のFeか少ないために引張強さ
か低く、N o、 7は逆にFeが多いために健全なフ
ィン材が得られていない。
Comparative Example No. 6 has a low tensile strength due to a small amount of Fe in the core material, whereas Comparative Example No. 7 has a large amount of Fe, so a sound fin material cannot be obtained.

No、8は芯材中のZnが少ないために自然電極電位が
やや責である。N009はZnか多いために電気伝導度
がやや低い。
No. 8 has a small amount of Zn in the core material, so the natural electrode potential is somewhat at fault. Since N009 contains a large amount of Zn, its electrical conductivity is somewhat low.

No、10は芯材中にCuが含まれないために引張強さ
かやや低い。
No. 10 has a slightly low tensile strength because the core material does not contain Cu.

No、11は芯材中のCuが多いために自然電極電位が
貴である。
No. 11 has a high natural electrode potential due to the large amount of Cu in the core material.

No、12は芯材中のZr、Crが少ないためにろう付
性が不良である。No、13およびNo、14はZrま
たはCrが多いために電気伝導度が低い。
No. 12 has poor brazing properties because the core material contains less Zr and Cr. No. 13 and No. 14 have low electrical conductivity because they contain a large amount of Zr or Cr.

No、15は芯材中のMnが多いために電気伝導度が低
く、自然電極電位がやや責である。
No. 15 had low electrical conductivity due to the large amount of Mn in the core material, and the natural electrode potential was somewhat at fault.

No、lI3は3003+ Z n合金を芯材とした従
来のフィン材であるが、引張強さがやや低く、電気伝導
度が低く、自然電極電位もやや貴である。
No. 1I3 is a conventional fin material with a core material of 3003+Zn alloy, but its tensile strength is somewhat low, its electrical conductivity is low, and its natural electrode potential is somewhat noble.

第1表 * 3003にZnを添加したちの 第2表 実施例2 実施例1て作製したフィン材をコルケート加工し、第3
表のa−dの押出チューブ(亜鉛被覆なし)と組合せて
フッ化物フラックスろう付し、第1図のような試験片を
作成した。この試験片を4週間の5IdAAT試験(A
STM G43)に供し、フィン接合部のチューブの最
大腐食深さ、防食距離(フィン非接合部で深い孔食が発
生した点からフィン接合部までの最短距離)、フィンの
腐食状況を調べた。
Table 1 *Table 2 Example 2 of 3003 with Zn added The fin material prepared in Example 1 was corkated and
A test piece as shown in FIG. 1 was prepared by combining the extruded tubes a to d in the table (without zinc coating) and brazing with fluoride flux. This test piece was used for 4 weeks of 5IdAAT test (A
STM G43), and the maximum corrosion depth of the tube at the fin joint, the corrosion protection distance (the shortest distance from the point where deep pitting corrosion occurred in the non-fin joint to the fin joint), and the corrosion status of the fin were investigated.

結果を第4表に示す。The results are shown in Table 4.

本発明例No、17〜27の場合、最大腐食深さが小さ
く、防食距離も大きく、フィンの腐食状況も異常ない。
In the case of invention examples No. 17 to 27, the maximum corrosion depth is small, the corrosion protection distance is large, and the corrosion state of the fins is normal.

比較例No、28の場合フィン芯材中のZnが少ないた
めに最大腐食深さが大きく、防食距離が短い。No、2
9の場合フィン芯材中のZnが多いためにフィンの消耗
が顕著である。N o、30の場合フィン芯材中のCu
が多いために最大腐食深さが大きく、防食距離も短い。
In the case of Comparative Example No. 28, the maximum corrosion depth was large and the corrosion protection distance was short because the fin core material contained less Zn. No, 2
In the case of No. 9, there is a large amount of Zn in the fin core material, so the wear of the fins is significant. In the case of No, 30, Cu in the fin core material
Because of the large amount of corrosion, the maximum corrosion depth is large and the corrosion protection distance is short.

No、31の場合、Mnが多いために防食距離か短い。In the case of No. 31, the corrosion protection distance is short because of the large amount of Mn.

No、32の場合、フィン芯材を3DO3+ Z nと
しているため防食距離か短い。
In the case of No. 32, the corrosion protection distance is short because the fin core material is 3DO3+Zn.

第3表 第4表 実施例3 実施例1で作製したフィン材をコルゲート加工し、第3
表のe−hの亜鉛溶射チューブと組合せてフッ化物フラ
ックスろう付し、第2図のようなサーペンタイン型コン
デンサを作製した。
Table 3 Table 4 Example 3 The fin material produced in Example 1 was corrugated and the third
A serpentine type capacitor as shown in Fig. 2 was made by combining with the zinc sprayed tube shown in the table eh and fluoride flux brazing.

このコンデンサを4週間のCASS試験(JISD02
01)および4週間の塩水噴霧試験(JIS Z 23
71)i、:#l、チューブの最大腐食深さ、フィンの
腐食試験状況およびフィンのチューブからの離脱状況を
調べた。
This capacitor was tested by CASS test (JISD02) for 4 weeks.
01) and 4-week salt spray test (JIS Z 23
71) i: #l, The maximum corrosion depth of the tube, the corrosion test status of the fin, and the status of separation of the fin from the tube were investigated.

結果を第5表に示す。The results are shown in Table 5.

本発明例N o、33〜40の場合、最大腐食深さが少
なく、フィンの腐食状況も異常なく、フィンの離脱も生
じていない。
In the case of Invention Examples No. 33 to 40, the maximum corrosion depth was small, the corrosion state of the fins was normal, and the fins did not come off.

比較例N o、41〜45の場合、チューブが亜鉛溶射
チューブであるので最大腐食深さが小さいが、N o、
4L N o、43、N o、44、N o、45にお
いてフィンの離脱が生じ、No、42においてフィンの
消耗が顕著である。
In the case of Comparative Examples No. 41 to 45, the maximum corrosion depth is small because the tubes are zinc sprayed tubes, but No.
In 4L No. 43, No. 44, No. 45, the fins were detached, and in No. 42, the fins were noticeably worn out.

第5表 実施例4 実施例1で作製したフィン材をコルゲート加工し、第3
表のbおよびhの押出チューブと組合せて第3図のよう
なパラレルフロー型コンデンサヲ作製した。このコンデ
ンサをエアコンシステムに組込み、熱交換量を測定した
Table 5 Example 4 The fin material produced in Example 1 was corrugated and the third
A parallel flow type capacitor as shown in FIG. 3 was manufactured by combining the extruded tubes b and h in the table. This capacitor was installed in an air conditioner system and the amount of heat exchange was measured.

結果を第6表に示す。The results are shown in Table 6.

本発明例N o、46〜50の場合、従来の組合せであ
る比較例No、54と比較して熱交換量か増加している
In the case of Inventive Examples No. 46 to 50, the amount of heat exchange is increased compared to Comparative Example No. 54, which is a conventional combination.

比較例No、51.52.53の場合、フィン材の熱伝
導度が低いために、熱交換量がNo、54と同程度であ
る。
In the case of Comparative Example No. 51, 52, and 53, the heat exchange amount is about the same as No. 54 because the thermal conductivity of the fin material is low.

第6表 本比較例No、54の熱交換量を基準とし、それからの
増加分を%表示した。
Based on the heat exchange amount of Comparative Example No. 54 in Table 6, the increase from that amount is expressed as a percentage.

[発明の効果] 本発明によると、耐食性および伝熱性にすぐれた熱交換
器が提供でき、熱交換器の信頼性向上、小型化、軽量化
に寄与する。
[Effects of the Invention] According to the present invention, a heat exchanger with excellent corrosion resistance and heat conductivity can be provided, contributing to improved reliability, size reduction, and weight reduction of the heat exchanger.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)は本発明の効果を試験する試験片の例を示
す正面図、第1図(ロ)は同端面図、第2図は同じく試
験に用いたサーペンタイン製コンデンサの正面図、第3
図は同じく試験に用いたパラレルフロー型コンデンサの
正面図である。 l・・・フィン、2・・・チューブ、3・・・ヘッダー
。 特許出願人 住友軽金属工業株式会社
FIG. 1(a) is a front view showing an example of a test piece for testing the effects of the present invention, FIG. 1(b) is an end view of the same, and FIG. 2 is a front view of a serpentine capacitor also used in the test. Third
The figure is a front view of a parallel flow capacitor also used in the test. l...Fin, 2...Tube, 3...Header. Patent applicant: Sumitomo Light Metal Industries, Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1)Fe:0.8〜1.8%(重量%、以下同じ),
Zn:0.3〜3.0%,Cu:0.3%以下を含有し
、更にZr:0.05〜0.25%,Cr:0.05〜
0.25%の1種または2種を含有し、不純物としての
Mnを0.3%以下とし、残部Al及びその他不可避的
不純物からなるアルミニウム合金を芯材とし、その両面
にAl−Si系ろう材を皮材としてなるブレージングシ
ートをもってフィン材を構成し、Al純度99%以上の
アルミニウム合金からなる押出チューブをもって作動流
体通路を構成し、該作動流体通路にフィンをろう付けし
てなることを特徴とする耐食性及び伝熱性にすぐれた熱
交換器。
(1) Fe: 0.8 to 1.8% (weight%, same below),
Contains Zn: 0.3 to 3.0%, Cu: 0.3% or less, and further contains Zr: 0.05 to 0.25%, Cr: 0.05 to
The core material is an aluminum alloy containing 0.25% of one or two kinds of Mn as an impurity, 0.3% or less of Mn as an impurity, and the balance being Al and other unavoidable impurities, and an Al-Si based wax is applied on both sides of the aluminum alloy. The fin material is composed of a brazing sheet made of aluminum alloy as a skin material, the working fluid passage is composed of an extruded tube made of an aluminum alloy with an Al purity of 99% or more, and the fin is brazed to the working fluid passage. A heat exchanger with excellent corrosion resistance and heat transfer properties.
(2)Fe:0.8〜1.8%,Zn:0.3〜3.0
%,Cu:0.3%以下を含有し、更にZr:0.05
〜0.25%,Cr:0.05〜0.25%の1種また
は2種を含有し、不純物としてのMnを0.3%以下と
し、残部Al及びその他不可避的不純物からなるアルミ
ニウム合金を芯材とし、その両面にAl−Si系ろう材
を皮材としてなるブレージングシートをもってフィン材
を構成し、Cu:0.5%以下及びMn:0.5%以下
の1種または2種を含有し、残部Al及び不可避的不純
物からなるアルミニウム合金からなる押出チューブをも
って作動流体通路を構成し、該作動流体通路にフィンを
ろう付けしてなることを特徴とする耐食性及び伝熱性に
すぐれた熱交換器。
(2) Fe: 0.8-1.8%, Zn: 0.3-3.0
%, Cu: 0.3% or less, and Zr: 0.05
~0.25%, Cr: 0.05~0.25% or two, Mn as an impurity is 0.3% or less, and the balance is Al and other unavoidable impurities. The fin material is composed of a brazing sheet made of a core material and an Al-Si brazing material as a skin material on both sides, and contains one or two of Cu: 0.5% or less and Mn: 0.5% or less. A heat exchanger with excellent corrosion resistance and heat conductivity, characterized in that a working fluid passage is constituted by an extruded tube made of an aluminum alloy with the remainder being Al and unavoidable impurities, and fins are brazed to the working fluid passage. vessel.
(3)上記作動流体通路を構成するアルミニウム合金か
らなる押出チューブの表面に1〜25g/m^2のZn
被覆層を有することを特徴とする請求項(1)記載の耐
食性及び伝熱性にすぐれた熱交換器。
(3) 1 to 25 g/m^2 of Zn is added to the surface of the extruded tube made of aluminum alloy constituting the working fluid passage.
A heat exchanger with excellent corrosion resistance and heat conductivity according to claim 1, characterized in that it has a coating layer.
(4)上記作動流体通路を構成するアルミニウム合金か
らなる押出チューブの表面に1〜25g/m^2のZn
被覆層を有することを特徴とする請求項(2)記載の耐
食性及び伝熱性にすぐれた熱交換器。
(4) 1 to 25 g/m^2 of Zn is added to the surface of the extruded tube made of aluminum alloy constituting the working fluid passage.
A heat exchanger with excellent corrosion resistance and heat conductivity according to claim 2, characterized in that it has a coating layer.
JP32604390A 1990-11-29 1990-11-29 Heat exchanger with excellent corrosion resistance and heat transfer Expired - Fee Related JP2691069B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP32604390A JP2691069B2 (en) 1990-11-29 1990-11-29 Heat exchanger with excellent corrosion resistance and heat transfer
US07/800,556 US5148862A (en) 1990-11-29 1991-11-27 Heat exchanger fin materials and heat exchangers prepared therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32604390A JP2691069B2 (en) 1990-11-29 1990-11-29 Heat exchanger with excellent corrosion resistance and heat transfer

Publications (2)

Publication Number Publication Date
JPH04198694A true JPH04198694A (en) 1992-07-20
JP2691069B2 JP2691069B2 (en) 1997-12-17

Family

ID=18183471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32604390A Expired - Fee Related JP2691069B2 (en) 1990-11-29 1990-11-29 Heat exchanger with excellent corrosion resistance and heat transfer

Country Status (1)

Country Link
JP (1) JP2691069B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100051247A1 (en) * 2008-09-02 2010-03-04 Calsonic Kansei Corporation Heat exchanger made of aluminum alloy and method of producing same
US8945721B2 (en) 2010-03-02 2015-02-03 Mitsubishi Aluminum Co., Ltd. Aluminum alloy heat exchanger
JP2016048121A (en) * 2014-08-27 2016-04-07 株式会社神戸製鋼所 Heat transfer pipe for open-rack type carburetor and its process of manufacture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100051247A1 (en) * 2008-09-02 2010-03-04 Calsonic Kansei Corporation Heat exchanger made of aluminum alloy and method of producing same
US8945721B2 (en) 2010-03-02 2015-02-03 Mitsubishi Aluminum Co., Ltd. Aluminum alloy heat exchanger
US9328977B2 (en) 2010-03-02 2016-05-03 Mitsubishi Aluminum Co., Ltd. Aluminum alloy heat exchanger
JP2016048121A (en) * 2014-08-27 2016-04-07 株式会社神戸製鋼所 Heat transfer pipe for open-rack type carburetor and its process of manufacture

Also Published As

Publication number Publication date
JP2691069B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
JP4451974B2 (en) Aluminum alloy brazing sheet for heat exchanger
EP0637481B1 (en) Aluminum alloy brazing material and brazing sheet for heat-exchangers and method for fabricating aluminum alloy heat-exchangers
AU2003289789B2 (en) Aluminum alloy tube and fin assembly for heat exchangers having improved corrosion resistance after brazing
JP3756439B2 (en) High strength and high corrosion resistance aluminum alloy extruded material for heat exchanger, method for producing the same, and heat exchanger
JP2000167688A (en) Aluminum alloy clad material for heat exchanger excellent in brazability and corrosion resistance
JPS6248743B2 (en)
JP4263160B2 (en) Aluminum alloy clad material and heat exchanger tube and heat exchanger using the same
JPH1088265A (en) Aluminum alloy fin material for heat exchanger, excellent in sacrificial anode effect as well as in strength after brazing
JP3749089B2 (en) Sacrificial anticorrosion aluminum alloy plate and composite material thereof
JP2691069B2 (en) Heat exchanger with excellent corrosion resistance and heat transfer
JP3759441B2 (en) High strength and high corrosion resistance aluminum alloy extruded tube for heat exchanger, method for producing the same, and heat exchanger
JPH09176767A (en) Al brazing sheet for vacuum brazing
JP2000202682A (en) Aluminum alloy brazing filler metal and aluminum alloy clad material for heat exchanger excellent in brazability and corrosion resistance using the brazing filler metal for clad material
JPH1088267A (en) Aluminum alloy clad fin material and heat exchanger made of aluminum alloy using the clad fin material
JP2933382B2 (en) High strength and high corrosion resistance aluminum alloy clad material for heat exchanger
JPH04194597A (en) Heat exchanger excellent in corrosion resistance and heat transfer characteristics
JPH0790454A (en) Production of aluminum alloy brazing sheet for heat exchanger and heat exchanger made of aluminum alloy
JP2000135590A (en) High strength aluminum alloy clad material for heat exchanger
JP2000202681A (en) Aluminum alloy fin material for heat exchanger excellent in brazability
JPH04193927A (en) Brazable fin material for aluminum heat exchanger having superior heat conductivity and significant sacrificial anode effect after brazing
JP2768393B2 (en) Aluminum alloy for heat exchanger fin material with excellent strength after brazing and sacrificial anode effect
JP2000135591A (en) Aluminum alloy clad material for heat exchanger superior in corrosion resistance
JPH04198449A (en) Brazing fin material for aluminum heat exchanger excellent in thermal conductivity after brazing and sacrificial anode effect
JP3521105B6 (en) Aluminum alloy for heat exchanger fins
JP2006037137A (en) Highly corrosion resistant aluminum clad material for heat exchanger

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees