JP2933382B2 - High strength and high corrosion resistance aluminum alloy clad material for heat exchanger - Google Patents

High strength and high corrosion resistance aluminum alloy clad material for heat exchanger

Info

Publication number
JP2933382B2
JP2933382B2 JP2326041A JP32604190A JP2933382B2 JP 2933382 B2 JP2933382 B2 JP 2933382B2 JP 2326041 A JP2326041 A JP 2326041A JP 32604190 A JP32604190 A JP 32604190A JP 2933382 B2 JP2933382 B2 JP 2933382B2
Authority
JP
Japan
Prior art keywords
core material
brazing
sacrificial anode
strength
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2326041A
Other languages
Japanese (ja)
Other versions
JPH04198447A (en
Inventor
重徳 山内
祐治 鈴木
健志 加藤
直樹 時實
圭三 難波
光夫 橋浦
薫 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Nippon Steel Corp
Original Assignee
Denso Corp
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Sumitomo Metal Industries Ltd filed Critical Denso Corp
Priority to JP2326041A priority Critical patent/JP2933382B2/en
Publication of JPH04198447A publication Critical patent/JPH04198447A/en
Application granted granted Critical
Publication of JP2933382B2 publication Critical patent/JP2933382B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/016Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of aluminium or aluminium alloys

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は不活性ガス雰囲気中で弗化物フラックスを
用いたろう付によりラジエータやヒーターコアなどのAl
熱交換器を製造するに際して、その構造部材であるチュ
ーブ材やヘッダープレート材などとして用いるに適し
た、ろう付性が良好で、かつろう付後に高強度および高
耐食性を有するAl合金クラッド材に関するものであり、
特に薄肉で用いられるチューブ材に適する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a radiator, a heater core, or the like by brazing using a fluoride flux in an inert gas atmosphere.
Al-alloy clad material with good brazing properties and high strength and high corrosion resistance after brazing, suitable for use as a structural member such as tube material and header plate material when manufacturing heat exchangers And
In particular, it is suitable for a thin tube material.

[従来の技術] 自動車のラジエータやヒーターコアなどのチューブ材
やヘッダープレート材には、3003などのAl−Mn系合金を
芯材とし、片面にAl−Si系合金のろう材、他の片面にAl
−Zn系合金やAl−Zn−Mg系合金の犠牲陽極材をクラッド
した3層クラッド材が用いられている。Al−Si系のろう
材はチューブとフィンの接合、チューブとヘッダープレ
ートとの接合のためのものである。ろう付は不活性ガス
雰囲気中で弗化物フラックスを用いて行われることが多
い。犠牲陽極材をクラッドした他の片面は、使用中に内
側(水側)になり、犠牲陽極作用を発揮して芯材の孔食
や隙間腐食を防止する。
[Conventional technology] Al-Mn based alloys such as 3003 are used as core materials for tubes and header plate materials such as radiators and heater cores of automobiles. Al
A three-layer clad material in which a sacrificial anode material of a -Zn alloy or an Al-Zn-Mg alloy is clad is used. The Al-Si brazing material is used for joining a tube to a fin and joining a tube to a header plate. Brazing is often performed using a fluoride flux in an inert gas atmosphere. The other side clad with the sacrificial anode material becomes inside (water side) during use, and exhibits a sacrificial anode effect to prevent pitting and crevice corrosion of the core material.

近年ラジエータやヒーターコアなどの軽量化を求める
要求が強く、チューブ材やヘッダープレート材の薄肉化
が必要となっている。そのためには材料の高強度化特に
ろう付後の強度の向上が必要であり、高強度化のために
芯材中にMgを添加することが多くなってきている。しか
し、Mgはろう付中に表面に拡散していき、弗化物フラッ
クスと反応するため、綿状生成物(Mgの弗化物)が生成
して付着したり、接合不良を生じたりする。こうして、
芯材中へのMgの添加量は最大でも0.5%、実用上は0.2〜
0.3%に制限され、高強度化の妨げとなっている。
In recent years, there has been a strong demand for weight reduction of radiators, heater cores, and the like, and thinner tube materials and header plate materials have been required. For that purpose, it is necessary to increase the strength of the material, particularly, the strength after brazing, and Mg is often added to the core material for increasing the strength. However, Mg diffuses to the surface during brazing and reacts with the fluoride flux, so that a flocculent product (fluoride of Mg) is generated and adheres, or a bonding failure occurs. Thus,
The maximum amount of Mg added to the core material is 0.5%, practically 0.2 to
It is limited to 0.3%, which hinders high strength.

チューブ材やヘッダープレート材の強度は、犠牲陽極
材にMgを添加することによっても向上する可能性があ
る。犠牲陽極材にMgを添加したクラッド材に関しては、
従来からいくつかの提案がある。
The strength of the tube or header plate material may also be improved by adding Mg to the sacrificial anode material. For the clad material with Mg added to the sacrificial anode material,
There have been several proposals.

すなわち、ラジエータ用ヘッダープレート材やチュー
ブ材の犠牲陽極材に、 MgとZn等を含有させる方法(特公昭63−28704号)
が、 ZnとMgを添加する方法(特開昭61−89498号)が、 SnとMgを同時添加する方法(特開昭56−16646号、特
開昭63−89641号)が、 比較的高濃度までのMgとZnを添加する方法(特公昭62
−45301)、 が提案されている。
That is, a method in which Mg and Zn are contained in a sacrificial anode material of a radiator header plate material or a tube material (Japanese Patent Publication No. 63-28704).
However, the method of adding Zn and Mg (JP-A-61-89498) and the method of adding Sn and Mg simultaneously (JP-A-56-16646 and JP-A-63-89641) are relatively expensive. Method of adding Mg and Zn up to the concentration (JP-B-62
−45301), has been proposed.

しかし、上記およびのMgの添加は1.1%あるいは
1.5%以下と少なく、孔食や隙間腐食の防止のために添
加されており、強度向上が得られない。
However, the addition of Mg above and 1.1% or
As small as 1.5% or less, it is added to prevent pitting and crevice corrosion, and strength cannot be improved.

上記のMgの添加はSnの粒界拡散を抑制し、熱間圧延
時の割れを防止することを目的とし、上記のMgの添加
は耐孔食性の改善を目的としているが、いずれもMgが高
濃度の場合には芯材に拡散してある程度の強度向上効果
も得られる可能性がる。しかし、薄肉のチューブ材(ク
ラッド材)を作った場合、芯材の強度は犠牲陽極材から
拡散するMgにより高くできても、犠牲陽極材の強度はMg
添加のみでは不足となり、クラッド材全体の強度を高く
することができない。すなわち、薄肉になると、芯材の
みでなく犠牲陽極材の強度への寄与も大きくなり、犠牲
陽極材の強度も高くすることが必要となるのである。
The addition of Mg is intended to suppress grain boundary diffusion of Sn and to prevent cracking during hot rolling, and the addition of Mg is intended to improve pitting corrosion resistance. In the case of a high concentration, it may be diffused into the core material and a certain degree of strength improving effect may be obtained. However, when a thin tube material (cladding material) is made, the strength of the core material can be increased by Mg diffused from the sacrificial anode material, but the strength of the sacrificial anode material is Mg.
Addition alone is insufficient, and the strength of the entire clad material cannot be increased. That is, when the thickness is reduced, the contribution to the strength of not only the core material but also the sacrificial anode material increases, and it is necessary to increase the strength of the sacrificial anode material.

[発明が解決しようとする課題] そこで、本発明はろう付け性を害することなく、すな
わち、芯材のMg添加量を最大0.5%に抑えたままで、ろ
う付け後に高強度が得られるクラッド材を提供しようと
するものである。
[Problems to be Solved by the Invention] Therefore, the present invention provides a clad material that can obtain high strength after brazing without impairing brazing properties, that is, while keeping the amount of Mg added to the core material at a maximum of 0.5%. It is something to offer.

[課題を解決するための手段] 本発明者らは、芯材中のMg添加量を最大0.5%に抑え
たままで、ろう付け後に高強度が得られる方法について
検討し、犠牲陽極材中に高濃度のMgとSiを添加すると、
犠牲陽極材中のMgの一部がろう付け中に芯材中へ拡散し
て、芯材を強化し、また、犠牲陽極材そのものもMgとSi
により強化されることを見出し、本発明を完成した。
[Means for Solving the Problems] The present inventors studied a method of obtaining high strength after brazing while keeping the amount of Mg added to the core material at a maximum of 0.5%. By adding Mg and Si in concentrations,
Part of the Mg in the sacrificial anode material diffuses into the core material during brazing, strengthening the core material.
And completed the present invention.

すなわち、犠牲陽極材中にMgとSiを共存させ、Mgを芯
材の強化に寄与させるとともに、犠牲陽極材をMgとSiに
よる固溶体効果およびMg2Siの析出による時効硬化によ
って強化させたものである。
That is, Mg and Si coexist in the sacrificial anode material, and Mg contributes to strengthening of the core material, and the sacrificial anode material is strengthened by solid solution effect by Mg and Si and age hardening by precipitation of Mg 2 Si. is there.

すなわち、本発明の構成は、 (1)芯材が、Mn:0.3〜2.0%、Cu:0.25〜0.8%、Si:0.
2〜1.0%、Mg:0.5%以下、Ti:0.35%以下を含有し、残
部Alと不可避不純物からなるアルミニウム合金で構成さ
れ、該芯材の片面に複合された犠牲陽極材がMg:1.2〜2.
5%、Si:0.2〜0.8%、Zn:0.5〜2.0%を含有し、残部Al
と不可避不純物からなるアルミニウム合金で構成され、
かつ、前記芯材の他の片面に複合された皮材がAl−Si系
合金のろう材で構成されたことを特徴とする熱交換器用
高強度高耐食性アルミニウム合金クラッド材、 (2)芯材が、Mn:0.3〜2.0%、Cu:0.25〜0.8%、Si:0.
2〜1.0%、Mg:0.5%以下、Ti:0.35%以下を含有し、残
部Alと不可避不純物からなるアルミニウム合金で構成さ
れ、該芯材の片面に複合された犠牲陽極材がMg:1.2〜2.
5%、Si:0.2〜0.8%、Zn:0.5〜2.0%を含有し、更に、I
n:0.2%以下、Sn:0.2%以下、及びGa:0.2%以下の1種
又は2種以上を含有し、残部Alと不可避不純物からなる
アルミニウム合金で構成され、かつ、前記芯材の他の片
面に複合された皮材がAl−Si系合金のろう材で構成され
たことを特徴とする熱交換器用高強度耐食性アルミニウ
ム合金クラッド材、である。
That is, the constitution of the present invention is as follows: (1) The core material is Mn: 0.3 to 2.0%, Cu: 0.25 to 0.8%, Si: 0.2 to 0.8%.
A sacrificial anode material containing 2 to 1.0%, Mg: 0.5% or less, Ti: 0.35% or less, the balance being made of an aluminum alloy composed of Al and unavoidable impurities, and having a composite of Mg: 1.2 to 1 surface of the core material 2.
5%, Si: 0.2-0.8%, Zn: 0.5-2.0%, balance Al
And an aluminum alloy consisting of unavoidable impurities,
A high-strength and high-corrosion-resistant aluminum alloy clad material for a heat exchanger, wherein the skin material combined with the other surface of the core material is made of an Al-Si alloy brazing material; But, Mn: 0.3-2.0%, Cu: 0.25-0.8%, Si: 0.
The sacrificial anode material containing 2 to 1.0%, Mg: 0.5% or less, Ti: 0.35% or less, the balance being made of an aluminum alloy composed of Al and unavoidable impurities, and having one side of the core material combined with Mg: 1.2 to 2.
5%, Si: 0.2-0.8%, Zn: 0.5-2.0%.
n: 0.2% or less, Sn: 0.2% or less, and Ga: 0.2% or less, containing one or more kinds, the balance being made of an aluminum alloy consisting of Al and unavoidable impurities, and A high-strength corrosion-resistant aluminum alloy clad material for a heat exchanger, wherein a skin material composited on one side is made of an Al-Si alloy brazing material.

[作用] 本発明における組成及び組成範囲の限定理由について
述べる。
[Operation] The reasons for limiting the composition and the composition range in the present invention will be described.

(1)芯材 Mn: Mnは強度を向上させる。又、芯材の電位を貴にして犠
牲陽極材との電位差を大きくし耐食性を向上させる。0.
3%未満では効果が十分でなく、2.0%を越えると鋳造時
に粗大な化合物が生成し、健全な板材が得られない。
(1) Core material Mn: Mn improves strength. Further, the potential of the core material is made noble to increase the potential difference from the sacrificial anode material, thereby improving the corrosion resistance. 0.
If it is less than 3%, the effect is not sufficient, and if it exceeds 2.0%, a coarse compound is formed at the time of casting, and a sound plate material cannot be obtained.

Cu: Cuは芯材の電位を貴にして、犠牲陽極材およびろう材
と芯材との電位差を大きくし、犠牲陽極材およびろう材
の犠牲陽極効果による防食作用を大きくする。更に、芯
材中のCuはろう付時に犠牲陽極材中及びろう材中へ拡散
してなだらかな濃度勾配を形成し、芯材側が貴な電位、
犠牲陽極材及びろう材の各々表面側が卑な電位となり、
その間になだらかな電位分布を形成して腐食形態を全面
腐食型にする。
Cu: Cu makes the potential of the core material noble, increases the potential difference between the sacrificial anode material and the brazing material and the core material, and increases the anticorrosion effect of the sacrificial anode material and the brazing material due to the sacrificial anode effect. Further, Cu in the core material diffuses into the sacrificial anode material and the brazing material during brazing to form a gentle concentration gradient, and the core material side has a noble potential,
The surface side of each of the sacrificial anode material and the brazing material has a low potential,
In the meantime, a gentle potential distribution is formed to make the form of corrosion a general corrosion type.

芯材中のCuは強度向上にも寄与する。 Cu in the core material also contributes to strength improvement.

以上に示したCuの防食作用と強度向上効果は、芯材中
のCu量が0.25%未満では発揮されず、一方、0.8%を越
えると芯材自体の耐食性が悪くなるとともに芯材の融点
が下がって、ろう付時に局部的に溶融を生ずるようにな
る。
The anticorrosive action and strength improvement effect of Cu shown above are not exhibited when the Cu content in the core material is less than 0.25%, while when it exceeds 0.8%, the corrosion resistance of the core material itself deteriorates and the melting point of the core material decreases. As a result, melting occurs locally during brazing.

Si: Siは芯材の強度を向上させる。特に、ろう付中に犠牲
陽極材から拡散してくるMgと共存することにより、ろう
付後の時効硬化により強度がより高くなる。0.2%未満
では効果が十分でなく、1.0%を越えると耐食性が低下
するとともに芯材の融点が下がってろう付時に局部的な
溶融を生ずるようになる。
Si: Si improves the strength of the core material. In particular, by coexisting with Mg diffused from the sacrificial anode material during brazing, the strength is further increased by age hardening after brazing. If it is less than 0.2%, the effect is not sufficient. If it exceeds 1.0%, the corrosion resistance is reduced and the melting point of the core material is lowered, so that local melting occurs during brazing.

Mg: Mgは芯材の強度を向上させる効果があるが、ろう付け
性を劣化させる。このため芯材中のMg含有量は0.5%以
下にする必要がある。0.5%を越えると弗化物フラック
スと反応して、ろう付け性を阻害したり、Mgの弗化物が
生成してろう付け部の外観が悪くなる。
Mg: Mg has the effect of improving the strength of the core material, but deteriorates the brazing properties. Therefore, the Mg content in the core material needs to be 0.5% or less. If it exceeds 0.5%, it reacts with the fluoride flux to inhibit brazing properties, or Mg fluoride is generated to deteriorate the appearance of the brazed portion.

Ti: Tiは芯材の耐食性をより一層向上させる。すなわちTi
は濃度の高い領域と低い領域に分かれ、それらが板厚方
向に交互に分布して層状となり、Ti濃度が低い領域が高
い領域に比べて優先的に腐食することにより、腐食形態
を層状にする。その結果板厚方向への腐食の進行を妨げ
て材料の耐孔食性を向上させる。0.35%を越えると鋳造
時に粗大な化合物が生成し、健全な板材が得られない。
Ti: Ti further improves the corrosion resistance of the core material. That is, Ti
Is divided into high-concentration areas and low-concentration areas, which are alternately distributed in the thickness direction to form a layer, and the low-Ti area preferentially corrodes compared to the high-concentration areas, thereby forming a corroded form. . As a result, erosion resistance of the material is improved by preventing the progress of corrosion in the thickness direction. If it exceeds 0.35%, a coarse compound is formed at the time of casting, and a sound plate cannot be obtained.

その他の元素: Fe、Zn、Cr、Zrなどは本発明の効果を損なわない範囲
で含まれてもよい。ただし、Feは多量に含まれると耐食
性を害するので0.7%以下にするのが好ましい。Znは芯
材の電位を卑にし、犠牲陽極材及びろう材との電位差を
小さくするので0.2%以下にするのが好ましい。
Other elements: Fe, Zn, Cr, Zr, and the like may be included in a range that does not impair the effects of the present invention. However, since Fe impairs corrosion resistance when contained in a large amount, it is preferable to set the content to 0.7% or less. Since Zn makes the potential of the core material low and reduces the potential difference between the sacrificial anode material and the brazing material, it is preferable that Zn be 0.2% or less.

(2)犠牲陽極材 Mg: 犠牲陽極材中のMgの一部は、主としてろう付中に芯材
中へ拡散し、芯材中のSiやCuとともに芯材強度を向上さ
せる。また、犠牲陽極材中に残存したMgはSiとともに犠
牲陽極材の強度を向上させる。そしてこれらの作用によ
り、クラッド材全体の強度向上に寄与する。1.2%未満
では効果が十分でなく、2.5%を越えるとろう付時に局
部溶融が生じ、好ましくない。
(2) Sacrificial anode material Mg: A part of Mg in the sacrificial anode material mainly diffuses into the core material during brazing, and improves the core material strength together with Si and Cu in the core material. Mg remaining in the sacrificial anode material together with Si improves the strength of the sacrificial anode material. These actions contribute to improving the strength of the entire clad material. If it is less than 1.2%, the effect is not sufficient, and if it exceeds 2.5%, local melting occurs during brazing, which is not preferable.

なお、ろう付中に犠牲陽極材中のMgは芯材中へ拡散す
るが、第1図のような濃度分布を有するようになり、ろ
う材側へ大量に拡散して、ろう付性を阻害することはな
い。また、クラッド製造中にも拡散が起こり、芯材と犠
牲陽極材との境界では僅かな濃度分布を有していること
は、いうまでもない。
During the brazing, Mg in the sacrificial anode material diffuses into the core material, but has a concentration distribution as shown in FIG. 1 and diffuses in large quantities toward the brazing material side, impairing brazing properties. I will not do it. In addition, it goes without saying that diffusion occurs during the production of the clad, and that the boundary between the core material and the sacrificial anode material has a slight concentration distribution.

Si: Siは犠牲陽極材の強度を向上させ、クラッド材全体の
強度向上に寄与する。特に、犠牲陽極材中に残存したMg
とともに、時効硬化を生じて、強度向上に寄与する。0.
2%未満では効果が十分でなく、0.8%を越えるとろう付
時に局部的な溶融が生ずる。
Si: Si improves the strength of the sacrificial anode material and contributes to the strength improvement of the entire clad material. In particular, the Mg remaining in the sacrificial anode material
At the same time, age hardening occurs to contribute to strength improvement. 0.
If it is less than 2%, the effect is not sufficient, and if it exceeds 0.8%, local melting occurs during brazing.

Zn: Znは皮材の電位を卑にし、犠牲陽極効果を付与する。
その結果、腐食の形態を全面腐食型にして、孔食や隙間
腐食を抑制する、0.5%未満では効果が十分でなく、2.0
%を越えると、自己耐食性が悪くなり、腐食強度が大き
くなる。
Zn: Zn lowers the potential of the skin material and provides a sacrificial anode effect.
As a result, the mode of corrosion is changed to a general corrosion type to suppress pitting and crevice corrosion. If less than 0.5%, the effect is not sufficient.
%, The self-corrosion resistance deteriorates and the corrosion strength increases.

In、Sn、Ga: In、Sn、Gaは、いずれも皮材の電位を卑にし、孔食や
隙間腐食を抑制する。上限を越えると自己耐食性、圧延
加工性が劣化する。
In, Sn, Ga: In, Sn, and Ga all make the potential of the skin material low and suppress pitting and crevice corrosion. If the upper limit is exceeded, the self-corrosion resistance and rolling workability deteriorate.

これらの元素はZnやMgのようにろう付時に大量に蒸発
したり、フラックスと反応したりすることがないため、
皮材中に残存し、皮材の電位を確実に卑にする。しかし
一方ではZnのように皮材中に拡散してなだらかな濃度勾
配を形成し、なだらかな電位分布を形成する作用が小さ
く、そのため腐食形態を全面腐食型にする作用がやや劣
る。したがって、皮材ではIn、Sn、Gaの1種または2種
以上とZnとを共存させ、これと0.25〜0.8%のCuを含む
芯材と組み合わせることにより、In、Sn、Gaの電位を卑
にする作用、Zn及び芯材中のCuのなだらかな電位分布を
形成する作用、さらに芯材中のCuの電位を貴にする作用
とが複合され、孔食や隙間腐食がさらに防止できる。
Since these elements do not evaporate in large quantities during brazing or react with flux like Zn and Mg,
It remains in the skin material and ensures that the potential of the skin material is low. However, on the other hand, the effect of diffusing into a skin material like Zn to form a gentle concentration gradient and forming a gentle potential distribution is small, and therefore, the effect of making the corrosion mode entirely corrosive is inferior. Therefore, in the skin material, Zn is allowed to coexist with one or more of In, Sn, and Ga, and this is combined with a core material containing 0.25 to 0.8% of Cu to lower the potential of In, Sn, and Ga. , A function of forming a gentle potential distribution of Zn and Cu in the core material, and a function of making the potential of Cu in the core material noble, are combined to further prevent pitting and crevice corrosion.

(3)ろう材 ろう材は通常用いられるAl−Si合金である。通常6〜
13%のSiを含むAl合金が用いられる。
(3) Brazing material The brazing material is a commonly used Al-Si alloy. Usually 6 ~
An Al alloy containing 13% of Si is used.

[実施例] 以下実施例によって、本発明を具体的に説明する。[Examples] Hereinafter, the present invention will be specifically described with reference to Examples.

下記第1表に示す芯材用合金、第2表に示す犠牲陽極
材用合金、およびろう材用合金4045の鋳塊を準備し、芯
材用合金と犠牲陽極材用合金について均質化処理を行っ
た。そして、犠牲陽極材用合金およびろう材用合金金を
熱間圧延により所定の厚さとし、これらと芯材用合金の
鋳塊とを組み合わせて熱間圧延によりクラッド材を得
た。その後、冷間圧延、中間焼鈍、冷間圧延により厚さ
0.25mmの板(H14材)を作製した。クラッド材の構成は
芯材0.20mm、犠牲陽極材とろう材それぞれ0.025mmとし
た。
Ingots of the alloy for the core material shown in Table 1 below, the alloy for the sacrificial anode material shown in Table 2 and the alloy for the brazing material 4045 were prepared, and the alloy for the core material and the alloy for the sacrificial anode material were homogenized. went. Then, the alloy for the sacrificial anode material and the alloy metal for the brazing material were formed to a predetermined thickness by hot rolling, and these were combined with the ingot of the alloy for the core material to obtain a clad material by hot rolling. Then, cold rolling, intermediate annealing, cold rolling to thickness
A 0.25 mm plate (H14 material) was produced. The configuration of the clad material was 0.20 mm for the core material and 0.025 mm for each of the sacrificial anode material and the brazing material.

各材料の合金組成とその組合せは第3表に示すとおり
である。
The alloy composition of each material and its combination are as shown in Table 3.

得られたクラッド板材のろう材側に、Al−1.2%Mn−
1.5%Zn合金からなる厚さ0.10mmのコルゲートフィンを
乗せ、窒素ガス中で弗化物フラックスを用いてろう付を
行った。ろう付温度(材料温度)は600℃であった。ろ
う付後板材とフィンとの接合状況、綿状生成物の発生状
況を目視観察により、また、芯材と犠牲陽極材の溶融状
況を断面金属組織によって調べた。
On the brazing material side of the obtained clad sheet material, Al-1.2% Mn-
A corrugated fin having a thickness of 0.10 mm made of 1.5% Zn alloy was placed thereon, and brazing was performed using a fluoride flux in nitrogen gas. The brazing temperature (material temperature) was 600 ° C. After the brazing, the bonding state between the plate material and the fins and the generation state of the flocculent product were visually observed, and the melting state of the core material and the sacrificial anode material was examined by the cross-sectional metal structure.

次に厚さ0.25mmの板材をそのまま(フィンと接触させ
ることなく)弗化物フラックスろう付と同じ条件で加熱
した後、引張試験と腐食試験を行った。腐食試験の方法
は、外面側(ろう材側)についてはCASS試験、30日間と
し、内面側(犠牲陽極材側)についてはCl−100ppm、SO
4 2-−100ppm、HCO3 -100ppm、Cu2+10ppmを含む水溶液中
に浸漬し、8hrの間80℃に加熱し、その後室温まで放冷
しながら16hr放置するというサイクルを繰返し、3ケ月
間行った。
Next, the plate material having a thickness of 0.25 mm was heated as it was (without contact with the fin) under the same conditions as for the fluoride flux brazing, and then a tensile test and a corrosion test were performed. The corrosion test method was as follows: CASS test for the outer surface (brazing material side), 30 days, Cl-100 ppm, SO for the inner surface (sacrificial anode material side)
4 2- -100ppm, HCO 3 - 100ppm , immersed in an aqueous solution containing Cu 2+ 10 ppm, heated to 80 ° C. during -8 hr, then repeat cycle that 16hr left to cool to room temperature, 3 months went.

以上の結果をまとめて第3表に示す。発明例No.1〜20
の場合、ろう付性は良好で、引張強さも17kgf/mm2以上
と高く、最大腐食深さも内面側で0.10mm以下、外面側で
0.11mm以下と小さい。また、内面側の最大腐食深さは、
No.1〜9、No17で0.08〜0.10mmであるのに対し、In、S
n、Gaを含有するNo.10〜16、No.18〜20は0.05〜0.06mm
と小さくなっている。
Table 3 summarizes the above results. Invention Examples No. 1 to 20
In the case of, the brazing property is good, the tensile strength is as high as 17 kgf / mm 2 or more, the maximum corrosion depth is 0.10 mm or less on the inner side, and the maximum corrosion depth is
It is as small as 0.11mm or less. The maximum corrosion depth on the inner surface is
No. 1-9 and No. 17 are 0.08-0.10 mm, whereas In, S
n, No. 10 to 16 containing Ga, No. 18 to 20 are 0.05 to 0.06 mm
And has become smaller.

比較例No.21の場合、犠牲陽極材のMgが少ないために
引張強さが15kgf/mm2と低い。
In the case of Comparative Example No. 21, the tensile strength was as low as 15 kgf / mm 2 because the amount of Mg in the sacrificial anode material was small.

比較例No.22は、Mgが多いためにろう付時に局部溶融
が生じたので、他の試験を中止した。
In Comparative Example No. 22, other tests were stopped because local melting occurred during brazing because of a large amount of Mg.

比較例No.23は、犠牲陽極材のSiが少ないために引張
強さが15kgf/mm2と低い。
Comparative Example No. 23 had a low tensile strength of 15 kgf / mm 2 because the amount of Si in the sacrificial anode material was small.

比較例No.24は、Siが多いためにろう付時に局部溶融
が生じたので、他の試験を中止した。
In Comparative Example No. 24, other tests were stopped because local melting occurred during brazing because of a large amount of Si.

比較例No.25の場合、犠牲陽極材のZnが少ないために
内面側の腐食深さが0.13mmとやや大きい。
In the case of Comparative Example No. 25, the corrosion depth on the inner surface side was slightly large at 0.13 mm because Zn in the sacrificial anode material was small.

No.26は逆にZnが多いために内面側の腐食深さが0.18m
mと大きい。
Conversely, No. 26 has a high corrosion depth on the inner surface of 0.18 m due to the large amount of Zn.
m and big.

No.27、28および29はIn、SnあるいはGaが多いため
に、内面側の腐食深さが0.15〜0.16mmと大きい。
Nos. 27, 28 and 29 have a large corrosion depth on the inner surface side of 0.15 to 0.16 mm because of a large amount of In, Sn or Ga.

No.30は、芯材のMnが少ないために引張強さが15kgf/m
m2と低く、No.31は芯材のMnが多いために健全な板材が
得られず、試験を中断した。
No.30 has a tensile strength of 15kgf / m due to low Mn of the core material
m 2 and lower, No.31 is not healthy plate material obtained for Mn in the core material is large, test was discontinued.

No.32は、芯材のCuが少ないために引張強さが15kgf/m
m2と低く、外面側の腐食深さが0.19mmと大きい。
No.32 has a tensile strength of 15kgf / m due to low Cu in the core material
m 2 and low corrosion depth of the outer surface is as large as 0.19 mm.

No.33は、芯材のCuが多いためにろう付時に溶融が生
じたので、他の試験を中止した。
For No.33, other tests were stopped because melting occurred during brazing due to the large amount of Cu in the core material.

No.34は、芯材のSiが少ないために引張強さが15kgf/m
m2と低い。
No.34 has a tensile strength of 15kgf / m due to low core Si
m 2 and low.

No.35は、芯材のSiが多いためにろう付時に溶融が生
じたので、他の試験を中止した。
For No. 35, other tests were stopped because melting occurred during brazing due to the large amount of Si in the core material.

No.36は、芯材がMgを含まないために引張強さが15kgf
/mm2と低い。
No.36 has a tensile strength of 15kgf because the core material does not contain Mg
/ mm 2 and low.

No.37は、芯材のMgが多いためにろう付不良が生じて
いる。
No. 37 has poor brazing due to the large amount of Mg in the core material.

No.38は、芯材がTiを含まないために、外面側の腐食
深さが0.14mmとやや大きい。
No. 38 has a slightly large corrosion depth of 0.14 mm on the outer surface side because the core material does not contain Ti.

No.39は芯材のTiが多いために健全な板材が得られ
ず、試験を中断した。
In No.39, the test was interrupted because a sound plate could not be obtained due to the large amount of Ti in the core material.

No.40は、芯材が3003であるため、引張強さが12kgf/m
m2と低く、外面側の腐食深さも0.21mmと大きい。
No. 40 has a tensile strength of 12 kgf / m because the core material is 3003
m 2 and low corrosion depth of the outer surface side is large and 0.21 mm.

[発明の効果] 以上説明したように、本発明のクラッド材は弗化物フ
ラックスろう付用材料として、高強度、耐食性で、か
つ、ろう付性が優れたAl熱交換器用クラッド材である。
これによって、チューブ材やヘッダープレート材を薄肉
にすることができ、ラジエータやヒータの軽量化が可能
である。
[Effect of the Invention] As described above, the clad material of the present invention is a clad material for an Al heat exchanger having high strength, corrosion resistance, and excellent brazing properties as a material for brazing a fluoride flux.
As a result, the tube material and the header plate material can be made thin, and the weight of the radiator and the heater can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の材料のろう付後のMgの濃度分布を示す
断面図である。
FIG. 1 is a sectional view showing the Mg concentration distribution of the material of the present invention after brazing.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C23F 13/00 C23F 13/00 E F28F 19/06 F28F 19/06 B 21/08 21/08 D (72)発明者 加藤 健志 愛知県名古屋市港区千年3丁目1番12号 住友軽金属工業株式会社技術研究所内 (72)発明者 時實 直樹 愛知県名古屋市港区千年3丁目1番12号 住友軽金属工業株式会社技術研究所内 (72)発明者 難波 圭三 愛知県名古屋市港区千年3丁目1番12号 住友軽金属工業株式会社技術研究所内 (72)発明者 橋浦 光夫 愛知県刈谷市昭和町1丁目1番地 日本 電装株式会社内 (72)発明者 都築 薫 愛知県刈谷市昭和町1丁目1番地 日本 電装株式会社内 (56)参考文献 特開 平2−175093(JP,A) 特開 平2−129333(JP,A) 特開 昭64−83396(JP,A) 特開 昭54−110909(JP,A) 特開 昭63−303027(JP,A) 特開 昭55−119146(JP,A) (58)調査した分野(Int.Cl.6,DB名) C22C 21/00 - 21/18 B23K 1/19,35/22 F28F 19/06,21/08 B32B 15/01 C23F 13/00 ────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification code FI C23F 13/00 C23F 13/00 EF28F 19/06 F28F 19/06 B 21/08 21/08 D (72) Inventor Takeshi Kato Within Sumitomo Light Metal Industry Co., Ltd., Research Institute, Sumitomo Light Metal Industries Co., Ltd. (1-2) Minato-ku, Nagoya City, Aichi Prefecture (72) Inventor Keizo Namba 3-1-112, Minato-ku, Nagoya-shi, Aichi Prefecture Sumitomo Light Metal Industries Co., Ltd. (72) Inventor Kaoru Tsuzuki 1-1-1 Showa-cho, Kariya-shi, Aichi Japan Inside Denso Co., Ltd. (56) References JP-A-2-175093 (JP, A) JP-A-2 129333 (JP, A) JP-A-64-83396 (JP, A) JP-A-54-110909 (JP, A) JP-A-63-303027 (JP, A) JP-A-55-119146 (JP, A) (58) Field surveyed (Int.Cl. 6 , DB name) C22C 21/00-21/18 B23K 1 / 19,35 / 22 F28F 19 / 06,21 / 08 B32B 15/01 C23F 13/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】芯材が、Mn:0.3〜2.0%(重量%、以下同
じ)、Cu:0.25〜0.8%、Si:0.2〜1.0%、Mg:0.5%以
下、Ti:0.35%以下を含有し、残部A1と不可避不純物か
らなるアルミニウム合金で構成され、該芯材の片面に複
合された犠牲陽極材がMg:1.2〜2.5%、Si:0.2〜0.8%、
Zn:0.5〜2.0%を含有し、残部Alと不可避不純物からな
るアルミニウム合金で構成され、かつ、前記芯材の他の
片面に複合された皮材がAl−Si系合金のろう材で構成さ
れたことを特徴とする熱交換器用高強度高耐食性アルミ
ニウム合金クラッド材。
1. The core material contains Mn: 0.3 to 2.0% (weight%, the same applies hereinafter), Cu: 0.25 to 0.8%, Si: 0.2 to 1.0%, Mg: 0.5% or less, Ti: 0.35% or less. Then, a sacrificial anode material composed of an aluminum alloy consisting of the remainder A1 and unavoidable impurities, and combined on one surface of the core material, contains Mg: 1.2 to 2.5%, Si: 0.2 to 0.8%,
Zn: contains 0.5 to 2.0%, is composed of an aluminum alloy including the balance of Al and unavoidable impurities, and a skin material composited on another side of the core material is composed of an Al-Si alloy brazing material. A high-strength, high-corrosion-resistant aluminum alloy clad material for heat exchangers.
【請求項2】芯材が、Mn:0.3〜2.0%、Cu:0.25〜0.8
%、Si:0.2〜1.0%、Mg:0.5%以下、Ti:0.35%以下を含
有し、残部A1と不可避不純物からなるアルミニウム合金
で構成され、該芯材の片面に複合された犠牲陽極材がM
g:1.2〜2.5%、Si:0.2〜0.8%、Zn:0.5〜2.0%を含有
し、更に、In:0.2%以下、Sn:0.2%以下、及びGa:0.2%
以下の1種又は2種以上を含有し、残部Alと不可避不純
物からなるアルミニウム合金で構成され、かつ、前記芯
材の他の片面に複合された皮材がAl−Si系合金のろう材
で構成されたことを特徴とする熱交換器用高強度高耐食
性アルミニウム合金クラッド材。
2. A core material comprising: Mn: 0.3 to 2.0%, Cu: 0.25 to 0.8
%, Si: 0.2-1.0%, Mg: 0.5% or less, Ti: 0.35% or less, and is composed of an aluminum alloy composed of the balance A1 and unavoidable impurities, and a sacrificial anode material composited on one surface of the core material. M
g: 1.2 to 2.5%, Si: 0.2 to 0.8%, Zn: 0.5 to 2.0%, In: 0.2% or less, Sn: 0.2% or less, and Ga: 0.2%
A skin material comprising one or more of the following, composed of an aluminum alloy consisting of the balance of Al and inevitable impurities, and a composite material on the other surface of the core material, is a brazing material of an Al-Si alloy. A high-strength, high-corrosion-resistant aluminum alloy clad material for a heat exchanger, comprising:
JP2326041A 1990-11-29 1990-11-29 High strength and high corrosion resistance aluminum alloy clad material for heat exchanger Expired - Fee Related JP2933382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2326041A JP2933382B2 (en) 1990-11-29 1990-11-29 High strength and high corrosion resistance aluminum alloy clad material for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2326041A JP2933382B2 (en) 1990-11-29 1990-11-29 High strength and high corrosion resistance aluminum alloy clad material for heat exchanger

Publications (2)

Publication Number Publication Date
JPH04198447A JPH04198447A (en) 1992-07-17
JP2933382B2 true JP2933382B2 (en) 1999-08-09

Family

ID=18183446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2326041A Expired - Fee Related JP2933382B2 (en) 1990-11-29 1990-11-29 High strength and high corrosion resistance aluminum alloy clad material for heat exchanger

Country Status (1)

Country Link
JP (1) JP2933382B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2500711B2 (en) * 1991-06-19 1996-05-29 日本軽金属株式会社 Blazing sheet with excellent corrosion resistance and manufacturing method
EP1090745B1 (en) * 1999-10-04 2002-06-19 Denso Corporation Aluminum alloy clad material for heat exchangers exhibiting high strength and excellent corrosion resistance
JP4636520B2 (en) * 2001-07-30 2011-02-23 株式会社デンソー Brazing material for aluminum brazing sheet for heat exchanger and method for producing the same

Also Published As

Publication number Publication date
JPH04198447A (en) 1992-07-17

Similar Documents

Publication Publication Date Title
JP3772017B2 (en) High strength and high corrosion resistance aluminum alloy clad material for heat exchanger
JP2842665B2 (en) Aluminum heat exchanger
JP2842668B2 (en) High strength and high corrosion resistance A1 alloy clad material for A1 heat exchanger
JP2933382B2 (en) High strength and high corrosion resistance aluminum alloy clad material for heat exchanger
JPH1180870A (en) Aluminum alloy clad material for heat exchanger excellent in strength and corrosion resistance
JP3858255B2 (en) Aluminum alloy clad material for heat exchangers with excellent corrosion resistance
JP4263160B2 (en) Aluminum alloy clad material and heat exchanger tube and heat exchanger using the same
JP3876180B2 (en) Aluminum alloy three-layer clad material
JP2842666B2 (en) High strength and high corrosion resistance clad material for A1 heat exchanger
JP3217108B2 (en) High strength and high corrosion resistance aluminum alloy clad material for heat exchanger
JP2842667B2 (en) High strength and high corrosion resistance A1 alloy clad material for A1 heat exchanger
JP3749089B2 (en) Sacrificial anticorrosion aluminum alloy plate and composite material thereof
JPH09302433A (en) Aluminum alloy clad material excellent in brazability and its production
JP3234619B2 (en) High strength and high corrosion resistance aluminum alloy clad material for heat exchanger
JP3243188B2 (en) Aluminum alloy clad material for heat exchangers with excellent alkali corrosion resistance
JP3243189B2 (en) Aluminum alloy clad material for heat exchangers with excellent alkali corrosion resistance
JP2691069B2 (en) Heat exchanger with excellent corrosion resistance and heat transfer
JP3538507B2 (en) Aluminum alloy clad material for heat exchanger with excellent alkali corrosion resistance
JPH07116544B2 (en) High strength and corrosion resistant aluminum alloy clad material for heat exchanger
JP2581868B2 (en) High strength and high corrosion resistance aluminum alloy clad material for heat exchanger
JPH06212329A (en) Aluminum alloy clad material having high strength and high corrosion resistance for heat exchanger
JP3529074B2 (en) Aluminum alloy clad material for heat exchanger with excellent alkali corrosion resistance
JPH07116543B2 (en) High strength and corrosion resistant aluminum alloy clad material for heat exchanger
JPH06240398A (en) High strength and high corrosion resistant aluminum alloy multilayer material for heat exchanger
JP2813484B2 (en) Aluminum brazing sheet

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees