JPH07116544B2 - High strength and corrosion resistant aluminum alloy clad material for heat exchanger - Google Patents

High strength and corrosion resistant aluminum alloy clad material for heat exchanger

Info

Publication number
JPH07116544B2
JPH07116544B2 JP2322310A JP32231090A JPH07116544B2 JP H07116544 B2 JPH07116544 B2 JP H07116544B2 JP 2322310 A JP2322310 A JP 2322310A JP 32231090 A JP32231090 A JP 32231090A JP H07116544 B2 JPH07116544 B2 JP H07116544B2
Authority
JP
Japan
Prior art keywords
brazing
sacrificial anode
core material
strength
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2322310A
Other languages
Japanese (ja)
Other versions
JPH04193926A (en
Inventor
重徳 山内
祐治 鈴木
健志 加藤
直樹 時實
圭三 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2322310A priority Critical patent/JPH07116544B2/en
Publication of JPH04193926A publication Critical patent/JPH04193926A/en
Publication of JPH07116544B2 publication Critical patent/JPH07116544B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/016Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of aluminium or aluminium alloys

Landscapes

  • Laminated Bodies (AREA)
  • Prevention Of Electric Corrosion (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は不活性ガス雰囲気中で弗化物フラックスを用
いたろう付によりラジエータやヒーターコアなどのAl熱
交換器を製造するに際して、その構造部材であるチュー
ブ材やヘッダープレート材などとして用いるに適した、
ろう付性が良好で、かつろう付後に高強度および高耐食
性を有するAl合金クラッド材に関するものであり、特に
薄肉で用いられるチューブ材に適する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a structural member for manufacturing an Al heat exchanger such as a radiator or a heater core by brazing using a fluoride flux in an inert gas atmosphere. Suitable for use as a tube material or header plate material,
The present invention relates to an Al alloy clad material having good brazing property and having high strength and high corrosion resistance after brazing, and is particularly suitable for a tube material used with a thin wall.

[従来の技術] 自動車のラジエータやヒーターコアなどのチューブ材や
ヘッダープレート材には、3003などのAl−Mn系合金を芯
材として、片面にAl−Si系合金のろう材、他の片面にAl
−Zn系合金やAl−Zn−Mg系合金の犠牲陽極材をクラッド
した3層クラッド材が用いられている。Al−Si系のろう
材はチューブとフィンの接合、チューブとヘッダープレ
ートとの接合のためのものである。ろう付は不活性ガス
雰囲気中で弗化物フラックスを用いて行われることが多
い。犠牲陽極材をクラッドした他の片面は、使用中に内
側(水側)になり、犠牲陽極作用を発揮して芯材の孔食
や隙間腐食を防止する。
[Prior Art] For tube materials and header plate materials such as automobile radiators and heater cores, Al-Mn alloys such as 3003 are used as core materials, and Al-Si alloy brazing material is used on one side and the other side. Al
A three-layer clad material in which a sacrificial anode material such as a -Zn alloy or an Al-Zn-Mg alloy is clad is used. The Al-Si type brazing material is used for joining the tube to the fin and joining the tube to the header plate. Brazing is often performed using a fluoride flux in an inert gas atmosphere. The other side clad with the sacrificial anode material becomes an inner side (water side) during use, and exhibits a sacrificial anode function to prevent pitting and crevice corrosion of the core material.

近年ラジエータやヒーターコアなどの軽量化を求める要
求が強く、チューブ材やヘッダープレート材の薄肉化が
必要となっている。そのためには材料の高強度化特にろ
う付後の強度の向上が必要であり、高強度化のために芯
材中にMgを添加することが多くなってきている。しか
し、Mgはろう付中に表面に拡散していき、弗化物フラッ
クスと反応するため、綿状生成物(Mgの弗化物)が生成
して付着したり、接合不良を生じたりする。こうして、
芯材中へのMgの添加量は最大でも0.5%、実用上は0.2〜
0.3%に制限され、高強度化の妨げとなっている。
In recent years, there has been a strong demand for weight reduction of radiators and heater cores, and it has become necessary to reduce the thickness of tube materials and header plate materials. For that purpose, it is necessary to increase the strength of the material, especially the strength after brazing, and in order to increase the strength, Mg is often added to the core material. However, since Mg diffuses to the surface during brazing and reacts with the fluoride flux, a cotton-like product (fluoride of Mg) is produced and adheres, or a bonding failure occurs. Thus
The amount of Mg added to the core material is 0.5% at the maximum, 0.2 for practical use
It is limited to 0.3%, which hinders high strength.

チューブ材やヘッダープレート材の強度は、犠牲陽極材
にMgを添加することによっても向上する可能性がある。
The strength of the tube material and header plate material may also be improved by adding Mg to the sacrificial anode material.

犠牲陽極材にMgを添加したクラッド材に関しては、従来
からいくつかの提案がある。
There have been some proposals for the clad material in which Mg is added to the sacrificial anode material.

すなわち、ラジエータ用ヘッダープレート材やチューブ
材の犠牲陽極材に、 MgとZn等を含有させる方法(特公昭63−28704号)、 ZnとMgを添加する方法(特開昭61−89498号)、 SnとMgを同時添加する方法(特開昭56−16646号、特
開昭63−89641号)、 比較的高濃度までのMgとZnを添加する方法(特公昭62
−45301号)、 が提案されている。
That is, a method of adding Mg and Zn to the sacrificial anode material of the radiator header plate material or tube material (Japanese Patent Publication No. 63-28704), a method of adding Zn and Mg (Japanese Patent Publication No. 61-89498), A method of simultaneously adding Sn and Mg (JP-A-56-16646, JP-A-63-89641) and a method of adding Mg and Zn to a relatively high concentration (JP-B-62-62).
−45301), has been proposed.

しかし、上記およびのMgの添加は1.1%あるいは1.5
%以下と少なく、孔食や隙間腐食の防止のために添加さ
れており、強度向上が得られない。
However, the addition of Mg above and 1.1% or 1.5
% Or less, it is added to prevent pitting and crevice corrosion, and strength cannot be improved.

上記のMgの添加はSnの粒界拡散を抑制し、熱間圧延時
の割れを防止することを目的とし、上記のMgの添加は
耐孔食性の改善を目的としているが、いずれもMgが高濃
度の場合には芯材に拡散してある程度の強度向上効果も
得られる可能性がある。しかし、薄肉のチューブ材(ク
ラッド材)を作った場合、芯材の強度は犠牲陽極材から
拡散するMgにより高くできても、犠牲陽極材の強度はMg
添加のみでは不足となり、クラッド材全体の強度を高く
することができない。すなわち、薄肉になると、芯材の
みでなく犠牲陽極材の強度への寄与も大きくなり、犠牲
陽極材の強度も高くすることが必要となるのである。
The above Mg addition suppresses the grain boundary diffusion of Sn, the purpose of preventing cracking during hot rolling, the addition of the above Mg is intended to improve the pitting corrosion resistance, both Mg In the case of a high concentration, there is a possibility that it diffuses into the core material and some strength improvement effect is obtained. However, when a thin tube material (cladding material) is made, even if the strength of the core material can be increased by the Mg diffused from the sacrificial anode material, the strength of the sacrificial anode material is Mg.
Addition alone is insufficient, and the strength of the entire clad material cannot be increased. That is, when the thickness is reduced, the contribution to the strength of not only the core material but also the sacrificial anode material is large, and it is necessary to increase the strength of the sacrificial anode material.

[発明が解決しようとする課題] そこで、本発明はろう付け性を害することなく、すなわ
ち、芯材のMg添加量を最大0.5%に抑えたままで、ろう
付け後に高強度が得られるクラッド材を提供しようとす
るものである。
[Problems to be Solved by the Invention] Therefore, the present invention provides a clad material that does not impair the brazing property, that is, keeps the amount of Mg added to the core material to a maximum of 0.5% and obtains high strength after brazing. It is the one we are trying to provide.

[課題を解決するための手段] 本発明者らは、芯材中のMg添加量を最大0.5%に抑えた
ままで、ろう付け後に高強度が得られる方法について検
討し、犠牲陽極材中に高濃度のMgとSiを添加すると、犠
牲陽極材中のMgの一部がろう付け中に芯材中へ拡散し
て、芯材を強化し、また、犠牲陽極材そのものもMgとSi
により強化されることを見出し、本発明を完成した。
[Means for Solving the Problems] The inventors of the present invention investigated a method for obtaining high strength after brazing while keeping the amount of Mg added in the core material at a maximum of 0.5%, and found that the high sacrificial anode material had a high strength. When a concentration of Mg and Si is added, part of the Mg in the sacrificial anode material diffuses into the core material during brazing, strengthening the core material, and the sacrificial anode material itself also contains Mg and Si.
The present invention was completed by finding out that it was strengthened by.

すなわち、犠牲陽極材中にMgとSiを共存させ、Mgを芯材
の強化に寄与させるとともに、犠牲陽極材をMgとSiによ
る固溶体強化およびMg2Siの析出による時効硬化によっ
て強化させたものである。
That is, coexistence of Mg and Si in the sacrificial anode material, contributing Mg to strengthen the core material, and strengthening the sacrificial anode material by solid solution strengthening with Mg and Si and age hardening by precipitation of Mg 2 Si. is there.

すなわち、本発明の構成は、 (1)芯材が、Mn:0.3〜2.0%、Cu:0.25〜0.8%、Si:0.
2〜0.7%未満、Mg:0.5%以下を含有し、残部Alと不可避
不純物からなるアルミニウム合金で構成され、該芯材の
片面に複合された犠牲陽極材がMg:1.2〜2.5%、Si:0.2
〜0.8%を含有し、残部Alと不可避不純物からなるアル
ミニウム合金で構成され、かつ、前記芯材の他の片面に
複合された皮材がAl−Si系合金のろう材で構成されたこ
とを特徴とする熱交換器用高強度高耐食性アルミニウム
合金クラッド材、 (2)芯材が、Mn:0.3〜2.0%、Cu:0.25〜0.8%、Si:0.
2〜0.7%未満、Mg:0.5%以下を含有し、残部Alと不可避
不純物からなるアルミニウム合金で構成され、該芯材の
片面に複合された犠牲陽極材がMg:1.2〜2.5%、Si:0.2
〜0.8%を含有し、更に、In:0.2%以下、Sn:0.2%以
下、及びGa:0.2%以下の1種又は2種以上を含有し、残
部Alと不可避不純物からなるアルミニウム合金で構成さ
れ、かつ、前記芯材の他の片面に複合された皮材がAl−
Si系合金のろう材で構成されたことを特徴とする熱交換
器用高強度高耐食性アルミニウム合金クラッド材、であ
る。
That is, in the constitution of the present invention, (1) the core material is Mn: 0.3 to 2.0%, Cu: 0.25 to 0.8%, Si: 0.
2 to less than 0.7%, Mg: containing 0.5% or less, composed of an aluminum alloy consisting of balance Al and unavoidable impurities, the sacrificial anode material compounded on one side of the core material Mg: 1.2 to 2.5%, Si: 0.2
~ 0.8%, the balance is composed of an aluminum alloy consisting of Al and unavoidable impurities, and the skin material composited on the other side of the core material is composed of a brazing material of Al-Si alloy. Characteristically high strength and corrosion resistant aluminum alloy clad material for heat exchanger, (2) core material is Mn: 0.3-2.0%, Cu: 0.25-0.8%, Si: 0.
2 to less than 0.7%, Mg: containing 0.5% or less, composed of an aluminum alloy consisting of balance Al and unavoidable impurities, the sacrificial anode material compounded on one side of the core material Mg: 1.2 to 2.5%, Si: 0.2
~ 0.8%, In: 0.2% or less, Sn: 0.2% or less, and Ga: 0.2% or less, and is composed of an aluminum alloy containing the balance Al and unavoidable impurities. And, the skin material composited on the other side of the core material is Al-
A high-strength and high-corrosion-resistant aluminum alloy clad material for a heat exchanger, characterized by being composed of a brazing material of a Si-based alloy.

[作用] 本発明における組成及び組成範囲の限定理由について述
べる。
[Operation] The reasons for limiting the composition and composition range in the present invention will be described.

(1)芯材 Mn: Mnは強度を向上させる。又、芯材の電位を貴にして犠牲
陽極材との電位差を大きくし耐食性を向上させる。0.3
%未満では効果が十分でなく、2.0%を越えると鋳造時
に粗大な化合物が生成し、健全な板材が得られない。
(1) Core material Mn: Mn improves the strength. Further, the potential of the core material is made noble and the potential difference with the sacrificial anode material is increased to improve the corrosion resistance. 0.3
If it is less than%, the effect is not sufficient, and if it exceeds 2.0%, a coarse compound is formed during casting, and a sound plate material cannot be obtained.

Cu: Cuは芯材の電位を貴にして、犠牲陽極材およびろう材と
芯材との電位差を大きくし、犠牲陽極材およびろう材の
犠牲陽極効果による防食作用を大きくする。更に、芯材
中のCuはろう付時に犠牲陽極材中及びろう材中へ拡散し
てなだらかな濃度勾配を形成し、芯材側が貴な電位、犠
牲陽極材及びろう材の各々表面側が卑な電位となり、そ
の間になだらかな電位分布を形成して腐食形態を全面腐
食型にする。
Cu: Cu makes the potential of the core material noble, increases the potential difference between the sacrificial anode material and the brazing material and the core material, and enhances the anticorrosion effect of the sacrificial anode material and the brazing material due to the sacrificial anode effect. Further, Cu in the core material diffuses into the sacrificial anode material and the brazing material during brazing to form a gentle concentration gradient, and the noble potential on the core side, and the surface side of each of the sacrificial anode material and the brazing material are base. A potential is applied, and a gentle potential distribution is formed between them to make the corrosion form a general corrosion type.

芯材中のCuは強度向上にも寄与する。Cu in the core material also contributes to the improvement of strength.

以上に示したCuの防食作用と強度向上効果は、芯材中の
Cl量が0.25%未満では発揮されず、一方、0.8%を越え
ると芯材自体の耐食性が悪くなるとともに芯材の融点が
下がって、ろう付時に局部的な溶融を生ずるようにな
る。
The anticorrosion effect and strength improving effect of Cu shown above are
If the Cl content is less than 0.25%, it will not be exhibited. On the other hand, if it exceeds 0.8%, the corrosion resistance of the core material itself will deteriorate and the melting point of the core material will decrease, causing localized melting during brazing.

Si: Siは芯材の強度を向上させる。特に、ろう付中に犠牲陽
極材から拡散してくるMgと共存することにより、ろう付
後の時効硬化により強度がより高くなる。0.2%未満で
は効果が十分でなく、0.7%以上では耐食性が低下する
とともに芯材の融点が下がってろう付時に局部的な溶融
を生ずるようになる。
Si: Si improves the strength of the core material. In particular, coexistence with Mg that diffuses from the sacrificial anode material during brazing increases the strength by age hardening after brazing. If it is less than 0.2%, the effect is not sufficient, and if it is more than 0.7%, the corrosion resistance is reduced and the melting point of the core material is lowered to cause local melting during brazing.

Mg: Mgは芯材の強度を向上させる効果がある。強度向上効果
は、Si及び/又はCuと共存するとろう付後の時効硬化に
より更によく発揮される。しかしながら、その量が0.5
%を越えると弗化物フラックスと反応して、ろう付け性
を阻害したり、Mgの弗化物が生成して外観を損ねる。
Mg: Mg has the effect of improving the strength of the core material. The effect of improving strength is more effectively exhibited by age hardening after brazing when coexisting with Si and / or Cu. However, the amount is 0.5
If it exceeds%, it reacts with the fluoride flux to hinder the brazing property, or Mg fluoride is generated to impair the appearance.

その他の元素: Fe、Zn、Cr、Zrなどは本発明の効果を損なわない範囲で
含まれてもよい。ただし、Feは多量に含まれると耐食性
を害するので0.7%以下にする必要がある。Znは芯材の
電位を卑にし、犠牲陽極材及びろう材との電位差を小さ
くするので0.2%以下にする必要がある。
Other elements: Fe, Zn, Cr, Zr and the like may be contained within a range that does not impair the effects of the present invention. However, if Fe is contained in a large amount, the corrosion resistance is impaired, so it must be 0.7% or less. Since Zn makes the potential of the core material base and reduces the potential difference between the sacrificial anode material and the brazing material, it must be 0.2% or less.

(2)犠牲陽極材 Mg: 犠牲陽極材中のMgの一部は、主としてろう材中に芯材中
へ拡散し、芯材中のSiやCuとともに芯材強度を向上させ
る。また、犠牲陽極材中に残存したMgはSiとともに犠牲
陽極材の強度を向上させる。そしてこれらの作用によ
り、クラッド材全体の強度向上に寄与する。更に、犠牲
陽極材の電位を卑として、犠牲陽極効果を確実にする。
1.2%未満では効果が十分でなく、2.5%を越えるとろう
付時に局部溶融が生じる。
(2) Sacrificial anode material Mg: A part of Mg in the sacrificial anode material diffuses mainly into the brazing material into the core material, and improves the strength of the core material together with Si and Cu in the core material. Further, Mg remaining in the sacrificial anode material improves the strength of the sacrificial anode material together with Si. And these effects contribute to the improvement of the strength of the entire clad material. Furthermore, the sacrificial anode effect is ensured by making the potential of the sacrificial anode material base.
If it is less than 1.2%, the effect is not sufficient, and if it exceeds 2.5%, local melting occurs during brazing.

なお、ろう付中に犠牲陽極材中のMgは芯材中へ拡散する
が、第1図のような濃度分布を有するようになり、ろう
材側へ大量に拡散して、ろう付性を阻害することはな
い。また、クラッド製造中にも拡散が起こり、芯材と犠
牲陽極材との境界では僅かな濃度分布を有していること
は、いうまでもない。
Although Mg in the sacrificial anode material diffuses into the core material during brazing, it has a concentration distribution as shown in Fig. 1 and diffuses in large amounts to the brazing material side, impeding brazing properties. There is nothing to do. Needless to say, diffusion also occurs during the production of the clad, and there is a slight concentration distribution at the boundary between the core material and the sacrificial anode material.

Si: Siは犠牲陽極材の強度を向上させ、クラッグ材全体の強
度向上に寄与する。特に、犠牲陽極材中に残存したMgと
ともに、時効硬化を生じて、強度向上に寄与する。0.2
%未満では効果が十分でなく、0.8%を越えるとろう付
時に局部的な溶融が生ずる。
Si: Si improves the strength of the sacrificial anode material and contributes to the strength of the entire Crag material. In particular, age hardening occurs together with Mg remaining in the sacrificial anode material, which contributes to the improvement of strength. 0.2
If it is less than%, the effect is not sufficient, and if it exceeds 0.8%, local melting occurs during brazing.

In、Sn、Ga: In、Sn、Gaは、微量の添加により犠牲陽極材の電位を卑
にし、芯材に対する犠牲陽極効果を確実にする。その結
果、芯材の孔食や隙間腐食を防止する。その含有量が上
限値を越えると自己耐食性、圧延加工性が劣化するとと
もにろう付時の拡散が多くなり、犠牲陽極層が厚くなっ
てしまう。これらの元素を微量添加した場合、Znの場合
と異なり拡散が速くないのでろう付け後の拡散層の厚さ
がろう付前の犠牲陽極材の厚さより大巾に大きくなるこ
とはない。従って、腐食代の厚さを任意に、かつ、小さ
く制御することができる。そのため、クラッド材をより
薄肉化することが可能となる。
In, Sn, Ga: In, Sn, Ga make the electric potential of the sacrificial anode material base by adding a trace amount and ensure the sacrificial anode effect on the core material. As a result, pitting corrosion and crevice corrosion of the core material are prevented. If the content exceeds the upper limit, the self-corrosion resistance and the rolling workability are deteriorated, the diffusion at the time of brazing is increased, and the sacrificial anode layer becomes thick. When a small amount of these elements is added, the diffusion is not fast unlike the case of Zn, and therefore the thickness of the diffusion layer after brazing does not become much larger than the thickness of the sacrificial anode material before brazing. Therefore, the thickness of the corrosion allowance can be controlled arbitrarily and small. Therefore, the clad material can be made thinner.

(3)ろう材 ろう材は通常用いられるAl−Si合金である。通常6〜13
%のSiを含むAl合金が用いられる。
(3) Brazing material The brazing material is a commonly used Al-Si alloy. Usually 6 to 13
An Al alloy containing% Si is used.

[実施例] 以下実施例によって、本発明を具体的に説明する。[Examples] The present invention will be specifically described with reference to Examples below.

下記第1表に示す芯材用合金、第2表に示す犠牲陽極材
用合金、およびろう材用合金4045の鋳塊を準備し、芯材
用合金と犠牲陽極材用合金について均質化処理を行っ
た。そして、犠牲陽極材用合金およびろう材用合金を熱
間圧延し所定の厚さとし、これらと芯材用合金の鋳塊と
を組み合わせて熱間圧延しクラッド材を得た。その後、
冷間圧延、中間焼鈍、冷間圧延により厚さ0.25mmの板
(H14材)を作製した。クラッド材の構成はろう材を0.0
25mm一定とし、犠牲陽極材を0.030〜0.050mmとした。
Ingots of core alloy shown in Table 1 below, alloy for sacrificial anode material shown in Table 2 and alloy 4045 for brazing material were prepared, and homogenization treatment was performed on the alloy for core material and the alloy for sacrificial anode material. went. Then, the alloy for the sacrificial anode material and the alloy for the brazing material were hot-rolled to a predetermined thickness, and these and the ingot of the alloy for the core material were combined and hot-rolled to obtain a clad material. afterwards,
A plate (H14 material) having a thickness of 0.25 mm was prepared by cold rolling, intermediate annealing and cold rolling. The composition of the clad material is 0.0
The sacrificial anode material was 0.030 to 0.050 mm with a constant 25 mm.

各材料の合金組成とその組合せは第3表に示すとおりで
ある。
The alloy composition of each material and its combination are shown in Table 3.

得られたクラッド板材のろう材側に、Al−1.2%Mn−1.5
%Zn合金からなる厚さ0.10mmのコルゲートフィンを乗
せ、窒素ガス中で弗化物フラックスを用いてろう付を行
った。ろう付温度(材料温度)は600℃であった。ろう
付後板材とフィンとの接合状況、芯材及び犠牲陽極材の
溶融状況を調べた。
On the brazing material side of the obtained clad plate material, Al-1.2% Mn-1.5
A 0.10 mm-thick corrugated fin made of a% Zn alloy was put on and brazed in a nitrogen gas using a fluoride flux. The brazing temperature (material temperature) was 600 ° C. After brazing, the joining state of the plate material and the fin, and the melting state of the core material and the sacrificial anode material were examined.

次に厚さ0.25mmの板材をそのまま(フィンと接触させる
ことなく)弗化物フラックスろう付と同じ条件で加熱し
た後、引張試験と腐食試験を行った。腐食試験の方法
は、外面側(ろう材側)についてはCASS試験、30日間と
し、内面側(犠牲陽極材側)についてはCl−100ppm、SO
4 2-100ppm、HCO3 -100ppm、Cu2+10ppmを含む水溶液中に
浸漬し、8hrの間80℃に加熱し、その後室温まで放冷し
ながら16hr放置するというサイクルを繰返し、3ケ月間
行った。
Next, a plate material having a thickness of 0.25 mm was heated as it is (without being brought into contact with the fins) under the same conditions as in the fluoride flux brazing, and then a tensile test and a corrosion test were performed. The corrosion test method is CASS test for the outer surface (brazing material side) for 30 days, and Cl-100ppm, SO for the inner surface (sacrificial anode material side).
4 2- 100ppm, HCO 3 - 100ppm , immersed in an aqueous solution containing Cu 2+ 10 ppm, heated to 80 ° C. during -8 hr, then repeat cycle that 16hr left to cool to room temperature, repeated three months It was

以上の結果をまとめて第3表に示す。発明例No.1〜17の
場合、ろう付性は良好で、引張強さも17kgf/mm2以上と
高く、最大腐食深さも小さい。
The above results are summarized in Table 3. In Invention Examples Nos. 1 to 17, the brazing property is good, the tensile strength is as high as 17 kgf / mm 2 or more, and the maximum corrosion depth is small.

比較例No.18の場合、犠牲陽極材のMgが少ないために引
張強さが低い。
In the case of Comparative Example No. 18, the tensile strength is low because the sacrificial anode material has a small amount of Mg.

比較例No.19は、Mgが多いためにろう付時に局部溶融が
生じている。
Comparative Example No. 19 has a large amount of Mg, so that local melting occurs during brazing.

比較例No.20は、犠牲陽極材のSiが少ないために引張強
さが低い。
Comparative Example No. 20 has low tensile strength because the sacrificial anode material has a small amount of Si.

比較例No.21は、Siが多いためにろう付時に局部溶融が
生じる。
Since Comparative Example No. 21 has a large amount of Si, local melting occurs during brazing.

比較例No.22、23、24は、In、SnあるいはGaが多いため
に、内面側の腐食深さが大きい。
Comparative Examples Nos. 22, 23, and 24 have large amounts of In, Sn, or Ga, and therefore have a large corrosion depth on the inner surface side.

No.25は、芯材のMnが少ないために引張強さが低く、No.
26は芯材のMnが多いために健全な板材が得られていな
い。
No. 25 has a low tensile strength due to a small amount of Mn in the core material.
No. 26 does not have a healthy plate material due to the large amount of Mn in the core material.

No.27は芯材のCuが少ないために引張強さが低く、外面
側の腐食深さが大きい。
No. 27 has a low tensile strength due to a small amount of Cu in the core material, and has a large corrosion depth on the outer surface side.

No.28は、芯材のCuが多いためにろう付時に溶融が生じ
ている。
No. 28 has a large amount of Cu in the core material, so that melting occurs during brazing.

No.29は、芯材のSiが少ないために引張強さが低い。No. 29 has a low tensile strength because the core material is low in Si.

No.30は、芯材のSiが多いためにろう付時に溶融が生じ
ている。
No. 30 has a large amount of Si in the core material, so that melting occurs during brazing.

No.31は、芯材がMgを含まないために引張強さが低い。No. 31 has a low tensile strength because the core material does not contain Mg.

No.32は、芯材のMgが多いためにろう付不良が生じてい
る。
No. 32 has a brazing defect due to the large amount of Mg in the core material.

No.33は芯材が3003であるために、引張強さが低く、外
面側の腐食深さが大きい。
In No. 33, the core material is 3003, so the tensile strength is low and the corrosion depth on the outer surface side is large.

[発明の効果] 以上説明したように、本発明のクラッド材は弗化物フラ
ックスろう付用材料として、高強度、耐食性で、かつ、
ろう付性が優れたAl熱交換器用クラッド材である。これ
によって、チューブ材やヘッダープレート材を薄肉にす
ることができ、ラジエータやヒータの軽量化が可能であ
る。
[Effects of the Invention] As described above, the clad material of the present invention has high strength and corrosion resistance as a material for fluoride flux brazing, and
It is an Al heat exchanger clad material with excellent brazing properties. As a result, the tube material and the header plate material can be made thin, and the weight of the radiator and the heater can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の材料のろう付後のMgの濃度分布を示す
断面図である。
FIG. 1 is a sectional view showing the Mg concentration distribution after brazing of the material of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F28F 21/08 (72)発明者 加藤 健志 愛知県名古屋市港区千年3丁目1番12号 住友軽金属工業株式会社技術研究所内 (72)発明者 時實 直樹 愛知県名古屋市港区千年3丁目1番12号 住友軽金属工業株式会社技術研究所内 (72)発明者 難波 圭三 愛知県名古屋市港区千年3丁目1番12号 住友軽金属工業株式会社技術研究所内 (56)参考文献 特開 昭63−303027(JP,A) 特開 昭54−110909(JP,A)─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location F28F 21/08 (72) Inventor Kenji Kato 3-12-12, Chiennen, Minato-ku, Nagoya, Aichi Light Metal Industry Co., Ltd. Technical Research Institute (72) Inventor Naoki Tokizo 3-12 Hosetsu, Minato-ku, Nagoya, Aichi Prefecture 3-12, Japan Sumitomo Light Metal Industry Co., Ltd. Technical Research Center (3-12) (56) References JP-A-63-303027 (JP, A) JP-A-54-110909 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】芯材が、Mn:0.3〜2.0%(重量%、以下同
じ)、Cu:0.25〜0.8%、Si:0.2〜0.7%未満、Mg:0.5%
以下を含有し、残部Alと不可避不純物からなるアルミニ
ウム合金で構成され、該芯材の片面に複合された犠牲陽
極材がMg:1.2〜2.5%、Si:0.2〜0.8%を含有し、残部Al
と不可避不純物からなるアルミニウム合金で構成され、
かつ、前記芯材の他の片面に複合された皮材がAl−Si系
合金のろう材で構成されたことを特徴とする熱交換器用
高強度高耐食性アルミニウム合金クラッド材。
1. A core material is Mn: 0.3 to 2.0% (weight%, hereinafter the same), Cu: 0.25 to 0.8%, Si: 0.2 to less than 0.7%, Mg: 0.5%
The sacrificial anode material containing the following and composed of an aluminum alloy consisting of the balance Al and inevitable impurities, and the sacrificial anode material compounded on one side of the core material contains Mg: 1.2 to 2.5%, Si: 0.2 to 0.8%, and the balance Al.
And an aluminum alloy consisting of inevitable impurities,
A high-strength and high-corrosion-resistant aluminum alloy clad material for a heat exchanger, characterized in that a skin material compounded on the other surface of the core material is composed of a brazing material of an Al-Si alloy.
【請求項2】芯材が、Mn:0.3〜2.0%、Cu:0.25〜0.8
%、Si:0.2〜0.7%未満、Mg:0.5%以下を含有し、残部A
lと不可避不純物からなるアルミニウム合金で構成さ
れ、該芯材の片面に複合された犠牲陽極材がMg:1.2〜2.
5%、Si:0.2〜0.8%を含有し、更に、In:0.2%以下、S
n:0.2%以下及びGa:0.2%以下の1種又は2種以上を含
有し、残部Alと不可避不純物からなるアルミニウム合金
で構成され、かつ、前記芯材の他の片面に複合された皮
材がAl−Si系合金のろう材で構成されたことを特徴とす
る熱交換器用高強度高耐食性アルミニウム合金クラッド
材。
2. The core material is Mn: 0.3 to 2.0%, Cu: 0.25 to 0.8
%, Si: 0.2 to less than 0.7%, Mg: 0.5% or less, balance A
The sacrificial anode material composed of an aluminum alloy consisting of 1 and unavoidable impurities and composited on one surface of the core material has a Mg: 1.2-2.
5%, Si: 0.2-0.8%, In: 0.2% or less, S
A skin material containing one or more of n: 0.2% or less and Ga: 0.2% or less, composed of an aluminum alloy consisting of the balance Al and inevitable impurities, and composited on the other side of the core material. Is a brazing material of Al-Si alloy, a high strength and high corrosion resistance aluminum alloy clad material for heat exchangers.
JP2322310A 1990-11-28 1990-11-28 High strength and corrosion resistant aluminum alloy clad material for heat exchanger Expired - Fee Related JPH07116544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2322310A JPH07116544B2 (en) 1990-11-28 1990-11-28 High strength and corrosion resistant aluminum alloy clad material for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2322310A JPH07116544B2 (en) 1990-11-28 1990-11-28 High strength and corrosion resistant aluminum alloy clad material for heat exchanger

Publications (2)

Publication Number Publication Date
JPH04193926A JPH04193926A (en) 1992-07-14
JPH07116544B2 true JPH07116544B2 (en) 1995-12-13

Family

ID=18142203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2322310A Expired - Fee Related JPH07116544B2 (en) 1990-11-28 1990-11-28 High strength and corrosion resistant aluminum alloy clad material for heat exchanger

Country Status (1)

Country Link
JP (1) JPH07116544B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001087888A (en) * 1999-09-22 2001-04-03 Toyo Radiator Co Ltd Brazing sheet for heat-resistant heat exchanger
JP3651582B2 (en) 2000-07-28 2005-05-25 神鋼アルコア輸送機材株式会社 Aluminum brazing sheet
JP2018028127A (en) * 2016-08-17 2018-02-22 株式会社Uacj Aluminum alloy-made clad plate for heat exchangers

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110909A (en) * 1978-02-21 1979-08-30 Sumitomo Light Metal Ind Aluminum alloy for use as sacrifice anode
JPS63303027A (en) * 1987-06-01 1988-12-09 Mitsubishi Alum Co Ltd Aluminum brazing sheet for heat exchanger

Also Published As

Publication number Publication date
JPH04193926A (en) 1992-07-14

Similar Documents

Publication Publication Date Title
EP0556798B1 (en) Clad aluminum alloy material having high-strength, high-corrosion resistance for heat exchanger
JP3772017B2 (en) High strength and high corrosion resistance aluminum alloy clad material for heat exchanger
JP2842665B2 (en) Aluminum heat exchanger
JP2842668B2 (en) High strength and high corrosion resistance A1 alloy clad material for A1 heat exchanger
JP3858255B2 (en) Aluminum alloy clad material for heat exchangers with excellent corrosion resistance
JPH07116544B2 (en) High strength and corrosion resistant aluminum alloy clad material for heat exchanger
JP3217108B2 (en) High strength and high corrosion resistance aluminum alloy clad material for heat exchanger
JP3243188B2 (en) Aluminum alloy clad material for heat exchangers with excellent alkali corrosion resistance
JP2933382B2 (en) High strength and high corrosion resistance aluminum alloy clad material for heat exchanger
JP3234619B2 (en) High strength and high corrosion resistance aluminum alloy clad material for heat exchanger
JP2842666B2 (en) High strength and high corrosion resistance clad material for A1 heat exchanger
JP2842667B2 (en) High strength and high corrosion resistance A1 alloy clad material for A1 heat exchanger
JP2990027B2 (en) Method of manufacturing aluminum alloy brazing sheet for heat exchanger
JPH0436434A (en) High strength and high corrosion resistant al alloy clad material for al heat exchanger
JP3243189B2 (en) Aluminum alloy clad material for heat exchangers with excellent alkali corrosion resistance
JPH06212331A (en) Aluminum alloy brazing sheet having high strength and high corrosion resistance
JPH07116543B2 (en) High strength and corrosion resistant aluminum alloy clad material for heat exchanger
JPH04198448A (en) Aluminum alloy clad material having high strength and high corrosion resistance for heat exchanger
JP3538507B2 (en) Aluminum alloy clad material for heat exchanger with excellent alkali corrosion resistance
JP2000087166A (en) Aluminum alloy clad material for heat exchanger excellent in corrosion resistance
JP2581868B2 (en) High strength and high corrosion resistance aluminum alloy clad material for heat exchanger
JPH07116545B2 (en) High strength and corrosion resistant aluminum alloy clad material for heat exchanger
JP3529074B2 (en) Aluminum alloy clad material for heat exchanger with excellent alkali corrosion resistance
JP2000297338A (en) Aluminum alloy clad material for heat exchanger, excellent in corrosion resistance under alkaline environment and acid environment
JP2000297339A (en) Aluminum alloy clad material for heat exchanger, excellent in corrosion resistance under alkaline environment and acid environment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091213

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees