JP2842667B2 - High strength and high corrosion resistance A1 alloy clad material for A1 heat exchanger - Google Patents

High strength and high corrosion resistance A1 alloy clad material for A1 heat exchanger

Info

Publication number
JP2842667B2
JP2842667B2 JP2141550A JP14155090A JP2842667B2 JP 2842667 B2 JP2842667 B2 JP 2842667B2 JP 2141550 A JP2141550 A JP 2141550A JP 14155090 A JP14155090 A JP 14155090A JP 2842667 B2 JP2842667 B2 JP 2842667B2
Authority
JP
Japan
Prior art keywords
brazing
core material
alloy
amount
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2141550A
Other languages
Japanese (ja)
Other versions
JPH0436432A (en
Inventor
重徳 山内
祐治 鈴木
健志 加藤
泰永 伊藤
悦加 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2141550A priority Critical patent/JP2842667B2/en
Publication of JPH0436432A publication Critical patent/JPH0436432A/en
Application granted granted Critical
Publication of JP2842667B2 publication Critical patent/JP2842667B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/016Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of aluminium or aluminium alloys

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は不活性ガス雰囲気中で弗化物フラックスを
用いたろう付によりラジエータやヒーターコアなどのAl
熱交換器を製造するに際して、その構造部材であるチュ
ーブ材やヘッダープレート材などとして用いるに適し
た、ろう付性が良好で、かつろう付後に高強度および高
耐食性を有するAl合金クラッド材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a radiator, a heater core, or the like by brazing using a fluoride flux in an inert gas atmosphere.
Al-alloy clad material with good brazing properties and high strength and high corrosion resistance after brazing, suitable for use as a structural member such as tube material and header plate material when manufacturing heat exchangers It is.

[従来の技術] 自動車のラジエータやヒーターコアなどのチューブ材
やヘッダプレート材には、3003などのAl−Mn系合金を芯
材とし、片面にAl−Si系合金のろう材、他の片面にAl−
Zn系合金やAl−Zn−Mg系合金の犠牲陽極材をクラッドし
た3層クラッド材が用いられている。Al−Si系のろう材
はチューブとフィンの接合、チューブとヘッダープレー
トとの接合のためのものである。ろう付は不活性ガス雰
囲気中で弗化物フラックスを用いて行われることが多
い。犠牲陽極材をクラッドした他の片面は、使用中に内
側(水側)になり、犠牲陽極作用を発揮して芯材の孔食
や隙間腐食を防止する。
[Conventional technology] Al-Mn based alloys such as 3003 are used as core materials for tubes and header plate materials such as radiators and heater cores of automobiles. Al−
A three-layer clad material in which a sacrificial anode material of a Zn-based alloy or an Al-Zn-Mg-based alloy is clad is used. The Al-Si brazing material is used for joining a tube to a fin and joining a tube to a header plate. Brazing is often performed using a fluoride flux in an inert gas atmosphere. The other side clad with the sacrificial anode material becomes inside (water side) during use, and exhibits a sacrificial anode effect to prevent pitting and crevice corrosion of the core material.

近年ラジエータやヒーターコアなどの軽量化を求める
要求が強く、チューブ材やヘッダープレート材の薄肉化
が必要となっている。そのためには材料の高強度化特に
ろう付後の強度の向上が必要であり、高強度化のために
芯材中にMgを添加することが多くなってきている。しか
し、Mgはろう付中に表面に拡散していき、弗化物フラッ
クスと反応するため、綿状生成物(Mgの弗化物)が生成
して付着したり、接合不良を生じたりする。こうして、
芯材中へのMgの添加量は実用上0.2〜0.3%に制限され、
高強度化の妨げとなっている。
In recent years, there has been a strong demand for weight reduction of radiators, heater cores, and the like, and thinner tube materials and header plate materials have been required. For that purpose, it is necessary to increase the strength of the material, particularly, the strength after brazing, and Mg is often added to the core material for increasing the strength. However, Mg diffuses to the surface during brazing and reacts with the fluoride flux, so that a flocculent product (fluoride of Mg) is generated and adheres, or a bonding failure occurs. Thus,
The amount of Mg added to the core material is practically limited to 0.2-0.3%,
This hinders high strength.

[発明が解決しようとする課題] 本発明は芯材中のMg分の拡散を防止して従来技術の上
記問題を解消したクラッド材を提供しようとするもので
ある。
[Problems to be Solved by the Invention] An object of the present invention is to provide a clad material which solves the above-mentioned problems of the prior art by preventing the diffusion of Mg in the core material.

[課題を解決するための手段] 本発明者らは、Mgが芯材から拡散して表面(ろう材
側)に到達する量を抑制するために芯材とろう材の間に
中間材を設け、中間材の合金種及び厚さについて種々検
討を加えた。
Means for Solving the Problems The present inventors provided an intermediate material between the core material and the brazing material in order to suppress the amount of Mg diffused from the core material and reaching the surface (the brazing material side). Various studies were made on the alloy type and thickness of the intermediate material.

その結果、中間材としてMn:0.1〜2.0%を含み、更にC
u:0.5%以下及び/又はSi:0.5%以下を含む合金を用
い、その厚さを芯材中のMg量との関係において決めるこ
とにより、表面に到達してフラックスと反応するMgの量
を抑制することができ、ろう付け性の低下を防止するこ
とを知見した。又、芯材中のCu量を中間材中のCuより0.
15%多くすることにより、耐食性が著しく向上すること
を見出し、これらによって本発明を完成した。
As a result, Mn: 0.1 to 2.0% as an intermediate material,
By using an alloy containing u: 0.5% or less and / or Si: 0.5% or less, and determining the thickness in relation to the Mg amount in the core material, the amount of Mg reaching the surface and reacting with the flux can be reduced. It has been found that they can be suppressed and prevent a decrease in brazing properties. Also, the amount of Cu in the core material is 0.
By increasing the content by 15%, it was found that the corrosion resistance was remarkably improved, thereby completing the present invention.

すなわち、本発明の構成は、Mn:0.3〜2.0%、Cu:0.25
〜1.0%、Mg:0.4〜1.0%、Si:0.1〜1.0%を含み、残りA
lと不可避不純物からなるAl合金を芯材とし、この芯材
の片面にMn:0.1〜2.0%を含み、更にCu:0.5%以下及び
/又はSi:0.5%以下を含み、残りAlと不可避不純物から
なるAl合金の中間材を介してAl−Si系合金のろう材をク
ラッドし、芯材の他の面にAl−Zn系合金及びAl−Zn−Mg
系合金のいずれかからなる犠牲陽極材をクラッドした4
層クラッド材において、中間材の厚さT(μm)と芯材
中のMg量(%)の間に T≧58×{[Mg(%)]−0.35}1/2 の関係をもたせ、かつ芯材中のCu量(%)を中間材中の
Cu量(%)より0.15%以上多くすることを特徴とする弗
化物フラックスろう付により製造するAl熱交換器用高強
度高耐食性Al合金クラッド材である。
That is, the composition of the present invention is as follows: Mn: 0.3 to 2.0%, Cu: 0.25
~ 1.0%, Mg: 0.4 ~ 1.0%, Si: 0.1 ~ 1.0%, remaining A
and an Al alloy consisting of unavoidable impurities as a core material. One side of this core material contains Mn: 0.1 to 2.0%, further contains Cu: 0.5% or less and / or Si: 0.5% or less, and the remaining Al and unavoidable impurities. Al-Si alloy brazing material is clad through an Al alloy intermediate material consisting of: Al-Zn alloy and Al-Zn-Mg
4 clad with sacrificial anode material made of any of
In the layer clad material, a relation of T ≧ 58 × {[Mg (%)] − 0.35} 1/2 is established between the thickness T (μm) of the intermediate material and the Mg amount (%) in the core material, and The amount of Cu (%) in the core material
This is a high-strength, high-corrosion-resistant Al alloy clad material for Al heat exchangers manufactured by fluoride flux brazing, characterized in that the amount is made 0.15% or more larger than the Cu content (%).

以下、上記材料の各成分の量と作用について説明す
る。
Hereinafter, the amounts and functions of the respective components of the above-described material will be described.

(1)芯材 Mn: 強度を向上させる。又、芯材の電位を貴にして犠牲陽
極材との電位差を大きくし耐食性を向上させる。0.3%
未満では効果が十分でなく、2.0%を越えると鋳造時に
粗大な化合物が生成し、健全な板材が得られない。
(1) Core material Mn: Improves strength. Further, the potential of the core material is made noble to increase the potential difference from the sacrificial anode material, thereby improving the corrosion resistance. 0.3%
If it is less than 2.0%, the effect is not sufficient, and if it exceeds 2.0%, a coarse compound is formed at the time of casting, and a sound plate material cannot be obtained.

Cu: 芯材の電位を貴にして、犠牲陽極材及び中間材と芯材
との電位差を大きくし、犠牲陽極材及び中間材の犠牲陽
極効果による防食作用を大きくする。更に、芯材中のCu
はろう付時に犠牲陽極材中及び中間材中へ拡散してなだ
らかな濃度勾配を形成し、芯材側が貴な電位、犠牲陽極
材及び中間材の各々表面側が卑な電位となり、その間に
なだらかな電位分布を形成して腐食形態を全面腐食型に
する。以上のようなCuの防食作用は犠牲陽極材中のCu量
あるいは中間材中のCu量より芯材中のCu量の方が多くな
ければ発揮されず、特に芯材中のCu量の方が0.15%以上
多くなければ、拡散後の濃度勾配が小さすぎて効果が十
分でない。通常犠牲陽極材中にCuを添加することはない
が、中間材には強度向上を目的としてCuを添加すること
があるので、その場合は注意が必要である。
Cu: The potential of the core material is made noble, the potential difference between the sacrificial anode material and the intermediate material and the core material is increased, and the anticorrosive action of the sacrificial anode material and the intermediate material due to the sacrificial anode effect is increased. Furthermore, Cu in the core material
During brazing, it diffuses into the sacrificial anode material and the intermediate material to form a gentle concentration gradient, the core material side has a noble potential, and the surface side of each of the sacrificial anode material and the intermediate material has a low potential, and the middle is gentle A potential distribution is formed to make the corrosion mode a general corrosion type. The anticorrosion effect of Cu as described above is not exhibited unless the Cu content in the core material is larger than the Cu content in the sacrificial anode material or the Cu content in the intermediate material, and in particular, the Cu content in the core material is better. If not more than 0.15%, the concentration gradient after diffusion is too small and the effect is not sufficient. Normally, Cu is not added to the sacrificial anode material, but care must be taken in that case because Cu may be added to the intermediate material for the purpose of improving strength.

芯材中のCuは強度向上にも寄与する。 Cu in the core material also contributes to strength improvement.

以上に示したCuの防食作用と強度向上効果は、芯材中
のCu量が0.25重量%未満では発揮されず、一方、1.0%
を越えると芯材自体の耐食性が悪くなるとともに芯材の
融点が下がって、ろう付時に局部的な溶融を生ずるよう
になる。
The anticorrosive action and strength improving effect of Cu shown above are not exhibited when the Cu content in the core material is less than 0.25% by weight, while the Cu content in the core material is 1.0%.
If the temperature exceeds the above range, the corrosion resistance of the core material itself is deteriorated and the melting point of the core material is lowered, so that local melting occurs during brazing.

Mg: 芯材の強度を向上させる。強度向上効果は、Si及び/
又はCuと共存するとろう付後の時効硬化により更によく
発揮される。0.4%未満では効果が十分でなく、1.0%を
越えると耐食性が低下するとともに芯材の融点が下がっ
てろう付時に局部的な溶融を生ずるようになる。
Mg: improves the strength of the core material. The strength improvement effect is due to Si and / or
Alternatively, when coexisting with Cu, it is more effectively exerted by age hardening after brazing. If it is less than 0.4%, the effect is not sufficient, and if it exceeds 1.0%, the corrosion resistance is reduced and the melting point of the core material is lowered, so that local melting occurs during brazing.

Si: 芯材の強度を向上させる。強度向上効果はMgと共存す
るとろう付後の時効硬化によりよく発揮される。0.1%
未満では効果が十分でなく、1.0%を越えると耐食性が
低下するとともに芯材の融点が下がってろう付時に局部
的な溶融を生ずるようになる。
Si: Improves the strength of the core material. The strength improving effect is well exhibited by age hardening after brazing when coexisting with Mg. 0.1%
If it is less than 1.0%, the effect is not sufficient. If it exceeds 1.0%, the corrosion resistance is reduced and the melting point of the core material is lowered, so that local melting occurs during brazing.

その他の元素: Fe、Zn、Cr、Zr、Tiなどは本発明の効果を損なわない
範囲で含まれてもよい。ただし、Feは多量に含まれると
耐食性を害するので0.7%以下にする必要がある。Znは
芯材の電位を卑にし、犠牲陽極材及び中間材との電位差
を小さくするので0.2%以下にする必要がある。
Other elements: Fe, Zn, Cr, Zr, Ti and the like may be included in a range that does not impair the effects of the present invention. However, if Fe is contained in a large amount, the corrosion resistance is impaired, so it is necessary to make the content 0.7% or less. Zn makes the potential of the core material low and reduces the potential difference between the sacrificial anode material and the intermediate material, so it needs to be 0.2% or less.

(2)中間材 Mn: 強度を向上させる。0.1%未満では効果が十分でな
く、2.0%を越えると鋳造時に粗大な化合物が生成し健
全な板材が得られない。
(2) Intermediate material Mn: Improves strength. If it is less than 0.1%, the effect is not sufficient, and if it exceeds 2.0%, a coarse compound is formed at the time of casting, and a sound plate material cannot be obtained.

Cu、Si: これらの元素は強度向上に寄与する。特にろう付時に
芯材からMgが拡散してくるので、ろう付後にはMgとCu、
Siが共存することになり、時効硬化により強度が向上す
る。しかしながら、これらの元素は芯材からろう材に向
ってMgが拡散するのを促進するため、含有量が多くなる
とろう付性が悪くなる。従ってろう付性の確保のために
Cu:0.5%以下、Si:0.5%以下に限定する必要がある。
又、前記のように芯材から中間材の表面(ろう付側)に
向ってCuのなだらかな濃度勾配を形成し、腐食形態を全
面腐食型にするために、中間材中のCu量は芯材中のCu量
より0.15%以上少なくする必要がある。
Cu, Si: These elements contribute to strength improvement. In particular, Mg diffuses from the core material during brazing, so after brazing, Mg and Cu,
Since Si coexists, the strength is improved by age hardening. However, since these elements promote the diffusion of Mg from the core material to the brazing material, the higher the content, the worse the brazing property. Therefore, in order to secure brazing properties
It is necessary to limit Cu to 0.5% or less and Si: 0.5% or less.
Also, as described above, in order to form a gradual concentration gradient of Cu from the core material toward the surface of the intermediate material (brazing side), and to make the corrosion form a complete corrosion type, the amount of Cu in the intermediate material must be It is necessary to reduce the amount of Cu in the material by 0.15% or more.

その他の元素: Fe、Ti、Cr、Zr、Znなどは本発明の効果を損なわない
範囲で含まれてもよい。但し、Feは多量に含まれると耐
食性を害するので0.7%以下にする必要がある。又、Zn
は犠牲陽極効果を付与するために中間材に添加すること
があるが、その場合Mgの拡散を促進しないように0.3%
以下としなければならない。
Other elements: Fe, Ti, Cr, Zr, Zn, etc. may be contained within a range that does not impair the effects of the present invention. However, if Fe is contained in a large amount, the corrosion resistance is impaired, so it must be 0.7% or less. Also, Zn
May be added to the intermediate material to provide a sacrificial anode effect, in which case 0.3%
Must be:

厚さ: 中間材は芯材中のMgが拡散してろう材側に到達する量
を抑制するためのものであり、その厚さT(μm)は芯
材中のMg量(%)に応じて次の式で決められる。
Thickness: The intermediate material is to suppress the amount of Mg in the core material that diffuses and reaches the brazing material side, and its thickness T (μm) depends on the Mg amount (%) in the core material. Is determined by the following equation.

T≧58×{[Mg(%)]−0.35}1/2 この式は実験により求められたものであるが、芯材中
のMg量が多いほど中間材の厚さを厚くしなければならな
いことを示している。そして中間材の厚さがこの式を満
たさないとき、すなわち58×{[Mg(%)]−0.35}
1/2より小さいときは、ろう付時にろう材側へのMgの拡
散量が多く、Mgと弗化物フラックスが反応してろう付不
良が発生したり、綿状生成物が生成して外観を損ねたり
する。
T ≧ 58 × {[Mg (%)] − 0.35} 1/2 This equation is obtained by experiment, but as the amount of Mg in the core material increases, the thickness of the intermediate material must be increased. It is shown that. And when the thickness of the intermediate material does not satisfy this equation, that is, 58 × {[Mg (%)] − 0.35}
If it is less than 1/2, the amount of Mg diffused into the brazing material during brazing is large, and Mg and fluoride flux react to cause poor brazing or fluffy products to be formed, resulting in appearance. Or damage.

(3)ろう材 ろう材は通常用いられるAl−Si系合金である。通常6
〜13%のSiを含む合金が用いられる。
(3) Brazing material The brazing material is a commonly used Al-Si alloy. Normal 6
An alloy containing ~ 13% Si is used.

(4)犠牲陽極材 ラジエータやヒーターコアなどで水と接する側(内面
側)にクラッドされ、犠牲陽極作用により芯材の孔食や
隙間腐食を防止する。単に水と接するのみの場合はAl−
Zn合金が用いられ、ゴムパッキングなどと接して隙間を
形成する場合にはAl−Zn−Mg合金が用いられることが多
い。又、いずれの場合もIn、Sn、Ga、Biなどの電位を卑
にする元素を含んでもよい。
(4) Sacrificial anode material Clad on the side (inner surface) that comes in contact with water with a radiator or heater core, etc., prevents pitting and crevice corrosion of the core material by the sacrificial anode function. Al-
When a Zn alloy is used and a gap is formed in contact with rubber packing or the like, an Al-Zn-Mg alloy is often used. In each case, an element that lowers the potential, such as In, Sn, Ga, or Bi, may be included.

[実施例] 以下実施例によって、本発明を具体的に説明する。[Examples] Hereinafter, the present invention will be specifically described with reference to Examples.

実施例1 下記第1表に示す芯材用合金、第2表に示す中間材用
合金、第3表に示すろう材用合金、第4表に示す犠牲陽
極材用合金の鋳塊を準備し、中間材用合金、ろう材用合
金及び犠牲陽極材用合金を熱間圧延して所定の厚さと
し、これらと芯材用合金の鋳塊とを組合せて熱間圧延し
クラッド材を得た。その後、冷間圧延、中間焼鈍、冷間
圧延により厚さ0.27mmの板(H14材)を作製した。
Example 1 An ingot of an alloy for a core material shown in Table 1 below, an alloy for an intermediate material shown in Table 2, an alloy for a brazing material shown in Table 3, and an alloy for a sacrificial anode material shown in Table 4 was prepared. The alloy for the intermediate material, the alloy for the brazing material, and the alloy for the sacrificial anode material were hot-rolled to have a predetermined thickness, and these were combined with the ingot of the alloy for the core material, followed by hot rolling to obtain a clad material. Thereafter, a plate (H14 material) having a thickness of 0.27 mm was produced by cold rolling, intermediate annealing, and cold rolling.

クラッドの構成は第1図に示すように、厚さ170μm
の芯材1の片面に厚さ50μmの中間材2、その上に厚さ
25μmのろう材の層3を形成し、芯材1の反対面に厚さ
25μmの犠牲陽極材4の層を形成した板厚0.27mmのもの
である。
The structure of the clad is 170 μm thick as shown in FIG.
Intermediate material 2 having a thickness of 50 μm on one side of a core material 1 having a thickness of
A layer 3 of brazing material having a thickness of 25 μm is formed.
It has a thickness of 0.27 mm on which a layer of the sacrificial anode material 4 of 25 μm is formed.

各材料の合金組成とその組合せは第5表に示すとおり
である。
The alloy composition of each material and its combination are as shown in Table 5.

得られたクラッド板材のろう材側に、Al−1.2%Mn−
1.5%Zn合金からなる厚さ0.10mmのコルゲートフィンを
乗せ、窒素ガス中で弗化物フラックスを用いてろう付を
行った。ろう付温度(材料温度)は600℃であった。ろ
う付後板材とフィンとの接合状況、綿状生成物の発生状
況、芯材の溶融状況を調べた。
On the brazing material side of the obtained clad sheet material, Al-1.2% Mn-
A corrugated fin having a thickness of 0.10 mm made of 1.5% Zn alloy was placed thereon, and brazing was performed using a fluoride flux in nitrogen gas. The brazing temperature (material temperature) was 600 ° C. After the brazing, the joining state between the sheet material and the fins, the occurrence state of flocculent products, and the melting state of the core material were examined.

次に厚さ0.27mmの板材をそのまま(フィンと接触させ
ることなく)弗化物フラックスろう付と同じ条件で加熱
した後、引張試験と腐食試験を行った。腐食試験の方法
は、外面側(ろう材側)についてはCASS試験、30日間と
し、内面側(犠牲陽極材側)についてはCl-100ppm、SO4
2-100ppm、HCO3 -100ppm、Cu2+10ppmを含む水溶液中に浸
漬し、8時間の間80℃に加熱し、その後室温まで放冷し
ながら16時間放置するというサイクルを繰返し、3ケ月
間行った。
Next, the plate material having a thickness of 0.27 mm was directly heated (without contact with the fins) under the same conditions as for the fluoride flux brazing, and then a tensile test and a corrosion test were performed. The corrosion test method was as follows: CASS test for the outer surface (brazing material side), 30 days, Cl - 100 ppm, SO 4 for the inner surface (sacrificial anode material side)
2-100 ppm, HCO 3 - 100 ppm, was immersed in an aqueous solution containing Cu 2+ 10 ppm, heated to 80 ° C. for 8 hours, then repeating the cycle that left 16 hours while cooling to room temperature, 3 months went.

以下の結果をまとめて第5表に示す。発明例(No.1、
No.3〜13)の場合、ろう付性は良好で、引張強さも18kg
f/mm2以上と高く、最大腐食深さも小さい。
The following results are summarized in Table 5. Invention Examples (No. 1,
In the case of No. 3 to 13), the brazing property is good and the tensile strength is 18 kg
High f / mm 2 or higher and low maximum corrosion depth.

比較例(No.2)の場合、芯材中のCu量と中間材中のCu
量の差が0.11%と少ないために、外面側の腐食が深くな
っている。
In the case of Comparative Example (No. 2), the amount of Cu in the core material and the amount of Cu in the intermediate material
Due to the small amount difference of 0.11%, corrosion on the outer surface side is deep.

No.14の場合、芯材中のMnが少ないために引張強さが
低く、外面側の腐食も深い。No.15は芯材中のMnが多い
ために健全な板材が得られていない。
In the case of No. 14, the tensile strength is low due to the small amount of Mn in the core material, and the outer surface side is deeply corroded. In No.15, a sound board was not obtained because Mn was large in the core material.

No.16は芯材中のCu量が少ないために引張強さがやや
低く、外面側の腐食も深い。No.17は芯材中のCuが多
く、ろう付中に局部溶融を生じ、そのため引張強さが低
く、外面側及び内面側の腐食深さが大きい。
No. 16 has a slightly lower tensile strength due to a small amount of Cu in the core material, and has deep corrosion on the outer surface side. No. 17 has a large amount of Cu in the core material and locally melts during brazing, so that the tensile strength is low and the corrosion depth on the outer and inner surfaces is large.

No.18は芯材中のMgが少ないために引張強さが低く、N
o.19は芯材中のMgが多いためにろう付不良を生じ、外面
側の腐食も深い。
No. 18 has low tensile strength due to low Mg in the core material,
In the case of o.19, brazing defects occurred due to the large amount of Mg in the core material, and the outer surface side was deeply corroded.

No.20は芯材中のSiが少ないために引張強さが低く、N
o.21は芯材中のSiが多いために局部溶融を生じ、引張強
さが低く、外面側及び内面側の腐食が深い。
No.20 has low tensile strength due to low Si content in the core material,
In o.21, local melting occurs due to a large amount of Si in the core material, the tensile strength is low, and the corrosion on the outer surface side and the inner surface side is deep.

No.22は3003合金を芯材とし中間材を設けない3層ク
ラッド材であるが、引張強さが低く、外面側及び内面側
の腐食が深い。
No. 22 is a three-layer clad material with 3003 alloy as the core material and no intermediate material, but has low tensile strength and deep corrosion on the outer and inner surfaces.

No.23は中間材のMnが少ないために引張強さがやや低
い。No.24は中間材のMnが多いために健全な板材が得ら
れていない。
No. 23 has a slightly lower tensile strength due to a small amount of Mn in the intermediate material. In No.24, a sound plate was not obtained because of the large amount of Mn in the intermediate material.

No.25は中間材のCuが多いためにろう付時に綿状生成
物が生じ、又、芯材中のCu量の方が中間材中のCu量より
少ないために外面側の腐食が深い。
In No. 25, a cotton-like product is generated during brazing due to a large amount of Cu in the intermediate material, and the outer surface side is deeply corroded because the amount of Cu in the core material is smaller than the amount of Cu in the intermediate material.

No.26は中間材のSiが多いためにろう付時に綿状生成
物が生じている。
No. 26 has a flocculent product during brazing due to the large amount of Si in the intermediate material.

実施例2 第6表の組合せにより実施例1と同様に0.27mmの板材
を作製した。ここではろう材と犠牲陽極材の厚さは実施
例1と同一とし、中間材と芯材の厚さを種々に変えた。
Example 2 A plate of 0.27 mm was produced in the same manner as in Example 1 by the combination shown in Table 6. Here, the thicknesses of the brazing material and the sacrificial anode material were the same as in Example 1, and the thicknesses of the intermediate material and the core material were variously changed.

得られた板材について、実施例1と同様にろう付テス
ト、引張試験、腐食試験を行った。
The obtained plate was subjected to a brazing test, a tensile test, and a corrosion test in the same manner as in Example 1.

その結果を第6表に示す。T≧58×{[Mg(%)]−
0.35}1/2を満たさない場合にろう付不良が生じてい
る。
Table 6 shows the results. T ≧ 58 × {[Mg (%)] −
Failure to satisfy 0.35} 1/2 causes brazing failure.

第6表のろう付テストの結果と、第5表のNo.5〜8の
ろう付テストの結果をまとめて図示すると、第2図のよ
うになる。曲線T=58×{[Mg(%)]−0.35}1/2
上方にあればろう付性が良好であり、下方にあればろう
付性が不良であることがわかる。
FIG. 2 shows the results of the brazing test in Table 6 and the results of the brazing tests Nos. 5 to 8 in Table 5 collectively. It can be seen that if the curve T is above 58 × {[Mg (%)] − 0.35} 1/2 , the brazing property is good, and if it is below the curve, the brazing property is poor.

[発明の効果] 以上説明したように、本発明のクラッド材は弗化物フ
ラックスろう付用材料として、高強度、耐食性で、か
つ、ろう付性が優れたAl熱交換器用クラッド材である。
これによって、チューブ材やヘッダープレート材を薄肉
にすることができ、ラジエータやヒータの軽量化が可能
である。
[Effect of the Invention] As described above, the clad material of the present invention is a clad material for an Al heat exchanger having high strength, corrosion resistance, and excellent brazing properties as a material for brazing a fluoride flux.
As a result, the tube material and the header plate material can be made thin, and the weight of the radiator and the heater can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明のクラッド材の構成を示す断面図。 第2図は実施例2で行なったろう付試験の結果を示すグ
ラフである。 1……芯材、2……中間材、3……ろう材、 4……犠牲陽極材。
FIG. 1 is a sectional view showing the configuration of a clad material of the present invention. FIG. 2 is a graph showing the results of a brazing test performed in Example 2. 1 ... core material, 2 ... intermediate material, 3 ... brazing material, 4 ... sacrificial anode material.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22C 21/00 C22C 21/00 E F28F 21/08 F28F 21/08 D (72)発明者 伊藤 泰永 愛知県名古屋市港区千年3丁目1番12号 住友軽金属工業株式会社技術研究所内 (72)発明者 山本 悦加 愛知県名古屋市港区千年3丁目1番12号 住友軽金属工業株式会社名古屋製造所 内 (56)参考文献 特開 平2−11291(JP,A) 特開 昭64−40195(JP,A) 特開 平1−208432(JP,A) (58)調査した分野(Int.Cl.6,DB名) C22C 21/00 - 21/18 F28F 21/08 B32B 15/01 B23K 1/00,1/19,35/28──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C22C 21/00 C22C 21/00 EF28F 21/08 F28F 21/08 D (72) Inventor Yasunaga Ito Minato-ku, Nagoya-shi, Aichi Sumitomo Light Metal Industry Co., Ltd.Technical Research Laboratory (72) Etika YamamotoEtika Yamamoto 3-1-1, Minato-ku, Minato-ku, Nagoya City, Aichi Prefecture Sumitomo Light Metal Industry Co., Ltd.Nagoya Works (56) References JP-A-2-11291 (JP, A) JP-A-64-40195 (JP, A) JP-A-1-208432 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C22C 21/00-21/18 F28F 21/08 B32B 15/01 B23K 1 / 00,1 / 19,35 / 28

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Mn:0.3〜2.0%(重量%、以下同じ)、Cu:
0.25〜1.0%、Mg:0.4〜1.0%、Si:0.1〜1.0%を含み、
残りAlと不可避不純物からなるAl合金を芯材とし、この
芯材の片面にMn:0.1〜2.0%を含み、更にCu:0.5%以下
及び/又はSi:0.5%以下を含み、残りAlと不可避不純物
からなるAl合金の中間材を介してAl−Si系合金のろう材
をクラッドし、芯材の他の面にAl−Zn系合金及びAl−Zn
−Mg系合金のいずれかからなる犠牲陽極材をクラッドし
た4層クラッド材において、中間材の厚さT(μm)と
芯材中のMg量(%)の間に T≧58×{[Mg(%)]−0.35}1/2 の関係を有し、かつ芯材中のCu量(%)が中間材中のCu
量(%)より0.15%以上多いことを特徴とする弗化物フ
ラックスろう付により製造するAl熱交換器用高強度高耐
食性Al合金クラッド材。
1. Mn: 0.3 to 2.0% (% by weight, the same applies hereinafter), Cu:
0.25-1.0%, Mg: 0.4-1.0%, Si: 0.1-1.0%,
Al alloy consisting of remaining Al and unavoidable impurities is used as a core material. One side of this core material contains 0.1 to 2.0% of Mn, further contains 0.5% or less of Cu and / or 0.5% or less of Si, and is inevitable with the remaining Al. An Al-Si alloy brazing material is clad through an Al alloy intermediate material made of impurities, and an Al-Zn alloy and an Al-Zn
-In a four-layer clad material clad with a sacrificial anode material made of any one of Mg-based alloys, T ≧ 58 × {[Mg] between the thickness T (μm) of the intermediate material and the amount of Mg (%) in the core material. (%)]-0.35} 1/2 , and the Cu content (%) in the core material is Cu in the intermediate material.
High-strength, high-corrosion-resistant Al alloy clad material for Al heat exchangers manufactured by fluoride flux brazing, characterized in that the amount is 0.15% or more than the amount (%).
JP2141550A 1990-06-01 1990-06-01 High strength and high corrosion resistance A1 alloy clad material for A1 heat exchanger Expired - Lifetime JP2842667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2141550A JP2842667B2 (en) 1990-06-01 1990-06-01 High strength and high corrosion resistance A1 alloy clad material for A1 heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2141550A JP2842667B2 (en) 1990-06-01 1990-06-01 High strength and high corrosion resistance A1 alloy clad material for A1 heat exchanger

Publications (2)

Publication Number Publication Date
JPH0436432A JPH0436432A (en) 1992-02-06
JP2842667B2 true JP2842667B2 (en) 1999-01-06

Family

ID=15294573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2141550A Expired - Lifetime JP2842667B2 (en) 1990-06-01 1990-06-01 High strength and high corrosion resistance A1 alloy clad material for A1 heat exchanger

Country Status (1)

Country Link
JP (1) JP2842667B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026481A1 (en) 2005-08-31 2007-03-08 Showa Denko K.K. Clad plate and process for production thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001087888A (en) * 1999-09-22 2001-04-03 Toyo Radiator Co Ltd Brazing sheet for heat-resistant heat exchanger
JP4825507B2 (en) * 2005-12-08 2011-11-30 古河スカイ株式会社 Aluminum alloy brazing sheet
CN112026295A (en) * 2019-06-03 2020-12-04 格朗吉斯铝业(上海)有限公司 Aluminum alloy composite material, honeycomb core and honeycomb plate comprising same and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026481A1 (en) 2005-08-31 2007-03-08 Showa Denko K.K. Clad plate and process for production thereof

Also Published As

Publication number Publication date
JPH0436432A (en) 1992-02-06

Similar Documents

Publication Publication Date Title
JP4912555B2 (en) Aluminum alloy composites with improved electrical conductivity and high strength and methods and use
JP3772017B2 (en) High strength and high corrosion resistance aluminum alloy clad material for heat exchanger
JP2842665B2 (en) Aluminum heat exchanger
JP2842668B2 (en) High strength and high corrosion resistance A1 alloy clad material for A1 heat exchanger
JP2842669B2 (en) High strength and high corrosion resistance A1 alloy clad material for A1 heat exchanger
JP2842666B2 (en) High strength and high corrosion resistance clad material for A1 heat exchanger
JP2842667B2 (en) High strength and high corrosion resistance A1 alloy clad material for A1 heat exchanger
JP4190295B2 (en) Aluminum alloy clad tube material excellent in corrosion resistance and heat exchanger assembled with the clad tube material
JP3222768B2 (en) Aluminum alloy clad material excellent in brazing property and method for producing the same
JP3876180B2 (en) Aluminum alloy three-layer clad material
JP2933382B2 (en) High strength and high corrosion resistance aluminum alloy clad material for heat exchanger
JP3217108B2 (en) High strength and high corrosion resistance aluminum alloy clad material for heat exchanger
JP4596618B2 (en) High corrosion resistance aluminum alloy composite for heat exchanger and anticorrosion aluminum alloy for heat exchanger
JPH09176767A (en) Al brazing sheet for vacuum brazing
JP3234619B2 (en) High strength and high corrosion resistance aluminum alloy clad material for heat exchanger
JPH0797651A (en) Production of aluminum alloy brazing sheet for heat exchanger and heat exchanger made of aluminum alloy
JPH07207393A (en) Manufacture of aluminum alloy brazing sheet for heat exchanger and heat exchanger made of aluminum alloy
JP2749660B2 (en) Aluminum heat exchanger
JP2783921B2 (en) Low temperature brazed aluminum alloy heat exchanger
JP3538507B2 (en) Aluminum alloy clad material for heat exchanger with excellent alkali corrosion resistance
JPH07116544B2 (en) High strength and corrosion resistant aluminum alloy clad material for heat exchanger
JP2813492B2 (en) Aluminum brazing sheet
JP2813489B2 (en) Aluminum brazing sheet
JP2813478B2 (en) Aluminum brazing sheet
JP2813484B2 (en) Aluminum brazing sheet