JP3772017B2 - High strength and high corrosion resistance aluminum alloy clad material for heat exchanger - Google Patents

High strength and high corrosion resistance aluminum alloy clad material for heat exchanger Download PDF

Info

Publication number
JP3772017B2
JP3772017B2 JP09450698A JP9450698A JP3772017B2 JP 3772017 B2 JP3772017 B2 JP 3772017B2 JP 09450698 A JP09450698 A JP 09450698A JP 9450698 A JP9450698 A JP 9450698A JP 3772017 B2 JP3772017 B2 JP 3772017B2
Authority
JP
Japan
Prior art keywords
sacrificial anode
aluminum alloy
clad
brazing
anode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09450698A
Other languages
Japanese (ja)
Other versions
JPH11293372A (en
Inventor
宏和 田中
洋 池田
美房 正路
淳 福田
善彦 神谷
猛敏 外山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Sumitomo Light Metal Industries Ltd
Original Assignee
Denso Corp
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Sumitomo Light Metal Industries Ltd filed Critical Denso Corp
Priority to JP09450698A priority Critical patent/JP3772017B2/en
Publication of JPH11293372A publication Critical patent/JPH11293372A/en
Application granted granted Critical
Publication of JP3772017B2 publication Critical patent/JP3772017B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Prevention Of Electric Corrosion (AREA)
  • Laminated Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱交換器用高強度高耐食アルミニウム合金クラッド材、とくに自動車用熱交換器、例えばラジエータ、ヒータコアなど、フッ化物系フラックスを用いるろう付けや真空ろう付けにより接合される熱交換器の流体通路構成材(チューブ材)、ヘッダープレート材として適し、また、それらの熱交換器と接続する配管材としても好適に使用される熱交換器用高強度高耐食アルミニウム合金クラッド材に関する。
【0002】
【従来の技術】
ラジエータやヒーターコアなど、自動車用熱交換器のチューブ材やヘッダープレート材には、JIS3003合金などのAl−Mn系合金を芯材とし、芯材の一方の面にAl−Si系のろう材をクラッドし、他方の面のAl−Zn系合金やAl−Zn−Mg系合金からなる犠牲陽極材をクラッドしたアルミニウム合金の3層クラッド材が使用されている。
【0003】
Al−Si系のろう材は、チューブとフィンとの接合、チューブとヘッダープレートとのろう付け接合のためにクラッドされるものであり、ろう付けは、不活性ガス雰囲気中でフッ化物系フラックスを用いて行うろう付けや真空ろう付けが適用される。犠牲陽極材はチュ−ブの内面を構成し、熱交換器の使用中に作動流体と接して犠牲陽極効果を発揮し、芯材の孔食発生や隙間腐食を防ぐ。チュ−ブ外面に接合されるフィンは、犠牲陽極効果を発揮して芯材を防食する。
【0004】
自動車用熱交換器の軽量化の観点から、チュ−ブ材の薄肉化のために、芯材にCuを添加したり、芯材、犠牲陽極材にMg、Siを共存させMg2 Si化合物を形成させることにより高強度化を図ることも行われている。この場合には、犠牲陽極材中のZnと芯材中のCuがろう付け加熱時に相互拡散し、これが耐食性に大きく影響するため、耐食性に優れ且つろう付け後の強度向上を目的として、ろう付け加熱時における犠牲陽極材中のZnと芯材中のCuの相互拡散を考慮したクラッド材についての提案がなされている。
【0005】
例えば、犠牲陽極材層厚さとZn含有量を最適に組合わせたもの(特許第2,572,495 号公報)、犠牲陽極材にZnを含有させ、芯材に0.7 %未満のCuを含有させることにより、犠牲陽極材層と芯材層の電位差を30〜120mVとすることにより耐食性の向上を図ったもの(特開平6-023535号公報) がある。また、犠牲陽極材層の厚さを46〜70μmとし、0.7 〜2.5 %のCuを添加して、強度と耐食性を確保したクラッド材(特開平8-134574号公報) が提案されている。
【0006】
一方、自動車用熱交換器間を結ぶ経路には、JIS3003合金など、Al−Mn系合金を芯材とし、芯材の一方の面または両面にJIS7072合金などのAl−Zn系合金を犠牲陽極材としてクラッドした2層または3層のアルミニウム合金クラッド管が使用されている。クラッド管の内面に配置される犠牲陽極材層は、熱交換器の使用中に作動流体と接し、犠牲陽極効果を発揮して芯材の孔食の発生や隙間腐食を防止し、外面の犠牲陽極材層は、過酷な環境で使用された場合に生じる芯材の孔食や隙間腐食を防止する。
【0007】
上記従来の熱交換器用アルミニウム合金クラッド材においては、実際に使用されるろう付け加熱後には、犠牲陽極材のZnと芯材のCuとの相互拡散によって、犠牲陽極材層の表面から芯材にかけて電位勾配を有する傾斜構造材となっている。このように電位勾配を有する傾斜構造材の腐食形態は、横拡がりとなり板厚の幅方向に進行するため、腐食の進行が遅くなり良好な耐食性をそなえたものとなる。
【0008】
しかしながら、耐食性を確保するためには、前記の従来技術に示されるように、芯材のCuの上限を規制したり、また、より多量のCuを含有させるには犠牲陽極材層の厚さを大きくするなど有効な範囲が制限されている。チューブ材がさらに薄肉化された場合には、十分な耐食性が得られない場合がある。
【0009】
発明者らは、犠牲陽極材のZnと芯材のCuとの相互拡散によって得られる傾斜構造材の腐食について、実験、検討を重ねた結果、犠牲陽極材のマトリックス中にマトリックスより貴で且つ粗大なSi系化合物、Fe系化合物が存在した場合、これらの化合物が局部カソードとして作用し、化合物周辺の傾斜機能が阻害されて優先的に腐食するため、横拡がりの腐食形態が得られなくなることを見出した。
【0010】
【発明が解決しようとする課題】
本発明は、上記の知見に基づいて、犠牲陽極材のZnと芯材のCuとの相互拡散によって得られる、犠牲陽極材層の表面から芯材にかけて電位勾配を有する傾斜構造材において、優れた強度および耐食性を付与するために、芯材の組成、犠牲陽極材の組成およびそれらの組合わせ、犠牲陽極材のマトリックス中の化合物の分布と諸性能との関連について、さらに検討を加えた結果としてなされたものであり、その目的は、熱交換器、とくに自動車用熱交換器のチューブ材、ヘッダープレート材、配管材として好適に使用することができる熱交換器用高強度高耐食アルミニウム合金クラッド材を提供することにある。
【0011】
【課題を解決するための手段】
上記の目的を達成するための本発明による熱交換器用高強度高耐食アルミニウム合金クラッド材は、芯材の一方の面に犠牲陽極材をクラッドしたアルミニウム合金クラッド材であって、芯材は、Mn:0.3〜2.0 %、Cu:0.25 〜1.0 %、Si:0.3〜1.1 %、Ti:0.05 〜0.35% を含有し、残部アルミニウムおよび不純物からなるアルミニウム合金で構成され、犠牲陽極材は、Zn:1.5〜8 %、Si:0.01 〜0.8 %、Fe:0.01 〜0.3 %を含有し、残部アルミニウムおよび不純物からなるアルミニウム合金で構成され、犠牲陽極材のマトリックス中のSi系化合物とFe系化合物のうち、粒子径が1μm以上の化合物が、Si系化合物とFe系化合物の合計数で、1mm2 当たり2×104 個以下であることを第1の特徴とする。
【0012】
また、芯材の一方の面に犠牲陽極材をクラッドし、他方の面にAl−Si系のろう材をクラッドしたアルミニウム合金クラッド材であって、芯材は、Mn:0.3〜2.0 %、Cu:0.25 〜1.0 %、Si:0.3〜1.1 %、Ti:0.05 〜0.35%を含有し、残部アルミニウムおよび不純物からなるアルミニウム合金で構成され、犠牲陽極材は、Zn:1.5〜8 %、Si:0.01 〜0.8 %、Fe:0.01 〜0.3 %を含有し、残部アルミニウムおよび不純物からなるアルミニウム合金で構成され、犠牲陽極材のマトリックス中のSi系化合物とFe系化合物のうち、粒子径が1μm以上の化合物が、Si系化合物とFe系化合物の合計数で、1mm2 当たり2×104 個以下の数分布することを第2の特徴とする。
【0013】
さらに、芯材の両面に犠牲陽極材をクラッドしたアルミニウム合金クラッド材であって、芯材は、Mn:0.3〜2.0 %、Cu:0.25 〜1.0 %、Si:0.3〜1.1 %、Ti:0.05 〜0.35%を含有し、残部アルミニウムおよび不純物からなるアルミニウム合金で構成され、犠牲陽極材は、Zn:1.5〜8 %、Si:0.01 〜0.8 %、Fe:0.01 〜0.3 %を含有し、残部アルミニウムおよび不純物からなるアルミニウム合金で構成され、犠牲陽極材のマトリックス中のSi系化合物とFe系化合物のうち、粒子径が1μm以上の化合物が、Si系化合物とFe系化合物の合計数で、1mm2 当たり2×104 個以下であることを第3の特徴とする。
【0014】
本発明の第4〜5の特徴は、犠牲陽極材が、さらにIn:0.05%以下、Sn:0.05%以下のうちの1種または2種を含有すること、および芯材が、さらにMg:0.5%以下を含有することにある。
【0015】
本発明における合金成分の意義およびその限定理由について説明すると、芯材中のMnは、芯材の強度を向上させるとともに、芯材の電位を貴にして、犠牲陽極材との電位差を大きくして耐食性を高めるよう機能する。好ましい含有範囲は0.3 〜2.0 %であり、0.3 %未満ではその効果が小さく、2.0 %を越えて含有すると、鋳造時に粗大な化合物が生成し、圧延加工性が害される結果、健全な板材が得難い。Mnのさらに好ましい含有量は0.8 〜1.5 %の範囲である。
【0016】
Cuは、芯材の強度を向上させるとともに、芯材の電位を貴にし、犠牲陽極材、ろう材との電位差を大きくして、耐食性を高めるよう機能する。さらに、芯材中のCuは、ろう付け加熱時に犠牲陽極材中およびろう材中に拡散して、なだらかな濃度勾配を形成する。その結果、芯材側の電位は貴となり、犠牲陽極材の表面側およびろう材の表面側の電位は卑となって、犠牲陽極材中およびろう材中になだらかな電位勾配が形成され、腐食形態を横拡がりの全面腐食型にする。Cuの好ましい含有量は0.25〜1.0 %の範囲であり、0.25%未満ではその効果が小さく、1.0 %を越えると、芯材の耐食性が低下し、また、融点が低下して、ろう付け時に局部的な溶融が生じ易くなる。Cuのさらに好ましい含有量は0.4 〜0.6 %の範囲である。
【0017】
Siは、芯材の強度を向上させる効果を有する。また、ろう付け中に犠牲陽極材層から拡散してくるMgと共存することにより、ろう付け後、Mg2 Siの微細な化合物が生成して時効硬化が生じ、一層強度を向上させる。Siの好ましい含有範囲は0.3 〜1.1 %であり、0.3 %未満ではその効果が十分でなく、1.1 %を越えると、耐食性を低下させ、また融点が低下して局部溶融が生じ易くなる。Siのさらに好ましい含有量は0.3 〜0.7 %の範囲である。
【0018】
Tiは、材料の板厚方向に濃度の高い領域と低い領域とに分かれ、それらが交互に分布する層状組織を形成する。Ti濃度の低い領域は高い領域に比べて優先的に腐食するため、腐食形態が層状となって、板厚方向への腐食の進行を妨げられ、材料の耐孔食性が向上する。Tiの好ましい含有量は0.05〜0.35%の範囲であり、0.05%未満ではその効果が十分でなく、0.35%を越えると鋳造性がわるくなり、また加工性が劣化して健全な材料の製造が困難となる。
【0019】
Mgは、芯材の強度を向上させる効果を有するが、ろう付け性低下の観点から0.5 %以下(0 %を含まず)に制限するのが好ましい。0.5 %を越えて含有すると、フッ化物系のフラックスを使用する不活性ガス雰囲気ろう付けの場合、Mgがフラックスと反応してろう付け性が阻害されるとともに、Mgのフッ化物が生成して、ろう付け部の外観がわるくなる。また、真空ろう付けの場合には、溶融ろうが芯材を浸食し易くなる。Mgのさらに好ましい含有量は0.15%以下の範囲である。なお、芯材中に、不純物として、0.5 %以下のFe、0.2 %以下のCr、0.3 %以下のZr、0.1 %以下のBが含有しても芯材の特性に影響を与えることはない。
【0020】
犠牲陽極材中のZnは、犠牲陽極材の電位を卑にし、芯材に対する犠牲陽極効果を保持し、芯材の孔食や隙間腐食を防止するよう機能する。Znの好ましい含有範囲は1.5 〜8 %であり、Znの含有量が1.5 %未満ではその効果が十分でなく、8 %を越えると自己耐食性が低下する。Znのさらに好ましい含有量は2.0 〜6.0 %の範囲である。
【0021】
犠牲陽極材中のSiは、犠牲陽極材のマトリックス中にSi系化合物を生成する。このSi系化合物と後述するFe系化合物のうち、粒子径(円相当直径)が1μm以上の化合物が、Si系化合物とFe系化合物の合計数で、1mm2 当たり2×104 個以下の数存在する場合、犠牲陽極材層の表面から芯材にかけての電位勾配を利用した犠牲陽極効果が有効に作用する。Siの好ましい含有量は0.01〜0.8 %の範囲であり、0.8 %以下の範囲で上記の化合物分布が得られ、0.8 %を越えて含有すると犠牲陽極効果が阻害される。Siのさらに好ましい含有量は、0.01〜0.5 %の範囲である。
【0022】
Feは、犠牲陽極材のマトリックス中にFe系化合物を生成する。Fe系化合物と前記Si系化合物のうち、粒子径(円相当直径)が1μm以上の化合物が、Si系化合物とFe系化合物の合計量で、1mm当たり2×10個以下の数存在する場合、犠牲陽極材の表面から芯材にかけての電位勾配を利用した犠牲陽極効果が有効に作用する。Feの好ましい含有量は0.01〜0.3%の範囲であり、0.3%以下の範囲で上記の化合物分布が得られ、0.3%を越えて含有すると犠牲陽極効果が阻害される。Feのさらに好ましい含有量は、0.01〜0.2%の範囲である。
【0023】
Inは犠牲陽極材の電位を卑にし、芯材に対し犠牲陽極効果を確実に付与するために役立つ。Inの好ましい含有量は0.05%以下(0 %を含まず)の範囲であり、0.05%を越えると犠牲陽極材の自己耐食性が低下し、また圧延加工性が劣化する。Inのさらに好ましい含有範囲は0.01〜0.02%である。
【0024】
Snは犠牲陽極材の電位を卑にし、芯材に対し犠牲陽極効果を確実に付与するために役立つ。Snの好ましい含有量は0.05%以下(0 %を含まず)の範囲であり、0.05%を越えると犠牲陽極材の自己耐食性が低下し、また圧延加工性が劣化する。Snのさらに好ましい含有範囲は0.01〜0.02%である。
【0026】
なお、犠牲陽極材中には、0.05%以下のCu、0.2 %以下のCr、0.3 %以下のTi、0.3 %以下のZr、0.1 %以下のBが含有していても本発明のアルミニウム合金クラッド材の性能に影響を与えることはない。
【0027】
【発明の実施の形態】
本発明の熱交換器用アルミニウム合金クラッド材は、芯材、犠牲陽極材およびろう材を構成するアルミニウム合金を、例えば半連続鋳造により造塊し、必要に応じて均質化処理したのち、それぞれ所定厚さまで熱間圧延し、ついで、各材料を組合わせ、常法に従って、熱間圧延によりクラッド材とし、最終的に所定厚さまで冷間圧延した後、最終的に焼鈍を行う工程を経て製造される。犠牲陽極材のマトリックス中における本発明のSi系化合物、Fe系化合物の分散状態は、犠牲陽極材用アルミニウム合金の鋳造条件を調整することにより得られる。好ましい連続鋳造条件としては、鋳造温度730〜800℃、冷却速度10〜50℃/秒が用いられる
【0028】
本発明のアルミニウム合金クラッド材を、ラジエータ、ヒータコアなど、自動車用熱交換器のチューブ材とするには、クラッド板を曲成し、突き合わせ部を溶接またはろう付けすることによりチューブ形状とする。芯材と犠牲陽極材からなる2層クラッド材の場合は、犠牲陽極材が内皮層となって作動流体と接し、外側の芯材層に両面にAl−Si系のろう材をクラッドしてなるアルミニウム合金フィン材をろう付け接合して熱交換器を組立てる。
【0029】
芯材の両面に犠牲陽極材を配設してなる3層クラッド材の場合には、犠牲陽極材層が内皮層および外皮層を形成し、内皮層は作動流体と接して、犠牲陽極効果を発揮して芯材層を防食し、外皮層は外部の腐食環境において犠牲陽極効果を発揮して芯材を保護する。外皮層には両面にAl−Si系のろう材をクラッドしてなるアルミニウム合金フィン材をろう付け接合する。
【0030】
芯材の一方の面にAl−Si系のろう材をクラッドし、他の面に犠牲陽極材をクラッドしてなる3層のクラッド材の場合には、犠牲陽極材層が内皮層を構成して作動流体と接し、ろう材層が外皮層となる。外皮層には両面にAl−Si系のろう材をクラッドしてなるアルミニウム合金フィン材をろう付け接合して熱交換器を組立てる。
【0031】
ろう付け接合には、フッ化物系のフラックスを用いる不活性ガス雰囲気ろう付け、または真空ろう付けが適用される。そのために、本発明のアルミニウム合金クラッド材においては、上記不活性ガス雰囲気ろう付けでは、通常、6 〜13%のSiを含有するAl−Si系合金が使用され、真空ろう付けでは、Al−Si−Mg系ろう材が使用される。真空ろう付け用ろう材としては、基本的にSi:6〜13%、Mg:0.5〜3.0 %を含むAl−Si−Mg合金が適用される。ろう材には、ろう付け性を改善するために、Bi:0.2%以下、Be:0.2%以下のうちの1種または2種を含有させることもできる。
【0032】
【実施例】
実施例1
連続鋳造により、表1に示す組成を有する芯材用アルミニウム合金およびろう材用合金(JIS BA4343、Si:7.5%)を造塊し、芯材用合金については均質化処理を行った。また、表2に示す組成を有する犠牲陽極材用アミニウム合金を造塊した。なお、犠牲陽極材用アルミニウム合金の連続鋳造による造塊条件は、鋳造温度740℃、冷却速度15℃/秒とした。
【0033】
犠牲陽極用アルミニウム合金およびろう材用アルミニウム合金の鋳塊を熱間圧延して所定の厚さとし、これらと芯材用アルミニウム合金の鋳塊とを組合わせて熱間圧延を行い、クラッド材を得た。さらに、冷間圧延、中間焼鈍、最終冷間圧延により、厚さ0.25mmのクラッド板(H14材)を作製した。クラッドの構成は、ろう材層:0.025mm、犠牲陽極材層:0.025〜0.050mmとした。
【0034】
得られたアルミニウム合金クラッド板材について、以下の方法に従って、Si系およびFe系化合物の測定を行い、ろう付け後の強度、耐食性、ろう付け性を評価した。結果を表3〜4に示す。
(1)Si系、Fe系化合物の測定
クラッド板材の犠牲陽極材層のマトリックスについて、200倍の光学顕微鏡写真を5視野(面積合計0.15mm2 )撮影し、画像解析装置により、粒子径(円相当直径)1μm以上のサイズのSi系化合物とFe系化合物の合計粒子数を測定した。
【0035】
(2)ろう付け後の強度
クラッド板材に、フッ化物系フラックスを塗布して窒素ガス中で、ろう付け温度の600℃(材料温度)に加熱した後、冷却して引張試験を行い、引張強さを測定した。
【0036】
(3)耐食性の評価1
クラッド板材に、フッ化物系フラックスを塗布して窒素ガス中で、ろう付け温度の600℃(材料温度)に加熱した後、つぎの方法により犠牲陽極材層側の腐食試験を行い、内面側の耐食性を評価した。
腐食液:Cl- 195ppm、SO4 2-60ppm、Cu2+1ppm、Fe3+30ppm
方 法:88℃の温度で8時間加熱したのち冷却し、25℃で16時間保持するサイクルを3か月間繰り返す。
【0037】
(4)耐食性の評価2
クラッド板材のろう材側にAl−1.6 %Mn−0.3 %Cu−1.0 %Zn合金からなる厚さ0.08mmのコルゲートフィンを載せ、窒素ガス雰囲気中でフッ化物系フラックスを用いて、600℃の温度でろう付けを行い、CASS試験により、ろう材側(外面)の耐食性を評価した。
【0038】
(5)ろう付け性の評価
クラッド板材のろう材側にAl−1.6 %Mn−0.3 %Cu−1.0 %Zn合金からなる厚さ0.08mmのコルゲートフィンを載せ、窒素ガス雰囲気中でフッ化物系フラックスを用いて、600℃の温度でろう付けを行い、ろう付け部の接合性の良否、溶融の有無からろう付け性を評価した。
【0039】
【表1】

Figure 0003772017
【0040】
【表2】
Figure 0003772017
【0041】
【表3】
Figure 0003772017
《表注》1 μm 以上の粒子数: 犠牲陽極材層マトリックス中のSi系、Fe系化合物の個数、最大腐食深さ: 内面側は犠牲陽極材側、外面側はろう材側、ろう付け性: ○ 接合性良好で溶融部無し
【0042】
【表4】
Figure 0003772017
【0043】
表3、表4にみられるように、本発明に従う試験材No.1〜17、No.20〜21、No.24〜31はいずれも、ろう付け後に130MPaを越える優れた引張強さを示し、腐食試験における最大腐食深さは150μm未満であり優れた耐食性をそなえている。ろう付け性についても、局部溶融は認められず良好な接合部が形成された。なお、試験材No.18、19、22および23は参考例として示すものである。
【0044】
比較例1
連続鋳造により、表5に示す組成を有する芯材用アルミニウム合金、表6に示す組成の犠牲陽極材用アルミニウム合金、およびろう材用合金(JIS BA4343)を造塊し、実施例1と同一の条件により、厚さ0.25mmのアルミニウム合金クラッド板材(H14)を作製した。なお、一部の材料については、実施例1と条件を変えて連続鋳造を行った。得られたクラッド板材について、実施例1の方法に従って、ろう付け後の引張強さを測定し、耐食性、ろう付け性の評価を行った。結果を表7、表8に示す。なお、表5〜8において本発明の条件を外れたものには下線を付した。
【0045】
【表5】
Figure 0003772017
【0046】
【表6】
Figure 0003772017
【0047】
【表7】
Figure 0003772017
《表注》ろう付け性: × 接合不十分または局部溶融有り
【0048】
【表8】
Figure 0003772017
《表注》試験材No.48 、49の犠牲陽極材a1の造塊条件は鋳造温度700 ℃、冷却速度0.5 ℃/ 秒
【0049】
表7、表8にみられるように、本発明の条件を外れた試験材は、ろう付け後の強度、耐食性、ろう付け性のいずれかが劣っている。試験材No.33 は芯材のSiが多いため、ろう付け時に局部溶融が生じた。試験材No.35 は芯材のMn量が多いため、加工性が劣り健全な板材の製造ができなかった。試験材No.37 、38は、それぞれ芯材のCuおよびMgが多いため、ろう付け性がわるい。試験材No.40 は芯材のTi含有量が多いため、加工性が劣り健全な板材が製造できなかった。試験材No.46 、47は、それぞれInおよびSnの含有量が多いため加工性が劣り、健全な板材の製造ができなかった。試験材No.48 、49は、犠牲陽極材の造塊において、通常の連続鋳造条件に従ったため、マトリックス中の1μm以上の大きさのSi系、Fe系化合物の1mm2 当たりの個数が多いため、耐食性が劣っている。
【0050】
【発明の効果】
本発明によれば、ろう付け後の強度および耐食性に優れた熱交換器用アルミニウム合金クラッド材が提供される。このクラッド材は、自動車用アルミニウム合金製熱交換器の流体通路を構成するチューブ材、熱交換器を連結する配管材として好適に使用できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat exchanger fluid to be joined by brazing or vacuum brazing using a fluoride flux, such as a high-strength, high-corrosion-resistant aluminum alloy clad material for heat exchangers, particularly automotive heat exchangers such as radiators and heater cores. The present invention relates to a high-strength, high-corrosion-resistant aluminum alloy clad material for a heat exchanger that is suitable as a passage component material (tube material) and a header plate material, and also suitably used as a piping material connected to the heat exchanger.
[0002]
[Prior art]
The tube material and header plate material of automotive heat exchangers such as radiators and heater cores are made of Al-Mn alloy such as JIS3003 alloy as the core material, and Al-Si brazing material on one side of the core material. An aluminum alloy three-layer clad material is used which is clad and clad with a sacrificial anode material made of an Al—Zn alloy or an Al—Zn—Mg alloy on the other surface.
[0003]
The Al-Si brazing material is clad for joining the tube to the fin and brazing the tube to the header plate, and brazing uses a fluoride flux in an inert gas atmosphere. Brazing or vacuum brazing that is used is applied. The sacrificial anode material constitutes the inner surface of the tube, contacts the working fluid during use of the heat exchanger, exhibits the sacrificial anode effect, and prevents pitting corrosion and crevice corrosion of the core material. The fins joined to the outer surface of the tube exert a sacrificial anode effect to prevent the core material.
[0004]
From the viewpoint of weight reduction of the automobile heat exchanger, Ju - for thinning of the probe material, or Cu is added to the core material, the core material, the sacrificial anode material Mg, the Mg 2 Si compound coexist Si It is also attempted to increase the strength by forming it. In this case, Zn in the sacrificial anode material and Cu in the core material are interdiffused during brazing heating, and this greatly affects the corrosion resistance. Therefore, for the purpose of improving the strength after brazing, it is excellent in corrosion resistance. Proposals have been made on cladding materials that take into account the mutual diffusion of Zn in the sacrificial anode material and Cu in the core during heating.
[0005]
For example, an optimum combination of sacrificial anode material layer thickness and Zn content (Japanese Patent No. 2,572,495), sacrificial anode material containing Zn, and core material containing less than 0.7% Cu can be sacrificed. There is one in which the corrosion resistance is improved by setting the potential difference between the anode material layer and the core material layer to 30 to 120 mV (JP-A-6-023535). In addition, a clad material (Japanese Patent Laid-Open No. Hei 8-34574) in which the thickness of the sacrificial anode material layer is set to 46 to 70 μm and 0.7 to 2.5% of Cu is added to ensure strength and corrosion resistance has been proposed.
[0006]
On the other hand, the path connecting the heat exchangers for automobiles has an Al—Mn alloy such as JIS 3003 alloy as a core material, and an Al—Zn alloy such as JIS 7072 alloy on one or both sides of the core material as a sacrificial anode material. As a clad, a two-layer or three-layer aluminum alloy clad tube is used. The sacrificial anode material layer arranged on the inner surface of the clad tube contacts the working fluid during use of the heat exchanger and exerts a sacrificial anode effect to prevent the occurrence of pitting corrosion and crevice corrosion of the core material, and sacrificing the outer surface. The anode material layer prevents pitting corrosion and crevice corrosion of the core material that occurs when used in a harsh environment.
[0007]
In the above conventional aluminum alloy clad material for heat exchanger, after the brazing heating that is actually used, the surface of the sacrificial anode material layer is spread from the surface of the sacrificial anode material layer to the core material by mutual diffusion of Zn of the sacrificial anode material and Cu of the core material. The gradient structure material has a potential gradient. In this way, the corrosion form of the inclined structure material having the potential gradient spreads laterally and proceeds in the width direction of the plate thickness, so that the progress of the corrosion is slowed and good corrosion resistance is provided.
[0008]
However, in order to ensure corrosion resistance, as shown in the prior art, the upper limit of Cu of the core material is regulated, or the thickness of the sacrificial anode material layer is set to contain a larger amount of Cu. The effective range is limited, such as increasing it. When the tube material is further thinned, sufficient corrosion resistance may not be obtained.
[0009]
The inventors have conducted experiments and studies on the corrosion of the gradient structure material obtained by the mutual diffusion of the sacrificial anode material Zn and the core material Cu, and as a result, the sacrificial anode material matrix is noble and coarser than the matrix. In the presence of various Si-based compounds and Fe-based compounds, these compounds act as local cathodes, and the gradient function around the compounds is disturbed to preferentially corrode, so that a laterally spreading form of corrosion cannot be obtained. I found it.
[0010]
[Problems to be solved by the invention]
Based on the above knowledge, the present invention is excellent in the inclined structure material having a potential gradient from the surface of the sacrificial anode material layer to the core material obtained by mutual diffusion of Zn of the sacrificial anode material and Cu of the core material. As a result of further investigation on the relationship between the core composition, the composition of the sacrificial anode material and the combination thereof, the distribution of compounds in the matrix of the sacrificial anode material, and various performances in order to impart strength and corrosion resistance The purpose of this is to produce a high-strength, high-corrosion-resistant aluminum alloy clad material for heat exchangers that can be suitably used as tube materials, header plate materials, and piping materials for heat exchangers, especially automotive heat exchangers. It is to provide.
[0011]
[Means for Solving the Problems]
A high-strength, high-corrosion-resistant aluminum alloy cladding material for a heat exchanger according to the present invention for achieving the above object is an aluminum alloy cladding material in which a sacrificial anode material is clad on one surface of a core material, and the core material is Mn : 0.3 to 2.0%, Cu: 0.25 to 1.0%, Si: 0.3 to 1.1%, Ti: 0.05 to 0.35%, and the balance is made of an aluminum alloy composed of aluminum and impurities. Among the Si-based compounds and Fe-based compounds in the matrix of the sacrificial anode material, which is composed of an aluminum alloy containing -8%, Si: 0.01-0.8%, Fe: 0.01-0.3%, the balance aluminum and impurities, The first feature is that the number of compounds having a particle diameter of 1 μm or more is 2 × 10 4 or less per 1 mm 2 in terms of the total number of Si-based compounds and Fe-based compounds.
[0012]
Also, an aluminum alloy clad material in which a sacrificial anode material is clad on one surface of a core material and an Al—Si brazing material is clad on the other surface, the core material is Mn: 0.3 to 2.0%, Cu Containing: 0.25 to 1.0%, Si: 0.3 to 1.1%, Ti: 0.05 to 0.35%, and composed of an aluminum alloy composed of the balance aluminum and impurities. Sacrificial anode material is Zn: 1.5 to 8%, Si: 0.01 -0.8%, Fe: 0.01-0.3%, composed of an aluminum alloy composed of the balance aluminum and impurities, and a compound having a particle diameter of 1 μm or more among the Si-based compound and Fe-based compound in the matrix of the sacrificial anode material However, the second feature is that the total number of Si-based compounds and Fe-based compounds is 2 × 10 4 or less per 1 mm 2 .
[0013]
Furthermore, an aluminum alloy clad material in which a sacrificial anode material is clad on both sides of the core material, the core material is Mn: 0.3 to 2.0%, Cu: 0.25 to 1.0%, Si: 0.3 to 1.1%, Ti: 0.05 to The sacrificial anode material contains Zn: 1.5-8%, Si: 0.01-0.8%, Fe: 0.01-0.3%, the balance aluminum and the balance aluminum and 0.35%. Of the Si-based compound and Fe-based compound in the matrix of the sacrificial anode material, which is composed of an aluminum alloy composed of impurities, a compound having a particle size of 1 μm or more is the total number of Si-based compound and Fe-based compound per 1 mm 2 . The third feature is that it is 2 × 10 4 or less.
[0014]
The fourth to fifth features of the present invention are that the sacrificial anode material further contains one or two of In: 0.05% or less, Sn: 0.05% or less, and the core material, Furthermore, it is to contain Mg: 0.5% or less.
[0015]
The meaning of the alloy components in the present invention and the reason for the limitation will be described. Mn in the core material improves the strength of the core material, makes the core material noble, and increases the potential difference from the sacrificial anode material. It functions to increase corrosion resistance. The preferable content range is 0.3 to 2.0%, and if the content is less than 0.3%, the effect is small. If the content exceeds 2.0%, a coarse compound is produced at the time of casting, and rolling workability is impaired. As a result, it is difficult to obtain a sound plate material. . A more preferable content of Mn is in the range of 0.8 to 1.5%.
[0016]
Cu functions to improve the corrosion resistance by improving the strength of the core material, increasing the potential of the core material, and increasing the potential difference between the sacrificial anode material and the brazing material. Furthermore, Cu in the core material diffuses into the sacrificial anode material and the brazing material during brazing heating, and forms a gentle concentration gradient. As a result, the potential on the core side becomes noble, the potential on the surface side of the sacrificial anode material and the surface side of the brazing material becomes base, and a gentle potential gradient is formed in the sacrificial anode material and the brazing material. The form is a full-surface corrosion type that spreads horizontally. The preferable content of Cu is in the range of 0.25 to 1.0%. When the content is less than 0.25%, the effect is small. When the content exceeds 1.0%, the corrosion resistance of the core material is lowered, and the melting point is lowered. Melting tends to occur. The more preferable content of Cu is in the range of 0.4 to 0.6%.
[0017]
Si has the effect of improving the strength of the core material. Further, by coexisting with Mg diffusing from the sacrificial anode material layer during brazing, a fine compound of Mg 2 Si is generated after brazing and age hardening occurs, further improving the strength. The preferred Si content range is 0.3 to 1.1%. If it is less than 0.3%, the effect is not sufficient. If it exceeds 1.1%, the corrosion resistance is lowered, the melting point is lowered, and local melting tends to occur. A more preferable content of Si is in the range of 0.3 to 0.7%.
[0018]
Ti is divided into a high concentration region and a low region in the thickness direction of the material, and forms a layered structure in which they are alternately distributed. Since the region where the Ti concentration is low corrodes preferentially compared to the region where the Ti concentration is high, the corrosion form becomes layered, the progress of corrosion in the thickness direction is hindered, and the pitting corrosion resistance of the material is improved. The preferable content of Ti is in the range of 0.05 to 0.35%. If it is less than 0.05%, the effect is not sufficient, and if it exceeds 0.35%, the castability becomes poor, and the workability deteriorates to produce a sound material. It becomes difficult.
[0019]
Mg has the effect of improving the strength of the core material, but is preferably limited to 0.5% or less (not including 0%) from the viewpoint of lowering brazing properties. When the content exceeds 0.5%, in the case of brazing with an inert gas atmosphere using a fluoride-based flux, Mg reacts with the flux to inhibit brazing, and Mg fluoride is generated. The appearance of the brazed part becomes unclear. Further, in the case of vacuum brazing, the molten brazing becomes easy to erode the core material. A more preferable content of Mg is in the range of 0.15% or less. In addition, even if the core material contains Fe of 0.5% or less, Cr of 0.2% or less, Zr of 0.3% or less, and B of 0.1% or less as impurities, the properties of the core material are not affected.
[0020]
Zn in the sacrificial anode material functions to lower the potential of the sacrificial anode material, maintain the sacrificial anode effect on the core material, and prevent pitting corrosion and crevice corrosion of the core material. The preferable content range of Zn is 1.5 to 8%. If the Zn content is less than 1.5%, the effect is not sufficient, and if it exceeds 8%, the self-corrosion resistance decreases. The more preferable content of Zn is in the range of 2.0 to 6.0%.
[0021]
Si in the sacrificial anode material generates a Si-based compound in the matrix of the sacrificial anode material. Among these Si-based compounds and Fe-based compounds described later, compounds having a particle diameter (equivalent circle diameter) of 1 μm or more are the total number of Si-based compounds and Fe-based compounds, and the number is 2 × 10 4 or less per mm 2. When it exists, the sacrificial anode effect using the potential gradient from the surface of the sacrificial anode material layer to the core material works effectively. The preferable content of Si is in the range of 0.01 to 0.8%, and the above compound distribution is obtained in the range of 0.8% or less. When the content exceeds 0.8%, the sacrificial anode effect is inhibited. A more preferable content of Si is in the range of 0.01 to 0.5%.
[0022]
Fe produces an Fe-based compound in the matrix of the sacrificial anode material. Among Fe-based compounds and Si- based compounds, compounds having a particle diameter (equivalent circle diameter) of 1 μm or more are 2 × 10 4 or less per 1 mm 2 in total amount of Si-based compounds and Fe-based compounds. In this case, the sacrificial anode effect using the potential gradient from the surface of the sacrificial anode material to the core material works effectively. The preferable content of Fe is in the range of 0.01 to 0.3%, and the above compound distribution is obtained in the range of 0.3% or less, and if it exceeds 0.3%, the sacrificial anode effect is inhibited. The The more preferable content of Fe is in the range of 0.01 to 0.2%.
[0023]
In serves to make the potential of the sacrificial anode material low and to reliably impart the sacrificial anode effect to the core material. The preferable content of In is in the range of 0.05% or less (not including 0%). If it exceeds 0.05%, the self-corrosion resistance of the sacrificial anode material is lowered, and the rolling processability is deteriorated. A more preferable content range of In is 0.01 to 0.02%.
[0024]
Sn serves to base the potential of the sacrificial anode material and reliably impart the sacrificial anode effect to the core material. The preferable content of Sn is in the range of 0.05% or less (not including 0%). If it exceeds 0.05%, the self-corrosion resistance of the sacrificial anode material is lowered, and the rolling processability is deteriorated. A more preferable content range of Sn is 0.01 to 0.02%.
[0026]
Even if the sacrificial anode material contains 0.05% or less of Cu, 0.2% or less of Cr, 0.3% or less of Ti, 0.3% or less of Zr, and 0.1% or less of B, the aluminum alloy cladding of the present invention It does not affect the performance of the material.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
The aluminum alloy clad material for a heat exchanger of the present invention is formed by ingot forming an aluminum alloy constituting a core material, a sacrificial anode material, and a brazing material, for example, by semi-continuous casting, and after homogenizing treatment as necessary, each has a predetermined thickness. It is manufactured through a process in which each material is combined, followed by hot rolling as a clad material, finally cold-rolled to a predetermined thickness, and finally annealed according to a conventional method. . The dispersion state of the Si-based compound and Fe-based compound of the present invention in the matrix of the sacrificial anode material can be obtained by adjusting the casting conditions of the aluminum alloy for the sacrificial anode material. As preferable continuous casting conditions, a casting temperature of 730 to 800 ° C. and a cooling rate of 10 to 50 ° C./second are used.
In order to use the aluminum alloy clad material of the present invention as a tube material for an automotive heat exchanger such as a radiator or a heater core, the clad plate is bent and the butt portion is welded or brazed to form a tube shape. In the case of a two-layer clad material composed of a core material and a sacrificial anode material, the sacrificial anode material serves as an endothelial layer to contact the working fluid, and an outer core material layer is clad with an Al-Si brazing material on both sides. A heat exchanger is assembled by brazing aluminum alloy fins.
[0029]
In the case of a three-layer clad material in which a sacrificial anode material is disposed on both sides of the core material, the sacrificial anode material layer forms an inner skin layer and an outer skin layer, and the inner skin layer is in contact with the working fluid so that the sacrificial anode effect is obtained. Demonstrates corrosion protection of the core material layer, and the outer skin layer protects the core material by exerting a sacrificial anode effect in an external corrosive environment. An aluminum alloy fin material obtained by cladding an Al—Si brazing material on both sides is brazed to the outer skin layer.
[0030]
In the case of a three-layer clad material in which an Al-Si brazing material is clad on one surface of the core material and a sacrificial anode material is clad on the other surface, the sacrificial anode material layer constitutes an endothelial layer. In contact with the working fluid, the brazing material layer becomes the outer skin layer. A heat exchanger is assembled by brazing and joining an aluminum alloy fin material clad with an Al-Si brazing material on both sides of the outer skin layer.
[0031]
An inert gas atmosphere brazing using a fluoride-based flux or a vacuum brazing is applied to the brazing joint. Therefore, in the aluminum alloy clad material of the present invention, in the inert gas atmosphere brazing, an Al—Si based alloy containing 6 to 13% Si is usually used, and in vacuum brazing, Al—Si alloy is used. -An Mg-based brazing material is used. As the brazing material for vacuum brazing, an Al—Si—Mg alloy containing Si: 6 to 13% and Mg: 0.5 to 3.0% is basically applied. In order to improve brazing properties, the brazing material may contain one or two of Bi: 0.2% or less and Be: 0.2% or less.
[0032]
【Example】
Example 1
By continuous casting, an aluminum alloy for core material and an alloy for brazing material (JIS BA4343, Si: 7.5%) having the composition shown in Table 1 were ingoted, and the alloy for core material was homogenized. Further, an aminium alloy for a sacrificial anode material having the composition shown in Table 2 was ingoted. The ingot forming conditions by continuous casting of the aluminum alloy for the sacrificial anode material were a casting temperature of 740 ° C. and a cooling rate of 15 ° C./second.
[0033]
The ingot of the aluminum alloy for sacrificial anode and the aluminum alloy for brazing material is hot-rolled to a predetermined thickness, and the ingot of the aluminum alloy for core material is combined and hot-rolled to obtain a clad material It was. Further, a clad plate (H14 material) having a thickness of 0.25 mm was produced by cold rolling, intermediate annealing, and final cold rolling. The configuration of the clad was brazing material layer: 0.025 mm and sacrificial anode material layer: 0.025 to 0.050 mm.
[0034]
The obtained aluminum alloy clad plate was measured for Si-based and Fe-based compounds according to the following method to evaluate the strength, corrosion resistance, and brazing properties after brazing. The results are shown in Tables 3-4.
(1) Measurement of Si-based and Fe-based compounds For the matrix of the sacrificial anode material layer of the clad plate material, five optical microscope photographs of 200 times (total area 0.15 mm 2 ) were taken, and the particle size ( (Equivalent circle diameter) The total number of particles of Si-based compound and Fe-based compound having a size of 1 μm or more was measured.
[0035]
(2) Strength after brazing A clad plate material is coated with fluoride flux and heated in nitrogen gas to a brazing temperature of 600 ° C (material temperature), then cooled and subjected to a tensile test. Was measured.
[0036]
(3) Corrosion resistance evaluation 1
After applying a fluoride flux to the clad plate material and heating in nitrogen gas to a brazing temperature of 600 ° C. (material temperature), a corrosion test on the sacrificial anode material layer side is performed by the following method, Corrosion resistance was evaluated.
Corrosion solution: Cl 195 ppm, SO 4 2− 60 ppm, Cu 2+ 1 ppm, Fe 3+ 30 ppm
Method: A cycle of heating at 88 ° C. for 8 hours, cooling and holding at 25 ° C. for 16 hours is repeated for 3 months.
[0037]
(4) Corrosion resistance evaluation 2
A 0.08 mm thick corrugated fin made of an Al-1.6% Mn-0.3% Cu-1.0% Zn alloy is placed on the brazing filler metal side of the clad plate, and a fluoride flux is used in a nitrogen gas atmosphere at 600 ° C. Brazing was performed at temperature, and the corrosion resistance on the brazing material side (outer surface) was evaluated by a CASS test.
[0038]
(5) Evaluation of brazing property A corrugated fin having a thickness of 0.08 mm made of an Al-1.6% Mn-0.3% Cu-1.0% Zn alloy is placed on the brazing material side of the clad plate material, and fluoride system in a nitrogen gas atmosphere. Brazing was performed using a flux at a temperature of 600 ° C., and the brazing property was evaluated based on whether or not the brazing part had good jointability and whether or not it was melted.
[0039]
[Table 1]
Figure 0003772017
[0040]
[Table 2]
Figure 0003772017
[0041]
[Table 3]
Figure 0003772017
<Table Note> Number of particles of 1 μm or more: number of Si-based and Fe-based compounds in sacrificial anode material layer matrix, maximum corrosion depth: inner surface side is sacrificial anode material side, outer surface side is brazing material side, brazing : ○ Good bondability and no melted part 【0042】
[Table 4]
Figure 0003772017
[0043]
As can be seen in Tables 3 and 4, the test material No. 1-17, no. 20-21, no. Nos. 24-31 show excellent tensile strength exceeding 130 MPa after brazing, and the maximum corrosion depth in the corrosion test is less than 150 μm, which provides excellent corrosion resistance. As for brazing, local melting was not observed, and a good joint was formed. The test material No. Reference numerals 18, 19, 22 and 23 are shown as reference examples.
[0044]
Comparative Example 1
By continuous casting, the aluminum alloy for core material having the composition shown in Table 5, the aluminum alloy for sacrificial anode material having the composition shown in Table 6, and the alloy for brazing material (JIS BA4343) were ingoted. Depending on conditions, an aluminum alloy clad plate (H14) having a thickness of 0.25 mm was produced. For some materials, continuous casting was performed under the same conditions as in Example 1. About the obtained clad board material, according to the method of Example 1, the tensile strength after brazing was measured, and corrosion resistance and brazing were evaluated. The results are shown in Tables 7 and 8. In Tables 5 to 8, those outside the conditions of the present invention are underlined.
[0045]
[Table 5]
Figure 0003772017
[0046]
[Table 6]
Figure 0003772017
[0047]
[Table 7]
Figure 0003772017
<< Table Note >> Brazeability: × Insufficient bonding or local melting [0048]
[Table 8]
Figure 0003772017
<< Table Note >> The ingot-making conditions of test materials No. 48 and No. 49, sacrificial anode material a1 are as follows: casting temperature 700 ° C., cooling rate 0.5 ° C./sec.
As can be seen in Tables 7 and 8, the test materials that do not satisfy the conditions of the present invention are inferior in strength after brazing, corrosion resistance, or brazing. Since Test Material No. 33 contained a large amount of Si as the core material, local melting occurred during brazing. Since test material No. 35 had a large amount of Mn in the core material, it was inferior in workability and could not produce a sound plate material. Since the test materials No. 37 and 38 have a large amount of Cu and Mg as the core materials, the brazing properties are poor. Since Test Material No. 40 had a high Ti content in the core material, it was inferior in workability and could not produce a sound plate material. Since the test materials No. 46 and 47 each had a large content of In and Sn, the workability was inferior, and a sound plate material could not be produced. Since test materials No. 48 and 49 were in accordance with normal continuous casting conditions in the ingot of the sacrificial anode material, the number of Si-based and Fe-based compounds having a size of 1 μm or more per 1 mm 2 in the matrix was large. Corrosion resistance is inferior.
[0050]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the aluminum alloy clad material for heat exchangers excellent in the strength and corrosion resistance after brazing is provided. This clad material can be suitably used as a tube material constituting a fluid passage of an aluminum alloy heat exchanger for automobiles and a piping material for connecting the heat exchangers.

Claims (5)

芯材の一方の面に犠牲陽極材をクラッドしたアルミニウム合金クラッド材であって、芯材は、Mn:0.3〜2.0%(重量%、以下同じ)、Cu:0.25〜1.0%、Si:0.3〜1.1%、Ti:0.05〜0.35%を含有し、残部アルミニウムおよび不純物からなるアルミニウム合金で構成され、犠牲陽極材は、Zn:2.0〜6.0%、Si:0.01〜0.8%、Fe:0.01〜0.3%を含有し、残部アルミニウムおよび不純物からなるアルミニウム合金で構成され、犠牲陽極材のマトリックス中のSi系化合物とFe系化合物のうち、粒子径(円相当直径、以下同じ)が1μm以上の化合物が、Si系化合物とFe系化合物の合計量で、1mm当たり2×10個以下であることを特徴とする熱交換器用高強度高耐食アルミニウム合金クラッド材。An aluminum alloy clad material in which a sacrificial anode material is clad on one surface of a core material, and the core material is made of Mn: 0.3 to 2.0% (weight%, the same applies hereinafter), Cu: 0.25 to 1 0.0%, Si: 0.3 to 1.1%, Ti: 0.05 to 0.35%, composed of an aluminum alloy composed of the remaining aluminum and impurities, and the sacrificial anode material is Zn: 2. 0 to 6.0 %, Si: 0.01 to 0.8%, Fe: 0.01 to 0.3%, composed of an aluminum alloy consisting of the balance aluminum and impurities, in the matrix of the sacrificial anode material Among the Si-based compounds and Fe-based compounds, the compound having a particle size (equivalent circle diameter, the same applies hereinafter) of 1 μm or more is the total amount of the Si-based compounds and Fe-based compounds at 2 × 10 4 or less per mm 2 High strength and high for heat exchanger characterized by Food aluminum alloy cladding material. 芯材の一方の面に犠牲陽極材をクラッドし、他方の面にAl−Si系ろう材をクラッドしたアルミニウム合金クラッド材であって、芯材は、Mn:0.3〜2.0%、Cu:0.25〜1.0%、Si:0.3〜1.1%、Ti:0.05〜0.35%を含有し、残部アルミニウムおよび不純物からなるアルミニウム合金で構成され、犠牲陽極材は、Zn:2.0〜6.0%、Si:0.01〜0.8%、Fe:0.01〜0.3%を含有し、残部アルミニウムおよび不純物からなるアルミニウム合金で構成され、犠牲陽極材のマトリックス中のSi系化合物とFe系化合物のうち、粒子径が1μm以上の化合物が、Si系化合物とFe系化合物の合計量で、1mm当たり2×10個以下であることを特徴とする熱交換器用高強度高耐食アルミニウム合金クラッド材。An aluminum alloy clad material in which a sacrificial anode material is clad on one surface of a core material and an Al—Si brazing material is clad on the other surface, the core material is Mn: 0.3 to 2.0%, A sacrificial anode comprising Cu: 0.25-1.0%, Si: 0.3-1.1%, Ti: 0.05-0.35%, composed of an aluminum alloy composed of the balance aluminum and impurities. The material contains Zn: 2.0-6.0 %, Si: 0.01-0.8 %, Fe: 0.01-0.3 %, and is composed of an aluminum alloy composed of the balance aluminum and impurities. Of the Si-based compound and Fe-based compound in the matrix of the sacrificial anode material, the compound having a particle size of 1 μm or more is 2 × 10 4 or less per 1 mm 2 in total amount of the Si-based compound and the Fe-based compound. High strength and high resistance for heat exchangers Aluminum alloy clad material. 芯材の両面に犠牲陽極材をクラッドしたアルミニウム合金クラッド材であって、芯材は、Mn:0.3〜2.0%、Cu:0.25〜1.0%、Si:0.3〜1.1%、Ti:0.05〜0.35%を含有し、残部アルミニウムおよび不純物からなるアルミニウム合金で構成され、犠牲陽極材は、Zn:2.0〜6.0%、Si:0.01〜0.8%、Fe:0.01〜0.3%を含有し、残部アルミニウムおよび不純物からなるアルミニウム合金で構成され、犠牲陽極材のマトリックス中のSi系化合物とFe系化合物のうち、粒子径が1μm以上の化合物が、Si系化合物とFe系化合物の合計量で、1mm当たり2×10個以下であることを特徴とする熱交換器用高強度高耐食アルミニウム合金クラッド材。An aluminum alloy clad material in which a sacrificial anode material is clad on both sides of a core material, and the core material is Mn: 0.3 to 2.0%, Cu: 0.25 to 1.0%, Si: 0.3 -1.1%, Ti: 0.05-0.35%, composed of an aluminum alloy composed of the balance aluminum and impurities, the sacrificial anode material is Zn: 2.0-6.0 %, Si: Containing 0.01 to 0.8% Fe: 0.01 to 0.3%, and composed of an aluminum alloy composed of the balance aluminum and impurities, of the Si-based compound and Fe-based compound in the matrix of the sacrificial anode material Among them, a compound having a particle size of 1 μm or more is a total amount of Si-based compound and Fe-based compound, and is 2 × 10 4 or less per 1 mm 2. High strength and high corrosion resistance aluminum alloy clad material for heat exchanger . 犠牲陽極材が、さらにIn:0.05%以下(0%を含まず、以下同じ)、Sn:0.05%以下のうちの1種または2種を含有することを特徴とする請求項1〜3のいずれかに記載の熱交換器用高強度高耐食アルミニウム合金クラッド材。The sacrificial anode material further contains one or two of In: 0.05% or less (excluding 0%, the same shall apply hereinafter) and Sn: 0.05% or less. A high-strength, high-corrosion-resistant aluminum alloy clad material for a heat exchanger according to any one of? 芯材が、さらにMg:0.5%以下を含有することを特徴とする請求項1〜のいずれかに記載の熱交換器用高強度高耐食アルミニウム合金クラッド材。The core material further contains Mg: 0.5% or less. The high-strength, high-corrosion-resistant aluminum alloy clad material for a heat exchanger according to any one of claims 1 to 4 .
JP09450698A 1998-04-07 1998-04-07 High strength and high corrosion resistance aluminum alloy clad material for heat exchanger Expired - Lifetime JP3772017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09450698A JP3772017B2 (en) 1998-04-07 1998-04-07 High strength and high corrosion resistance aluminum alloy clad material for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09450698A JP3772017B2 (en) 1998-04-07 1998-04-07 High strength and high corrosion resistance aluminum alloy clad material for heat exchanger

Publications (2)

Publication Number Publication Date
JPH11293372A JPH11293372A (en) 1999-10-26
JP3772017B2 true JP3772017B2 (en) 2006-05-10

Family

ID=14112213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09450698A Expired - Lifetime JP3772017B2 (en) 1998-04-07 1998-04-07 High strength and high corrosion resistance aluminum alloy clad material for heat exchanger

Country Status (1)

Country Link
JP (1) JP3772017B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005016937A (en) * 2003-06-06 2005-01-20 Denso Corp Aluminum heat exchanger with excellent corrosion resistance
CN101287573B (en) * 2005-10-13 2013-04-03 阿勒里斯铝业科布伦茨有限公司 Multi-layered brazing sheet
JP4111456B1 (en) * 2006-12-27 2008-07-02 株式会社神戸製鋼所 Aluminum alloy brazing sheet for heat exchanger
US8142907B2 (en) 2007-07-19 2012-03-27 Furukawa-Sky Aluminum Corp Aluminum alloy brazing sheet having high-strength and production method therefor
JP5188116B2 (en) * 2007-07-19 2013-04-24 古河スカイ株式会社 High strength aluminum alloy brazing sheet and method for producing the same
JP5388084B2 (en) * 2007-07-27 2014-01-15 三菱アルミニウム株式会社 Aluminum alloy clad material for heat exchangers with excellent strength and pitting corrosion resistance
JP2009250562A (en) * 2008-04-09 2009-10-29 Panasonic Corp Heat exchanger
JP5598834B2 (en) * 2008-10-31 2014-10-01 株式会社神戸製鋼所 Aluminum alloy brazing sheet for heat exchanger
JP4547032B1 (en) * 2009-04-17 2010-09-22 三菱アルミニウム株式会社 Fluxless brazing method of aluminum material and aluminum clad material for fluxless brazing
JP5737798B2 (en) * 2010-07-08 2015-06-17 三菱アルミニウム株式会社 Aluminum alloy brazing sheet excellent in strength and formability and method for producing the same
JP5689717B2 (en) * 2011-03-14 2015-03-25 株式会社Uacj Aluminum corrugated tube for automobile cooling water piping and manufacturing method thereof
JP6236207B2 (en) * 2013-03-11 2017-11-22 株式会社Uacj Aluminum alloy plate for forming process, method for producing the same, and aluminum alloy brazing sheet
US9545777B2 (en) 2013-03-13 2017-01-17 Novelis Inc. Corrosion-resistant brazing sheet package
MX2015010782A (en) 2013-03-13 2016-05-12 Novelis Inc Brazing sheet core alloy for heat exchanger.
JP6526404B2 (en) * 2014-11-10 2019-06-05 三菱アルミニウム株式会社 Aluminum alloy brazing sheet
JP7053140B2 (en) * 2016-11-08 2022-04-12 三菱アルミニウム株式会社 Aluminum alloy clad material for heat exchanger and its manufacturing method and manufacturing method of aluminum alloy tube for heat exchanger
CN114592193A (en) * 2020-12-04 2022-06-07 中国石油化工股份有限公司 Sacrificial anode and cathode protector for oil pipe and preparation method thereof

Also Published As

Publication number Publication date
JPH11293372A (en) 1999-10-26

Similar Documents

Publication Publication Date Title
EP1090745B1 (en) Aluminum alloy clad material for heat exchangers exhibiting high strength and excellent corrosion resistance
JP3772017B2 (en) High strength and high corrosion resistance aluminum alloy clad material for heat exchanger
JP4993440B2 (en) High strength aluminum alloy clad material for heat exchangers with excellent brazeability
JP3910506B2 (en) Aluminum alloy clad material and manufacturing method thereof
JP3434102B2 (en) Aluminum alloy heat exchanger with excellent fatigue strength and corrosion resistance
JP2007131872A (en) Aluminum alloy clad material for heat exchanger
JP4030006B2 (en) Aluminum alloy clad material and manufacturing method thereof
JP4993439B2 (en) High strength aluminum alloy clad material for heat exchangers with excellent brazeability
JP3326106B2 (en) Aluminum alloy clad material for heat exchanger with excellent strength and corrosion resistance
JP3360026B2 (en) Brazing method of aluminum alloy brazing sheet for heat exchanger
JPH11315335A (en) Aluminum alloy brazing sheet for formation of brazed tube, and brazed tube
JPH1180870A (en) Aluminum alloy clad material for heat exchanger excellent in strength and corrosion resistance
JP4263160B2 (en) Aluminum alloy clad material and heat exchanger tube and heat exchanger using the same
JP2004225061A (en) Aluminum alloy clad tube material having excellent corrosion resistance, and heat exchanger with built-in clad tube material
JPH0436434A (en) High strength and high corrosion resistant al alloy clad material for al heat exchanger
JP3243188B2 (en) Aluminum alloy clad material for heat exchangers with excellent alkali corrosion resistance
JP3243189B2 (en) Aluminum alloy clad material for heat exchangers with excellent alkali corrosion resistance
JP2000026931A (en) Aluminum alloy brazing sheet for formation of brazed tube, and brazed tube
JP3234619B2 (en) High strength and high corrosion resistance aluminum alloy clad material for heat exchanger
JP2933382B2 (en) High strength and high corrosion resistance aluminum alloy clad material for heat exchanger
JP2004225062A (en) Aluminum alloy clad tube material having excellent corrosion resistance, and heat exchanger with the clad tube material assembled
JP3538507B2 (en) Aluminum alloy clad material for heat exchanger with excellent alkali corrosion resistance
JP3529074B2 (en) Aluminum alloy clad material for heat exchanger with excellent alkali corrosion resistance
JP3375189B2 (en) Composite brazing sheet for heat exchanger made of aluminum alloy
JPH05230577A (en) High strength and high corrosion resistance aluminum alloy clad material for heat exchanger

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term