JP4190295B2 - Aluminum alloy clad tube material excellent in corrosion resistance and heat exchanger assembled with the clad tube material - Google Patents

Aluminum alloy clad tube material excellent in corrosion resistance and heat exchanger assembled with the clad tube material Download PDF

Info

Publication number
JP4190295B2
JP4190295B2 JP2003010556A JP2003010556A JP4190295B2 JP 4190295 B2 JP4190295 B2 JP 4190295B2 JP 2003010556 A JP2003010556 A JP 2003010556A JP 2003010556 A JP2003010556 A JP 2003010556A JP 4190295 B2 JP4190295 B2 JP 4190295B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
less
clad
sacrificial anode
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003010556A
Other languages
Japanese (ja)
Other versions
JP2004225061A (en
Inventor
義治 長谷川
治彦 宮地
定行 神谷
敏彦 福田
美房 正路
泰永 伊藤
尚希 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Sumitomo Light Metal Industries Ltd
Original Assignee
Denso Corp
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Sumitomo Light Metal Industries Ltd filed Critical Denso Corp
Priority to JP2003010556A priority Critical patent/JP4190295B2/en
Publication of JP2004225061A publication Critical patent/JP2004225061A/en
Application granted granted Critical
Publication of JP4190295B2 publication Critical patent/JP4190295B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、耐食性に優れたアルミニウム合金クラッドチューブ材、とくに自動車用エバポレータ、コンデンサのように、外面の耐食性が問題となる熱交換器部材として好適に使用される耐食性に優れたアルミニウム合金クラッドチューブ材および該クラッドチューブ材を組付けた熱交換器に関する。
【0002】
【従来の技術】
従来、自動車用のラジエータ、ヒータコアのように、冷却水が内面側を循環している熱交換器のチューブ材として、Al−Mn系合金などを芯材とし、芯材にAl−Zn系合金などの犠牲陽極材をクラッドし、芯材を外面側、犠牲陽極材を内面側となるよう成形したアルミニウム合金クラッド材、あるいはこのクラッド材の外面の芯材にさらにAl−Si系合金ろう材をクラッドしたアルミニウム合金クラッド材が使用されている(特許文献1参照)。
【0003】
上記従来のアルミニウム合金クラッド材において、チューブ内面側の犠牲陽極材は冷却水に起因する腐食を防止するためのものであり、外面側のAl−Si系合金ろう材は、チューブ外面にアウターフィンをろう付け接合するためのものである。アウターフィンは犠牲陽極効果を発揮して芯材を防食する。
【0004】
また、アルミニウム合金芯材の両面にAl−Si系合金ろう材を有し、芯材とろう材との間に犠牲陽極材をクラッドしてなる4層クラッド材も提案されている(特許文献2参照)。この4層クラッド材は、例えばドロンカップ型エバポレータの部材として使用される。
【0005】
ドロンカップ型エバポレータは、プレス成形した4層クラッド材よりなるコアプレートとコルゲート成形したフィンとを積層し、コアプレートのろう材を介してコアプレートとフィンとを接合し、コアプレートの間に冷媒通路を形成してなるものである。
【0006】
エバポレータの使用環境は、凝縮水など伝導度の低い水溶液に曝されるため、フィンによる防食効果が発揮され難く、従ってクラッド材自身の耐食性が重要となり、高寿命価を図るために芯材とろう材との間に犠牲陽極材を介在させている。
【0007】
しかしながら、ろう材が存在することにより犠牲陽極材の消耗速度が早まり、腐食が促進されるという問題がある。この問題を解消するために、最近、両面にAl−Si系合金ろう材を有するクラッド材を用いることなく、チューブ材の内外面にブレージングフィンを装着してろう付け接合する構造の新規なエバポレータが提案されている。
【0008】
【特許文献1】
特開平11−293372号公報(請求項1、請求項2)
【特許文献2】
特開2002−12935号公報(請求項6、図2)
【0009】
【発明が解決しようとする課題】
本発明の目的は、両面にAl−Si系合金ろう材を有するクラッド材を用いることのない上記の新規な構造のエバポレータや、コンデンサなど、内面にフィンがろう付け接合されて冷媒通路となり、外面側にもフィンがろう付けされ、大気からの結露水や融雪剤などに曝される場合に好適に使用できる熱交換器用部材として、強度、ろう付け性および耐食性に優れたアルミニウム合金クラッドチューブ材および当該クラッドチューブ材を組付けた熱交換器を提供するものである。
【0010】
【課題を解決するための手段】
上記の目的を達成するための本発明の請求項1による耐食性に優れたアルミニウム合金クラッドチューブ材は、芯材用アルミニウム合金に犠牲陽極材用アルミニウム合金をクラッドしてなり、内面側が芯材、外面側が犠牲陽極材となるよう成形され、Al−Si系合金ろう材をクラッドすることなく、外面側は大気と接し、内面側は冷媒通路となる厚さ300μm以下の2層のクラッドチューブ材であることを特徴とする。
【0011】
請求項1による耐食性に優れたアルミニウム合金クラッドチューブ材はまた、前記犠牲陽極材用アルミニウム合金が、Zn2〜6%、Sn0.01〜0.1%のうちの1種以上を含有し、残部Alおよび不純物からなり、Fe含有量を0.5%以下、Mg含有量を0.5%以下、Si含有量を0.2%未満に制限し、芯材用アルミニウム合金が、Si0.2〜1%、Cu0.1〜0.8%、Mn0.6〜2%、Ti0.1〜0.3%を含有し、残部Alおよび不純物からなり、Mg含有量を0.5%以下に制限したことを特徴とする。
【0012】
請求項2によるアルミニウム合金クラッドチューブ材は、請求項1において、犠牲陽極材用アルミニウム合金が、Zn2〜6%、In:0.01〜0.1%、Sn0.01〜0.1%のうちの1種以上を含有し、さらにMn0.1〜0.8%を含有し、残部Alおよび不純物からなり、Fe含有量を0.5%以下、Mg含有量を0.5%以下、Si含有量を0.2%未満に制限したことを特徴とする。
【0014】
請求項3によるアルミニウム合金クラッドチューブ材は、芯材用アルミニウム合金に犠牲陽極材用アルミニウム合金をクラッドしてなり、内面側が芯材、外面側が犠牲陽極材となるよう成形され、Al−Si系合金ろう材をクラッドすることなく、外面側は大気と接し、内面側は冷媒通路となる厚さ300μm以下の2層のクラッドチューブ材であって、犠牲陽極材用アルミニウム合金が、Zn3〜6%、In0.02〜0.06%、Sn0.03〜0.08%のうちの1種以上を含有し、さらにMn0.1〜0.8%を含有し、残部Alおよび不純物からなり、Fe含有量を0.5%以下、Mg含有量を0.5%以下、Si含有量を0.2%未満に制限し、芯材用アルミニウム合金が、Si0.2〜1%、Cu0.1〜0.8%、Mn0.6〜2%、Ti0.1〜0.3%を含有し、残部Alおよび不純物からなり、Mg含有量を0.5%以下に制限したことを特徴とする。
【0016】
請求項によるアルミニウム合金クラッドチューブ材は、請求項1〜3のいずれかにおいて、犠牲陽極材用アルミニウム合金が、さらにCr0.05〜0.25%、Zr0.05〜0.25%の1種または2種を含有することを特徴とする。
【0018】
請求項によるアルミニウム合金クラッドチューブ材は、請求項1〜のいずれかにおいて、犠牲陽極材が厚さ15μm以上、クラッド率40%以下でクラッドされていることを特徴とする。
【0019】
請求項によるアルミニウム合金クラッドチューブ材は、請求項1〜のいずれかにおいて、芯材が厚さ30μm以上でクラッドされていることを特徴とする。
【0020】
請求項によるアルミニウム合金クラッドチューブ材は、請求項1〜のいずれかにおいて、アルミニウム合金クラッドチューブ材がH調質材であることを特徴とする。
【0021】
また、本発明による熱交換器は、請求項1〜のいずれかに記載のクラッドチューブ材の内部にブレージングシートからなるインナーフィンを装着、ろう付け加熱時にろう材を生成させるペーストを塗布したベアフィンをインナーフィンとして装着、またはクラッドチューブ材の内面に前記ペーストを塗布しベアフィンをインナーフィンとして装着、ろう付け接合してなり、ろう付け後、芯材と犠牲陽極材の界面から犠牲陽極材側に15μmの部位におけるCu濃度が、ろう付け加熱前の段階での芯材の平均Cu濃度の1/2以下であることを特徴とする。
【0022】
【発明の実施の形態】
本発明のアルミニウム合金クラッドチューブ材の構成の意義およびその限定理由について説明する。
(犠牲陽極材の組成)
Znは、クラッドチューブ材に犠牲陽極効果を与えるよう機能する。Znの好ましい含有量は2〜6%の範囲であり、2%未満ではその効果が十分でなく、6%を越えると自己腐食による消耗が激しくなる。Znのさらに好ましい含有範囲は2〜5%である。
【0023】
Inは、クラッドチューブ材に犠牲陽極効果を与えるよう機能する。Inの好ましい含有量は0.01〜0.1%の範囲であり、0.01%未満ではその効果が十分でなく、0.1%を越えると自己腐食による消耗が激しくなる。Inのさらに好ましい含有範囲は0.02〜0.06%である。
【0024】
Snは、クラッドチューブ材に犠牲陽極効果を与えるよう機能する。Snの好ましい含有量は0.01〜0.1%の範囲であり、0.01%未満ではその効果が十分でなく、0.1%を越えると自己腐食による消耗が激しくなる。Snのさらに好ましい含有範囲は0.03〜0.08%である。
【0025】
Feは、0.5%以下に制限するのが好ましく、0.5%を越えると自己腐食速度が大きくなる。0.1%以下に制限するのがさらに好ましいが、例えば0.01%未満まで低減するには高純度地金を使用しなければならずコスト高となるから、コスト的には0.01%以上とすることが望ましい。
【0026】
Mgは、フッ化物系フラックスを使用するろう付けにおいて、フッ化物と反応してろう付け性を害するので、0.5%以下に制限することが好ましい。
【0027】
Mnは、強度を高めるよう機能する。Mnの好ましい含有量は0.1〜0.8%の範囲であり、0.1%未満ではその効果が小さく、幅方向のクラッド率が不均一となる。0.8%を越えると自己腐食が激しくなる。Mnを0.1〜0.8%の範囲で含有する場合は、Si量を0.2%未満に限定することが好ましく、0.2%以上含有すると、Mnと化合物を形成し自己腐食量が多くなる。さらに好ましくはSiを0.1%以下に限定するが、Si量を例えば0.01%未満にまで低減するには高純度地金を使用しなければならずコスト高となるから、コスト的には0.01%以上とすることが望ましい。
【0028】
また、Mnを0.1〜0.8%含有させた場合におけるZn、InおよびSnは、それらのうちの1種以上をそれぞれ3〜6%、0.02〜0.06%および0.03〜0.08%の範囲で含有させるのが好ましい。
【0029】
Siは、強度を高めるよう機能する。Siの好ましい含有量は0.2〜1.0%の範囲であり、0.2%未満では幅方向のクラッド率が不均一となる。1.0%を越えると自己腐食が激しくなる。Siを0.2〜1.0%の範囲で含有する場合は、Mn量を0.1%未満に限定することが好ましく、0.1%以上含有すると、Siと化合物を形成し自己腐食量が多くなる。好ましくは0.05%以下に限定する。
【0030】
また、Siを0.2〜1.0%含有させた場合におけるZn、InおよびSnは、それらのうちの1種以上をそれぞれ3〜6%、0.02〜0.06%および0.03〜0.08%の範囲で含有させるのが好ましい。
【0031】
Crは、ろう付け加熱時に結晶粒を粗大化してろう付け性を改善する。Crの好ましい含有量は0.05〜0.25%の範囲であり、0.05%未満ではその効果が小さく、0.25%を越えると巨大晶出物が生成し、巨大晶出物周辺部でのクラッド率を不安定にする。
【0032】
Zrは、ろう付け加熱時に結晶粒を粗大化してろう付け性を改善する。Zrの好ましい含有量は0.05〜0.25%の範囲であり、0.05%未満ではその効果が小さく、0.25%を越えると巨大晶出物が生成し、巨大晶出物周辺部でのクラッド率を不安定にする。
【0033】
(芯材の組成)
Siは、強度を向上させるよう機能する。Siの好ましい含有量は0.2〜1%の範囲であり、0.2%未満ではその効果が十分でなく、1%を越えて含有すると融点が低下し、ろう付け接合部に溶融が生じ易くなる。Siのさらに好ましい含有範囲は0.5〜0.9%である。
【0034】
Cuは、芯材の電位を貴にするよう作用する。Cuの好ましい含有量は0.1〜0.8%の範囲であり、0.1%未満ではその効果が十分でなく、0.8%を越えると融点が低下し、ろう付け接合部に溶融が生じ易くなる。Cuのさらに好ましい含有範囲は0.2%を越え0.8%以下である。
【0035】
Mnは、強度を高めるよう機能する。Mnの好ましい含有量は0.6〜2%の範囲であり、0.6%未満ではその効果が小さく、2%を越えると強度が大きくなり圧延が困難となる。Mnのさらに好ましい含有範囲は1.5%を越え2%以下である。
【0036】
Mgは0.5%以下に制限することが必要であり、0.5%を越えて含有すると、フッ化物系フラックスを使用するろう付けにおいて、Mgがフラックスと反応し、ろう付け性を害する。
【0037】
Tiは、層状に分布して腐食形態を層状の全面腐食型とし、耐食性を向上させる。Tiの好ましい含有量は0.1〜0.3%の範囲であり、0.1%未満ではその効果が小さく、0.3%を越えると巨大化合物が生成し、巨大化合物周辺部におけるクラッド率を不均一にする。
【0038】
(クラッドチューブ材の厚さ)
本発明のアルミニウム合金管材は、芯材用アルミニウム合金に犠牲陽極材用アルミニウム合金をクラッドしてなる厚さ300μm以下のクラッドチューブ材であり、熱交換器の軽量化を達成し得る薄肉化されたクラッドチューブ材を得るものである。好ましい厚さは45〜300μmであり、45μm未満では十分な耐食性が得難くなる。
【0039】
(犠牲陽極材の厚さ)
本発明のクラッドチューブ材における犠牲陽極材のクラッド厚は15μm以上で、クラッド率は40%以下が好ましい。クラッド厚が15μm未満では犠牲陽極効果が小さく十分な耐食性が得難く、クラッド率が40%を越えるとクラッドが困難となる。
【0040】
(芯材の厚さ)
本発明のクラッドチューブ材における芯材の厚さは30μm以上とすることが好ましい。30μm未満では、芯材と犠牲陽極材との電位差を確保することが困難となって犠牲陽極効果は発揮できず貫通腐食が生じ易くなる。
【0041】
(調質)
本発明のクラッドチューブ材はH調質材、とくに冷間加工材、クラッドチューブ材に成形する前のクラッド材はH14材などの冷間圧延材であることが望ましい。例えば、O材では、ろう付け時に、ろうが芯材中に浸透してろう付け性を低下させ、また、ろう付け時に犠牲陽極材にエロージョンが生じ易くなる。
【0042】
本発明による熱交換器は、クラッドチューブ材の内部にブレージングからなるインナーフィンを装着、ろう付け加熱時にろう材を生成させるペーストを塗布したベアフィンをインナーフィンとして装着、またはクラッドチューブ材の内面に前記ペーストを塗布しベアフィンをインナーフィンとして装着、ろう付け接合してなるもので、ろう付け後、芯材と犠牲陽極材の界面から犠牲陽極材側に15μmの部位におけるCu濃度が、ろう付け加熱前の段階での芯材の平均Cu濃度の1/2以下とすることにより、犠牲陽極材と芯材との電位差が十分に確保され、犠牲陽極効果が顕著に発揮される。
【0043】
本発明のアルミニウム合金クラッドチューブ材は、芯材と犠牲陽極材を構成するアルミニウム合金を、例えば半連続鋳造により造塊し、必要に応じて均質化理した後、それぞれ所定の厚さまで熱間圧延し、ついで、各材料を組合わせ、常法に従って熱間圧延し、必要に応じて中間焼鈍を行いながら、所定厚さまで冷間圧延することによってクラッド材とし、これを曲成することにより製造される。
【0044】
本発明のアルミニウム合金クラッドチューブ材を、自動車用エバポレータ、コンデンサなどに適用する場合には、例えば、クラッド材を曲成してチューブ形状としたクラッドチューブ材の内部にブレージングシートからなるインナーフィンが装着、ろう付け加熱時にろう材を生成させるペーストを塗布したベアフィンをインナーフィンとして装着、またはクラッドチューブ材の内面に前記ペーストを塗布しベアフィンをインナーフィンとして装着、ろう付け接合し、外面側にもアウターフィンがろう付けされる。内部は冷媒通路となり、外面は大気からの結露水や融雪剤などに曝されるが、犠牲陽極材の存在により芯材を保護する。
【0045】
【実施例】
以下、本発明の実施例を比較例と対比して説明する。なお、これらの実施例は、本発明の一実施態様を示すものであり、本発明はこれらに限定されるものではない。
【0046】
実施例1
表1に示す組成を有する犠牲陽極材用アルミニウム合金および表2に示す組成を有する芯材用アルミニウム合金を半連続鋳造により造塊し、犠牲陽極用アルミニウム合金の鋳塊については200〜600℃で1〜20時間、芯材用アルミニウム合金の鋳塊については400〜600℃で5〜20時間均質化処理した後、面削した。ついで、表3に示す組み合わせで、犠牲陽極材/芯材となるように重ね合わせ、300〜550℃で熱間圧延を行い、さらに、必要に応じて200〜500℃での中間焼鈍を介して冷間圧延を行いクラッド材(クラッドチューブ材)とした。得られたクラッド材における犠牲陽極材の厚さとクラッド率、芯材の厚さとクラッド率およびクラッド材全体厚さを表3に示す。
【0047】
上記クラッド材を試験材として、下記の方法で耐食性、ろう付け性、クラッド性および強度を評価した。結果を表4に示す。
耐食性:犠牲陽極材側に、Cl- 500ppm、SO4 2- 2000ppmを含む50℃の腐食液(pH3)を6時間噴霧し、50℃の温度で6時間乾燥するサイクルを行い、貫通腐食が生じるまでに2000時間以上を要するものは合格(○)、2000時間未満で貫通腐食が生じるものは不合格(×)とする。また、下記のろう付け性評価時に、芯材と犠牲陽極材の界面近傍のCu濃度(ろう付け加熱時、界面から犠牲陽極材側へ芯材中のCuが拡散する)を測定した。
【0048】
ろう付け性:Al−Mn系合金芯材、Al−10%Si合金ろう材からなるブレージングシートをコルゲート加工してフィン材とし、これを試験材の犠牲陽極材面にアウターフィンとして組合わせ、また試験材の芯材面にインナーフィンとして組合わせ、フッ化物系フラックスを塗布して600℃の温度でろう付け接合し、接合率が98%以上のものを合格(○)、98%未満のものを不合格(×)とする。
【0049】
クラッド性:冷間圧延コイルとして得られるクラッド材の幅方向において、クラッド率が設定値の±5%を外れる部分がコイル両端から8cmを越え15mm以下の場合は○、8cm以下の場合は◎とする。
強度:クラッド材と同じ工程で作製した芯材から引張試験片を採取して引張試験を行い、引張強さが120MPa以上のものを合格(○)、120MPa未満のものを不合格(×)とする。実際の使用環境においては、犠牲陽極材は腐食により消耗して、芯材のみが残存し芯材のみで熱交換器の強度を維持する場合が多い。
【0050】
【表1】

Figure 0004190295
【0051】
【表2】
Figure 0004190295
【0052】
【表3】
Figure 0004190295
【0053】
【表4】
Figure 0004190295
【0054】
表4にみられるように、本発明に従う試験材No.1〜13はいずれも、耐食性、ろう付け性クラッド性に優れ、130MPa以上の優れた強度を有している。また、圧延加工性も良好であった。なお、試験材No.14〜20は参考として示すものである。
【0055】
比較例1
表5に示す組成を有する犠牲陽極材用アルミニウム合金および表6に示す組成を有する芯材用アルミニウム合金を半連続鋳造により造塊し、犠牲陽極用アルミニウム合金の鋳塊については200〜600℃で1〜20時間、芯材用アルミニウム合金の鋳塊については400〜600℃で5〜20時間均質化処理した後、面削した。ついで、表3に示す組み合わせで、犠牲陽極材/芯材となるように重ね合わせ、300〜550℃で熱間圧延を行い、さらに、必要に応じて200〜500℃での中間焼鈍を介して冷間圧延を行いクラッド材(クラッドチューブ材)とした。得られたクラッド材における犠牲陽極材の厚さとクラッド率、芯材の厚さとクラッド率およびクラッド材全体厚さを表7〜8に示す。なお、表5〜8において、本発明の条件を外れたものには下線を付した。
【0056】
上記クラッド材を試験材として、実施例1と同じ方法で耐食性、ろう付け性、クラッド性および強度を評価した。結果を表9〜10に示す。なお、試験材No.25以外はH14材に調質され、試験材No.25はO材(焼鈍材)に調質された。
【0057】
【表5】
Figure 0004190295
【0058】
【表6】
Figure 0004190295
【0059】
【表7】
Figure 0004190295
【0060】
【表8】
Figure 0004190295
【0061】
【表9】
Figure 0004190295
《表注》クラッド性 *:巨大晶出物生成
【0062】
【表10】
Figure 0004190295
《表注》クラッド性 *:巨大晶出物生成
【0063】
表9〜10に示すように、試験材No.21は犠牲陽極材のSiが多く単体Siが晶出するため、犠牲陽極材の消耗速度が早くなり耐食性が劣る。また、犠牲陽極材とアウターフィンのろう付け接合部において犠牲陽極材に溶融が生じ、ろう付け性が害される。試験材No.22は、犠牲陽極材のMnとSiの含有量の組合わせが適切でないため、Al−Mn−Si系の化合物が生成して犠牲陽極材の消耗速度が大きくなり、耐食性が劣る。試験材No.23は犠牲陽極材のFe量が多いため、Al−Fe系化合物が生成して犠牲陽極材の消耗速度が大きくなり、耐食性が劣る。また、犠牲陽極材の結晶粒径が微細となるため、ろう付け時にろうが犠牲陽極材の結晶粒界に浸透し、ろう付け性を害する。
【0064】
試験材No.24は犠牲陽極材のMn量が多いため、Al−Mn系化合物が生成して犠牲陽極材の消耗速度が大きくなり、耐食性が劣る。また、Cr、Zrの添加が少ないため、その効果も認められない。試験材No.25は、犠牲陽極材のMnとSiの含有量の組合わせが適切でないため、Al−Mn−Si系の化合物が生成して犠牲陽極材の消耗速度が大きくなり、耐食性が劣る。また、O材に調質されているため、ろう付け時、芯材中にろうが浸透してろう付け不良が生じた。試験材No.26は犠牲陽極材のMg量が多いため、Mgがフッ化物系フラックスと反応して、ろう付け性が害される。
【0065】
試験材No.27は犠牲陽極材のCr量が多いため、Al−Cr系の巨大晶出物が生成し、この晶出物周辺部においてクラッド率が不均一となった。試験材No.28は犠牲陽極材のZr量が多いため、Al−Zr系の巨大晶出物が生成し、この晶出物周辺部においてクラッド率が不均一となった。試験材No.29は犠牲陽極材のZn量が多いため、犠牲陽極材の消耗が顕著となり耐食性が劣る。
【0066】
試験材No.30は犠牲陽極材のZn、In、Sn量が少なく犠牲陽極材の犠牲陽極効果が十分に発揮されないため耐食性が劣り、早期に貫通腐食が生じた。試験材No.31は犠牲陽極材のIn量が多いため、犠牲陽極材の消耗速度が大きく耐食性が劣る。試験材No.32はSn量が多いため、犠牲陽極材の消耗速度が大きく耐食性が劣る。
【0067】
試験材No.33は芯材のSi量が多いため、ろう付け時、ろう付け接合部に溶融が生じ、ろう付け性が害される。試験材No.34は芯材のSi量が少ないため強度が不十分となった。試験材No.35は芯材のCu量が多いため、ろう付け時、ろう付け接合部に溶融が生じ、ろう付け性が害される。試験材No.36は芯材のCu量が少なく芯材と犠牲陽極材との電位差が十分に確保できないため、犠牲陽極材の犠牲陽極効果が不十分となり耐食性が劣る。
【0068】
試験材No.37は芯材のMn量が多いため、芯材が硬くなり熱間圧延が困難となってクラッド材の製造ができなかった。試験材No.38は芯材のMn量が少ないため強度が不十分となった。試験材No.39は芯材のMg量が多いため、Mgがフッ化物系フラックスと反応して、ろう付け性が害される。
【0069】
試験材No.40は芯材のTi量が多いため、Al−Ti系の巨大晶出物が生成し、この晶出物周辺部においてクラッド率が不均一となった。試験材No.41は芯材のTi量が少ないため、芯材が層状腐食形態を示さず、早期に貫通腐食が生じた。試験材No.42は犠牲陽極材のクラッド率が高いため、熱間圧延時に犠牲陽極材と芯材とが接合せずクラッド材が製造できなかった。
【0070】
試験材No.43は犠牲陽極材の厚さが小さいため、犠牲陽極材の犠牲陽極効果が十分に発揮されず耐食性に劣る。試験材No.44はクラッド材の全体厚さが小さく、犠牲陽極材の厚さも小さいため、犠牲陽極材の犠牲陽極効果が十分に発揮されず耐食性に劣る。試験材No.45はろう付け加熱時の保持時間を長くしたもので、芯材と犠牲陽極材との界面のCu濃度が高くなり、Cuの犠牲陽極材への拡散が生じるため、犠牲陽極材の犠牲陽極効果が不十分となり早期に貫通腐食が生じた。
【0071】
【発明の効果】
本発明によれば、内面にブレージングシートからなるフィンがろう付け接合されて冷媒通路となり、外面側にもフィンがろう付けされ、大気からの結露水や融雪剤などに曝される場合に好適に使用できる熱交換器用部材、とくに自動車用熱交換器部材として、強度、ろう付け性および耐食性に優れたアルミニウム合金クラッドチューブ材、および当該クラッドチューブ材を組付けたコンデンサ、エバポレータのような熱交換器が提供される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum alloy clad tube material excellent in corrosion resistance, in particular, an aluminum alloy clad tube material excellent in corrosion resistance that is suitably used as a heat exchanger member in which corrosion resistance of the outer surface becomes a problem, such as an evaporator and a condenser for automobiles. And a heat exchanger in which the clad tube material is assembled.
[0002]
[Prior art]
Conventionally, as a heat exchanger tube material in which cooling water circulates on the inner surface side, such as a radiator or heater core for automobiles, an Al-Mn alloy or the like is used as a core material, and an Al-Zn alloy or the like is used as a core material. The clad sacrificial anode material is clad, and the core material is formed on the outer surface side and the sacrificial anode material is formed on the inner surface side, or the outer surface of the clad material is further clad with an Al-Si alloy brazing material. An aluminum alloy clad material is used (see Patent Document 1).
[0003]
In the above conventional aluminum alloy clad material, the sacrificial anode material on the inner surface side of the tube is for preventing corrosion caused by cooling water, and the Al-Si alloy brazing material on the outer surface side has outer fins on the outer surface of the tube. For brazing and joining. Outer fins exhibit a sacrificial anode effect to protect the core material.
[0004]
Also proposed is a four-layer clad material having an Al—Si based alloy brazing material on both surfaces of an aluminum alloy core material and clad a sacrificial anode material between the core material and the brazing material (Patent Document 2). reference). This four-layer clad material is used as a member of a drone cup type evaporator, for example.
[0005]
A drone cup type evaporator is a laminate of a press-formed four-layer clad core plate and a corrugated fin, and joins the core plate and the fin via a brazing material of the core plate, and a refrigerant is provided between the core plates. A passage is formed.
[0006]
The environment where the evaporator is used is exposed to an aqueous solution with low conductivity such as condensed water, so that the anticorrosion effect by the fins is difficult to exert. Therefore, the corrosion resistance of the clad material itself is important, and the core material should be used for a long life value. A sacrificial anode material is interposed between the materials.
[0007]
However, there is a problem that the consumption rate of the sacrificial anode material is increased due to the presence of the brazing material, and corrosion is promoted. In order to solve this problem, a new evaporator having a structure in which brazing fins are attached to inner and outer surfaces of a tube material and brazed and joined without using a clad material having an Al-Si alloy brazing material on both sides has recently been developed. Proposed.
[0008]
[Patent Document 1]
JP-A-11-293372 (Claims 1 and 2)
[Patent Document 2]
Japanese Patent Application Laid-Open No. 2002-12935 (Claim 6, FIG. 2)
[0009]
[Problems to be solved by the invention]
The object of the present invention is to form a refrigerant passage by fins being brazed and joined to the inner surface of an evaporator or capacitor having the above-mentioned novel structure without using a clad material having an Al—Si alloy brazing material on both sides, and the outer surface. As a heat exchanger member that can be suitably used when fins are brazed on the side and exposed to dew condensation water or snow melting agent from the atmosphere, aluminum alloy clad tube material with excellent strength, brazing and corrosion resistance and The present invention provides a heat exchanger in which the clad tube material is assembled.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, an aluminum alloy clad tube material excellent in corrosion resistance according to claim 1 of the present invention is formed by clad an aluminum alloy for a sacrificial anode material on an aluminum alloy for a core material, and an inner surface side is a core material and an outer surface. It is a two-layer clad tube material having a thickness of 300 μm or less that is formed so that the side becomes a sacrificial anode material , the outer surface side is in contact with the atmosphere, and the inner surface side is a coolant passage without being clad with the Al—Si alloy brazing material It is characterized by that.
[0011]
The aluminum alloy clad tube material excellent in corrosion resistance according to claim 1 is also characterized in that the aluminum alloy for sacrificial anode material contains one or more of Zn 2 to 6% and Sn 0.01 to 0.1%, with the balance being Al. and consists impurities, the Fe content of 0.5% or less, a Mg content of 0.5% or less, limiting the Si content to less than 0.2%, the aluminum alloy core material, Si0.2~1 %, Cu 0.1-0.8%, Mn 0.6-2%, Ti 0.1-0.3%, the balance is Al and impurities, Mg content is limited to 0.5% or less It is characterized by that.
[0012]
The aluminum alloy clad tube material according to claim 2 is the aluminum alloy clad tube material according to claim 1, wherein the aluminum alloy for sacrificial anode material is Zn 2 to 6%, In: 0.01 to 0.1%, Sn 0.01 to 0.1% 1 or more, further containing Mn 0.1 to 0.8%, consisting of the balance Al and impurities, Fe content 0.5% or less, Mg content 0.5% or less, Si content The amount is limited to less than 0.2%.
[0014]
An aluminum alloy clad tube material according to claim 3 is formed by clad an aluminum alloy for a sacrificial anode material on an aluminum alloy for a core material, and is molded so that an inner surface side becomes a core material and an outer surface side becomes a sacrificial anode material, and an Al-Si alloy Without cladding the brazing material, the outer surface side is in contact with the atmosphere, and the inner surface side is a two-layer clad tube material having a thickness of 300 μm or less that serves as a refrigerant passage, and the aluminum alloy for the sacrificial anode material is Zn 3 to 6%, Containing at least one of In 0.02-0.06% and Sn 0.03-0.08%, further containing Mn 0.1-0.8%, the balance being Al and impurities, Fe content Is 0.5% or less, Mg content is 0.5% or less, Si content is limited to less than 0.2% , and the aluminum alloy for core material is Si 0.2 to 1%, Cu 0.1 to 0.00. 8%, Mn 0. To 2%, it contains Ti0.1~0.3%, the balance Al and impurities, characterized in that to limit the Mg content to 0.5% or less.
[0016]
The aluminum alloy clad tube material according to claim 4 is the aluminum alloy clad tube material according to any one of claims 1 to 3 , wherein the aluminum alloy for the sacrificial anode material is further one of Cr 0.05 to 0.25% and Zr 0.05 to 0.25%. Or it contains 2 types, It is characterized by the above-mentioned.
[0018]
An aluminum alloy clad tube material according to a fifth aspect is characterized in that, in any one of the first to fourth aspects, the sacrificial anode material is clad with a thickness of 15 μm or more and a clad rate of 40% or less.
[0019]
The aluminum alloy clad tube material according to claim 6 is characterized in that in any one of claims 1 to 5 , the core material is clad with a thickness of 30 μm or more.
[0020]
An aluminum alloy clad tube material according to a seventh aspect is characterized in that, in any one of the first to sixth aspects, the aluminum alloy clad tube material is an H tempered material.
[0021]
A heat exchanger according to the present invention is a bare fin in which an inner fin made of a brazing sheet is mounted inside the clad tube material according to any one of claims 1 to 7 , and a paste that generates a brazing material during brazing heating is applied. As an inner fin, or by applying the paste on the inner surface of the clad tube material and attaching the bare fin as an inner fin, brazing and joining, after brazing, from the interface between the core material and the sacrificial anode material to the sacrificial anode material side The Cu concentration in the 15 μm region is characterized by being ½ or less of the average Cu concentration of the core material at the stage before brazing heating.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
The significance of the structure of the aluminum alloy clad tube material of the present invention and the reason for limitation will be described.
(Composition of sacrificial anode material)
Zn functions to give a sacrificial anode effect to the clad tube material. The preferable content of Zn is in the range of 2 to 6%. If it is less than 2%, the effect is not sufficient, and if it exceeds 6%, the consumption due to self-corrosion becomes severe. The more preferable content range of Zn is 2 to 5%.
[0023]
In functions to give a sacrificial anode effect to the clad tube material. The preferable content of In is in the range of 0.01 to 0.1%. If the content is less than 0.01%, the effect is not sufficient, and if it exceeds 0.1%, wear due to self-corrosion becomes severe. A more preferable content range of In is 0.02 to 0.06%.
[0024]
Sn functions to give a sacrificial anode effect to the clad tube material. The preferable content of Sn is in the range of 0.01 to 0.1%. If the content is less than 0.01%, the effect is not sufficient, and if it exceeds 0.1%, wear due to self-corrosion becomes severe. The more preferable content range of Sn is 0.03 to 0.08%.
[0025]
Fe is preferably limited to 0.5% or less, and when it exceeds 0.5%, the self-corrosion rate increases. Although it is more preferable to limit it to 0.1% or less, for example, in order to reduce it to less than 0.01%, a high-purity bullion must be used, which increases the cost. It is desirable to set it above.
[0026]
In brazing using a fluoride-based flux, Mg reacts with fluoride to impair brazing properties, so it is preferable to limit it to 0.5% or less.
[0027]
Mn functions to increase strength. The preferable content of Mn is in the range of 0.1 to 0.8%. When the content is less than 0.1%, the effect is small, and the cladding ratio in the width direction is not uniform. If it exceeds 0.8%, self-corrosion becomes severe. When Mn is contained in the range of 0.1 to 0.8%, it is preferable to limit the amount of Si to less than 0.2%. Will increase. More preferably, Si is limited to 0.1% or less. However, in order to reduce the Si amount to, for example, less than 0.01%, a high-purity metal must be used, which increases the cost. Is preferably 0.01% or more.
[0028]
Moreover, Zn, In and Sn when 0.1 to 0.8% of Mn is contained are 3 to 6%, 0.02 to 0.06% and 0.03, respectively, of one or more of them. It is preferable to make it contain in -0.08% of range.
[0029]
Si functions to increase strength. A preferable content of Si is in the range of 0.2 to 1.0%. If it is less than 0.2%, the cladding ratio in the width direction becomes nonuniform. If it exceeds 1.0%, self-corrosion becomes severe. When Si is contained in the range of 0.2 to 1.0%, it is preferable to limit the amount of Mn to less than 0.1%. When 0.1% or more is contained, a compound is formed with Si and the amount of self-corrosion. Will increase. Preferably, it is limited to 0.05% or less.
[0030]
Further, Zn, In, and Sn when 0.2 to 1.0% of Si is contained are 3 to 6%, 0.02 to 0.06%, and 0.03, respectively, of one or more of them. It is preferable to make it contain in -0.08% of range.
[0031]
Cr coarsens crystal grains during brazing heating and improves brazing properties. The preferable content of Cr is in the range of 0.05 to 0.25%. If the content is less than 0.05%, the effect is small. Makes the cladding rate unstable.
[0032]
Zr coarsens the crystal grains during brazing heating and improves brazing properties. The preferable content of Zr is in the range of 0.05 to 0.25%, and if it is less than 0.05%, the effect is small, and if it exceeds 0.25%, a giant crystallized product is formed, and the periphery of the giant crystallized product Makes the cladding rate unstable.
[0033]
(Composition of core material)
Si functions to improve strength. The preferable content of Si is in the range of 0.2 to 1%. If the content is less than 0.2%, the effect is not sufficient. If the content exceeds 1%, the melting point is lowered and the brazed joint is melted. It becomes easy. The more preferable content range of Si is 0.5 to 0.9%.
[0034]
Cu acts to make the potential of the core material noble. The preferable content of Cu is in the range of 0.1 to 0.8%. If the content is less than 0.1%, the effect is not sufficient. If the content exceeds 0.8%, the melting point is lowered and the brazed joint is melted. Is likely to occur. The more preferable content range of Cu is more than 0.2% and 0.8% or less.
[0035]
Mn functions to increase strength. The preferable content of Mn is in the range of 0.6 to 2%. If it is less than 0.6%, the effect is small, and if it exceeds 2%, the strength increases and rolling becomes difficult. A more preferable content range of Mn is more than 1.5% and 2% or less.
[0036]
Mg needs to be limited to 0.5% or less, and if it exceeds 0.5%, Mg reacts with the flux in brazing using a fluoride-based flux, and the brazing property is impaired.
[0037]
Ti is distributed in layers, and the corrosion form is changed to a layered overall corrosion type to improve the corrosion resistance. The preferable content of Ti is in the range of 0.1 to 0.3%. When the content is less than 0.1%, the effect is small. When the content exceeds 0.3%, a giant compound is formed, and the cladding ratio around the giant compound is increased. Make it non-uniform.
[0038]
(Clad tube material thickness)
The aluminum alloy tube material of the present invention is a clad tube material having a thickness of 300 μm or less formed by clad an aluminum alloy for a sacrificial anode material on an aluminum alloy for a core material, and has been thinned to achieve weight reduction of a heat exchanger. A clad tube material is obtained. The preferred thickness is 45 to 300 μm, and if it is less than 45 μm, it is difficult to obtain sufficient corrosion resistance.
[0039]
(Sacrificial anode material thickness)
The cladding thickness of the sacrificial anode material in the cladding tube material of the present invention is preferably 15 μm or more and the cladding rate is preferably 40% or less. If the clad thickness is less than 15 μm, the sacrificial anode effect is small and it is difficult to obtain sufficient corrosion resistance, and if the clad ratio exceeds 40%, the clad becomes difficult.
[0040]
(Core thickness)
The thickness of the core material in the clad tube material of the present invention is preferably 30 μm or more. If the thickness is less than 30 μm, it is difficult to ensure a potential difference between the core material and the sacrificial anode material, and the sacrificial anode effect cannot be exhibited and penetration corrosion is likely to occur.
[0041]
(refining)
The clad tube material of the present invention is preferably a H tempered material, in particular, a cold worked material, and the clad material before being formed into a clad tube material is a cold rolled material such as an H14 material. For example, in the case of the O material, the braze penetrates into the core material at the time of brazing and lowers the brazeability, and the sacrificial anode material is easily eroded during the brazing.
[0042]
In the heat exchanger according to the present invention, an inner fin made of brazing is mounted inside a clad tube material, a bare fin coated with a paste that generates a brazing material during brazing heating is mounted as an inner fin, or the inner surface of the clad tube material The paste is applied and bare fins are attached as inner fins and brazed and joined. After brazing, the Cu concentration at the 15 μm portion from the interface between the core material and the sacrificial anode material to the sacrificial anode material side is before brazing heating. By setting it to 1/2 or less of the average Cu concentration of the core material at this stage, the potential difference between the sacrificial anode material and the core material is sufficiently ensured, and the sacrificial anode effect is remarkably exhibited.
[0043]
The aluminum alloy clad tube material of the present invention is formed by agglomerating the aluminum alloy constituting the core material and the sacrificial anode material by, for example, semi-continuous casting, homogenizing as necessary, and then hot rolling to a predetermined thickness respectively. Next, each material is combined, hot-rolled according to a conventional method, and subjected to intermediate annealing as necessary, and cold-rolled to a predetermined thickness to obtain a clad material, which is produced by bending it. The
[0044]
When the aluminum alloy clad tube material of the present invention is applied to an automotive evaporator, a capacitor, or the like, for example, an inner fin made of a brazing sheet is mounted inside the clad tube material formed into a tube shape by bending the clad material. The bare fin coated with paste that generates brazing material during brazing heating is installed as an inner fin, or the paste is applied to the inner surface of the clad tube material and the bare fin is installed as an inner fin, brazed and joined, and the outer surface is also outer. Fins are brazed. The inside becomes a refrigerant passage, and the outer surface is exposed to condensed water from the atmosphere, a snow melting agent, and the like, but the core material is protected by the presence of the sacrificial anode material.
[0045]
【Example】
Examples of the present invention will be described below in comparison with comparative examples. In addition, these Examples show one embodiment of this invention, and this invention is not limited to these.
[0046]
Example 1
The aluminum alloy for the sacrificial anode material having the composition shown in Table 1 and the aluminum alloy for the core material having the composition shown in Table 2 are formed by semi-continuous casting, and the ingot of the aluminum alloy for sacrificial anode is 200 to 600 ° C. The ingot of the aluminum alloy for the core material was subjected to homogenization treatment at 400 to 600 ° C. for 5 to 20 hours and then faced. Then, the combinations shown in Table 3 are superposed so as to be a sacrificial anode material / core material, hot-rolled at 300 to 550 ° C., and further through intermediate annealing at 200 to 500 ° C. as necessary. Cold rolling was performed to obtain a clad material (clad tube material). Table 3 shows the thickness and clad rate of the sacrificial anode material, the thickness and clad rate of the core material, and the overall thickness of the clad material in the obtained clad material.
[0047]
Using the clad material as a test material, corrosion resistance, brazing property, clad property and strength were evaluated by the following methods. The results are shown in Table 4.
Corrosion resistance: A sacrificial anode material side is sprayed with a 50 ° C. corrosive solution (pH 3) containing Cl 500 ppm and SO 4 2− 2000 ppm for 6 hours and dried at 50 ° C. for 6 hours, resulting in penetration corrosion. Those that require 2000 hours or more to pass are accepted (◯), and those that cause penetration corrosion in less than 2000 hours are rejected (x). Further, at the following brazing evaluation, the Cu concentration in the vicinity of the interface between the core material and the sacrificial anode material (Cu in the core material diffuses from the interface to the sacrificial anode material side during brazing heating) was measured.
[0048]
Brazing property: A brazing sheet made of an Al-Mn alloy core material and an Al-10% Si alloy brazing material is corrugated to form a fin material, which is combined with the sacrificial anode material surface of the test material as an outer fin. Combined as an inner fin on the core material surface of the test material, applied with a fluoride-based flux and brazed at a temperature of 600 ° C., with a joining rate of 98% or more passed (○), less than 98% Is rejected (x).
[0049]
Cladity: In the width direction of the clad material obtained as a cold-rolled coil, the part where the clad rate deviates from ± 5% of the set value exceeds 8 cm from both ends of the coil and is 15 mm or less. To do.
Strength: Tensile test pieces are taken from the core material produced in the same process as the clad material, and a tensile test is performed. A tensile strength of 120 MPa or more is accepted (O), and a tensile strength of less than 120 MPa is rejected (X). To do. In an actual use environment, the sacrificial anode material is often consumed due to corrosion, and only the core material remains, and the strength of the heat exchanger is often maintained only by the core material.
[0050]
[Table 1]
Figure 0004190295
[0051]
[Table 2]
Figure 0004190295
[0052]
[Table 3]
Figure 0004190295
[0053]
[Table 4]
Figure 0004190295
[0054]
As seen in Table 4, the test material No. All of Nos. 1 to 13 are excellent in corrosion resistance, brazing property , and cladding properties, and have excellent strength of 130 MPa or more. Moreover, rolling workability was also favorable. The test material No. 14 to 20 are shown for reference.
[0055]
Comparative Example 1
The aluminum alloy for the sacrificial anode material having the composition shown in Table 5 and the aluminum alloy for the core material having the composition shown in Table 6 are formed by semi-continuous casting, and the ingot of the aluminum alloy for the sacrificial anode is 200 to 600 ° C. The ingot of the aluminum alloy for the core material was subjected to homogenization treatment at 400 to 600 ° C. for 5 to 20 hours and then faced. Next, the combinations shown in Table 3 are superposed so as to be a sacrificial anode material / core material, hot-rolled at 300 to 550 ° C., and further through intermediate annealing at 200 to 500 ° C. as necessary. Cold rolling was performed to obtain a clad material (clad tube material). Tables 7 to 8 show the thickness and clad rate of the sacrificial anode material, the thickness and clad rate of the core material, and the overall thickness of the clad material in the obtained clad material. In Tables 5 to 8, those outside the conditions of the present invention are underlined.
[0056]
Corrosion resistance, brazing property, cladability and strength were evaluated in the same manner as in Example 1 using the clad material as a test material. The results are shown in Tables 9-10. The test material No. Except for 25, it was tempered to H14 material, and the test material No. 25 was tempered to O material (annealing material).
[0057]
[Table 5]
Figure 0004190295
[0058]
[Table 6]
Figure 0004190295
[0059]
[Table 7]
Figure 0004190295
[0060]
[Table 8]
Figure 0004190295
[0061]
[Table 9]
Figure 0004190295
<< Table Note >> Cladity *: Formation of giant crystals [0062]
[Table 10]
Figure 0004190295
<< Table Note >> Cladity *: Formation of giant crystals [0063]
As shown in Tables 9-10, the test material No. No. 21 has a large amount of Si in the sacrificial anode material, and single-crystal Si crystallizes, so that the consumption speed of the sacrificial anode material is increased and the corrosion resistance is inferior. Further, the sacrificial anode material is melted at the brazed joint portion between the sacrificial anode material and the outer fin, and the brazing property is impaired. Test material No. In No. 22, the combination of the contents of Mn and Si in the sacrificial anode material is not appropriate, so that an Al—Mn—Si based compound is generated, the consumption rate of the sacrificial anode material is increased, and the corrosion resistance is inferior. Test material No. No. 23 has a large amount of Fe in the sacrificial anode material, so that an Al—Fe-based compound is generated, the consumption rate of the sacrificial anode material is increased, and the corrosion resistance is inferior. Further, since the crystal grain size of the sacrificial anode material becomes fine, the braze penetrates into the crystal grain boundary of the sacrificial anode material at the time of brazing, and the brazing property is impaired.
[0064]
Test material No. In No. 24, since the amount of Mn in the sacrificial anode material is large, an Al—Mn compound is generated, the consumption rate of the sacrificial anode material is increased, and the corrosion resistance is inferior. Moreover, since there is little addition of Cr and Zr, the effect is not recognized. Test material No. No. 25, the combination of the contents of Mn and Si in the sacrificial anode material is not appropriate, so that an Al—Mn—Si based compound is generated, the consumption rate of the sacrificial anode material is increased, and the corrosion resistance is inferior. Moreover, since it was tempered to O material, brazing penetrated into the core material during brazing, resulting in brazing failure. Test material No. Since No. 26 has a large amount of Mg in the sacrificial anode material, Mg reacts with the fluoride flux and the brazing property is impaired.
[0065]
Test material No. In No. 27, since the amount of Cr in the sacrificial anode material was large, an Al—Cr-based giant crystallized product was generated, and the cladding rate was uneven in the periphery of the crystallized product. Test material No. No. 28 had a large amount of Zr in the sacrificial anode material, so that an Al—Zr-based giant crystallized product was generated, and the cladding rate was uneven at the periphery of the crystallized product. Test material No. No. 29 has a large amount of Zn in the sacrificial anode material, so that the sacrificial anode material is significantly consumed and the corrosion resistance is poor.
[0066]
Test material No. No. 30 had a small amount of Zn, In, and Sn in the sacrificial anode material, and the sacrificial anode effect of the sacrificial anode material was not sufficiently exhibited, so that the corrosion resistance was inferior and penetration corrosion occurred early. Test material No. Since the sacrificial anode material 31 has a large amount of In, the consumption rate of the sacrificial anode material is large and the corrosion resistance is poor. Test material No. Since No. 32 has a large amount of Sn, the consumption rate of the sacrificial anode material is large and the corrosion resistance is poor.
[0067]
Test material No. Since 33 has a large amount of Si in the core material, at the time of brazing, melting occurs in the brazed joint and the brazing property is impaired. Test material No. No. 34 had insufficient strength due to the small amount of Si in the core material. Test material No. Since the core 35 has a large amount of Cu in the core material, at the time of brazing, melting occurs in the brazed joint and the brazing property is impaired. Test material No. No. 36 has a small amount of Cu in the core material and a sufficient potential difference between the core material and the sacrificial anode material cannot be ensured, so that the sacrificial anode effect of the sacrificial anode material becomes insufficient and the corrosion resistance is poor.
[0068]
Test material No. In No. 37, since the core material has a large amount of Mn, the core material becomes hard and hot rolling becomes difficult, so that the clad material cannot be manufactured. Test material No. No. 38 had insufficient strength due to the small amount of Mn in the core material. Test material No. Since No. 39 has a large amount of Mg in the core material, Mg reacts with the fluoride-based flux to impair brazing properties.
[0069]
Test material No. In No. 40, since the amount of Ti in the core material is large, an Al—Ti-based giant crystallized product was generated, and the cladding ratio became uneven in the periphery of the crystallized product. Test material No. In No. 41, since the Ti amount of the core material was small, the core material did not show a layered corrosion form, and penetration corrosion occurred early. Test material No. No. 42 has a high clad rate of the sacrificial anode material, and therefore the sacrificial anode material and the core material were not joined during hot rolling, and a clad material could not be produced.
[0070]
Test material No. Since the sacrificial anode material 43 has a small thickness, the sacrificial anode effect of the sacrificial anode material is not fully exhibited, and the corrosion resistance is poor. Test material No. No. 44 has a small overall thickness of the clad material and a small thickness of the sacrificial anode material, so that the sacrificial anode effect of the sacrificial anode material is not fully exhibited and the corrosion resistance is poor. Test material No. No. 45 has a longer holding time at the time of brazing heating, and the Cu concentration at the interface between the core material and the sacrificial anode material is increased, and diffusion of Cu into the sacrificial anode material occurs. Became insufficient and penetration corrosion occurred early.
[0071]
【The invention's effect】
According to the present invention, a fin made of a brazing sheet is brazed and joined to the inner surface to form a refrigerant passage, and the fin is also brazed to the outer surface side, which is suitable when exposed to dew condensation water or a snow melting agent from the atmosphere. Usable heat exchanger members, especially automotive heat exchanger members, aluminum alloy clad tube materials with excellent strength, brazing and corrosion resistance, and heat exchangers such as condensers and evaporators assembled with the clad tube materials Is provided.

Claims (8)

芯材用アルミニウム合金に犠牲陽極材用アルミニウム合金をクラッドしてなり、内面側が芯材、外面側が犠牲陽極材となるよう成形され、Al−Si系合金ろう材をクラッドすることなく、外面側は大気と接し、内面側は冷媒通路となる厚さ300μm以下の2層のクラッドチューブ材であって、犠牲陽極材用アルミニウム合金が、Zn2〜6%(質量%、以下同じ)、Sn0.01〜0.1%のうちの1種以上を含有し、残部Alおよび不純物からなり、Fe含有量を0.5%以下、Mg含有量を0.5%以下、Si含有量を0.2%未満に制限し、芯材用アルミニウム合金が、Si0.2〜1%、Cu0.1〜0.8%、Mn0.6〜2%、Ti0.1〜0.3%を含有し、残部Alおよび不純物からなり、Mg含有量を0.5%以下に制限したことを特徴とする耐食性に優れたアルミニウム合金クラッドチューブ材。The aluminum alloy for the sacrificial anode material is clad on the aluminum alloy for the core material, the inner surface side is formed as the core material, and the outer surface side is the sacrificial anode material, and the outer surface side is not clad with the Al-Si alloy brazing material. It is a two-layer clad tube material having a thickness of 300 μm or less that is in contact with the atmosphere and has an inner surface serving as a refrigerant passage. The aluminum alloy for sacrificial anode material is Zn 2 to 6% (mass%, the same applies hereinafter), Sn 0.01 to Containing at least one of 0.1%, balance Al and impurities, Fe content 0.5% or less, Mg content 0.5% or less, Si content less than 0.2% The aluminum alloy for core material contains Si 0.2 to 1%, Cu 0.1 to 0.8%, Mn 0.6 to 2%, Ti 0.1 to 0.3%, the balance Al and impurities The Mg content is 0.5% or less Excellent aluminum alloy clad tube material in corrosion resistance, characterized in that the limit. 前記犠牲陽極材用アルミニウム合金が、Zn2〜6%、In0.01〜0.1%、Sn0.01〜0.1%のうちの1種以上を含有し、さらにMn0.1〜0.8%を含有し、残部Alおよび不純物からなり、Fe含有量を0.5%以下、Mg含有量を0.5%以下、Si含有量を0.2%未満に制限したことを特徴とする請求項1記載の耐食性に優れたアルミニウム合金クラッドチューブ材。The sacrificial anode material aluminum alloy contains one or more of Zn 2 to 6%, In 0.01 to 0.1%, Sn 0.01 to 0.1%, and Mn 0.1 to 0.8%. And comprising the balance Al and impurities, wherein the Fe content is limited to 0.5% or less, the Mg content is limited to 0.5% or less, and the Si content is limited to less than 0.2%. The aluminum alloy clad tube material excellent in corrosion resistance according to 1. 芯材用アルミニウム合金に犠牲陽極材用アルミニウム合金をクラッドしてなり、内面側が芯材、外面側が犠牲陽極材となるよう成形され、Al−Si系合金ろう材をクラッドすることなく、外面側は大気と接し、内面側は冷媒通路となる厚さ300μm以下の2層のクラッドチューブ材であって、犠牲陽極材用アルミニウム合金が、Zn3〜6%、In0.02〜0.06%、Sn0.03〜0.08%のうちの1種以上を含有し、さらにMn0.1〜0.8%を含有し、残部Alおよび不純物からなり、Fe含有量を0.5%以下、Mg含有量を0.5%以下、Si含有量を0.2%未満に制限し、芯材用アルミニウム合金が、Si0.2〜1%、Cu0.1〜0.8%、Mn0.6〜2%、Ti0.1〜0.3%を含有し、残部Alおよび不純物からなり、Mg含有量を0.5%以下に制限したことを特徴とする耐食性に優れたアルミニウム合金クラッドチューブ材。The aluminum alloy for the sacrificial anode material is clad on the aluminum alloy for the core material, the inner surface side is shaped to be the core material, and the outer surface side is the sacrificial anode material, and the outer surface side is not clad with the Al-Si alloy brazing material. It is a two-layer clad tube material having a thickness of 300 μm or less that is in contact with the atmosphere and the inner surface side serves as a refrigerant passage, and the aluminum alloy for sacrificial anode material is Zn 3 to 6%, In 0.02 to 0.06%, Sn0. It contains one or more of 03 to 0.08%, further contains Mn 0.1 to 0.8%, consists of the balance Al and impurities, Fe content 0.5% or less, Mg content 0.5% or less, Si content is limited to less than 0.2% , and aluminum alloy for core material is Si 0.2 to 1%, Cu 0.1 to 0.8%, Mn 0.6 to 2%, Ti0 .1 to 0.3%, with the balance Al and Consists impurities, an aluminum alloy clad tube material having excellent corrosion resistance, characterized in that to limit the Mg content to 0.5% or less. 前記犠牲陽極材用アルミニウム合金が、さらにCr0.05〜0.25%、Zr0.05〜0.25%の1種または2種を含有することを特徴とする請求項1〜3のいずれかに記載の耐食性に優れたアルミニウム合金クラッドチューブ材。The aluminum alloy for sacrificial anode materials further contains one or two of Cr 0.05 to 0.25% and Zr 0.05 to 0.25%. Aluminum alloy clad tube material with excellent corrosion resistance as described. 犠牲陽極材が厚さ15μm以上、クラッド率40%以下でクラッドされていることを特徴とする請求項1〜のいずれかに記載の耐食性に優れたアルミニウム合金クラッドチューブ材。The aluminum alloy clad tube material excellent in corrosion resistance according to any one of claims 1 to 4 , wherein the sacrificial anode material is clad with a thickness of 15 µm or more and a clad rate of 40% or less. 芯材が厚さ30μm以上でクラッドされていることを特徴とする請求項1〜のいずれかに記載の耐食性に優れたアルミニウム合金クラッドチューブ材。The aluminum alloy clad tube material excellent in corrosion resistance according to any one of claims 1 to 5 , wherein the core material is clad with a thickness of 30 µm or more. H調質材であることを特徴とする請求項1〜のいずれかに記載の耐食性に優れたアルミニウム合金クラッドチューブ材。The aluminum alloy clad tube material excellent in corrosion resistance according to any one of claims 1 to 6 , which is an H-tempered material. 請求項1〜のいずれかに記載のクラッドチューブ材の内部にブレージングシートからなるインナーフィンを装着、ろう付け加熱時にろう材を生成させるペーストを塗布したベアフィンをインナーフィンとして装着、またはクラッドチューブ材の内面に前記ペーストを塗布しベアフィンをインナーフィンとして装着、ろう付け接合してなり、ろう付け後、芯材と犠牲陽極材の界面から犠牲陽極材側に15μmの部位におけるCu濃度が、ろう付け加熱前の段階での芯材の平均Cu濃度の1/2以下であることを特徴とする熱交換器。An inner fin made of a brazing sheet is mounted inside the clad tube material according to any one of claims 1 to 7 , a bare fin coated with a paste that generates a brazing material during brazing heating is mounted as an inner fin, or a clad tube material The paste is applied to the inner surface of the metal and the bare fins are attached as inner fins, brazed and joined, and after brazing, the Cu concentration at the site of 15 μm from the interface between the core material and the sacrificial anode material is brazed. A heat exchanger characterized in that it is ½ or less of the average Cu concentration of the core material in the stage before heating.
JP2003010556A 2003-01-20 2003-01-20 Aluminum alloy clad tube material excellent in corrosion resistance and heat exchanger assembled with the clad tube material Expired - Lifetime JP4190295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003010556A JP4190295B2 (en) 2003-01-20 2003-01-20 Aluminum alloy clad tube material excellent in corrosion resistance and heat exchanger assembled with the clad tube material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003010556A JP4190295B2 (en) 2003-01-20 2003-01-20 Aluminum alloy clad tube material excellent in corrosion resistance and heat exchanger assembled with the clad tube material

Publications (2)

Publication Number Publication Date
JP2004225061A JP2004225061A (en) 2004-08-12
JP4190295B2 true JP4190295B2 (en) 2008-12-03

Family

ID=32899713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003010556A Expired - Lifetime JP4190295B2 (en) 2003-01-20 2003-01-20 Aluminum alloy clad tube material excellent in corrosion resistance and heat exchanger assembled with the clad tube material

Country Status (1)

Country Link
JP (1) JP4190295B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109807556A (en) * 2019-01-21 2019-05-28 大力神铝业股份有限公司 A kind of preparation method of sedan-chair vehicle-used warm air blower fin material
RU2745139C2 (en) * 2017-02-01 2021-03-22 Владислав Владимирович Волков Device for piano strings tensioning

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5086751B2 (en) * 2007-09-21 2012-11-28 株式会社神戸製鋼所 Aluminum alloy composite and heat exchanger
JP5209926B2 (en) * 2007-09-21 2013-06-12 株式会社神戸製鋼所 Aluminum alloy composite and heat exchanger
JP5302751B2 (en) 2009-04-21 2013-10-02 株式会社デンソー Aluminum alloy clad material for heat exchanger
JP5429858B2 (en) * 2009-04-21 2014-02-26 株式会社Uacj Aluminum alloy clad material for heat exchanger and manufacturing method thereof
JP6474589B2 (en) 2014-11-21 2019-02-27 株式会社Uacj Aluminum alloy clad material for heat exchanger
JP6483412B2 (en) 2014-11-21 2019-03-13 株式会社デンソー Aluminum alloy clad material for heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2745139C2 (en) * 2017-02-01 2021-03-22 Владислав Владимирович Волков Device for piano strings tensioning
CN109807556A (en) * 2019-01-21 2019-05-28 大力神铝业股份有限公司 A kind of preparation method of sedan-chair vehicle-used warm air blower fin material

Also Published As

Publication number Publication date
JP2004225061A (en) 2004-08-12

Similar Documents

Publication Publication Date Title
JP5079198B2 (en) Aluminum brazing alloy
CN109072357B (en) Heat exchanger comprising rolled aluminium alloy
EP1484571A2 (en) Aluminium heat exchanger excellent in corrosion resistance
JP2011202285A (en) Brazing sheet
JP3772017B2 (en) High strength and high corrosion resistance aluminum alloy clad material for heat exchanger
JP2007131872A (en) Aluminum alloy clad material for heat exchanger
JP4190295B2 (en) Aluminum alloy clad tube material excellent in corrosion resistance and heat exchanger assembled with the clad tube material
JP2000008130A (en) Member for heat exchanger made of aluminum alloy excellent in corrosion resistance
JP2002066786A (en) Manufacturing method of high corrosion resistant aluminum alloy matching material
JP2000167688A (en) Aluminum alloy clad material for heat exchanger excellent in brazability and corrosion resistance
JP4263160B2 (en) Aluminum alloy clad material and heat exchanger tube and heat exchanger using the same
JP3222768B2 (en) Aluminum alloy clad material excellent in brazing property and method for producing the same
JPH1088265A (en) Aluminum alloy fin material for heat exchanger, excellent in sacrificial anode effect as well as in strength after brazing
JP2004225062A (en) Aluminum alloy clad tube material having excellent corrosion resistance, and heat exchanger with the clad tube material assembled
JPH09176767A (en) Al brazing sheet for vacuum brazing
JP2000087170A (en) Aluminum alloy clad material for heat exchanger excellent in corrosion resistance
JPH11264042A (en) Aluminum alloy brazing filler sheet for fluid passage
JP4996876B2 (en) High corrosion resistance aluminum alloy composite for heat exchanger and aluminum alloy heat exchanger
JPH0611295A (en) Aluminum alloy laminated heat exchanger with excellent corrosion resistance
JP2000135588A (en) High strength aluminum alloy clad material for heat exchanger superior in corrosion resistance
JP2000202682A (en) Aluminum alloy brazing filler metal and aluminum alloy clad material for heat exchanger excellent in brazability and corrosion resistance using the brazing filler metal for clad material
JP2691069B2 (en) Heat exchanger with excellent corrosion resistance and heat transfer
JP2933382B2 (en) High strength and high corrosion resistance aluminum alloy clad material for heat exchanger
JP2783921B2 (en) Low temperature brazed aluminum alloy heat exchanger
JP2000135590A (en) High strength aluminum alloy clad material for heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4190295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term