JP2004225062A - Aluminum alloy clad tube material having excellent corrosion resistance, and heat exchanger with the clad tube material assembled - Google Patents

Aluminum alloy clad tube material having excellent corrosion resistance, and heat exchanger with the clad tube material assembled Download PDF

Info

Publication number
JP2004225062A
JP2004225062A JP2003010557A JP2003010557A JP2004225062A JP 2004225062 A JP2004225062 A JP 2004225062A JP 2003010557 A JP2003010557 A JP 2003010557A JP 2003010557 A JP2003010557 A JP 2003010557A JP 2004225062 A JP2004225062 A JP 2004225062A
Authority
JP
Japan
Prior art keywords
aluminum alloy
sacrificial anode
clad
corrosion resistance
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003010557A
Other languages
Japanese (ja)
Inventor
Yoshiharu Hasegawa
義治 長谷川
Haruhiko Miyaji
治彦 宮地
Eiichi Torigoe
栄一 鳥越
Toshihiko Fukuda
敏彦 福田
Yoshifusa Shoji
美房 正路
Yasunaga Ito
泰永 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Sumitomo Light Metal Industries Ltd
Original Assignee
Denso Corp
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Sumitomo Light Metal Industries Ltd filed Critical Denso Corp
Priority to JP2003010557A priority Critical patent/JP2004225062A/en
Publication of JP2004225062A publication Critical patent/JP2004225062A/en
Pending legal-status Critical Current

Links

Landscapes

  • Prevention Of Electric Corrosion (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy clad tube material in which a fin consisting of a brazing sheet is brazed and joined to the inner surface so as to be a cooling medium passage and a fin is also brazed to the outer surface side, and which has excellent strength, brazing properties and corrosion resistance as a member for a heat exchanger suitable usable when exposed to moisture condensation water from the air, a thawing agent or the like, and to provide a heat exchanger such as a condenser and an evaporator with the clad tube material assembled. <P>SOLUTION: The clad tube material is obtained by cladding an aluminum alloy for a sacrificial anode material on either side of an aluminum alloy for a core material, and cladding aluminum or an aluminum alloy for a joining material having an electric potential equal to or nobler than that of the core material and having an Mg content regulated to ≤0.5% on the other side of the aluminum alloy for a core material, has a thickness of ≤300 μm, and is formed so that the inner surface side is made into a joining material and the outer surface is made into a sacrificial anode material. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、耐食性に優れたアルミニウム合金クラッドチューブ材、とくに自動車用エバポレータ、コンデンサのように、外面の耐食性が問題となる熱交換器部材として好適に使用される耐食性に優れたアルミニウム合金クラッドチューブ材および該クラッドチューブ材を組付けた熱交換器に関する。
【0002】
【従来の技術】
従来、自動車用のラジエータ、ヒータコアのように、冷却水が内面側を循環している熱交換器のチューブ材として、Al−Mn系合金などを芯材とし、芯材にAl−Zn系合金などの犠牲陽極材をクラッドし、芯材を外面側、犠牲陽極材を内面側となるよう成形したアルミニウム合金クラッド材、あるいはこのクラッド材の外面の芯材にさらにAl−Si系合金ろう材をクラッドしたアルミニウム合金クラッド材が使用されている(特許文献1参照)。
【0003】
上記従来のアルミニウム合金クラッド材において、チューブ内面側の犠牲陽極材は冷却水に起因する腐食を防止するためのものであり、外面側のAl−Si系合金ろう材は、チューブ外面にアウターフィンをろう付け接合するためのものである。アウターフィンは犠牲陽極効果を発揮して芯材を防食する。
【0004】
また、アルミニウム合金芯材の両面にAl−Si系合金ろう材を有し、芯材とろう材との間に犠牲陽極材をクラッドしてなる4層クラッド材も提案されている(特許文献2参照)。この4層クラッド材は、例えばドロンカップ型エバポレータの部材として使用される。
【0005】
ドロンカップ型エバポレータは、プレス成形した4層クラッド材よりなるコアプレートとコルゲート成形したフィンとを積層し、コアプレートのろう材を介してコアプレートとフィンとを接合し、コアプレートの間に冷媒通路を形成してなるものである。
【0006】
エバポレータの使用環境は、凝縮水など伝導度の低い水溶液に曝されるため、フィンによる防食効果が発揮され難く、従ってクラッド材自身の耐食性が重要となり、高寿命価を図るために芯材とろう材との間に犠牲陽極材を介在させている。
【0007】
しかしながら、ろう材が存在することにより犠牲陽極材の消耗速度が早まり、腐食が促進されるという問題がある。この問題を解消するために、最近、両面にAl−Si系合金ろう材を有するクラッド材を用いることなく、チューブ材の内外面にブレージングフィンを装着し、またはろう付け加熱時にろう材を生成させるペーストを塗布したべアフィンを装着して、ろう付け接合する構造の新規なエバポレータが提案されている。
【0008】
【特許文献1】
特開平11−293372号公報(請求項1、請求項2)
【特許文献2】
特開2002−12935号公報(請求項6、図2)
【0009】
【発明が解決しようとする課題】
発明者らは、両面にAl−Si系合金ろう材を有するクラッドチューブを用いることのない上記の新規な構造のエバポレータや、コンデンサなど、内面にブレージングフィンがろう付け接合されて冷媒通路となり、外面側にもフィンがろう付けされ、大気からの結露水や融雪剤などに曝される場合に好適に使用できる熱交換器用アルミニウム合金クラッドチューブ材として、芯材用アルミニウム合金に犠牲陽極材用アルミニウム合金をクラッドしてなり、内面側が芯材、外面側が犠牲陽極材となるよう成形されたクラッドチューブ材を提案した。
【0010】
本発明は、上記提案のアルミニウム合金クラッドチューブ材より、さらに安定して優れた耐食性およびろう付け性を与えることができるアルミニウム合金クラッドチューブ材および当該クラッドチューブ材を組付けた熱交換器を提供することを目的とするものである。
【0011】
【課題を解決するための手段】
上記の目的を達成するための本発明の請求項1による耐食性に優れたアルミニウム合金クラッドチューブ材は、芯材用アルミニウム合金の一方の面に犠牲陽極材用アルミニウム合金をクラッドし、芯材用アルミニウム合金の他方の面に、電位が芯材と同等または芯材より貴であり且つMg含有量を0.5%以下に規制した接合材用アルミニウムまたはアルミニウム合金をクラッドしてなる厚さ300μm以下のクラッドチューブ材であり、内面側が接合材、外面側が犠牲陽極材となるよう成形されていることを特徴とする。
【0012】
請求項2によるアルミニウム合金クラッドチューブ材は、請求項1において、犠牲陽極材用アルミニウム合金が、Zn2〜6%、In0.01〜0.1%、Sn0.01〜0.1%のうちの1種以上を含有し、残部Alおよび不純物からなり、Fe含有量を0.5%以下に規制したことを特徴とする。
【0013】
請求項3によるアルミニウム合金クラッドチューブ材は、請求項2において、犠牲陽極用アルミニウム合金が、さらにMn0.1〜0.8%を含有し、Si含有量を0.2%未満に規制したことを特徴とする。
【0014】
請求項4によるアルミニウム合金クラッドチューブ材は、請求項2において、犠牲陽極用アルミニウム合金が、さらにSi0.2〜1.0%を含有し、Mn含有量を0.1%未満に規制したことを特徴とする。
【0015】
請求項5によるアルミニウム合金クラッドチューブ材は、請求項1において、犠牲陽極材用アルミニウム合金が、Zn3〜6%、In0.02〜0.06%、Sn0.03〜0.08%のうちの1種以上を含有し、さらにMn0.1〜0.8%を含有し、残部Alおよび不純物からなり、Fe含有量を0.5%以下、Si含有量を0.2%未満に規制したことを特徴とする。
【0016】
請求項6によるアルミニウム合金クラッドチューブ材は、請求項1において、犠牲陽極材用アルミニウム合金が、Zn3〜6%、In0.02〜0.06%、Sn0.03〜0.08%のうちの1種以上を含有し、さらにSi0.2〜1.0%を含有し、残部Alおよび不純物からなり、Fe含有量を0.5%以下、Mn含有量を0.1%未満に規制したことを特徴とする。
【0017】
請求項7によるアルミニウム合金クラッドチューブ材は、請求項2〜6のいずれかにおいて、犠牲陽極用アルミニウム合金が、さらにCr0.05〜0.25%、Zr0.05〜0.25%の1種または2種を含有することを特徴とする。
【0018】
請求項8によるアルミニウム合金クラッドチューブ材は、請求項1〜7のいずれかにおいて、芯材用アルミニウム合金が、Si0.2〜1%、Cu0.1〜0.8%、Mn0.6〜2%、Ti0.1〜0.3%を含有し、残部Alおよび不純物からなり、Mg含有量を0.5%以下に制限したことを特徴とする。
【0019】
請求項9による耐食性に優れたアルミニウム合金クラッドチューブ材は、犠牲陽極材用アルミニウム合金として請求項2記載の犠牲陽極材用アルミニウム合金を適用し、芯材用アルミニウム合金として請求項8記載の芯材用アルミニウム合金を適用する請求項1記載のアルミニウム合金クラッドチューブ材であって、接合材用アルミニウム合金がCu0.1〜0.8%を含有し、残部Alおよび不純物からなり、Fe含有量を0.5%以下に規制したことを特徴とする。
【0020】
請求項10による耐食性に優れたアルミニウム合金クラッドチューブ材は、犠牲陽極材用アルミニウム合金として請求項3記載の犠牲陽極材用アルミニウム合金を適用し、芯材用アルミニウム合金として請求項8記載の芯材用アルミニウム合金を適用する請求項1記載のアルミニウム合金クラッドチューブ材であって、接合材用アルミニウム合金がCu0.1〜0.8%、Mn0.1〜0.8%を含有し、残部Alおよび不純物からなり、Fe含有量を0.5%以下に規制したことを特徴とする。
【0021】
請求項11による耐食性に優れたアルミニウム合金クラッドチューブ材は、請求項10において、接合材用アルミニウム合金が、さらにCr0.05〜0.25%、Zr0.05〜0.25%のうちの1種または2種を含有することを特徴とする。
【0022】
請求項12による耐食性に優れたアルミニウム合金クラッドチューブ材は、犠牲陽極材用アルミニウム合金として請求項4記載の犠牲陽極材用アルミニウム合金を適用し、芯材用アルミニウム合金として請求項8記載の芯材用アルミニウム合金を適用する請求項1記載のアルミニウム合金クラッドチューブ材であって、接合材用アルミニウム合金がCu0.1〜0.8%を含有し、さらにSi0.2〜1.0%を含有し、残部Alおよび不純物からなり、Fe含有量を0.5%以下に規制したことを特徴とする。
【0023】
請求項13による耐食性に優れたアルミニウム合金クラッドチューブ材は、請求項9〜12のいずれかにおいて、接合材のCu含有量が芯材のCu含有量より多いことを特徴とする。
【0024】
請求項14による耐食性に優れたアルミニウム合金クラッドチューブ材は、請求項9〜13のいずれかにおいて、芯材と接合材との合計厚さが30μm以上で、犠牲陽極材と芯材との界面から芯材へ30μmの部位までのろう付け加熱前の平均Cu濃度が、芯材のCu濃度以上であることを特徴とする。
【0025】
請求項15による耐食性に優れたアルミニウム合金クラッドチューブ材は、請求項14において、接合材のクラッド率が、犠牲陽極材のクラッド率の±10%以下であることを特徴とする。
【0026】
請求項16によるアルミニウム合金クラッドチューブ材は、請求項1〜15のいずれかにおいて、犠牲陽極材が厚さ15μm以上、クラッド率40%以下でクラッドされていることを特徴とする。
【0027】
請求項17によるアルミニウム合金クラッドチューブ材は、請求項1〜16のいずれかにおいて、芯材が厚さ30μm以上でクラッドされていることを特徴とする。
【0028】
請求項18によるアルミニウム合金クラッドチューブ材は、請求項1〜17のいずれかにおいて、アルミニウム合金クラッドチューブ材がH調質材であることを特徴とする。
【0029】また、本発明による熱交換器は、請求項1〜18のいずれかに記載のクラッドチューブ材の内部にブレージングからなるインナーフィンを装着、ろう付け加熱時にろう材を生成させるペーストを塗布したベアフィンをインナーフィンとして装着、またはクラッドチューブ材の内面に前記ペーストを塗布したのちベアフィンをインナーフィンとして装着、ろう付け接合してなり、ろう付け後、芯材と犠牲陽極材の界面から犠牲陽極材側に15μmの部位におけるCu濃度が、芯材と犠牲陽極材の界面から芯材側に30μmの部位までのろう付け加熱前の段階での各材料層のCu濃度の平均値の1/2以下であることを特徴とする。
【0030】
【発明の実施の形態】
本発明のアルミニウム合金クラッドチューブ材の構成の意義およびその限定理由について説明する。
(犠牲陽極材の組成)
Znは、クラッドチューブ材に犠牲陽極効果を与えるよう機能する。Znの好ましい含有量は2〜6%の範囲であり、2%未満ではその効果が十分でなく、6%を越えると自己腐食による消耗が激しくなる。Znのさらに好ましい含有範囲は2〜5%である。
【0031】
Inは、クラッドチューブ材に犠牲陽極効果を与えるよう機能する。Inの好ましい含有量は0.01〜0.1%の範囲であり、0.01%未満ではその効果が十分でなく、0.1%を越えると自己腐食による消耗が激しくなる。Inのさらに好ましい含有範囲は0.02〜0.06%である。
【0032】
Snは、クラッドチューブ材に犠牲陽極効果を与えるよう機能する。Snの好ましい含有量は0.01〜0.1%の範囲であり、0.01%未満ではその効果が十分でなく、0.1%を越えると自己腐食による消耗が激しくなる。Snのさらに好ましい含有範囲は0.03〜0.08%である。
【0033】
Feは、0.5%以下に規制するのが好ましく、0.5%を越えると自己腐食速度が大きくなる。0.1%以下に規制するのがさらに好ましいが、例えば0.01%未満まで低減するには高純度地金を使用しなければならずコスト高となるから、コスト的には0.01%以上とすることが望ましい。
【0034】
Mgは、フッ化物系フラックスを使用するろう付けにおいて、フッ化物と反応してろう付け性を害するので、0.5%以下に規制することが好ましい。
【0035】
Mnは、強度を高めるよう機能する。Mnの好ましい含有量は0.1〜0.8%の範囲であり、0.1%未満ではその効果が小さく、幅方向のクラッド率が不均一となる。0.8%を越えると自己腐食が激しくなる。Mnを0.1〜0.8%の範囲で含有する場合は、Si量を0.2%未満に限定することが好ましく、0.2%以上含有すると、Mnと化合物を形成し自己腐食量が多くなる。さらに好ましくはSiを0.1%以下に限定するが、Si量を例えば0.01%未満にまで低減するには高純度地金を使用しなければならずコスト高となるから、コスト的には0.01%以上とすることが望ましい。
【0036】
また、Mnを0.1〜0.8%含有させた場合におけるZn、InおよびSnは、それらのうちの1種以上をそれぞれ3〜6%、0.02〜0.06%および0.03〜0.08%の範囲で含有させるのが好ましい。
【0037】
Siは、強度を高めるよう機能する。Siの好ましい含有量は0.2〜1.0%の範囲であり、0.2%未満では幅方向のクラッド率が不均一となる。1.0%を越えると自己腐食が激しくなる。Siを0.2〜1.0%の範囲で含有する場合は、Mn量を0.1%未満に限定することが好ましく、0.1%以上含有すると、Siと化合物を形成し自己腐食量が多くなる。好ましくは0.05%以下に限定する。
【0038】
また、Siを0.2〜1.0%含有させた場合におけるZn、InおよびSnは、それらのうちの1種以上をそれぞれ3〜6%、0.02〜0.06%および0.03〜0.08%の範囲で含有させるのが好ましい。
【0039】
Crは、ろう付け加熱時に結晶粒を粗大化してろう付け性を改善する。Crの好ましい含有量は0.05〜0.25%の範囲であり、0.05%未満ではその効果が小さく、0.25%を越えると巨大晶出物が生成し、巨大晶出物周辺部でのクラッド率を不安定にする。
【0040】
Zrは、ろう付け加熱時に結晶粒を粗大化してろう付け性を改善する。Zrの好ましい含有量は0.05〜0.25%の範囲であり、0.05%未満ではその効果が小さく、0.25%を越えると巨大晶出物が生成し、巨大晶出物周辺部でのクラッド率を不安定にする。
【0041】
(芯材の組成)
Siは、強度を向上させるよう機能する。Siの好ましい含有量は0.2〜1%の範囲であり、0.2%未満ではその効果が十分でなく、1%を越えて含有すると融点が低下し、ろう付け接合部に溶融が生じ易くなる。Siのさらに好ましい含有範囲は0.5〜0.9%である。
【0042】
Cuは、芯材の電位を貴にするよう作用する。Cuの好ましい含有量は0.1〜0.8%の範囲であり、0.1%未満ではその効果が十分でなく、0.8%を越えると融点が低下し、ろう付け接合部に溶融が生じ易くなる。Cuのさらに好ましい含有範囲は0.2%を越え0.8%以下である。
【0043】
Mnは、強度を高めるよう機能する。Mnの好ましい含有量は0.6〜2%の範囲であり、0.6%未満ではその効果が小さく、2%を越えると強度が大きくなり圧延が困難となる。Mnのさらに好ましい含有範囲は1.5%を越え2%以下である。
【0044】
Mgは0.5%以下に規制することが必要であり、0.5%を越えて含有すると、フッ化物系フラックスを使用するろう付けにおいて、Mgがフラックスと反応し、ろう付け性を害する。
【0045】
Tiは、層状に分布して腐食形態を層状の全面腐食型とし、耐食性を向上させる。Tiの好ましい含有量は0.1〜0.3%の範囲であり、0.1%未満ではその効果が小さく、0.3%を越えると巨大化合物が生成し、巨大化合物周辺部におけるクラッド率を不均一にする。
【0046】
(接合材の組成)
Cuは、芯材側の電位を貴に保持し、犠牲陽極材の犠牲陽極効果を高めるよう機能する。Cuの好ましい含有量は0.1〜0.8%の範囲であり、0.1%未満ではその効果が小さく、0.8%を越えると融点が低下し、ろう付け接合部に溶融が生じ易くなる。Cuのさらに好ましい含有範囲は0.2%を越え0.8%以下である。接合材のCu含有量は芯材のCu含有量より多い方が好ましく、接合材の電位を芯材の電位よりさらに貴とし、接合材から芯材、犠牲陽極材にかけて電位を卑とすることにより、犠牲陽極材に安定した犠牲陽極効果を発揮させることができる。
【0047】
Feは、0.5%以下に規制するのが好ましく、0.5%を越えるとろう付け性が低下する。
【0048】
Mgは、フッ化物系フラックスを使用するろう付けにおいて、フッ化物と反応してろう付け性を害するので、0.5%以下に規制することが好ましい。
【0049】
Mnは、クラッド材のコイル幅方向のクラッド率を安定化する効果を有する。Mnの好ましい含有量は0.1〜0.8%の範囲であり、0.1%未満ではその効果が小さく、0.8%を越えると圧延性が低下する。
【0050】
Siは、クラッド材のコイル幅方向のクラッド率を安定化する効果を有する。Siの好ましい含有量は0.2〜1.0%の範囲であり、0.2%未満ではその効果が小さく、1.0%を越えると融点が低下して、ろう付け時に溶融が生じ、ろう付け性を害する。
【0051】
Crは、ろう付け加熱時に結晶粒を粗大化してろう付け性を改善する。Crの好ましい含有量は0.05〜0.25%の範囲であり、0.05%未満ではその効果が小さく、0.25%を越えると巨大晶出物が生成し、巨大晶出物周辺部でのクラッド率を不安定にする。
【0052】
Zrは、ろう付け加熱時に結晶粒を粗大化してろう付け性を改善する。Zrの好ましい含有量は0.05〜0.25%の範囲であり、0.05%未満ではその効果が小さく、0.25%を越えると巨大晶出物が生成し、巨大晶出物周辺部でのクラッド率を不安定にする。
【0053】
(クラッドチューブ材の厚さ)
本発明のアルミニウム合金管材は、芯材用アルミニウム合金の一方の面に犠牲陽極材用アルミニウム合金をクラッドし、芯材用アルミニウム合金の他方の面に接合材用アルミニウムまたはアルミニウム合金をクラッドしてなる厚さ300μm以下のクラッドチューブ材であり、熱交換器の軽量化を達成し得る薄肉化されたクラッドチューブ材を得るものである。好ましい厚さは45〜300μmであり、45μm未満では十分な耐食性が得難くなる。
【0054】
(芯材と接合材の厚さ)
芯材と接合材との合計厚さは30μm以上とし、犠牲陽極材と芯材との界面から芯材へ30μmの部位までのろう付け加熱前の平均Cu濃度を、芯材のCu濃度以上とすることが好ましい。この構成により、芯材から接合材にかけて電位が同じまたは電位の勾配が貴となるため、犠牲陽極材による安定した犠牲陽極効果が得られる。
【0055】
(接合材のクラッド率)
接合材のクラッド率は、犠牲陽極材のクラッド率の±10%以下であることが望ましい。±10%を越えるとクラッド圧延が困難となる。
【0056】
(犠牲陽極材の厚さ)
本発明のクラッドチューブ材における犠牲陽極材のクラッド厚は15μm以上で、クラッド率は40%以下が好ましい。クラッド厚が15μm未満では犠牲陽極効果が小さく十分な耐食性が得難く、クラッド率が40%を越えるとクラッドが困難となる。
【0057】
(芯材の厚さ)
本発明のクラッドチューブ材における芯材の厚さは30μm以上とすることが好ましい。30μm未満では、芯材と犠牲陽極材との電位差を確保することが困難となって犠牲陽極効果は発揮できず貫通腐食が生じ易くなる。
【0058】
(調質)
本発明のクラッドチューブ材はH調質材、とくに冷間加工材、クラッドチューブ材に成形する前のクラッド材はH14材などの冷間圧延材であることが望ましい。例えば、O材では、ろう付け時に、ろうが芯材中に浸透してろう付け性を低下させ、また、ろう付け時に犠牲陽極材にエロージョンが生じ易くなる。
【0059】
本発明による熱交換器は、クラッドチューブ材の内部にブレージングからなるインナーフィンを装着、ろう付け接合してなるもので、ろう付け後、芯材と犠牲陽極材の界面から犠牲陽極材側に15μmの部位におけるCu濃度が、芯材と犠牲陽極材の界面から芯材側に30μmの部位までのろう付け加熱前の段階での各材料層のCu濃度の平均値の1/2以下とすることにより、犠牲陽極材と芯材との電位差が十分に確保され、犠牲陽極効果が顕著に発揮される。芯材層の厚さをt1、Cu濃度をc1、接合材層の厚さをt2、Cu濃度をc2とすると、各材料層のCu濃度の平均値は(t1*c1+t2*c2)/(t1+t2)(但し、t1+t2=30μm )となる。
【0060】
本発明のアルミニウム合金クラッドチューブ材は、犠牲陽極材、芯材および接合材を構成するアルミニウム材を、例えば半連続鋳造により造塊し、必要に応じて均質化理した後、それぞれ所定の厚さまで熱間圧延し、ついで、各材料を組合わせ、常法に従って熱間圧延し、必要に応じて中間焼鈍を行って、所定厚さまで冷間圧延することによってクラッド材とし、これをチューブ状に成形することにより製造される。
【0061】
本発明のアルミニウム合金クラッドチューブ材を、自動車用エバポレータ、コンデンサなどに適用する場合には、例えば、クラッド材を成形してチューブ形状としたクラッドチューブ材の内部にブレージングシートからなるインナーフィンが装着、ろう付け加熱時にろう材を生成させるペーストを塗布したベアフィンをインナーフィンとして装着、またはクラッドチューブ材の内面に前記ペーストを塗布したのちベアフィンをインナーフィンとして装着、ろう付け接合し、外面側にもアウターフィンがろう付けされる。内部は冷媒通路となり、外面は大気からの結露水や融雪剤などに曝されるが、犠牲陽極材の存在により芯材を保護する。
【0062】
【実施例】
以下、本発明の実施例を比較例と対比して説明する。なお、これらの実施例は、本発明の一実施態様を示すものであり、本発明はこれらに限定されるものではない。
【0063】
実施例1
表1に示す組成を有する犠牲陽極材用アルミニウム合金、表2に示す組成を有する芯材用アルミニウム合金および表3に示す組成を有する接合材用アルミニウム合金を半連続鋳造により造塊し、犠牲陽極用アルミニウム合金と接合材用アルミニウム合金の鋳塊については200〜600℃で1〜20時間、芯材用アルミニウム合金の鋳塊については400〜600℃で5〜20時間の均質化処理を行った後、面削した。さらに犠牲陽極用アルミニウム合金の鋳塊と接合材用アルミニウム合金の鋳塊については300〜550℃の温度で熱間圧延して所定の厚さとした後、各材料を表4に示す組合わせにして、犠牲陽極材/芯材/接合材となるよう重ね合わせ、300〜550℃の温度で熱間クラッド圧延を行い、厚さ1〜5mmのクラッド材を得た。さらに、必要に応じて200〜500℃での中間焼鈍を介して冷間圧延し、クラッド材(クラッドチューブ材)とした。得られたクラッド材における犠牲陽極材の厚さとクラッド率、芯材の厚さとクラッド率を表4に示し、クラッド材全体厚さを表5に示す。
【0064】
上記クラッド材を試験材として、下記の方法で耐食性、ろう付け性、クラッド性および強度を評価した。結果を表5に示す。
耐食性:犠牲陽極材側に、Cl500ppm、SO 2− 2000ppmを含む50℃の腐食液(pH3)を6時間噴霧し、50℃の温度で6時間乾燥するサイクルを行い、貫通腐食が生じるまでに2000時間以上を要するものは合格(○)、2000時間未満で貫通腐食が生じるものは不合格(×)とする。また、下記のろう付け性評価時に、芯材と犠牲陽極材の界面近傍のCu濃度(ろう付け加熱時、界面から犠牲陽極材側へ芯材中のCuが拡散する)を測定した。
【0065】
ろう付け性:Al−Mn系合金芯材、Al−10%Si合金ろう材からなるブレージングシートをコルゲート加工してフィン材とし、これを試験材の犠牲陽極材面にアウターフィンとして組合わせ、また試験材の芯材面にインナーフィンとして組合わせ、フッ化物系フラックスを塗布して600℃の温度でろう付け接合し、接合率が98%以上のものを合格(○)、98%未満のものを不合格(×)とする。
【0066】
クラッド性:冷間圧延コイルとして得られるクラッド材の幅方向において、クラッド率が設定値の±5%を外れる部分がコイル両端から8cmを越え15mm以下の場合は○、8cm以下の場合は◎とする。
強度:クラッド材と同じ工程を経て作製した芯材から引張試験片を採取して引張試験を行い、引張強さが120MPa以上のものを合格(○)、120MPa未満のものを不合格(×)とする。実際の使用環境においては、犠牲陽極材は腐食により消耗して芯材のみが残存し、芯材のみで熱交換器の強度が維持される場合が多い。
【0067】
【表1】

Figure 2004225062
【0068】
【表2】
Figure 2004225062
【0069】
【表3】
Figure 2004225062
【0070】
【表4】
Figure 2004225062
【0071】
【表5】
Figure 2004225062
【0072】
表5にみられるように、本発明に従う試験材No.1〜20はいずれも、耐食性、ろう付け性。クラッド性に優れ、130MPa以上の優れた強度を有している。また、圧延加工性も良好であった。試験材No.20は、芯材の厚さが23μmであるが、接合材の存在により補強されるとともに、犠牲陽極材との電位差も確保されている。
【0073】
比較例1
表6に示す組成を有する犠牲陽極材用アルミニウム合金、表7に示す組成を有する芯材用アルミニウム合金および表8に示す組成を有うる接合材用アルミニウム合金を半連続鋳造により造塊し、犠牲陽極用アルミニウム合金と接合材用アルミニウム合金の鋳塊については200〜600℃で1〜20時間、芯材用アルミニウム合金の鋳塊については400〜600℃で5〜20時間の均質化処理を行った後、面削した。さらに犠牲陽極用アルミニウム合金の鋳塊と接合材用アルミニウム合金の鋳塊については300〜550℃の温度で熱間圧延して所定の厚さとした後、各材料を表9〜10に示す組合わせにして、犠牲陽極材/芯材/接合材となるよう重ね合わせ、300〜550℃の温度で熱間クラッド圧延を行い、厚さ1〜5mmのクラッド材を得た。さらに、必要に応じて200〜500℃での中間焼鈍を介して冷間圧延し、クラッド材(クラッドチューブ材)とした。得られたクラッド材における犠牲陽極材の厚さとクラッド率、芯材の厚さとクラッド率を表9〜10に示し、クラッド材の全体厚さを表11〜12に示す。なお、表6〜8において、本発明の条件を外れたものには下線を付した。
【0074】
上記クラッド材を試験材として、実施例1と同じ方法で耐食性、ろう付け性、クラッド性および強度を評価した。結果を表11〜12に示す。なお、試験材No.25以外はH14材に調質され、試験材No.25はO材(焼鈍材)に調質された。
【0075】
【表6】
Figure 2004225062
【0076】
【表7】
Figure 2004225062
【0077】
【表8】
Figure 2004225062
【0078】
【表9】
Figure 2004225062
【0079】
【表10】
Figure 2004225062
【0080】
【表11】
Figure 2004225062
【0081】
【表12】
Figure 2004225062
【0082】表11〜12に示すように、試験材No.21は犠牲陽極材のSiが多く単体Siが晶出するため、犠牲陽極材の消耗速度が早くなり耐食性が劣る。また、犠牲陽極材とアウターフィンのろう付け接合部において犠牲陽極材に溶融が生じ、ろう付け性が害される。試験材No.22は、犠牲陽極材のMnとSiの含有量の組合わせが適切でないため、Al−Mn−Si系の化合物が生成して犠牲陽極材の消耗速度が大きくなり、耐食性が劣る。試験材No.23は犠牲陽極材のFe量が多いため、Al−Fe系化合物が生成して犠牲陽極材の消耗速度が大きくなり、耐食性が劣る。また、犠牲陽極材の結晶粒径が微細となるため、ろう付け時にろうが犠牲陽極材の結晶粒界に浸透し、ろう付け性を害する。
【0083】
試験材No.24は犠牲陽極材のMn量が多いため、Al−Mn系化合物が生成して犠牲陽極材の消耗速度が大きくなり、耐食性が劣る。また、Cr、Zrの添加が少ないため、その効果も認められない。試験材No.25は、犠牲陽極材のMnとSiの含有量の組合わせが適切でないため、Al−Mn−Si系の化合物が生成して犠牲陽極材の消耗速度が大きくなり、耐食性が劣る。また、O材に調質されているため、ろう付け時、芯材中にろうが浸透してろう付け不良が生じた。試験材No.26は犠牲陽極材のMg量が多いため、Mgがフッ化物系フラックスと反応して、ろう付け性が害される。
【0084】
試験材No.27は犠牲陽極材のCr量が多いため、Al−Cr系の巨大晶出物が生成し、この晶出物周辺部においてクラッド率が不均一となった。試験材No.28は犠牲陽極材のZr量が多いため、Al−Zr系の巨大晶出物が生成し、この晶出物周辺部においてクラッド率が不均一となった。試験材No.29は犠牲陽極材のZn量が多いため、犠牲陽極材の消耗が顕著となり耐食性が劣る。
【0085】
試験材No.30は犠牲陽極材のIn量が多いため、犠牲陽極材の消耗速度が大きく耐食性が劣る。試験材No.31はSn量が多いため、犠牲陽極材の消耗速度が大きく耐食性が劣る。試験材No.32は犠牲陽極材のZn、In、Sn量が少なく犠牲陽極材の犠牲陽極効果が十分に発揮されないため耐食性が劣り、早期に貫通腐食が生じた。
【0086】
試験材No.33は芯材のSi量が多いため、ろう付け時、ろう付け接合部に溶融が生じ、ろう付け性が害される。試験材No.34は芯材のSi量が少ないため強度が不十分となった。試験材No.35は芯材のCu量が多いため、ろう付け時、ろう付け接合部に溶融が生じ、ろう付け性が害される。試験材No.36は芯材のCu量が少なく芯材と犠牲陽極材との電位差が十分に確保できないため、犠牲陽極材の犠牲陽極効果が不十分となり耐食性が劣る。
【0087】
試験材No.37は芯材のMn量が多いため、芯材が硬くなり熱間圧延が困難となってクラッド材の製造ができなかった。試験材No.38は芯材のMn量が少ないため強度が不十分となった。試験材No.39は芯材のMg量が多いため、Mgがフッ化物系フラックスと反応して、ろう付け性が害される。
【0088】
試験材No.40は芯材のTi量が多いため、Al−Ti系の巨大晶出物が生成し、この晶出物周辺部においてクラッド率が不均一となった。試験材No.41は芯材のTi量が少ないため、芯材が層状腐食形態を示さず、早期に貫通腐食が生じた。試験材No.42は接合材のSi量が犠牲陽極材のSi量より多く、接合層が硬くなり過ぎ、クラッド材が製造できなかった。
【0089】
試験材No.43は、接合材のFe量が多いため、ろう付け時の結晶粒が微細となり、ろうの浸透が生じ、ろう付け性が劣る。試験材No.44は、接合材のCu量が多いため、ろう付け接合部に溶融が生じた。試験材No.45は、芯材が厚さが小さく、接合材のCu量が芯材のCu量より少ないため、芯材から接合材にかけて電位の勾配が卑となり、安定した犠牲陽極効果が発揮できず、早期に貫通腐食が生じた。
【0090】
試験材No.46は、接合材のMn量が犠牲陽極材のMn量より多いため、接合層が硬くなり過ぎ、クラッド材が製造できなかった。試験材No.47は、接合材のMg量が多いため、Mgがフッ化物系フラックスと反応して、ろう付け性が害される。
【0091】
試験材No.48は、犠牲陽極材のクラッド率が大きいため、熱間圧延で犠牲陽極材と芯材とが接合せず、クラッド材の製造ができなかった。試験材No.49は犠牲陽極材の厚さが小さいため、犠牲陽極材の犠牲陽極効果が十分に発揮されず耐食性に劣る。試験材No.50は、接合材のクラッド率が犠牲陽極材のクラッド率より著しく大きいため、クラッド圧延ができなかった。
【0092】
試験材No.51は、接合材のクラッド率が犠牲陽極材のクラッド率より著しく小さきため、クラッド圧延ができなかった。試験材No.52はクラッド材の全体厚さが小さく、犠牲陽極材の厚さも小さいため、犠牲陽極材の犠牲陽極効果が十分に発揮されず耐食性に劣る。試験材No.53はろう付け加熱時の保持時間を長くしたもので、芯材と犠牲陽極材との界面のCu濃度が高くなり、Cuの犠牲陽極材への拡散が生じるため、犠牲陽極材の犠牲陽極効果が不十分となり早期に貫通腐食が生じた。
【0093】
【発明の効果】
本発明によれば、内面にブレージングシートからなるフィンがろう付け接合されて冷媒通路となり、外面側にもフィンがろう付けされ、大気からの結露水や融雪剤などに曝される場合に好適に使用できる熱交換器用部材、とくに自動車用熱交換器部材として、強度、ろう付け性および耐食性に優れたアルミニウム合金クラッドチューブ材、および当該クラッドチューブ材を組付けたコンデンサ、エバポレータのような熱交換器が提供される。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides an aluminum alloy clad tube material having excellent corrosion resistance, particularly an aluminum alloy clad tube material having excellent corrosion resistance which is suitably used as a heat exchanger member having a problem of corrosion resistance on the outer surface, such as an evaporator for automobiles and capacitors. And a heat exchanger to which the clad tube material is attached.
[0002]
[Prior art]
Conventionally, as a tube material of a heat exchanger in which cooling water circulates on the inner surface side, such as a radiator or a heater core for an automobile, an Al-Mn alloy is used as a core material, and an Al-Zn alloy is used as a core material. An aluminum alloy clad material in which the sacrificial anode material is clad and the core material is formed on the outer surface side and the sacrificial anode material is formed on the inner surface side, or an Al-Si alloy brazing material is further clad on the outer core material of the clad material. An aluminum alloy clad material is used (see Patent Document 1).
[0003]
In the above conventional aluminum alloy clad material, the sacrificial anode material on the inner surface side of the tube is for preventing corrosion caused by cooling water, and the Al-Si alloy brazing material on the outer surface side has outer fins on the outer surface of the tube. It is for brazing. The outer fin exerts a sacrificial anode effect to protect the core material from corrosion.
[0004]
In addition, a four-layer clad material in which an Al-Si alloy brazing material is provided on both surfaces of an aluminum alloy core material and a sacrificial anode material is clad between the core material and the brazing material has been proposed (Patent Document 2). reference). This four-layer clad material is used, for example, as a member of a drone cup type evaporator.
[0005]
The drone cup type evaporator laminates a press-formed core plate made of a four-layer clad material and a corrugated fin, joins the core plate and the fins through the brazing material of the core plate, and forms a coolant between the core plates. A passage is formed.
[0006]
The environment in which the evaporator is used is exposed to an aqueous solution with low conductivity, such as condensed water, so that the fins are unlikely to exhibit the anticorrosion effect.Therefore, the corrosion resistance of the clad material itself is important, and the core material will be used to achieve a long service life. A sacrificial anode material is interposed between the material.
[0007]
However, there is a problem that the presence of the brazing material speeds up the consumption of the sacrificial anode material and promotes corrosion. In order to solve this problem, recently, brazing fins are attached to the inner and outer surfaces of the tube material without using a clad material having an Al-Si alloy brazing material on both surfaces, or a brazing material is generated during brazing heating. There has been proposed a new evaporator having a structure in which a bear fin coated with a paste is attached and brazed.
[0008]
[Patent Document 1]
JP-A-11-293372 (Claims 1 and 2)
[Patent Document 2]
JP-A-2002-12935 (Claim 6, FIG. 2)
[0009]
[Problems to be solved by the invention]
The inventors have developed a brazing fin on the inner surface of the evaporator or the condenser without using a clad tube having an Al-Si-based alloy brazing material on both surfaces and a brazing fin on the inner surface to form a coolant passage, thereby forming an outer surface. Fins are also brazed on the side, and aluminum alloy clad tube materials for heat exchangers can be suitably used when exposed to dew condensation water from the atmosphere or snow melting agents. Aluminum alloys for core materials and aluminum alloys for sacrificial anode materials A clad tube material is proposed in which a core material is formed on the inner surface side and a sacrificial anode material is formed on the outer surface side.
[0010]
The present invention provides an aluminum alloy clad tube material that can provide more stable and superior corrosion resistance and brazing properties than the above-proposed aluminum alloy clad tube material, and a heat exchanger that incorporates the clad tube material. It is intended for that purpose.
[0011]
[Means for Solving the Problems]
The aluminum alloy clad tube material excellent in corrosion resistance according to claim 1 of the present invention for attaining the above object is obtained by cladding an aluminum alloy for a sacrificial anode material on one surface of an aluminum alloy for a core material, The other surface of the alloy is clad with aluminum or an aluminum alloy for a bonding material whose potential is equal to or higher than the core material and whose Mg content is regulated to 0.5% or less, and has a thickness of 300 μm or less. A clad tube material, characterized in that the inner surface side is formed as a joining material and the outer surface side is formed as a sacrificial anode material.
[0012]
The aluminum alloy clad tube material according to claim 2 is the aluminum alloy for a sacrificial anode material according to claim 1, wherein the aluminum alloy for sacrificial anode material is one of Zn2 to 6%, In 0.01 to 0.1%, and Sn 0.01 to 0.1%. It is characterized by containing at least one species, the balance being Al and impurities, and the Fe content is regulated to 0.5% or less.
[0013]
The aluminum alloy clad tube material according to claim 3 is characterized in that, in claim 2, the aluminum alloy for a sacrificial anode further contains 0.1 to 0.8% of Mn and regulates the Si content to less than 0.2%. Features.
[0014]
The aluminum alloy clad tube material according to claim 4 is the aluminum alloy for a sacrificial anode according to claim 2, further containing 0.2 to 1.0% of Si and regulating the Mn content to less than 0.1%. Features.
[0015]
The aluminum alloy clad tube according to claim 5 is the aluminum alloy for a sacrificial anode material according to claim 1, wherein the aluminum alloy for sacrificial anode material is one of Zn3 to 6%, In 0.02 to 0.06%, and Sn 0.03 to 0.08%. Containing at least 0.1% of Mn, and further containing 0.1 to 0.8% of Mn, with the balance being Al and impurities, the Fe content being regulated to 0.5% or less and the Si content being regulated to less than 0.2%. Features.
[0016]
The aluminum alloy clad tube material according to claim 6 is the aluminum alloy for a sacrificial anode material according to claim 1, wherein the aluminum alloy for sacrificial anode material is one of Zn3 to 6%, In 0.02 to 0.06%, and Sn 0.03 to 0.08%. At least 0.5% or less, and the Mn content is controlled to be less than 0.1%. Features.
[0017]
The aluminum alloy clad tube material according to claim 7 is the aluminum alloy for a sacrificial anode according to any one of claims 2 to 6, further comprising one or more of Cr 0.05 to 0.25% and Zr 0.05 to 0.25%. It is characterized by containing two types.
[0018]
The aluminum alloy clad tube material according to claim 8 is the aluminum alloy for core material according to any one of claims 1 to 7, wherein the aluminum alloy for the core material is Si 0.2 to 1%, Cu 0.1 to 0.8%, and Mn 0.6 to 2%. , Ti of 0.1 to 0.3%, the balance being Al and impurities, and the Mg content is limited to 0.5% or less.
[0019]
The aluminum alloy clad tube material excellent in corrosion resistance according to claim 9 is obtained by applying the aluminum alloy for sacrificial anode material according to claim 2 as the aluminum alloy for sacrificial anode material, and as the aluminum alloy for core material. 2. The aluminum alloy clad tube material according to claim 1, wherein the aluminum alloy for a joining material contains 0.1 to 0.8% of Cu, the balance is Al and impurities, and the Fe content is 0. 0.5% or less.
[0020]
The aluminum alloy clad tube material having excellent corrosion resistance according to claim 10 is obtained by applying the aluminum alloy for sacrificial anode material according to claim 3 as an aluminum alloy for sacrificial anode material, and as the aluminum alloy for core material. The aluminum alloy clad tube material according to claim 1, wherein the aluminum alloy for a joining material contains 0.1 to 0.8% of Cu and 0.1 to 0.8% of Mn, and the balance of Al and It is made of impurities and the Fe content is regulated to 0.5% or less.
[0021]
An aluminum alloy clad tube material excellent in corrosion resistance according to claim 11 is the aluminum alloy clad tube according to claim 10, wherein the aluminum alloy for the joining material is one of Cr 0.05 to 0.25% and Zr 0.05 to 0.25%. Or, it is characterized by containing two types.
[0022]
The aluminum alloy clad tube material excellent in corrosion resistance according to claim 12 is obtained by applying the aluminum alloy for sacrificial anode material according to claim 4 as the aluminum alloy for sacrificial anode material, and as the aluminum alloy for core material according to claim 8. The aluminum alloy clad tube material according to claim 1, wherein the aluminum alloy for a joining material contains 0.1 to 0.8% of Cu and 0.2 to 1.0% of Si. , With the balance being Al and impurities, and the Fe content is regulated to 0.5% or less.
[0023]
The aluminum alloy clad tube material excellent in corrosion resistance according to claim 13 is characterized in that, in any one of claims 9 to 12, the Cu content of the bonding material is larger than the Cu content of the core material.
[0024]
The aluminum alloy clad tube material excellent in corrosion resistance according to claim 14 is the method according to any one of claims 9 to 13, wherein the total thickness of the core material and the bonding material is 30 μm or more and the interface between the sacrificial anode material and the core material is The average Cu concentration before the brazing heating to a portion of 30 μm to the core material is not less than the Cu concentration of the core material.
[0025]
An aluminum alloy clad tube material excellent in corrosion resistance according to claim 15 is characterized in that, in claim 14, the cladding ratio of the joining material is ± 10% or less of the cladding ratio of the sacrificial anode material.
[0026]
The aluminum alloy clad tube material according to claim 16 is characterized in that, in any one of claims 1 to 15, the sacrificial anode material is clad at a thickness of 15 μm or more and a cladding ratio of 40% or less.
[0027]
An aluminum alloy clad tube material according to claim 17 is characterized in that, in any one of claims 1 to 16, the core material is clad with a thickness of 30 µm or more.
[0028]
The aluminum alloy clad tube material according to claim 18 is characterized in that, in any one of claims 1 to 17, the aluminum alloy clad tube material is an H heat treatment material.
Further, in the heat exchanger according to the present invention, an inner fin made of brazing is mounted inside the clad tube material according to any one of claims 1 to 18, and a paste for generating a brazing material when brazing is heated is applied. The bare fins are mounted as inner fins, or the paste is applied to the inner surface of the clad tube material, and then the bare fins are mounted as inner fins and brazed, and after brazing, the sacrificial anode is formed from the interface between the core material and the sacrificial anode material. The Cu concentration at the portion of 15 μm on the material side is の of the average value of the Cu concentration of each material layer at the stage before brazing heating from the interface between the core material and the sacrificial anode material to the portion of 30 μm on the core material side. It is characterized by the following.
[0030]
BEST MODE FOR CARRYING OUT THE INVENTION
The significance of the structure of the aluminum alloy clad tube material of the present invention and the reason for the limitation will be described.
(Composition of sacrificial anode material)
Zn functions to give a sacrificial anode effect to the cladding tube material. The preferred content of Zn is in the range of 2 to 6%. If the content is less than 2%, the effect is not sufficient, and if it exceeds 6%, the consumption due to self-corrosion becomes severe. The more preferable content range of Zn is 2 to 5%.
[0031]
In functions to provide a sacrificial anode effect to the cladding tube material. The preferred content of In is in the range of 0.01 to 0.1%. If the content is less than 0.01%, the effect is not sufficient, and if it exceeds 0.1%, the consumption due to self-corrosion becomes severe. The more preferable content range of In is 0.02 to 0.06%.
[0032]
Sn functions to provide a sacrificial anode effect to the cladding tube material. The preferred content of Sn is in the range of 0.01 to 0.1%. If the content is less than 0.01%, the effect is not sufficient, and if it exceeds 0.1%, the consumption due to self-corrosion becomes severe. The more preferable content range of Sn is 0.03 to 0.08%.
[0033]
Fe is preferably regulated to 0.5% or less, and if it exceeds 0.5%, the self-corrosion rate increases. It is more preferable that the content is regulated to 0.1% or less. However, for example, in order to reduce the content to less than 0.01%, a high-purity metal must be used, which increases the cost. It is desirable to make the above.
[0034]
In brazing using a fluoride-based flux, Mg reacts with fluoride and impairs the brazing properties. Therefore, it is preferable that Mg is regulated to 0.5% or less.
[0035]
Mn functions to increase the strength. The preferred content of Mn is in the range of 0.1 to 0.8%. If the content is less than 0.1%, the effect is small, and the cladding ratio in the width direction becomes non-uniform. If it exceeds 0.8%, self-corrosion becomes severe. When Mn is contained in the range of 0.1 to 0.8%, it is preferable to limit the amount of Si to less than 0.2%. Increase. More preferably, the content of Si is limited to 0.1% or less. However, in order to reduce the amount of Si to less than 0.01%, for example, a high-purity metal has to be used, which increases the cost. Is desirably 0.01% or more.
[0036]
Zn, In and Sn when Mn is contained at 0.1 to 0.8% contain at least one of them at 3 to 6%, 0.02 to 0.06% and 0.03%, respectively. It is preferable to contain it in the range of -0.08%.
[0037]
Si functions to increase the strength. The preferred content of Si is in the range of 0.2 to 1.0%, and if it is less than 0.2%, the cladding ratio in the width direction becomes non-uniform. If it exceeds 1.0%, self-corrosion becomes severe. When Si is contained in the range of 0.2 to 1.0%, the Mn content is preferably limited to less than 0.1%, and when 0.1% or more is contained, a compound is formed with Si and the amount of self-corrosion is increased. Increase. Preferably, it is limited to 0.05% or less.
[0038]
Zn, In and Sn when Si is contained in an amount of 0.2 to 1.0% contain at least one of them at 3 to 6%, 0.02 to 0.06% and 0.03%, respectively. It is preferable to contain it in the range of -0.08%.
[0039]
Cr improves the brazing properties by coarsening the crystal grains during brazing heating. The preferable content of Cr is in the range of 0.05 to 0.25%. When the content is less than 0.05%, the effect is small. When the content exceeds 0.25%, a giant crystal is formed, and the vicinity of the giant crystal is generated. Destabilizes the cladding rate in the part.
[0040]
Zr increases the crystal grains during brazing and improves brazing properties. The preferable content of Zr is in the range of 0.05 to 0.25%. When the content is less than 0.05%, the effect is small, and when it exceeds 0.25%, a giant crystal is formed. Destabilizes the cladding rate in the part.
[0041]
(Composition of core material)
Si functions to improve the strength. The preferable content of Si is in the range of 0.2 to 1%. If the content is less than 0.2%, the effect is not sufficient. If the content is more than 1%, the melting point is lowered and the brazing joint is melted. It will be easier. The more preferable content range of Si is 0.5 to 0.9%.
[0042]
Cu acts to make the potential of the core material noble. The preferred content of Cu is in the range of 0.1 to 0.8%. If the content is less than 0.1%, the effect is not sufficient. Tends to occur. The more preferable content range of Cu is more than 0.2% and 0.8% or less.
[0043]
Mn functions to increase the strength. The preferred content of Mn is in the range of 0.6 to 2%. If the content is less than 0.6%, the effect is small, and if it exceeds 2%, the strength is increased and the rolling becomes difficult. The more preferable content range of Mn is more than 1.5% and 2% or less.
[0044]
Mg must be regulated to 0.5% or less, and if it exceeds 0.5%, in brazing using a fluoride-based flux, Mg reacts with the flux and impairs brazing properties.
[0045]
Ti is distributed in a layered manner, and the corrosion form is a layered general corrosion type, thereby improving the corrosion resistance. The preferable content of Ti is in the range of 0.1 to 0.3%. When the content is less than 0.1%, the effect is small. When the content is more than 0.3%, a giant compound is generated, and the cladding ratio around the giant compound is increased. Is uneven.
[0046]
(Composition of bonding material)
Cu functions to keep the potential of the core material noble and enhance the sacrificial anode effect of the sacrificial anode material. The preferable content of Cu is in the range of 0.1 to 0.8%. When the content is less than 0.1%, the effect is small. When the content is more than 0.8%, the melting point is reduced, and melting occurs at the brazing joint. It will be easier. The more preferable content range of Cu is more than 0.2% and 0.8% or less. It is preferable that the Cu content of the bonding material is larger than the Cu content of the core material. The potential of the bonding material is more noble than the potential of the core material, and the potential is made lower from the bonding material to the core material and the sacrificial anode material. Thus, the sacrificial anode material can exhibit a stable sacrificial anode effect.
[0047]
Fe is preferably regulated to 0.5% or less, and if it exceeds 0.5%, the brazing property is reduced.
[0048]
In brazing using a fluoride-based flux, Mg reacts with fluoride and impairs the brazing properties. Therefore, it is preferable that Mg is regulated to 0.5% or less.
[0049]
Mn has the effect of stabilizing the clad rate of the clad material in the coil width direction. The preferable content of Mn is in the range of 0.1 to 0.8%. When the content is less than 0.1%, the effect is small, and when it exceeds 0.8%, the rollability is reduced.
[0050]
Si has the effect of stabilizing the cladding ratio of the cladding material in the coil width direction. The preferable content of Si is in the range of 0.2 to 1.0%. When the content is less than 0.2%, the effect is small. When the content is more than 1.0%, the melting point is reduced, and melting occurs during brazing. Impairs brazing properties.
[0051]
Cr improves the brazing properties by coarsening the crystal grains during brazing heating. The preferable content of Cr is in the range of 0.05 to 0.25%. When the content is less than 0.05%, the effect is small. When the content exceeds 0.25%, a giant crystal is formed, and the vicinity of the giant crystal is generated. Destabilizes the cladding rate in the part.
[0052]
Zr increases the crystal grains during brazing and improves brazing properties. The preferable content of Zr is in the range of 0.05 to 0.25%. When the content is less than 0.05%, the effect is small, and when it exceeds 0.25%, a giant crystal is formed. Destabilizes the cladding rate in the part.
[0053]
(Thickness of clad tube material)
The aluminum alloy tube of the present invention is formed by cladding one surface of an aluminum alloy for a core material with an aluminum alloy for a sacrificial anode material and cladding the other surface of the aluminum alloy for a core material with aluminum or an aluminum alloy for a bonding material. It is a clad tube material having a thickness of 300 μm or less, and is intended to obtain a thinned clad tube material capable of achieving weight reduction of the heat exchanger. The preferred thickness is 45 to 300 μm, and if it is less than 45 μm, it is difficult to obtain sufficient corrosion resistance.
[0054]
(Thickness of core material and bonding material)
The total thickness of the core material and the bonding material is 30 μm or more, and the average Cu concentration before brazing heating from the interface between the sacrificial anode material and the core material to the core material at a portion of 30 μm is equal to or more than the Cu concentration of the core material. Is preferred. With this configuration, since the potential is the same or the potential gradient becomes noble from the core material to the bonding material, a stable sacrificial anode effect by the sacrificial anode material can be obtained.
[0055]
(Clad ratio of bonding material)
It is desirable that the cladding ratio of the joining material is ± 10% or less of the cladding ratio of the sacrificial anode material. If it exceeds ± 10%, clad rolling becomes difficult.
[0056]
(Thickness of sacrificial anode material)
The clad thickness of the sacrificial anode material in the clad tube material of the present invention is preferably 15 μm or more, and the clad ratio is preferably 40% or less. If the clad thickness is less than 15 μm, the sacrificial anode effect is small and sufficient corrosion resistance cannot be obtained, and if the clad ratio exceeds 40%, the cladding becomes difficult.
[0057]
(Thickness of core material)
The thickness of the core material in the clad tube material of the present invention is preferably 30 μm or more. If it is less than 30 μm, it is difficult to secure a potential difference between the core material and the sacrificial anode material, so that the sacrificial anode effect cannot be exerted and penetration corrosion tends to occur.
[0058]
(refining)
It is preferable that the clad tube material of the present invention is an H-tempered material, particularly a cold-worked material, and the clad material before being formed into a clad tube material is a cold-rolled material such as H14 material. For example, in the case of the O material, at the time of brazing, the brazing material penetrates into the core material to reduce the brazing property, and erosion tends to occur in the sacrificial anode material at the time of brazing.
[0059]
The heat exchanger according to the present invention is one in which an inner fin made of brazing is attached and brazed to the inside of the clad tube material, and after brazing, 15 μm from the interface between the core material and the sacrificial anode material to the sacrificial anode material side. The Cu concentration in the region of the above should be not more than の of the average value of the Cu concentration of each material layer at the stage before brazing heating from the interface between the core material and the sacrificial anode material to the region of 30 μm on the core material side. Thereby, the potential difference between the sacrificial anode material and the core material is sufficiently ensured, and the sacrificial anode effect is remarkably exhibited. Assuming that the thickness of the core material layer is t1, the Cu concentration is c1, the thickness of the bonding material layer is t2, and the Cu concentration is c2, the average value of the Cu concentration of each material layer is (t1 * c1 + t2 * c2) / (t1 + t2). ) (Where t1 + t2 = 30 μm).
[0060]
Aluminum alloy clad tube material of the present invention, sacrificial anode material, aluminum material constituting the core material and the joining material, for example, ingot by semi-continuous casting, after homogenization if necessary, each to a predetermined thickness Hot rolling, then combining each material, hot rolling according to the usual method, performing intermediate annealing as necessary, cold rolling to a predetermined thickness to form a clad material, which is formed into a tube shape It is manufactured by doing.
[0061]
When the aluminum alloy clad tube material of the present invention is applied to an evaporator for an automobile or a capacitor, for example, an inner fin made of a brazing sheet is mounted inside a clad tube material formed into a tube by forming a clad material, A bare fin coated with a paste that generates a brazing material at the time of brazing is attached as an inner fin, or the paste is applied to the inner surface of a clad tube material, and then a bare fin is attached as an inner fin, brazed and joined, and an outer surface is also attached. Fins are brazed. The inside is a refrigerant passage, and the outside is exposed to dew condensation water and snow melting agent from the atmosphere, but the core material is protected by the presence of the sacrificial anode material.
[0062]
【Example】
Hereinafter, examples of the present invention will be described in comparison with comparative examples. These examples show one embodiment of the present invention, and the present invention is not limited to these.
[0063]
Example 1
An aluminum alloy for a sacrificial anode material having a composition shown in Table 1, an aluminum alloy for a core material having a composition shown in Table 2, and an aluminum alloy for a bonding material having a composition shown in Table 3 were ingot-formed by semi-continuous casting. For ingots of aluminum alloys for joints and aluminum alloys for joining materials, homogenization treatment was performed at 200 to 600 ° C. for 1 to 20 hours, and for ingots of aluminum alloys for core materials at 400 to 600 ° C. for 5 to 20 hours. Later, it was chamfered. Further, the ingot of the aluminum alloy for the sacrificial anode and the ingot of the aluminum alloy for the joining material were hot-rolled at a temperature of 300 to 550 ° C. to a predetermined thickness. Then, they were superposed so as to have a sacrificial anode material / core material / joining material, and hot clad rolling was performed at a temperature of 300 to 550 ° C. to obtain a clad material having a thickness of 1 to 5 mm. Further, if necessary, cold rolling was performed through intermediate annealing at 200 to 500 ° C. to obtain a clad material (clad tube material). Table 4 shows the thickness and cladding ratio of the sacrificial anode material, the thickness of the core material and the cladding ratio in the obtained clad material, and Table 5 shows the total thickness of the clad material.
[0064]
Using the above clad material as a test material, the corrosion resistance, brazing property, clad property and strength were evaluated by the following methods. Table 5 shows the results.
Corrosion: the sacrificial anode material side, Cl - 500 ppm, and 6 hours spray corrosion solution (pH 3) of 50 ° C. containing SO 4 2- 2000ppm, performs cycle to dry for six hours at a temperature of 50 ° C., occurs through corrosion A sample that requires 2,000 hours or more to pass is rated as acceptable ((), and one that causes penetration corrosion in less than 2,000 hours is rated as unacceptable (x). Further, at the time of the brazing property evaluation described below, the Cu concentration near the interface between the core material and the sacrificial anode material (Cu in the core material diffuses from the interface to the sacrificial anode material side during the brazing heating) was measured.
[0065]
Brazing ability: A brazing sheet composed of an Al-Mn alloy core material and an Al-10% Si alloy brazing material is corrugated to form a fin material, which is combined with a sacrificial anode material surface of a test material as an outer fin. Combined as inner fins on the core material surface of the test material, apply fluoride flux and braze at 600 ° C. Pass rate of 98% or more is acceptable (o), less than 98% Is rejected (x).
[0066]
Clad properties: In the width direction of the clad material obtained as a cold-rolled coil, a portion where the clad ratio deviates from ± 5% of the set value exceeds 8 cm from both ends of the coil and is 15 mm or less, and ○ is 8 cm or less. I do.
Strength: Tensile test pieces were taken from the core material produced through the same process as the clad material and subjected to a tensile test, and those having a tensile strength of 120 MPa or more passed (o) and those with a tensile strength of less than 120 MPa failed (x). And In an actual use environment, the sacrificial anode material is consumed by corrosion, leaving only the core material, and the strength of the heat exchanger is often maintained only by the core material.
[0067]
[Table 1]
Figure 2004225062
[0068]
[Table 2]
Figure 2004225062
[0069]
[Table 3]
Figure 2004225062
[0070]
[Table 4]
Figure 2004225062
[0071]
[Table 5]
Figure 2004225062
[0072]
As can be seen in Table 5, the test materials No. 1 to 20 are all corrosion resistance and brazing properties. It has excellent cladding properties and excellent strength of 130 MPa or more. The rolling workability was also good. Test material No. Reference numeral 20 has a core material of 23 μm in thickness, but is reinforced by the presence of the bonding material and also has a potential difference from the sacrificial anode material.
[0073]
Comparative Example 1
An aluminum alloy for a sacrificial anode material having a composition shown in Table 6, an aluminum alloy for a core material having a composition shown in Table 7, and an aluminum alloy for a bonding material having a composition shown in Table 8 were ingot-formed by semi-continuous casting. The ingot of the aluminum alloy for the anode and the aluminum alloy for the joining material is subjected to homogenization treatment at 200 to 600 ° C. for 1 to 20 hours, and the ingot of the aluminum alloy for the core material is subjected to homogenization treatment at 400 to 600 ° C. for 5 to 20 hours. After that, it was chamfered. Further, the ingot of the aluminum alloy for the sacrificial anode and the ingot of the aluminum alloy for the joining material were hot-rolled at a temperature of 300 to 550 ° C. to a predetermined thickness, and the respective materials were combined as shown in Tables 9 to 10. Then, they were superimposed so as to be a sacrificial anode material / core material / joining material, and hot clad rolling was performed at a temperature of 300 to 550 ° C. to obtain a clad material having a thickness of 1 to 5 mm. Further, if necessary, cold rolling was performed through intermediate annealing at 200 to 500 ° C. to obtain a clad material (clad tube material). Tables 9 to 10 show the thickness and the cladding ratio of the sacrificial anode material and the core material and the cladding ratio in the obtained clad material, and Tables 11 to 12 show the total thickness of the clad material. In Tables 6 to 8, the values out of the conditions of the present invention are underlined.
[0074]
Using the above-mentioned clad material as a test material, corrosion resistance, brazing property, clad property and strength were evaluated in the same manner as in Example 1. The results are shown in Tables 11 to 12. The test material No. The test material No. 25 was tempered to H14 material. No. 25 was tempered to an O material (annealed material).
[0075]
[Table 6]
Figure 2004225062
[0076]
[Table 7]
Figure 2004225062
[0077]
[Table 8]
Figure 2004225062
[0078]
[Table 9]
Figure 2004225062
[0079]
[Table 10]
Figure 2004225062
[0080]
[Table 11]
Figure 2004225062
[0081]
[Table 12]
Figure 2004225062
As shown in Tables 11 to 12, the test material No. In No. 21, since the amount of Si in the sacrificial anode material is large and single Si is crystallized, the consumption speed of the sacrificial anode material is increased, and the corrosion resistance is poor. In addition, the sacrificial anode material is melted at the brazed joint between the sacrificial anode material and the outer fin, and the brazing property is impaired. Test material No. In No. 22, since the combination of the Mn and Si contents of the sacrificial anode material is not appropriate, an Al-Mn-Si-based compound is generated, the consumption rate of the sacrificial anode material is increased, and the corrosion resistance is poor. Test material No. In No. 23, since the amount of Fe in the sacrificial anode material is large, an Al—Fe-based compound is generated, the consumption rate of the sacrificial anode material is increased, and the corrosion resistance is poor. Further, since the crystal grain size of the sacrificial anode material becomes fine, the brazing material penetrates into the crystal grain boundaries of the sacrificial anode material during brazing, impairing the brazing property.
[0083]
Test material No. In No. 24, since the amount of Mn in the sacrificial anode material is large, an Al—Mn-based compound is generated, the consumption rate of the sacrificial anode material is increased, and the corrosion resistance is poor. Further, since the addition of Cr and Zr is small, the effect is not recognized. Test material No. In No. 25, since the combination of the Mn and Si contents of the sacrificial anode material is not appropriate, an Al-Mn-Si-based compound is generated, the consumption rate of the sacrificial anode material is increased, and the corrosion resistance is poor. In addition, since the material was tempered with the O material, the brazing material penetrated into the core material during brazing, resulting in poor brazing. Test material No. In No. 26, since the amount of Mg in the sacrificial anode material is large, Mg reacts with the fluoride-based flux to impair brazing properties.
[0084]
Test material No. In No. 27, since the amount of Cr in the sacrificial anode material was large, an Al-Cr-based giant crystallized product was formed, and the cladding ratio became nonuniform in the periphery of the crystallized material. Test material No. In No. 28, since the amount of Zr in the sacrificial anode material was large, an Al-Zr-based giant crystallized product was generated, and the cladding ratio became nonuniform in the periphery of the crystallized material. Test material No. In No. 29, since the amount of Zn in the sacrificial anode material is large, consumption of the sacrificial anode material is remarkable and corrosion resistance is poor.
[0085]
Test material No. In No. 30, since the sacrificial anode material has a large amount of In, the consumption rate of the sacrificial anode material is large and the corrosion resistance is poor. Test material No. 31 has a large amount of Sn, so the consumption rate of the sacrificial anode material is large and the corrosion resistance is poor. Test material No. In No. 32, the amounts of Zn, In, and Sn of the sacrificial anode material were small and the sacrificial anode effect of the sacrificial anode material was not sufficiently exhibited, so that the corrosion resistance was poor and penetration corrosion occurred early.
[0086]
Test material No. In the case of No. 33, since the amount of Si in the core material is large, melting occurs at the brazing joint at the time of brazing, and the brazing property is impaired. Test material No. In No. 34, the strength was insufficient because the amount of Si in the core material was small. Test material No. In the case of No. 35, since the amount of Cu in the core material is large, at the time of brazing, melting occurs at the brazed joint, and the brazing property is impaired. Test material No. In No. 36, since the Cu content of the core material is small and the potential difference between the core material and the sacrificial anode material cannot be sufficiently ensured, the sacrificial anode effect of the sacrificial anode material is insufficient and the corrosion resistance is poor.
[0087]
Test material No. In No. 37, since the core material had a large Mn content, the core material became hard and hot rolling became difficult, so that the clad material could not be manufactured. Test material No. No. 38 had insufficient strength because the Mn content of the core material was small. Test material No. Since 39 has a large amount of Mg in the core material, Mg reacts with the fluoride-based flux, and the brazing property is impaired.
[0088]
Test material No. In No. 40, since the amount of Ti in the core material was large, an Al-Ti-based giant crystallized product was generated, and the cladding ratio became non-uniform in the periphery of the crystallized material. Test material No. In No. 41, since the amount of Ti in the core material was small, the core material did not show the form of layered corrosion, and penetration corrosion occurred early. Test material No. In No. 42, the Si amount of the bonding material was larger than the Si amount of the sacrificial anode material, the bonding layer was too hard, and the clad material could not be manufactured.
[0089]
Test material No. In No. 43, since the amount of Fe in the joining material is large, the crystal grains during brazing become fine, so that the penetration of the brazing occurs and the brazing property is inferior. Test material No. In No. 44, since the amount of Cu in the joining material was large, melting occurred at the brazed joint. Test material No. 45, the thickness of the core material is small, and the Cu content of the bonding material is smaller than the Cu content of the core material, so that the potential gradient becomes low from the core material to the bonding material, and a stable sacrificial anode effect cannot be exhibited. Piercing corrosion occurred.
[0090]
Test material No. In No. 46, since the Mn content of the bonding material was larger than the Mn content of the sacrificial anode material, the bonding layer was too hard, and the clad material could not be manufactured. Test material No. In the case of No. 47, since the amount of Mg in the joining material is large, Mg reacts with the fluoride-based flux, and the brazing property is impaired.
[0091]
Test material No. In No. 48, the cladding ratio of the sacrificial anode material was large, so that the sacrificial anode material and the core material were not joined by hot rolling, and the clad material could not be manufactured. Test material No. Since the thickness of the sacrificial anode material 49 is small, the sacrificial anode effect of the sacrificial anode material is not sufficiently exhibited, and the corrosion resistance is poor. Test material No. In No. 50, since the clad ratio of the joining material was significantly larger than the clad ratio of the sacrificial anode material, the clad rolling could not be performed.
[0092]
Test material No. In No. 51, the clad ratio of the joining material was significantly smaller than the clad ratio of the sacrificial anode material, so that the clad rolling was not possible. Test material No. 52 has a small overall thickness of the clad material and a small thickness of the sacrificial anode material, so that the sacrificial anode effect of the sacrificial anode material is not sufficiently exhibited, and the corrosion resistance is poor. Test material No. Numeral 53 indicates a longer holding time at the time of brazing heating. The Cu concentration at the interface between the core material and the sacrificial anode material increases, and Cu diffuses into the sacrificial anode material. Was insufficient and penetration corrosion occurred early.
[0093]
【The invention's effect】
According to the present invention, a fin made of a brazing sheet is brazed to the inner surface to form a refrigerant passage, and the fin is brazed also to the outer surface, which is suitably used when exposed to dew condensation water or a snow melting agent from the atmosphere. Aluminum alloy clad tube material excellent in strength, brazeability and corrosion resistance, and heat exchangers such as capacitors and evaporators with the clad tube material as heat exchanger members that can be used, especially heat exchanger members for automobiles Is provided.

Claims (19)

芯材用アルミニウム合金の一方の面に犠牲陽極材用アルミニウム合金をクラッドし、芯材用アルミニウム合金の他方の面に、電位が芯材と同等または芯材より貴であり且つMg含有量を0.5%(質量%、以下同じ)以下に規制した接合材用アルミニウムまたはアルミニウム合金をクラッドしてなる厚さ300μm以下のクラッドチューブ材であり、内面側が接合材、外面側が犠牲陽極材となるよう成形されていることを特徴とする耐食性に優れたアルミニウム合金クラッドチューブ材。An aluminum alloy for a sacrificial anode material is clad on one surface of the aluminum alloy for the core material, and the other surface of the aluminum alloy for the core material has a potential equal to or higher than that of the core material and a Mg content of 0. A cladding tube material having a thickness of 300 μm or less, which is formed by cladding aluminum or an aluminum alloy for a bonding material regulated to not more than 0.5% (mass%, the same applies hereinafter). Aluminum alloy clad tube material excellent in corrosion resistance characterized by being formed. 前記犠牲陽極材用アルミニウム合金が、Zn2〜6%(質量%、以下同じ)、In0.01〜0.1%、Sn0.01〜0.1%のうちの1種以上を含有し、残部Alおよび不純物からなり、Fe含有量を0.5%以下に規制したことを特徴とする請求項1記載の耐食性に優れたアルミニウム合金クラッドチューブ材。The aluminum alloy for a sacrificial anode material contains at least one of Zn2 to 6% (mass%, the same applies hereinafter), In 0.01 to 0.1%, and Sn 0.01 to 0.1%, with the balance being Al 2. The aluminum alloy clad tube material having excellent corrosion resistance according to claim 1, wherein said material is made up of impurities and impurities, and the Fe content is regulated to 0.5% or less. 前記犠牲陽極材用アルミニウム合金が、さらにMn0.1〜0.8%を含有し、Si含有量を0.2%未満に規制したことを特徴とする請求項2記載の耐食性に優れたアルミニウム合金クラッドチューブ材。The aluminum alloy having excellent corrosion resistance according to claim 2, wherein the aluminum alloy for a sacrificial anode material further contains 0.1 to 0.8% of Mn and the content of Si is regulated to less than 0.2%. Clad tube material. 前記犠牲陽極材用アルミニウム合金が、さらにSi0.2〜1.0%を含有し、Mn含有量を0.1%未満に規制したことを特徴とする請求項2記載の耐食性に優れたアルミニウム合金クラッドチューブ材。The aluminum alloy having excellent corrosion resistance according to claim 2, wherein the aluminum alloy for a sacrificial anode material further contains 0.2 to 1.0% of Si, and the Mn content is regulated to less than 0.1%. Clad tube material. 前記犠牲陽極材用アルミニウム合金が、Zn3〜6%、In0.02〜0.06%、Sn0.03〜0.08%のうちの1種以上を含有し、さらにMn0.1〜0.8%を含有し、残部Alおよび不純物からなり、Fe含有量を0.5%以下、Si含有量を0.2%未満に規制したことを特徴とする請求項1記載の耐食性に優れたアルミニウム合金クラッドチューブ材。The aluminum alloy for a sacrificial anode material contains at least one of Zn 3 to 6%, In 0.02 to 0.06%, and Sn 0.03 to 0.08%, and further has an Mn of 0.1 to 0.8%. 2. The aluminum alloy clad having excellent corrosion resistance according to claim 1, wherein the aluminum alloy clad is made up of Al and impurities, and has a Fe content of 0.5% or less and a Si content of less than 0.2%. Tube material. 前記犠牲陽極材用アルミニウム合金が、Zn3〜6%、In0.02〜0.06%、Sn0.03〜0.08%のうちの1種以上を含有し、さらにSi0.2〜1.0%を含有し、残部Alおよび不純物からなり、Fe含有量を0.5%以下、Mn含有量を0.1%未満に規制したことを特徴とする請求項1記載の耐食性に優れたアルミニウム合金クラッドチューブ材。The aluminum alloy for a sacrificial anode material contains at least one of Zn 3 to 6%, In 0.02 to 0.06%, and Sn 0.03 to 0.08%, and further contains Si 0.2 to 1.0%. 2. The aluminum alloy clad having excellent corrosion resistance according to claim 1, wherein the aluminum alloy clad comprises Al and impurities, and the Fe content is regulated to 0.5% or less and the Mn content is regulated to less than 0.1%. Tube material. 前記犠牲陽極材用アルミニウム合金が、さらにCr0.05〜0.25%、Zr0.05〜0.25%の1種または2種を含有することを特徴とする請求項2〜6のいずれかに記載の耐食性に優れたアルミニウム合金クラッドチューブ材。The aluminum alloy for a sacrificial anode material further contains one or two of 0.05 to 0.25% of Cr and 0.05 to 0.25% of Zr. Aluminum alloy clad tube material with excellent corrosion resistance as described. 前記芯材用アルミニウム合金が、Si0.2〜1%、Cu0.1〜0.8%、Mn0.6〜2%、Ti0.1〜0.3%を含有し、残部Alおよび不純物からなり、Mg含有量を0.5%以下に規制したことを特徴とする請求項1〜7のいずれかに記載の耐食性に優れたアルミニウム合金クラッドチューブ材。The core material aluminum alloy contains Si 0.2 to 1%, Cu 0.1 to 0.8%, Mn 0.6 to 2%, and Ti 0.1 to 0.3%, the balance being Al and impurities; The aluminum alloy clad tube material excellent in corrosion resistance according to any one of claims 1 to 7, wherein the Mg content is regulated to 0.5% or less. 犠牲陽極材用アルミニウム合金として請求項2記載の犠牲陽極材用アルミニウム合金を適用し、芯材用アルミニウム合金として請求項8記載の芯材用アルミニウム合金を適用する請求項1記載のアルミニウム合金クラッドチューブ材であって、接合材用アルミニウム合金がCu0.1〜0.8%を含有し、残部Alおよび不純物からなり、Fe含有量を0.5%以下に規制したことを特徴とする耐食性に優れたアルミニウム合金クラッドチューブ材。The aluminum alloy clad tube according to claim 1, wherein the aluminum alloy for a sacrificial anode material according to claim 2 is applied as the aluminum alloy for a sacrificial anode material, and the aluminum alloy for a core material according to claim 8 is applied as the aluminum alloy for a core material. Excellent corrosion resistance, characterized in that the aluminum alloy for a joining material contains 0.1 to 0.8% of Cu, the balance is made of Al and impurities, and the Fe content is regulated to 0.5% or less. Aluminum alloy clad tube material. 犠牲陽極材用アルミニウム合金として請求項3記載の犠牲陽極材用アルミニウム合金を適用し、芯材用アルミニウム合金として請求項8記載の芯材用アルミニウム合金を適用する請求項1記載のアルミニウム合金クラッドチューブ材であって、接合材用アルミニウム合金がCu0.1〜0.8%、Mn0.1〜0.8%を含有し、残部Alおよび不純物からなり、Fe含有量を0.5%以下に規制したことを特徴とする耐食性に優れたアルミニウム合金クラッドチューブ材。The aluminum alloy clad tube according to claim 1, wherein the aluminum alloy for a sacrificial anode material according to claim 3 is applied as the aluminum alloy for a sacrificial anode material, and the aluminum alloy for a core material according to claim 8 is applied as the aluminum alloy for a core material. Aluminum alloy for joining material contains Cu 0.1-0.8%, Mn 0.1-0.8%, the balance consists of Al and impurities, Fe content is regulated to 0.5% or less Aluminum alloy clad tube material with excellent corrosion resistance. 接合材用アルミニウム合金が、さらにCr0.05〜0.25%、Zr0.05〜0.25%のうちの1種または2種を含有することを特徴とする請求項10記載の耐食性に優れたアルミニウム合金クラッドチューブ材。The aluminum alloy for a joining material further contains one or two of 0.05 to 0.25% of Cr and 0.05 to 0.25% of Zr, and has excellent corrosion resistance according to claim 10, wherein Aluminum alloy clad tube material. 犠牲陽極材用アルミニウム合金として請求項4記載の犠牲陽極材用アルミニウム合金を適用し、芯材用アルミニウム合金として請求項8記載の芯材用アルミニウム合金を適用する請求項1記載のアルミニウム合金クラッドチューブ材であって、接合材用アルミニウム合金がCu0.1〜0.8%を含有し、さらにSi0.2〜1.0%を含有し、残部Alおよび不純物からなり、Fe含有量を0.5%以下に規制したことを特徴とする耐食性に優れたアルミニウム合金クラッドチューブ材。The aluminum alloy clad tube according to claim 1, wherein the aluminum alloy for a sacrificial anode material according to claim 4 is applied as the aluminum alloy for a sacrificial anode material, and the aluminum alloy for a core material according to claim 8 is applied as the aluminum alloy for a core material. The aluminum alloy for a bonding material contains 0.1 to 0.8% of Cu, further contains 0.2 to 1.0% of Si, the balance is made of Al and impurities, and the Fe content is 0.5%. % Aluminum alloy clad tubing with excellent corrosion resistance, characterized in that it is regulated to less than 10%. 接合材のCu含有量が芯材のCu含有量より多いことを特徴とする請求項9〜12のいずれかに記載の耐食性に優れたアルミニウム合金クラッドチューブ材。The aluminum alloy clad tube material excellent in corrosion resistance according to any one of claims 9 to 12, wherein the Cu content of the joining material is larger than the Cu content of the core material. 芯材と接合材との合計厚さが30μm以上で、犠牲陽極材と芯材との界面から芯材へ30μmの部位までのろう付け加熱前の平均Cu濃度が、芯材のCu濃度以上であることを特徴とする請求項9〜13のいずれかに記載の耐食性に優れたアルミニウム合金クラッドチューブ材。When the total thickness of the core material and the bonding material is 30 μm or more, and the average Cu concentration before the brazing heating from the interface between the sacrificial anode material and the core material to the core material at a portion of 30 μm is equal to or more than the Cu concentration of the core material, The aluminum alloy clad tube material according to any one of claims 9 to 13, which is excellent in corrosion resistance. 接合材のクラッド率が、犠牲陽極材のクラッド率の±10%以下であることを特徴とする請求項14記載の耐食性に優れたアルミニウム合金クラッドチューブ材。The aluminum alloy clad tube material having excellent corrosion resistance according to claim 14, wherein the clad ratio of the joining material is ± 10% or less of the clad ratio of the sacrificial anode material. 犠牲陽極材が厚さ15μm以上、クラッド率40%以下でクラッドされていることを特徴とする請求項1〜15のいずれかに記載の耐食性に優れたアルミニウム合金クラッドチューブ材。The aluminum alloy clad tube material excellent in corrosion resistance according to any one of claims 1 to 15, wherein the sacrificial anode material is clad at a thickness of 15 µm or more and a clad ratio of 40% or less. 芯材が厚さ30μm以上でクラッドされていることを特徴とする請求項1〜16のいずれかに記載の耐食性に優れたアルミニウム合金クラッドチューブ材。The aluminum alloy clad tube material excellent in corrosion resistance according to any one of claims 1 to 16, wherein the core material is clad with a thickness of 30 µm or more. H調質材であることを特徴とする請求項1〜17のいずれかに記載の耐食性に優れたアルミニウム合金クラッドチューブ材。The aluminum alloy clad tube material excellent in corrosion resistance according to any one of claims 1 to 17, which is an H tempered material. 請求項1〜18のいずれかに記載のクラッドチューブ材の内部にブレージングからなるインナーフィンを装着、ろう付け加熱時にろう材を生成させるペーストを塗布したベアフィンをインナーフィンとして装着、またはクラッドチューブ材の内面に前記ペーストを塗布したのちベアフィンをインナーフィンとして装着、ろう付け接合してなり、ろう付け後、芯材と犠牲陽極材の界面から犠牲陽極材側に15μmの部位におけるCu濃度が、芯材と犠牲陽極材の界面から芯材側に30μmの部位までのろう付け加熱前の段階での各材料層のCu濃度の平均値の1/2以下であることを特徴とする熱交換器。An inner fin made of brazing is mounted inside the clad tube material according to any one of claims 1 to 18, a bare fin coated with a paste for generating a brazing material at the time of brazing is mounted as the inner fin, or a clad tube material is provided. After the paste was applied to the inner surface, bare fins were attached as inner fins and brazed and joined. After brazing, the Cu concentration at a portion of 15 μm from the interface between the core material and the sacrificial anode material to the sacrificial anode material side was changed to the core material. A heat exchanger wherein the average Cu concentration of each material layer at a stage before brazing heating from the interface between the sacrificial anode material and the core material side to a portion of 30 μm is not more than 2.
JP2003010557A 2003-01-20 2003-01-20 Aluminum alloy clad tube material having excellent corrosion resistance, and heat exchanger with the clad tube material assembled Pending JP2004225062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003010557A JP2004225062A (en) 2003-01-20 2003-01-20 Aluminum alloy clad tube material having excellent corrosion resistance, and heat exchanger with the clad tube material assembled

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003010557A JP2004225062A (en) 2003-01-20 2003-01-20 Aluminum alloy clad tube material having excellent corrosion resistance, and heat exchanger with the clad tube material assembled

Publications (1)

Publication Number Publication Date
JP2004225062A true JP2004225062A (en) 2004-08-12

Family

ID=32899714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003010557A Pending JP2004225062A (en) 2003-01-20 2003-01-20 Aluminum alloy clad tube material having excellent corrosion resistance, and heat exchanger with the clad tube material assembled

Country Status (1)

Country Link
JP (1) JP2004225062A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039753A (en) * 2005-08-04 2007-02-15 Sumitomo Light Metal Ind Ltd Aluminum alloy clad material with excellent surface joinability of sacrificial anode material surface
WO2007142002A1 (en) * 2006-06-07 2007-12-13 Nippon Light Metal Company, Ltd. Clad aluminum alloy material for heat exchanger and process for producing the same
JP2008240084A (en) * 2007-03-28 2008-10-09 Kobe Steel Ltd Aluminum alloy-clad material for heat exchanger and brazing sheet
JP2011084763A (en) * 2009-10-13 2011-04-28 Kobe Steel Ltd Aluminum alloy clad material for heat exchanger
WO2014077237A1 (en) * 2012-11-13 2014-05-22 株式会社デンソー Aluminum alloy clad material and heat exchanger provided with tube that is molded from aluminum alloy clad material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039753A (en) * 2005-08-04 2007-02-15 Sumitomo Light Metal Ind Ltd Aluminum alloy clad material with excellent surface joinability of sacrificial anode material surface
WO2007142002A1 (en) * 2006-06-07 2007-12-13 Nippon Light Metal Company, Ltd. Clad aluminum alloy material for heat exchanger and process for producing the same
JP2008240084A (en) * 2007-03-28 2008-10-09 Kobe Steel Ltd Aluminum alloy-clad material for heat exchanger and brazing sheet
JP2011084763A (en) * 2009-10-13 2011-04-28 Kobe Steel Ltd Aluminum alloy clad material for heat exchanger
WO2014077237A1 (en) * 2012-11-13 2014-05-22 株式会社デンソー Aluminum alloy clad material and heat exchanger provided with tube that is molded from aluminum alloy clad material
JP2014114506A (en) * 2012-11-13 2014-06-26 Denso Corp Aluminum alloy clad material, and heat exchanger assembled with tube produced by shaping the clad material
CN104822855A (en) * 2012-11-13 2015-08-05 株式会社电装 Aluminum alloy clad material and heat exchanger provided with tube that is molded from aluminum alloy clad material
US10094629B2 (en) 2012-11-13 2018-10-09 Denso Corporation Aluminum alloy clad material and heat exchanger that includes tube obtained by forming the clad material

Similar Documents

Publication Publication Date Title
EP1484571B1 (en) Aluminium heat exchanger excellent in corrosion resistance
EP3174710B1 (en) Multi-layered aluminium brazing sheet material
CN107428128B (en) Multilayer aluminum brazing sheet material
JP5079198B2 (en) Aluminum brazing alloy
JP2011202285A (en) Brazing sheet
MXPA06002005A (en) High strength aluminium alloy brazing sheet, brazed assembly and method for producing same.
JP4023760B2 (en) Aluminum alloy clad material for heat exchangers with excellent brazing and corrosion resistance
JP3772017B2 (en) High strength and high corrosion resistance aluminum alloy clad material for heat exchanger
JP2007131872A (en) Aluminum alloy clad material for heat exchanger
JP2005232506A (en) Aluminum alloy clad material for heat exchanger
JP2005232507A (en) Aluminum alloy clad material for heat exchanger
JP4190295B2 (en) Aluminum alloy clad tube material excellent in corrosion resistance and heat exchanger assembled with the clad tube material
JP3360026B2 (en) Brazing method of aluminum alloy brazing sheet for heat exchanger
JP3326106B2 (en) Aluminum alloy clad material for heat exchanger with excellent strength and corrosion resistance
JP2000167688A (en) Aluminum alloy clad material for heat exchanger excellent in brazability and corrosion resistance
JP2004225062A (en) Aluminum alloy clad tube material having excellent corrosion resistance, and heat exchanger with the clad tube material assembled
JP4263160B2 (en) Aluminum alloy clad material and heat exchanger tube and heat exchanger using the same
JPH09291328A (en) Aluminum alloy multiple member for brazing, and brazing method
JPH09176767A (en) Al brazing sheet for vacuum brazing
JP2000135588A (en) High strength aluminum alloy clad material for heat exchanger superior in corrosion resistance
JP4996876B2 (en) High corrosion resistance aluminum alloy composite for heat exchanger and aluminum alloy heat exchanger
JP2000202682A (en) Aluminum alloy brazing filler metal and aluminum alloy clad material for heat exchanger excellent in brazability and corrosion resistance using the brazing filler metal for clad material
JP2691069B2 (en) Heat exchanger with excellent corrosion resistance and heat transfer
JP2000135590A (en) High strength aluminum alloy clad material for heat exchanger
JP2933382B2 (en) High strength and high corrosion resistance aluminum alloy clad material for heat exchanger