JPH04198448A - Aluminum alloy clad material having high strength and high corrosion resistance for heat exchanger - Google Patents

Aluminum alloy clad material having high strength and high corrosion resistance for heat exchanger

Info

Publication number
JPH04198448A
JPH04198448A JP32604290A JP32604290A JPH04198448A JP H04198448 A JPH04198448 A JP H04198448A JP 32604290 A JP32604290 A JP 32604290A JP 32604290 A JP32604290 A JP 32604290A JP H04198448 A JPH04198448 A JP H04198448A
Authority
JP
Japan
Prior art keywords
alloy
sacrificial anode
brazing
core material
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32604290A
Other languages
Japanese (ja)
Inventor
Shigenori Yamauchi
重徳 山内
Yuji Suzuki
祐治 鈴木
Kenji Kato
健志 加藤
Naoki Tokizane
直樹 時實
Keizo Nanba
難波 圭三
Mitsuo Hashiura
橋浦 光夫
Kaoru Tsuzuki
薫 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd, NipponDenso Co Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP32604290A priority Critical patent/JPH04198448A/en
Publication of JPH04198448A publication Critical patent/JPH04198448A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/016Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of aluminium or aluminium alloys

Abstract

PURPOSE:To obtain an Al alloy clad material excellent in brazability and having high strength and high corrosion resistance by cladding both surfaces of a core material composed of an Al alloy having a specific composition reduced in Mg content with a sacrificial anode material composed of Al alloy of specific composition and a cladding material composed of Al-Si alloy brazing filler metal, respectively. CONSTITUTION:One side of a core material composed of an Al alloy having a composition consisting of, by weight, 0.3-2.0% Mn, 0.25-0.8% Cu, 0.2-1.0% Si, <=0.5% Mg, <=0.35% Ti, and the balance Al with inevitable impurities is clad with a sacrificial anode material, and the other side is clad with a cladding material. The above sacrificial anode material is an Al alloy having a composition consisting of 1.2-2.5% Mg, 0.2-0.8% Si, and the balance Al with inevitable impurities. Further, the above cladding material is a brazing filler metal of Al-Si alloy. By this method, the Al alloy clad material suitable for structural member for Al heat exchanger production, excellent in brazability, and having high strength and high corrosion resistance after brazing can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は不活性ガス雰囲気中で弗化物フラックスを用
いたろう付によりラジェータやヒーターコアなどのAl
熱交換器を製造するに際して、その構造部材であるチュ
ーブ材やヘッダープレート材などとして用いるに適した
、ろう付性が良好で、かつろう何役に高強度および高耐
食性を有するAl合金クラッド材に関するものであり、
特に薄肉で用いられるチューブ材に適する。
[Detailed Description of the Invention] [Industrial Field of Application] This invention provides aluminum for radiators, heater cores, etc. by brazing using fluoride flux in an inert gas atmosphere.
Related to Al alloy cladding materials that have good brazing properties and have high strength and high corrosion resistance for use as brazing materials, suitable for use as structural members such as tube materials and header plate materials when manufacturing heat exchangers. and
Particularly suitable for thin-walled tube materials.

[従来の技術] 自動車のラジェータやヒーターコアなどのチューブ利や
ヘッダープレート材には、3003などのA l−Mn
系合金を芯材とし、片面にAl−Si系合金のろう)イ
、他の片面にA l −Z n系合金やA 1− Z 
n −M g系合金の犠牲陽極材をクラッドした3層り
ラッド祠が用いられている。
[Prior art] Al-Mn such as 3003 is used for tubes and header plate materials such as automobile radiators and heater cores.
The core material is Al-Si alloy, and the other side is Al-Si alloy or A1-Z alloy.
A three-layer rad shrine clad with a sacrificial anode material of n-Mg alloy is used.

Al−8i系のろう材はチューブとフィンの接合、チュ
ーブとヘッダープレートとの接合のためのものである。
The Al-8i brazing material is used for joining tubes and fins, and joining tubes and header plates.

ろう付は不活性ガス雰囲気中で弗化物フラックスを用い
て行われることが多い。犠牲陽極材をクラッドした他の
片面は、使用中に内側(水側)になり、犠牲陽極作用を
発揮して芯材の孔食や隙間腐食を防止する。
Brazing is often performed using fluoride flux in an inert gas atmosphere. The other side clad with sacrificial anode material turns inside (water side) during use and acts as a sacrificial anode to prevent pitting and crevice corrosion of the core material.

近年ラジェータやヒーターコアなどの軽量化を求める要
求が強く、チューブ材やヘッダープレート材の薄肉化が
必要となっている。そのためには材料の高強度化特にろ
う何役の強度の向上が必要であり、高強度化のために芯
材中にMgを添加することか多くなってきている。しか
し、Mgはろう骨中に表面に拡散していき、弗化物フラ
ックスと反応するため、綿状生成物(Mgの弗化物)が
生成して付着したり、接合不良を生じたりする。こうし
て、芯材中へのMgの添加量は最大でも(1,5%、実
用上は0.2〜0.3%に制限され、高強度化の妨げと
なっている。
In recent years, there has been a strong demand for lighter weight products such as radiators and heater cores, making it necessary to make tube materials and header plate materials thinner. To achieve this, it is necessary to improve the strength of the material, especially the strength of the solder, and it is becoming increasingly common to add Mg to the core material to increase the strength. However, Mg diffuses to the surface of the fistula and reacts with the fluoride flux, resulting in formation and adhesion of flocculent products (Mg fluoride) and poor bonding. In this way, the amount of Mg added to the core material is limited to 1.5% at maximum, but in practice it is limited to 0.2 to 0.3%, which is a hindrance to increasing the strength.

チューブ祠やヘッダープレー1・祠の強度は、犠牲陽極
材にMgを添加することによっても向上する可能性があ
る。犠牲陽極材にMgを添加したクラッド材に関しては
、従来からいくつかの提案がある。
The strength of the tube shrine and header play 1 shrine may also be improved by adding Mg to the sacrificial anode material. There have been several proposals regarding cladding materials in which Mg is added to sacrificial anode materials.

すなわち、ラジェータ用ヘッダープレート材やチューブ
材の犠牲陽極材に、 0MgとZn等を含有させる方法(特公昭63−287
04号)が、 ■ZnとMgを添加する方法(特開昭61−89498
号)が、 ■SnとMgを同時添加する方法(特開昭56−186
46号、特開昭63−89641号)が、■比較的高濃
度までのMgとZnを添加する方法(特公昭62−.3
5301 )、が提案されている。
That is, a method of containing 0Mg, Zn, etc. in the sacrificial anode material of the radiator header plate material and tube material (Japanese Patent Publication No. 63-287
No. 04), ■Method of adding Zn and Mg (Japanese Unexamined Patent Publication No. 61-89498)
(No.), ■Method of adding Sn and Mg simultaneously (Japanese Unexamined Patent Publication No. 186-1986)
46, Japanese Patent Publication No. 63-89641), ■ A method of adding Mg and Zn to a relatively high concentration (Japanese Patent Publication No. 62-89641).
5301) has been proposed.

しかし、上記■および■のMgの添加は1.1%あるい
は1,5%以下と少なく、孔食や隙間腐食の防止のため
に添加されており、強度向上が得られない。
However, the addition of Mg in (1) and (2) above is as low as 1.1% or 1.5% or less, and is added to prevent pitting corrosion and crevice corrosion, so that no improvement in strength can be obtained.

上記■のMgの添加はSnの粒界拡散を抑制し、熱間圧
延時の割れを防止することを目的とし、上記■のMgの
添加は耐孔食性の改善を目的としているが、いずれもM
gが高濃度の場合には芯材に拡散しである程度の強度向
上効果も得られる可能性がある。しかし、薄肉のチュー
ブ材(クラッド材)を作った場合、芯材の強度は犠牲陽
極材から拡散するMgにより高くできても、犠牲陽極材
の強度はMg添加のみでは不足となり、クラッド祠全体
の強度を高くすることかできない。すなわち、薄肉にな
ると、芯材のみでなく犠牲陽極材の強度への寄与も大き
くなり、犠牲陽極材の強度も高くすることが必要となる
のである。
The purpose of the addition of Mg in (2) above is to suppress the grain boundary diffusion of Sn and prevent cracking during hot rolling, and the purpose of the addition of Mg in (2) above is to improve pitting corrosion resistance. M
When g is at a high concentration, it may diffuse into the core material and may also provide a certain degree of strength improvement effect. However, when a thin tube material (cladding material) is made, even though the strength of the core material can be increased by Mg diffused from the sacrificial anode material, the strength of the sacrificial anode material is insufficient due to the addition of Mg alone, and the strength of the entire cladding material is insufficient. The only thing you can do is increase the strength. That is, when the thickness becomes thinner, not only the core material but also the sacrificial anode material contribute to the strength, and it is necessary to increase the strength of the sacrificial anode material.

[発明か解決しようとする課題] そこで、本発明はろう付は性を害することなく、すなわ
ち、芯材のMg添加量を最大0.5%に抑えたままで、
ろう付は後に高強度が得られるクラッド材を提供しよう
とするものである。
[Problem to be solved by the invention] Therefore, the present invention provides brazing without impairing properties, that is, while suppressing the amount of Mg added to the core material to a maximum of 0.5%.
Brazing is intended to provide a cladding material that will later provide high strength.

[課題を解決するための手段] 本発明者らは、芯材中のMg添加量を最大0.5%に抑
えたままで、ろう付は後に高強度が得られる方法につい
て検討し、犠牲陽極材中に高濃度のMgとSiを添加す
ると、犠牲陽極材中のMgの一部がろう付は中に芯材中
へ拡散して、芯材を強化し、また、犠牲陽極材そのもの
もMgとSiにより強化されることを見出し、本発明を
完成した。
[Means for Solving the Problems] The present inventors have studied a method that can obtain high strength after brazing while keeping the amount of Mg added in the core material to a maximum of 0.5%. When high concentrations of Mg and Si are added to the sacrificial anode material, part of the Mg in the sacrificial anode material will diffuse into the core material during brazing, strengthening the core material, and the sacrificial anode material itself will also contain Mg. The present invention was completed based on the discovery that the material is strengthened by Si.

すなわち、犠牲陽極材中にMgとSiを共存させ、Mg
を芯材の強化に寄与させるとともに、犠牲陽極祠をMg
とSiによる固溶体強化およびMg2Siの析出による
時効硬化によって強化させたものである。
That is, by making Mg and Si coexist in the sacrificial anode material, Mg
In addition to contributing to the strengthening of the core material, Mg
It is strengthened by solid solution strengthening with Si and age hardening with precipitation of Mg2Si.

すなわち、本発明の構成は、 芯材が、M n : 0.3〜2.0%、Cu : 0
.25〜0.8%、S i : 0.2〜1.0%、M
g:0.5%以下、T i : 0.35%以下を含有
し、残部Alと不可避不純物からなるアルミニウム合金
で構成され、該芯材の片面に複合された犠牲陽極材がM
g:1.2〜2,5%、S i : 0.2〜0.8%
を含有し、残部Alと不可避不純物からなるアルミニウ
ム合金で構成され、かつ、前記芯材の他の片面に複合さ
れた皮材がAl−8L系合金のろう材で構成されたこと
を特徴とする熱交換器用高強度高耐食性アルミニウム合
金クラッド材で−6・ − ある。
That is, the structure of the present invention is such that the core material has Mn: 0.3 to 2.0% and Cu: 0.
.. 25-0.8%, Si: 0.2-1.0%, M
g: 0.5% or less, Ti: 0.35% or less, and the remainder is Al and unavoidable impurities.
g: 1.2-2.5%, Si: 0.2-0.8%
The core material is made of an aluminum alloy containing aluminum and the remainder is Al and unavoidable impurities, and the skin material composited on the other side of the core material is made of a brazing material of an Al-8L alloy. This is a high-strength, high-corrosion-resistant aluminum alloy cladding material for heat exchangers with a rating of -6.

[作用コ 本発明における組成及び組成範囲の限定理由について述
べる。
[Operations] The reasons for limiting the composition and composition range in the present invention will be described.

(1)芯材 Mn: Mnは強度を向上させる。又、芯材の電位を貴にして犠
牲陽極材との電位差を大きくし耐食性を向上させる。0
.3%未満では効果が十分でなく、2.0%を越えると
鋳造時に粗大な化合物が生成し、健全な板材が得られな
い。
(1) Core material Mn: Mn improves strength. In addition, the potential of the core material is increased to increase the potential difference with the sacrificial anode material, thereby improving corrosion resistance. 0
.. If it is less than 3%, the effect will not be sufficient, and if it exceeds 2.0%, coarse compounds will be produced during casting, making it impossible to obtain a sound plate.

Cu: Cuは芯材の電位を責にして、犠牲陽極材およびろう材
と芯材との電位差を大きくし、犠牲陽極材およびろう材
の犠牲陽極効果による防食作用を大きくする。更に、芯
材中のCuはろう付時に犠牲陽極材中及びろう材中へ拡
散してなだらかな濃度勾配を形成し、芯材側が責な電位
、犠牲陽極材及びろう制の各々表面側が卑な電位となり
、その間になだらかな電位分布を形成して腐食形態を全
面腐食型にする。
Cu: Cu affects the potential of the core material, increases the potential difference between the sacrificial anode material and brazing material, and the core material, and increases the anticorrosion effect of the sacrificial anode material and brazing material due to the sacrificial anode effect. Furthermore, Cu in the core material diffuses into the sacrificial anode material and the brazing material during brazing, forming a gentle concentration gradient, with the core material having a higher potential and the sacrificial anode material and the brazing material having a lower potential on the surface side. potential, and a gentle potential distribution is formed between them, making the corrosion form a general corrosion type.

芯材中のCuは強度向上にも寄与する。Cu in the core material also contributes to improving strength.

以上に示したCuの防食作用と強度向上効果は、芯材中
のCu量が0.25%未満では発揮されず、一方、0,
8%を越えると芯材自体の耐食性が悪くなるとともに芯
材の融点が下がって、ろうイ」時に局部的な溶融を生ず
るようになる。
The corrosion-preventing effect and strength-improving effect of Cu shown above are not exhibited when the amount of Cu in the core material is less than 0.25%;
If it exceeds 8%, the corrosion resistance of the core material itself deteriorates, and the melting point of the core material decreases, causing local melting during brazing.

Si: Siは芯材の強度を向上させる。特に、ろう材中に犠牲
陽極材から拡散してくるMgと共存することになり、ろ
う付後の時効硬化により強度がより高くなる。0.2%
未満では効果が十分でなく、1.0%を越えると耐食性
が低下するとともに芯材の融点が下がってろう付時に局
部的な溶融を生ずるようになる。
Si: Si improves the strength of the core material. In particular, it coexists with Mg diffused from the sacrificial anode material into the brazing material, and the strength increases due to age hardening after brazing. 0.2%
If it is less than 1.0%, the effect will not be sufficient, and if it exceeds 1.0%, the corrosion resistance will decrease and the melting point of the core material will drop, causing local melting during brazing.

Mg: Mgは芯材の強度を向上させる効果がある。Mg: Mg has the effect of improving the strength of the core material.

強度向上効果は、Si及び/又はCuと共存するとろう
付後の時効硬化により更によく発揮される。しかしなが
らその量が0.5%を越えると弗化物フラックスと反応
して、ろう付は性を阻害したり、Mgの弗化物が生成し
て外観を損ねるようになる。
The strength improving effect is better exhibited by age hardening after brazing when it coexists with Si and/or Cu. However, if the amount exceeds 0.5%, it will react with the fluoride flux, impairing brazing properties, and producing Mg fluoride, which will impair the appearance.

T1: Tiは芯材の耐食性をより一層向上させる。T1: Ti further improves the corrosion resistance of the core material.

すなわちTiは濃度の高い領域と低い領域に分かれ、そ
れらが板厚方向に交互に分布して層状となり、Ti濃度
が低い領域が高い領域に比べて優先的に腐食することに
より、腐食形態を層状にする。その結果板厚方向への腐
食の進行を妨げて材料の耐孔食性を向上させる。0.3
5%を越えると鋳造時に粗大な化合物が生成し、健全な
板材が得られない。
In other words, Ti is divided into high- and low-concentration regions, which are distributed alternately in the plate thickness direction to form a layered structure, and regions with low Ti concentration corrode preferentially compared to regions with high Ti concentration, resulting in a layered corrosion pattern. Make it. As a result, the progress of corrosion in the thickness direction is inhibited and the pitting corrosion resistance of the material is improved. 0.3
If it exceeds 5%, coarse compounds will be produced during casting, making it impossible to obtain a sound plate.

その他の元素: Fe、Zn、Cr、Zrなどは本発明の効果を損なわな
い範囲で含まれてもよい。ただし、Feは多量に含まれ
ると耐食性を害するので0.7%以下にする必要がある
。Znは芯材の電位を卑にし、犠牲陽極材及びろう祠と
の電位差を小さくするので0.2%以下にする必要があ
る。
Other elements: Fe, Zn, Cr, Zr, etc. may be included within a range that does not impair the effects of the present invention. However, since Fe impairs corrosion resistance if contained in a large amount, it must be kept at 0.7% or less. Zn makes the potential of the core material base and reduces the potential difference between the sacrificial anode material and the wax, so it needs to be 0.2% or less.

(2)犠牲陽極材 Mg: 犠牲陽極材中のMgの一部は、主としてろう材中に芯材
中へ拡散し、芯材中の81やCuとともに芯材強度を向
上させる。また、犠牲陽極材中に残存したMgはSiと
ともに犠牲陽極材の強度を向上させる。そしてこれらの
作用により、クラッド材全体の強度向上に寄与する。
(2) Sacrificial anode material Mg: A part of Mg in the sacrificial anode material mainly diffuses into the core material in the brazing material and improves the strength of the core material together with 81 and Cu in the core material. Further, Mg remaining in the sacrificial anode material improves the strength of the sacrificial anode material together with Si. These actions contribute to improving the strength of the cladding material as a whole.

更に、犠牲陽極材の電位を卑として、犠牲陽極効果を確
実にする。■、2%未満では効果が十分でなく、2.5
%を越えるとろう付時に局部溶融が生じる。
Furthermore, the potential of the sacrificial anode material is made base to ensure the sacrificial anode effect. ■ If it is less than 2%, the effect is not sufficient, and 2.5
%, local melting occurs during brazing.

なお、ろう材中に犠牲陽極材中のMgは芯材中へ拡散す
るが、第1図のような濃度分布を有するようになり、ろ
う材側へ大量に拡散して、ろう付性を阻害することはな
い。また、クラッド製造中にも拡散が起こり、芯材と犠
牲陽極材との境界では僅かな濃度分布を有していること
はいうまでもない。
Note that Mg in the sacrificial anode material diffuses into the core material, but it has a concentration distribution as shown in Figure 1, and a large amount of Mg diffuses toward the brazing material, inhibiting brazing properties. There's nothing to do. It goes without saying that diffusion also occurs during cladding production, and that there is a slight concentration distribution at the boundary between the core material and the sacrificial anode material.

Si: Siは犠牲陽極材の強度を向上させ、クラッド祠全体の
強度向上に寄与する。特に、犠牲陽極材中に残存したM
gとともに、時効硬化を生じて、強度向上に寄与する。
Si: Si improves the strength of the sacrificial anode material and contributes to improving the strength of the entire cladding. In particular, M remaining in the sacrificial anode material
Along with g, age hardening occurs and contributes to improving strength.

0.2%未満では効果が十分でなく 、O,11%を越
えるとろう付時に局部的な溶融が生ずる。
If it is less than 0.2%, the effect will not be sufficient, and if it exceeds 11%, local melting will occur during brazing.

(3)ろう材 ろう材は通常用いられるAl−8t合金である。通常6
〜13%のSiを含むAl合金が用いられる。
(3) Brazing material The brazing material is a commonly used Al-8t alloy. Usually 6
An Al alloy containing ~13% Si is used.

[実施例コ 以下実施例によって、本発明を具体的に説明する。[Example code] The present invention will be specifically described below with reference to Examples.

下記第1表に示す芯材用合金、第2表に示す犠牲陽極材
用合金、およびろう材用合金4047の鋳塊を準備し、
芯材用合金と犠牲陽極利用合金について均質化処理を行
った。そして、犠牲陽極材用合金およびろう材用合金を
熱間圧延により所定の厚さとし、これらと芯材用合金の
鋳塊とを組み合わせて熱間圧延によりクラッド材を得た
。その後、冷間圧延、中間焼鈍、冷間圧延により厚さ0
.25mmの板(HI3材)を作製した。
Prepare ingots of the core material alloy shown in Table 1 below, the sacrificial anode material alloy shown in Table 2, and the brazing material alloy 4047,
Homogenization treatment was performed on the core material alloy and the sacrificial anode alloy. Then, the sacrificial anode material alloy and the brazing material alloy were hot-rolled to a predetermined thickness, and these were combined with the ingot of the core material alloy to obtain a cladding material by hot rolling. After that, the thickness is 0 by cold rolling, intermediate annealing, and cold rolling.
.. A 25 mm plate (HI3 material) was produced.

クラッド材の構成はろう材を0.025mm一定とし、
犠牲陽極材を0.030〜0.050mn+とじた。
The composition of the cladding material is that the brazing material is constant at 0.025mm.
The sacrificial anode material was bound to 0.030 to 0.050 mm+.

各材料の合金組成とその組合せは第3表に示すとおりで
ある。
The alloy composition of each material and its combinations are shown in Table 3.

得られたクラッド板材のろう材側に、Al−1,2%M
n−1,5%Zn合金からなる厚さ0.10mmのコル
ゲートフィンを乗せ、窒素ガス中で弗化物フラックスを
用いてろう付を行った。ろう付温度(飼料温度)は60
0℃であった。ろう何役板材とフィンとの接合状況を目
視観察により、芯材及び犠牲陽極材の溶融状況を断面金
属組織により調べた。
Al-1.2%M was applied to the brazing material side of the obtained clad plate material.
A corrugated fin having a thickness of 0.10 mm made of n-1.5% Zn alloy was mounted, and brazing was performed using fluoride flux in nitrogen gas. Brazing temperature (feed temperature) is 60
It was 0°C. The state of bonding between the brazing material and the fin was visually observed, and the state of melting of the core material and sacrificial anode material was examined by cross-sectional metallographic structure.

次に厚さ0.25+nmの板材をそのまま(フィンと接
触させることなく)弗化物フラックスろう付と同じ条件
で加熱した後、引張試験と腐食試験を行った。腐食試験
の方法は、外面側(ろう材側)についてはCASS試験
、30日間とし、内面側(犠牲陽極材側)についてはC
I −1100pp。
Next, the plate material with a thickness of 0.25+ nm was heated as it was (without contact with the fins) under the same conditions as for fluoride flux brazing, and then subjected to a tensile test and a corrosion test. The corrosion test method is CASS test for 30 days on the outside side (brazing metal side), and CASS test on the inside side (sacrificial anode side).
I-1100pp.

−]2− 5 O422−1O0pp、HCO3LOOppmS 
Cu ”10ppmを含む水溶液中に浸漬し、8hrの
間80℃に加熱し、その後室温まで放冷しながら16h
r放置するというサイクルを繰返し、3ケ月間行った。
-]2-5 O422-1O0pp, HCO3LOOppmS
It was immersed in an aqueous solution containing 10 ppm of Cu, heated to 80°C for 8 hours, and then cooled to room temperature for 16 hours.
The cycle of leaving it for 3 months was repeated for 3 months.

以上の結果をまとめて第3表に示す。発明例No、 1
〜12の場合、ろう付性は良好で、引張強さも17kg
r/mm 2以上と高く、最大腐食深さも小さい。
The above results are summarized in Table 3. Invention example No. 1
~12, the brazing properties are good and the tensile strength is 17kg.
r/mm 2 or higher, and the maximum corrosion depth is also small.

比較例No、L3の場合、犠牲陽極材のMgが少ないた
めに引張強さが低い。
In the case of Comparative Example No. L3, the tensile strength was low because the sacrificial anode material contained less Mg.

比較例NO,L4は、Mgが多いためにろう付時に局部
溶融が生じている。
In Comparative Examples NO and L4, local melting occurred during brazing due to the large amount of Mg.

比較例No、15は、犠牲陽極材のSiが少ないために
引張強さが低い。
Comparative Example No. 15 has low tensile strength because the sacrificial anode material contains less Si.

比較例No、 I Bは、Siが多いためにろう付時に
局部溶融が生じている。
In Comparative Example No. IB, local melting occurred during brazing due to the large amount of Si.

No、17は、芯材のMnが少ないために引張強さが低
く、NO,18は芯材のMnか多いために健全な板材か
得られていない。
No. 17 had a low tensile strength because the core material had a low Mn content, and No. 18 had a high Mn content in the core material, so a sound board material was not obtained.

NO,19は芯材のCuが少ないために引張強さが低く
、外面側の腐食深さが大きい。
No. 19 has a low tensile strength due to a small amount of Cu in the core material, and a large corrosion depth on the outer surface side.

N0120は、芯材のCuが多いために、ろう付時に溶
融が生じている。
Since N0120 has a large amount of Cu in the core material, melting occurs during brazing.

No、21は、芯材のSiが少ないために、引張強さが
低い。
No. 21 had low tensile strength because the core material contained less Si.

No、22は、芯材のSiが多いためにろう付時に溶融
が生じている。
No. 22 melted during brazing because the core material contained a large amount of Si.

No、23は、芯材がMgを含まないために、引張強さ
が低い。
No. 23 has a low tensile strength because the core material does not contain Mg.

No、24は、芯材のMgが多いために、ろう付不良が
生じている。
In No. 24, poor brazing occurred due to a large amount of Mg in the core material.

No、25は、芯材がTiを含まないために、外面側の
腐食深さが大きい。
No. 25 has a large corrosion depth on the outer surface side because the core material does not contain Ti.

Nα2Bは芯材のTiが多いために健全な板材が得られ
ていない。
Since Nα2B has a large amount of Ti in the core material, a healthy plate material cannot be obtained.

No、27は、芯材が3003であるため、引張強さが
低く、外面側の腐食深さが大きい。
In No. 27, since the core material is 3003, the tensile strength is low and the corrosion depth on the outer surface side is large.

= 14 = 第1表 * 3003合金 第2表 [発明の効果] 以上説明したように、本発明のクラッド材は弗化物フラ
ックスろう併用材料として、高強度、耐食性で、かつ、
ろう付性が優れたAl熱交換器用クラッド祠である。こ
れによって、チューブ材やヘッダープレート材を薄肉に
することができ、ラジェータやヒータの軽量化が可能で
ある。
= 14 = Table 1 * 3003 Alloy Table 2 [Effects of the Invention] As explained above, the clad material of the present invention has high strength and corrosion resistance as a material used in combination with fluoride flux brazing, and
This is an Al heat exchanger cladding with excellent brazing properties. As a result, the tube material and header plate material can be made thinner, and the weight of the radiator and heater can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の材料のろう何役のMgの濃度分布を示
す断面図である。 特許出願人 住友軽金属工業株式会社
FIG. 1 is a cross-sectional view showing the concentration distribution of Mg, which acts as a wax, in the material of the present invention. Patent applicant: Sumitomo Light Metal Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 芯材が、Mn:0.3〜2.0%(重量%、以下同じ)
、Cu:0.25〜0.8%、Si:0.2〜1.0%
、Mg:0.5%以下、Ti:0.35%以下を含有し
、残部Alと不可避不純物からなるアルミニウム合金で
構成され、該芯材の片面に複合された犠牲陽極材がMg
:1.2〜2.5%、Si:0.2〜0.8%を含有し
、残部Alと不可避不純物からなるアルミニウム合金で
構成され、かつ、前記芯材の他の片面に複合された皮材
がAl−Si系合金のろう材で構成されたことを特徴と
する熱交換器用高強度高耐食性アルミニウム合金クラッ
ド材。
The core material is Mn: 0.3 to 2.0% (weight%, the same below)
, Cu: 0.25-0.8%, Si: 0.2-1.0%
, Mg: 0.5% or less, Ti: 0.35% or less, and the remainder is Al and unavoidable impurities, and the sacrificial anode material composited on one side of the core material contains Mg
: 1.2 to 2.5%, Si: 0.2 to 0.8%, and the remainder is Al and unavoidable impurities, and is composited on the other side of the core material. A high-strength, high-corrosion-resistant aluminum alloy cladding material for a heat exchanger, characterized in that the skin material is composed of a brazing filler metal of an Al-Si alloy.
JP32604290A 1990-11-29 1990-11-29 Aluminum alloy clad material having high strength and high corrosion resistance for heat exchanger Pending JPH04198448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32604290A JPH04198448A (en) 1990-11-29 1990-11-29 Aluminum alloy clad material having high strength and high corrosion resistance for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32604290A JPH04198448A (en) 1990-11-29 1990-11-29 Aluminum alloy clad material having high strength and high corrosion resistance for heat exchanger

Publications (1)

Publication Number Publication Date
JPH04198448A true JPH04198448A (en) 1992-07-17

Family

ID=18183458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32604290A Pending JPH04198448A (en) 1990-11-29 1990-11-29 Aluminum alloy clad material having high strength and high corrosion resistance for heat exchanger

Country Status (1)

Country Link
JP (1) JPH04198448A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08232033A (en) * 1994-12-19 1996-09-10 Hoogovens Alum Walzprod Gmbh Covering sheet
US6849136B2 (en) * 2001-07-30 2005-02-01 Denso Corporation Filler metal for aluminum brazing sheet for heat exchangers and method of manufacturing same
EP1291165B2 (en) 1999-04-14 2011-06-22 Aleris Aluminum Koblenz GmbH Brazing sheet
WO2013180630A1 (en) * 2012-05-31 2013-12-05 Sapa Heat Transfer Ab Multilayer aluminium brazing sheet for fluxfree brazing in controlled atmosphere

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08232033A (en) * 1994-12-19 1996-09-10 Hoogovens Alum Walzprod Gmbh Covering sheet
US5863669A (en) * 1994-12-19 1999-01-26 Hoogovens Aluminium Walzprodukte Gmbh Brazing sheet
EP1291165B2 (en) 1999-04-14 2011-06-22 Aleris Aluminum Koblenz GmbH Brazing sheet
US6849136B2 (en) * 2001-07-30 2005-02-01 Denso Corporation Filler metal for aluminum brazing sheet for heat exchangers and method of manufacturing same
WO2013180630A1 (en) * 2012-05-31 2013-12-05 Sapa Heat Transfer Ab Multilayer aluminium brazing sheet for fluxfree brazing in controlled atmosphere
CN104395028A (en) * 2012-05-31 2015-03-04 格朗吉斯瑞典公司 Multilayer aluminium brazing sheet for fluxfree brazing in controlled atmosphere
JP2015528852A (en) * 2012-05-31 2015-10-01 グランジェス・スウェーデン・アーべー Multi-layer aluminum brazing sheet for flux-free brazing in a controlled atmosphere

Similar Documents

Publication Publication Date Title
JP5073290B2 (en) High strength aluminum alloy brazing sheet
US5292595A (en) Clad aluminum alloy material having high strength and high corrosion resistance for heat exchanger
JPS6182992A (en) Al alloy brazing sheet
JP3772017B2 (en) High strength and high corrosion resistance aluminum alloy clad material for heat exchanger
JPH04198448A (en) Aluminum alloy clad material having high strength and high corrosion resistance for heat exchanger
JP2842668B2 (en) High strength and high corrosion resistance A1 alloy clad material for A1 heat exchanger
JPH0436434A (en) High strength and high corrosion resistant al alloy clad material for al heat exchanger
JPH09302433A (en) Aluminum alloy clad material excellent in brazability and its production
JPH04198447A (en) Aluminum alloy clad material having high strength and high corrosion resistance for heat exchanger
JP3217108B2 (en) High strength and high corrosion resistance aluminum alloy clad material for heat exchanger
JPH04193926A (en) High strength aluminum alloy clad material for heat exchanger having high corrosion resistance
JP3234619B2 (en) High strength and high corrosion resistance aluminum alloy clad material for heat exchanger
JP3536065B2 (en) Aluminum alloy brazing sheet strip for forming a tube by bending
JPH0436432A (en) High strength and high corrosion resistant al alloy clad material for al heat exchanger
JPH07207393A (en) Manufacture of aluminum alloy brazing sheet for heat exchanger and heat exchanger made of aluminum alloy
JPH05305307A (en) Manufacture of high strength aluminum alloy clad fin stock for heat exchanger
JPH04193925A (en) High strength aluminum alloy clad material for heat exchanger having high corrosion resistance
JPH0436435A (en) High strength and high corrosion resistant clad material for al heat exchanger
JPH04198446A (en) High strength aluminum alloy clad material for heat exchanger having high corrosion resistance
JP2581868B2 (en) High strength and high corrosion resistance aluminum alloy clad material for heat exchanger
JP2007500784A (en) High strength alloy for heat exchanger
JP3196368B2 (en) Al alloy clad material for heat exchanger with excellent sacrificial anode effect
JPH08302439A (en) Brazing sheet for heat exchanger, excellent corrosion resistance and brazability
JPH06145859A (en) High strength al alloy clad material for heat exchanger excellent in pitting corrosion resistance
JPH05339666A (en) Aluminum alloy brazing sheet having high strength and high corrosion resistance