JPH05305307A - Manufacture of high strength aluminum alloy clad fin stock for heat exchanger - Google Patents

Manufacture of high strength aluminum alloy clad fin stock for heat exchanger

Info

Publication number
JPH05305307A
JPH05305307A JP11291092A JP11291092A JPH05305307A JP H05305307 A JPH05305307 A JP H05305307A JP 11291092 A JP11291092 A JP 11291092A JP 11291092 A JP11291092 A JP 11291092A JP H05305307 A JPH05305307 A JP H05305307A
Authority
JP
Japan
Prior art keywords
less
rolling
hot rolling
group
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11291092A
Other languages
Japanese (ja)
Inventor
Shigenori Yamauchi
重徳 山内
Yoshifusa Shiyouji
美房 正路
Yuji Suzuki
祐治 鈴木
Kenji Kato
健志 加藤
Kendou So
建堂 蘇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP11291092A priority Critical patent/JPH05305307A/en
Publication of JPH05305307A publication Critical patent/JPH05305307A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method for inexpensively manufacturing Al alloy clad fin stocks having high temperature buckling resistance and high strength after brazing. CONSTITUTION:Homogenization treatment of the specified Al-Mn-Si Al base alloy ingot is executed at the temperature of 400-560 deg.C, and the ingot is heated at the temperature of 400-560 deg.C to start hot rolling, and after hot rolling is completed at the temperature of 300 deg.C or lower, cold rolling is executed at the draft of 40% or less. After annealing at the temperature between 180 deg.C-240 deg.C, the cold finish rolling is further executed at the draft of 5-50%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルミニウム合金製熱
交換器に用いられるフィン材の製造方法に関し、特に冷
却水や作動流体の通路材(管材または形材)にフィン材
をろう付けによって熱交換器を組み立てる場合に、ろう
付け時の加熱に対して優れた耐高温座屈性を示すと共
に、ろう付け後の強度が高いアルミニウム合金フィン材
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a fin material used in a heat exchanger made of an aluminum alloy, and in particular, a fin material is brazed to a passage material (tubular material or profile) for cooling water or a working fluid. The present invention relates to a method for manufacturing an aluminum alloy fin material which exhibits excellent high temperature buckling resistance against heating during brazing when assembling an exchanger and has high strength after brazing.

【0002】[0002]

【従来の技術】自動車などのラジエータ、エアコン、イ
ンタークーラやオイルクーラなどの熱交換器において
は、Al−Cu系合金、Al−Mn系合金、Al−Mn
−Cu系合金などの作動流体通路構成材料と、アルミニ
ウム合金のフィン材とがろう付けにより組立られてい
る。そして、フィン材は、ろう付け時の高温加熱によっ
て、その強度が著しく低下して、変形したり、ろう材中
のSiがフィン材中に拡散して座屈したりするため、こ
の加熱によって変形しないように優れた耐高温座屈性が
要求される。したがって、アルミニウム合金フィン材に
は、従来からAl−Mn系の合金が用いられ、これにさ
らに上記特性を加味するために種々の元素が添加されて
いるものが提案されている。例えば、電気化学的に卑に
するためにZn、Snなどが添加されたものが提案され
ている。しかし、Sn、Znなどの元素を含有する場合
はろう付け性(高温座屈性)が不良になりやすいので、
例えば、Sn、ZnのほかにMg、Mn、Feを調整し
た合金鋳塊を、加熱、熱間圧延および70%以上の冷間
圧延を行い、軟化処理後15〜30%の冷間圧延仕上げ
する方法(特開昭58−31070号)、またSn、Z
nのほかにMg、Mn、Fe、Si、Zrを調整した合
金鋳塊を、加熱、熱間圧延および70%以上の冷間圧延
を行い、軟化処理後15〜30%の冷間圧延仕上げする
方法(特開昭60−215729号)等が提案されてい
る。これらにおいては焼鈍(軟化)は300〜450℃
で実施することがろう付性の観点から重要とされてい
る。
2. Description of the Related Art In radiators for automobiles, air conditioners, heat exchangers such as intercoolers and oil coolers, Al--Cu alloys, Al--Mn alloys, Al--Mn alloys are used.
A working fluid passage constituent material such as a Cu-based alloy and a fin material of an aluminum alloy are assembled by brazing. The fin material is not deformed by this heating because its strength is significantly reduced and deformed by high temperature heating during brazing, or Si in the brazing material is diffused and buckled in the fin material. Therefore, excellent high temperature buckling resistance is required. Therefore, as the aluminum alloy fin material, an Al-Mn-based alloy has been conventionally used, and it has been proposed that various elements are added to this in order to further add the above characteristics. For example, it has been proposed that Zn, Sn, or the like is added to make it electrochemically base. However, when an element such as Sn or Zn is contained, the brazing property (high temperature buckling property) tends to be poor, so
For example, alloy ingots in which Mg, Mn, and Fe are adjusted in addition to Sn and Zn are heated, hot-rolled, and cold-rolled at 70% or more, and after the softening treatment, cold-rolled finish is 15 to 30%. Method (JP-A-58-31070), Sn, Z
An alloy ingot in which Mg, Mn, Fe, Si, and Zr are adjusted in addition to n is heated, hot-rolled, and cold-rolled to 70% or more, and after the softening treatment, cold-rolled finish is 15 to 30%. A method (JP-A-60-215729) and the like have been proposed. In these, annealing (softening) is 300-450 ° C.
It is said that it is important from the viewpoint of brazability.

【0003】[0003]

【発明が解決しようとする課題】従来使用され、または
提案されてきた、上記Al−Mn系合金フィン材に対し
て、最近は軽量化のほかにコスト低減などの要求が強
く、これに対応するためには構成材料を薄肉化したり、
安価な材料が要求されるようになった。
With respect to the Al—Mn alloy fin material that has been used or proposed in the related art, recently, in addition to weight reduction, there is a strong demand for cost reduction and the like. To make it thinner,
Inexpensive materials are required.

【0004】しかしながら、上記のようなフィン材を従
来の方法で製造すると、ろう付後の引張強さは100M
Pa程度になり、薄肉化すると強度不足のためフィン倒
れが生じやすいという問題があった。
However, when the fin material as described above is manufactured by the conventional method, the tensile strength after brazing is 100M.
When the pressure becomes about Pa and the wall thickness becomes thin, there is a problem that fin collapse easily occurs due to insufficient strength.

【0005】本発明者らは、ろう付後強度の高いフィン
材としてAl−Fe−Si−Mn−Mg系合金にIn、
Sn、Gaなどを添加した合金を提案している(特開平
2−248704号)。他にも同様な提案がある(特開
平3−20436)。これらによってある程度の薄肉化
は可能となったが、更に薄肉化を計るにはろう付後強度
を更に高めることが必要である。
The present inventors have found that as a fin material having a high strength after brazing, Al-Fe-Si-Mn-Mg-based alloys with In,
An alloy containing Sn, Ga, etc. has been proposed (JP-A-2-248704). There is another similar proposal (JP-A-3-20436). These have made it possible to reduce the wall thickness to some extent, but it is necessary to further increase the strength after brazing in order to further reduce the wall thickness.

【0006】本発明の目的は、優れた耐高温座屈性とろ
う付後に高い強度を有するアルミニウム合金フィン材を
安価に製造する方法を提供するものである。
An object of the present invention is to provide a method for inexpensively producing an aluminum alloy fin material having excellent high temperature buckling resistance and high strength after brazing.

【0007】[0007]

【課題を解決するための手段】本発明者らは、Al−M
n系合金の強度、高温座屈性および成形加工性につい
て、組成および製造条件について種々研究を重ねた結
果、焼鈍前の加工度を所定量以上とするとともに最終冷
間圧延前の焼鈍温度を極く低い温度で行って加工組織上
に微細化合物を析出させることにより、ろう付後の強度
が高いフィン材にできることを知見した。また、鋳塊の
均質化処理条件、熱間圧延の加熱温度と終了温度、最終
冷間圧延の加工度を適正に保つことによりろう付後の強
度と耐高温座屈性を兼備させ得ることを見出し、本発明
を完成した。
The present inventors have found that Al-M
As a result of various studies on the composition, manufacturing conditions, strength, high temperature buckling property, and formability of n-based alloys, as a result, it was found that the workability before annealing was not less than a predetermined amount and the annealing temperature before final cold rolling was extremely high. It was found that a fin material having high strength after brazing can be obtained by precipitating a fine compound on a worked structure at a very low temperature. In addition, it is possible to combine strength after brazing and high temperature buckling resistance by maintaining the homogenization conditions of the ingot, the heating temperature and end temperature of hot rolling, and the workability of final cold rolling appropriately. Heading, completed the present invention.

【0008】すなわち、本発明は、 (1)Mn:0.5〜2.2%(重量%、以下同様)、
Si:0.35%を越え1.2%以下を含有し、残部が
不可避的不純物及びAlからなる合金の鋳塊を、400
〜560℃で均質化処理し、400〜560℃に加熱し
て熱間圧延を開始し、300℃以下で熱間圧延を終了し
た後、40%以上の圧下率で冷間圧延を施し、180℃
以上240℃未満で焼鈍をした後、さらに、5〜50%
の圧下率で冷間仕上げ圧延を行う熱交換器用高強度アル
ミニウム合金フィン材の製造方法。
That is, according to the present invention, (1) Mn: 0.5 to 2.2% (weight%, the same applies hereinafter),
Si: An ingot of an alloy containing more than 0.35% and 1.2% or less with the balance being inevitable impurities and Al
After homogenizing at 560 ° C., heating to 400 to 560 ° C. to start hot rolling, and finishing hot rolling at 300 ° C. or less, cold rolling is performed at a reduction rate of 40% or more, and 180 ℃
After annealing at more than 240 ° C., further 5 to 50%
For producing a high-strength aluminum alloy fin material for heat exchangers, which performs cold finish rolling at a reduction ratio of.

【0009】(2)上記(1)の製造方法において合金
の組成をMn:0.5〜2.2%、Si:0.35%を
越え1.2%以下を含有し、さらに、Zn:0.5〜
3.0%、Sn:0.01〜0.1%、In:0.00
5〜0.1%、Ga:0.010.2%の群から選ばれ
た1種または2種以上を含有し、残部が不可避的不純物
及びAlからなる合金としたもの。
(2) In the manufacturing method of the above (1), the alloy composition contains Mn: 0.5 to 2.2%, Si: more than 0.35% and 1.2% or less, and Zn: 0.5 ~
3.0%, Sn: 0.01 to 0.1%, In: 0.00
An alloy containing one or more selected from the group of 5 to 0.1% and Ga: 0.010.2%, with the balance being unavoidable impurities and Al.

【0010】(3)上記(1)の製造方法において合金
の組成をMn:0.5〜2.2%、Si:0.35%を
越え1.2%以下を含有し、さらにZn:0.5〜3.
0%、Sn:0.01〜0.1%、In:0.005〜
0.1%、Ga:0.01〜0.2%の群から選ばれた
1種または2種以上、及びZr:0.25%以下、C
r:0.25%以下の群から選ばれた1種または2種を
含有し、残部が不可避的不純物及びAlからなる合金と
したもの。
(3) In the manufacturing method of the above (1), the composition of the alloy contains Mn: 0.5 to 2.2%, Si: more than 0.35% and not more than 1.2%, and further Zn: 0. .5-3.
0%, Sn: 0.01-0.1%, In: 0.005-
0.1%, one or more selected from the group of Ga: 0.01 to 0.2%, and Zr: 0.25% or less, C
r: An alloy containing one or two selected from the group of 0.25% or less and the balance being unavoidable impurities and Al.

【0011】(4)上記(1)の製造方法において合金
の組成をMn:0.5〜2.2%、Si:0.35%を
越え1.2%以下を含有し、さらにZn:0.5〜3.
0%、Sn:0.01〜0.1%、In:0.005〜
0.1%、Ga:0.01〜0.2%の群から選ばれた
1種または2種以上と、Zr:0.25%以下、Cr:
0.25%以下の群から選ばれた1種及び2種、及びM
g:0.05〜1.0%、Cu:0.3%以下、Fe:
0.1〜0.6%の群から選ばれた1種または2種以上
を含有し、残部が不可避的不純物及びAlからなる合金
としたもの。
(4) In the manufacturing method of the above (1), the composition of the alloy contains Mn: 0.5 to 2.2%, Si: more than 0.35% and not more than 1.2%, and further Zn: 0. .5-3.
0%, Sn: 0.01-0.1%, In: 0.005-
0.1%, Ga: 0.01 to 0.2%, one or more selected from the group, Zr: 0.25% or less, Cr:
1 type and 2 types selected from the group of 0.25% or less, and M
g: 0.05 to 1.0%, Cu: 0.3% or less, Fe:
An alloy containing one or more selected from the group of 0.1 to 0.6% and the balance being unavoidable impurities and Al.

【0012】(5)上記(1)の製造方法において合金
の組成をMn:0.5〜2.2%、Si:0.35%を
越え1.2%以下を含有し、さらにZn:0.5〜3.
0%、Sn:0.01〜0.1%、In:0.005〜
0.1%、Ga:0.01〜0.2%の群から選ばれた
1種または2種以上及びMg:0.05〜1.0%、C
u:0.3%以下、Fe:0.1〜0.6%の群から選
ばれた1種または2種以上を含有し、残部が不可避的不
純物及びAlからなる合金としたもの。
(5) In the manufacturing method of the above (1), the composition of the alloy contains Mn: 0.5 to 2.2%, Si: more than 0.35% and not more than 1.2%, and further Zn: 0. .5-3.
0%, Sn: 0.01-0.1%, In: 0.005-
0.1%, Ga: 0.01 to 0.2%, one or more selected from the group, and Mg: 0.05 to 1.0%, C
An alloy containing u: 0.3% or less and Fe: 0.1 to 0.6%, selected from the group consisting of one or more kinds, and the balance being unavoidable impurities and Al.

【0013】(6)上記(1)の製造方法において芯材
の組成をMn:0.5〜2.2%、Si:0.35%を
越え1.2%以下を含有し、さらにZr:0.25%以
下、Cr:0.25%以下の群から選ばれた1種又は2
種を含有し、残部が不可避的不純物及びAlからなる合
金としたもの。
(6) In the manufacturing method of the above (1), the composition of the core material contains Mn: 0.5 to 2.2%, Si: more than 0.35% and not more than 1.2%, and further Zr: 1 or 2 selected from the group of 0.25% or less and Cr: 0.25% or less
An alloy containing seeds and the balance being unavoidable impurities and Al.

【0014】(7)上記(1)の製造方法において合金
の組成をMn:0.5〜2.2%、Si:0.35%を
越え1.2%以下を含有し、さらにZr:0.25%以
下、Cr:0.25%以下の群から選ばれた1種及び2
種、及びMg:0.05〜1.0%、Cu:0.3%以
下、Fe:0.1〜0.6%の群から選ばれた1種また
は2種以上を含有し、残部が不可避的不純物及びAlか
らなる合金としたもの。
(7) In the manufacturing method of the above (1), the composition of the alloy contains Mn: 0.5 to 2.2%, Si: more than 0.35% and 1.2% or less, and further Zr: 0. 1% and 2 selected from the group of 0.25% or less and Cr: 0.25% or less
And one or more selected from the group consisting of Mg: 0.05 to 1.0%, Cu: 0.3% or less, and Fe: 0.1 to 0.6%, with the balance being An alloy composed of inevitable impurities and Al.

【0015】(8)上記(1)の製造方法において合金
の組成をMn:0.5〜2.2%、Si:0.35%を
越え1.2%以下を含有し、さらに、Mg:0.05〜
1.0%、Cu:0.3%以下、Fe:0.1〜0.6
%の群から選ばれた1種または2種以上を含有し、残部
が不可避的不純物及びAlからなる合金としたもの。を
その要旨とするものである。
(8) In the manufacturing method of the above (1), the alloy composition contains Mn: 0.5 to 2.2%, Si: more than 0.35% and not more than 1.2%, and further Mg: 0.05 ~
1.0%, Cu: 0.3% or less, Fe: 0.1 to 0.6
%, An alloy containing one or more selected from the group of 100% and the balance being unavoidable impurities and Al. Is the gist.

【0016】[作用]次に本発明が上記の通り、その合
金の成分組成範囲および製造条件を限定した理由につい
て説明する。
[Operation] Next, the reason why the present invention limits the component composition range and manufacturing conditions of the alloy as described above will be explained.

【0017】本発明における各成分の限定理由は次のと
おりである。
The reasons for limiting each component in the present invention are as follows.

【0018】Mn:MnはAl−Mn−Si系の化合物
を生成してろう付け前およびろう付け後の強度を向上さ
せる。また、耐高温座屈性および成形加工性を改良す
る。0.5%未満では効果が充分でなく、2.2%を越
えると鋳造時に粗大な晶出物が生成し、板材の製造が困
難になり、また熱伝導度が低下する。
Mn: Mn forms a compound of the Al-Mn-Si system to improve the strength before and after brazing. It also improves high temperature buckling resistance and moldability. If it is less than 0.5%, the effect is not sufficient, and if it exceeds 2.2%, coarse crystallized products are formed during casting, making it difficult to manufacture a plate material and reducing the thermal conductivity.

【0019】上記範囲内ではMn量が高いほど、ろう付
後の強度が向上する。この観点では1.5%を越えるこ
とがさらに望ましい。
Within the above range, the higher the Mn content, the higher the strength after brazing. From this viewpoint, it is more desirable to exceed 1.5%.

【0020】Si:SiはAl−Mn−Si系の化合物
を生成して強度を向上させ、また、Mnの固溶量を減少
させて熱伝導度を向上させる。その含有量が0.35%
以下では効果が十分でなく、1.2%を越えるとろう付
時にフィン材の溶融が生じる。
Si: Si forms an Al-Mn-Si-based compound to improve the strength, and also reduces the amount of Mn dissolved in solid solution to improve the thermal conductivity. Its content is 0.35%
The effect is not sufficient below, and if it exceeds 1.2%, the fin material is melted during brazing.

【0021】Zn、In、Sn、Ga:フィン材の電位
を卑にし、犠牲陽極効果を付与する。下限未満では効果
が十分でなく、上限を越えると効果が飽和するばかりで
なく、自己耐食性、圧延加工性が劣化する。
Zn, In, Sn, Ga: Bases the potential of the fin material and imparts a sacrificial anode effect. If it is less than the lower limit, the effect is not sufficient, and if it exceeds the upper limit, not only the effect is saturated, but also the self-corrosion resistance and the rolling workability are deteriorated.

【0022】Zr、Cr:いずれも耐高温座屈性を向上
させる。上限を越えると粗大な金属間化合物が生成し、
フィン材の製造が困難になる。
Zr, Cr: Both improve high temperature buckling resistance. If the upper limit is exceeded, coarse intermetallic compounds will be formed,
The fin material becomes difficult to manufacture.

【0023】Mg:Mgはフィンの強度を向上させる。
特にSiと共存することにより時効硬化を生じ、熱伝導
度をほとんど下げることなく、強度を向上させる。0.
05%未満では効果が十分でない。1.0%を越えると
ろう付性を害する。すなわちフッ化物フラックスろう付
の場合はMgとフラックスが反応してろう付不良を生
じ、また真空ろう付の場合はMgの蒸発量が多くなっ
て、ろう付炉の清掃回数が多くなる。
Mg: Mg improves the strength of the fin.
In particular, coexistence with Si causes age hardening to improve strength without substantially lowering thermal conductivity. 0.
If it is less than 05%, the effect is not sufficient. If it exceeds 1.0%, the brazing property is impaired. That is, in the case of fluoride flux brazing, the flux reacts with Mg to cause brazing failure, and in the case of vacuum brazing, the amount of evaporated Mg increases and the brazing furnace requires more cleaning.

【0024】Cu:Cuはフィン材の強度を向上させ
る。ただし、含有量が多くなるとフィン材の電位を貴に
し、犠牲陽極効果を損ねるので、0.3%以下にする必
要がある。
Cu: Cu improves the strength of the fin material. However, if the content is increased, the potential of the fin material becomes noble and the sacrificial anode effect is impaired, so it is necessary to set it to 0.3% or less.

【0025】Fe:Feは、Mnと共存することにより
耐高温座屈性、成形加工性を高める。また、Mnの固溶
量を減少させて熱伝導度を高める。0.1%未満では効
果が十分でなく、0.6%を越えるとろう付け時の再結
晶粒が微細になり、耐高温座屈性が劣化する。特に、本
発明のように強度を高くするために焼鈍温度を低くして
完全再結晶させない場合には、ろう付時の再結晶粒が微
細になりやすい傾向を有するので、Feが0.6%を越
えることは避けなければならない。
Fe: Fe coexists with Mn to improve high temperature buckling resistance and moldability. Further, the solid solution amount of Mn is reduced to improve the thermal conductivity. If it is less than 0.1%, the effect is not sufficient, and if it exceeds 0.6%, the recrystallized grains during brazing become fine and the high temperature buckling resistance deteriorates. In particular, when the annealing temperature is lowered to increase the strength and complete recrystallization is not performed as in the present invention, the recrystallized grains tend to become fine during brazing, so Fe is 0.6%. You must avoid crossing over.

【0026】次に製造条件を限定した理由について説明
する。
Next, the reason for limiting the manufacturing conditions will be described.

【0027】上記のような組成の合金は、溶解→鋳造→
均質化処理→熱間圧延→冷間圧延→中間焼鈍→最終冷間
圧延の工程により調質H1nのフィン材が製造される。
The alloy having the above composition is melted → casted →
A fin material having a temper of H1n is manufactured by the steps of homogenization treatment → hot rolling → cold rolling → intermediate annealing → final cold rolling.

【0028】なお、フィン材の調質はH1nに限らずH
2nでもよく、その場合は最終冷間圧延を実施しないこ
とになる。これらいずれの場合とも均質化処理と熱間圧
延前の加熱は兼ねてもよい。
It should be noted that the fin material is not limited to H1n in quality.
It may be 2n, in which case the final cold rolling is not carried out. In any of these cases, the homogenization treatment may be combined with the heating before hot rolling.

【0029】これらの工程に於いて均質化処理、熱間圧
延、冷間圧延、焼鈍および最終冷間圧延は、次の条件で
行わなければならない。
In these steps, the homogenizing treatment, hot rolling, cold rolling, annealing and final cold rolling must be carried out under the following conditions.

【0030】均質化処理温度 本発明のように、焼鈍温度が低く再結晶を完全にさせな
い場合には、ろう付け時の再結晶粒が微細になって耐高
温座屈性が不良になりやすいので、鋳塊均質化処理の温
度は特に厳密に守らなければならない。そして、微細な
Mn系化合物を十分析出させ、ろう付後の高い強度と耐
高温座屈性を得るために、400〜560℃の温度範囲
で行うことが必要である。その温度が400℃未満では
Mn系化合物(Al−Mn、Al−Mn−Fe、Al−
Mn−Si、Al−Mn−Fe−Siなどの化合物)の
析出が十分でないためろう付け時のフィン材の再結晶粒
が微細になり、耐高温座屈性が劣化する。また、560
℃を越えるとMn系化合物が粗大になり、ろう付後の強
度が低下するとともにろう付け時の再結晶粒が微細にな
り、耐高温座屈性が劣化する。
Homogenization Treatment Temperature If the annealing temperature is low and recrystallization is not completed as in the present invention, the recrystallized grains during brazing become fine and the high temperature buckling resistance tends to become poor. The temperature of the ingot homogenization treatment must be strictly followed. Then, in order to sufficiently precipitate fine Mn-based compounds and to obtain high strength and high temperature buckling resistance after brazing, it is necessary to carry out in a temperature range of 400 to 560 ° C. If the temperature is less than 400 ° C, Mn-based compounds (Al-Mn, Al-Mn-Fe, Al-
Precipitation of compounds such as Mn-Si and Al-Mn-Fe-Si is not sufficient, so the recrystallized grains of the fin material during brazing become fine and the high temperature buckling resistance deteriorates. Also, 560
When the temperature exceeds ° C, the Mn-based compound becomes coarse, the strength after brazing decreases, the recrystallized grains become fine during brazing, and the high temperature buckling resistance deteriorates.

【0031】熱間圧延前の加熱温度 熱間圧延前の加熱温度は、圧延加工性および十分な耐高
温座屈性を得るために、400〜560℃の範囲が好ま
しい。この温度が400℃未満では圧延時耳割れが激し
く、加工性が悪くなる。また、560℃を越えるとろう
付後の強度が低下するとともにろう付け時の再結晶粒が
微細になり、耐高温座屈性が劣化する。 熱間圧延終了時の温度 熱間圧延終了時の温度は300℃以下にすることが必要
である。熱間圧延の終了時の温度を300℃以下にする
ことにより、冷却中に析出するMn系化合物の析出を抑
制し、その後に行なわれる焼鈍時に析出する微細な化合
物を十分析出させることができ、ろう付け後の強度が向
上する。その温度が300℃を越えると、熱間圧延終了
後の冷却中にMn系化合物が析出して大きく成長するた
め、焼鈍時に微細な化合物の析出が不足となり、ろう付
後の強度が低くなる。
[0031]Heating temperature before hot rolling The heating temperature before hot rolling should be high enough for rolling workability and high resistance.
In order to obtain warm buckling property, the range of 400-560 ℃ is preferred.
Good If this temperature is less than 400 ° C, ear cracks will be severe during rolling.
Processability deteriorates. Also, if it exceeds 560 ℃
The strength after brazing decreases and recrystallized grains during brazing
It becomes fine and the high temperature buckling resistance deteriorates. Temperature at the end of hot rolling The temperature at the end of hot rolling must be 300 ° C or lower
Is. Keep the temperature at the end of hot rolling below 300 ° C
This suppresses the precipitation of Mn-based compounds that precipitate during cooling.
Control, and a fine chemical compound that precipitates during the subsequent annealing.
The product can be sufficiently precipitated and the strength after brazing is improved.
Go up. When the temperature exceeds 300 ℃, hot rolling ends
During the subsequent cooling, the Mn-based compound was precipitated and grew greatly.
Therefore, precipitation of fine compounds becomes insufficient during annealing, and brazing
The strength afterwards becomes low.

【0032】焼鈍前の冷間圧延 熱間圧延終了後、焼鈍する前に行う冷間圧延では、圧延
加工によって導入される転位を均一に分布させて、その
後の焼鈍でAl−Mn−Si系の微細な化合物をその転
位の上に均一に析出させてろう付後の強度を高めようと
するものであり、40%以上の圧下率が必要である。そ
の値が40%未満では微細な化合物の析出が不均一とな
り、ろう付後の強度が低くなる。
Cold Rolling Before Annealing In cold rolling performed after hot rolling and before annealing, dislocations introduced by rolling are uniformly distributed, and in subsequent annealing, Al--Mn--Si system It aims to increase the strength after brazing by uniformly depositing fine compounds on the dislocations, and a reduction rate of 40% or more is required. If the value is less than 40%, the precipitation of fine compounds will be non-uniform and the strength after brazing will be low.

【0033】焼鈍温度 焼鈍温度を通常より低くして行うことにより、圧延で導
入された転位の上にAl−Mn−Si系の微細な化合物
(円相当径0.1μm以下)を析出させ、ろう付後に高
い強度を得るために180℃以上240℃未満で行う必
要がある。この温度が180℃未満では微細な化合物の
析出が不足となり、また240℃以上では析出物が大き
くなるために、ろう付後の強度が低くなる。
[0033] By performing to lower than usual annealing temperature annealing temperature to precipitate Al-Mn-Si-based fine compounds on top of dislocations introduced in the rolling (circle equivalent diameter 0.1μm or less), Wax It is necessary to carry out at 180 ° C. or higher and lower than 240 ° C. in order to obtain high strength after application. If the temperature is lower than 180 ° C, the precipitation of fine compounds becomes insufficient, and if it is 240 ° C or higher, the size of the precipitate becomes large, resulting in low strength after brazing.

【0034】最終冷間圧延 本発明は最終の冷間圧延を適切な圧下率で行うことによ
ってH1n材としての強度を上げるとともに、ろう付け
時の温度でフィン材が再結晶を起こし、ろう材をフィン
材に拡散させないようにして、耐高温座屈性を高めよう
とするものであり、5〜50%の圧下率が必要である。
その値が5%未満ではH1n材としての強度が低くな
る。また、50%を越えると、ろう付け時の再結晶粒が
微細になり、耐高温座屈性が劣化する。
Final Cold Rolling The present invention increases the strength of the H1n material by performing the final cold rolling at an appropriate reduction ratio, and the fin material recrystallizes at the temperature during brazing, so that the brazing material is formed. It is intended to enhance the high temperature buckling resistance by preventing the fin material from diffusing, and a rolling reduction of 5 to 50% is required.
If the value is less than 5%, the strength of the H1n material becomes low. On the other hand, if it exceeds 50%, the recrystallized grains during brazing become fine and the high temperature buckling resistance deteriorates.

【0035】その他の工程、すなわち、溶解、鋳造等は
常法に従って行う。なお、鋳塊均質化処理と熱間圧延の
加熱は、かねて1回で行ってもよい。また、焼鈍は1回
に限らず2回以上行ってもよい。その場合は、最終冷間
圧延の直前の焼鈍において、上記温度範囲を守ればよ
い。
The other steps, that is, melting, casting, etc., are carried out according to ordinary methods. The ingot homogenization treatment and the hot rolling heating may be performed once. Further, the annealing is not limited to once and may be performed twice or more. In that case, in the annealing just before the final cold rolling, the above temperature range may be kept.

【0036】[0036]

【実施例】表1に示す組成の合金を溶解・鋳造した。そ
して、No.1〜No.8の合金について、鋳塊均質化処
理、熱間圧延を行い、厚さ2mmとした後、冷間圧延、
焼鈍および最終冷間圧延により厚さ0.07mmの裸フ
ィン材を得た。
EXAMPLES Alloys having the compositions shown in Table 1 were melted and cast. Then, the alloys No. 1 to No. 8 were subjected to ingot homogenization treatment and hot rolling to a thickness of 2 mm, and then cold rolling,
A bare fin material having a thickness of 0.07 mm was obtained by annealing and final cold rolling.

【0037】製造条件は表2の通りである。The manufacturing conditions are shown in Table 2.

【0038】得られたフィン材につき、フッ化物フラッ
クスを塗布した後、ろう付時と同様に窒素ガス中で60
0℃×3分間の加熱処理を行った後、引張試験を行っ
た。また、犠牲陽極効果を評価するため、pH3に調整
した3%NaCl水溶液中に1時間浸漬後、自然電極電
位を測定した。
After applying a fluoride flux to the obtained fin material, the same as in brazing was performed in a nitrogen gas at 60.
After performing heat treatment at 0 ° C. for 3 minutes, a tensile test was performed. Further, in order to evaluate the sacrificial anode effect, the natural electrode potential was measured after immersing in a 3% NaCl aqueous solution adjusted to pH 3 for 1 hour.

【0039】また、フィン材にコルゲート加工を施し、
3003合金を芯材とし4045合金を皮材(ろう材)
とするプレート材(厚さ0.6mm)の上に乗せて、フ
ッ化物フラックスろう付けを行い、ろう付け状況を調べ
た。
Further, the fin material is corrugated,
3003 alloy as core material and 4045 alloy as skin material (brazing material)
It was placed on a plate material (having a thickness of 0.6 mm) and brazed with fluoride flux to examine the brazing condition.

【0040】以上の結果をまとめて表2に示す。The above results are summarized in Table 2.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【表3】 [Table 3]

【0044】本発明例のNo.1A、2A、3A、4A、
5A、6A、7A、8A、8B、8C、8D、8E、8
F、はろう付後の強度が130MPa以上と高く、自然
電位が−740から−840mVと電気化学的に卑であ
り、ろう付状況も良好である。
Nos. 1A, 2A, 3A, 4A of the examples of the present invention,
5A, 6A, 7A, 8A, 8B, 8C, 8D, 8E, 8
The strength of F, after brazing, is as high as 130 MPa or more, the spontaneous potential is electrochemically base from −740 to −840 mV, and the brazing condition is also good.

【0045】これに対し、比較例のNo.1B、3B、5
B、7B、8Gは鋳塊の均質化処理温度が600℃と高
いため、またNo.2B、4B、6B、8Hは熱間圧延前
の加熱温度が580℃と高いため、ろう付後の強度が低
く、また、ろう付時の再結晶粒が微細になり、ろう付時
にフィンの座屈が発生した。No.1C、2C、3C、4
C、5C、6C、7C、8Kは、いずれも焼鈍温度が4
00℃と高く、析出物が大きく成長するため、ろう付後
の強度が低い。No.8Iは、熱間圧延終了時の温度が4
60℃と高く、析出物が大きく成長するため、ろう付後
の強度が低い。No.8Jは、焼鈍前の冷間圧延の圧下率
が30%と低く、また、最終冷間圧延の圧下率が95%
と高いため、ろう付後の強度が低く、また、ろう付時の
再結晶粒が微細になり、ろう付時にフィンの座屈が生じ
た。No.8Lは、焼鈍温度が150℃と低く、微細な化
合物の析出が少ないため、ろう付後の強度が低い。
On the other hand, Comparative Examples No. 1B, 3B, 5
B, 7B, 8G has a high ingot homogenization treatment temperature of 600 ° C, and Nos. 2B, 4B, 6B, 8H have a high heating temperature of 580 ° C before hot rolling. Was low, the recrystallized grains became fine during brazing, and fin buckling occurred during brazing. No. 1C, 2C, 3C, 4
C, 5C, 6C, 7C and 8K all have an annealing temperature of 4
Since it is as high as 00 ° C. and the precipitate grows large, the strength after brazing is low. No. 8I has a temperature of 4 at the end of hot rolling.
It is as high as 60 ° C., and since the precipitate grows large, the strength after brazing is low. No. 8J has a low reduction rate of 30% in the cold rolling before annealing, and a reduction rate of 95% in the final cold rolling.
Therefore, the strength after brazing was low, the recrystallized grains became fine during brazing, and the fins buckled during brazing. No. 8L has a low annealing temperature of 150 ° C., and the precipitation of fine compounds is small, so the strength after brazing is low.

【0046】[0046]

【発明の効果】本発明によれば、ろう付後の強度が高
く、さらに耐高温座屈性及び犠牲陽極作用を有するフィ
ン材を提供することができる。熱交換器のフィンを薄肉
化することが可能となり、熱交換器の軽量化、コスト低
減に寄与することができる。
According to the present invention, it is possible to provide a fin material having high strength after brazing, high temperature buckling resistance and sacrificial anode function. The fins of the heat exchanger can be made thinner, which contributes to weight reduction and cost reduction of the heat exchanger.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 健志 東京都港区新橋5丁目11番3号 住友軽金 属工業株式会社内 (72)発明者 蘇 建堂 東京都港区新橋5丁目11番3号 住友軽金 属工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenji Kato 5-11-3 Shimbashi, Minato-ku, Tokyo Sumitomo Light Metal Industries, Ltd. (72) Inventor Su Kendo 5-11 Shimbashi, Minato-ku, Tokyo No. 3 Sumitomo Light Metal Industry Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 Mn:0.5〜2.2%(重量%、以下
同様)、Si:0.35%を越え1.2%以下を含有
し、残部が不可避的不純物及びAlからなる合金の鋳塊
を、400〜560℃で均質化処理し、400〜560
℃に加熱して熱間圧延を開始し、300℃以下で熱間圧
延を終了した後、40%以上の圧下率で冷間圧延を施
し、180℃以上240℃未満で焼鈍をした後、さら
に、5〜50%の圧下率で冷間仕上げ圧延を行うことを
特徴とする熱交換器用高強度アルミニウム合金フィン材
の製造方法。
1. An alloy containing Mn: 0.5 to 2.2% (weight%, the same shall apply hereinafter), Si: more than 0.35% and 1.2% or less, with the balance being inevitable impurities and Al. Of the ingot is subjected to homogenization treatment at 400 to 560 ° C., and 400 to 560
After heating to ℃ to start hot rolling, after finishing the hot rolling at 300 ℃ or less, after performing cold rolling at a reduction rate of 40% or more, after annealing at 180 ℃ or more and less than 240 ℃, A method for producing a high-strength aluminum alloy fin material for a heat exchanger, which comprises performing cold finish rolling at a rolling reduction of 5 to 50%.
【請求項2】 Mn:0.5〜2.2%、Si:0.3
5%を越え1.2%以下を含有し、さらに、Zn:0.
5〜3.0%、Sn:0.01〜0.1%、In:0.
005〜0.1%、Ga:0.01〜0.2%の群から
選ばれた1種または2種以上を含有し、残部が不可避的
不純物及びAlからなる合金の鋳塊を、400〜560
℃で均質化処理し、400〜560℃に加熱して熱間圧
延を開始し、300℃以下で熱間圧延を終了した後、4
0%以上の圧下率で冷間圧延を施し、180℃以上24
0℃未満で焼鈍をした後、さらに、5〜50%の圧下率
で冷間仕上げ圧延を行うことを特徴とする熱交換器用高
強度アルミニウム合金フィン材の製造方法。
2. Mn: 0.5 to 2.2%, Si: 0.3
5% to 1.2% is contained, and Zn: 0.
5 to 3.0%, Sn: 0.01 to 0.1%, In: 0.
An alloy ingot containing one kind or two or more kinds selected from the group of 005 to 0.1% and Ga: 0.01 to 0.2%, with the balance being inevitable impurities and Al, 400 to 560
After homogenizing at 400 ° C., heating to 400 to 560 ° C. to start hot rolling, and finishing hot rolling at 300 ° C. or less, 4
Cold rolled at a reduction rate of 0% or more, 180 ° C or more 24
A method for producing a high-strength aluminum alloy fin material for a heat exchanger, which comprises performing annealing at a temperature lower than 0 ° C. and then performing cold finish rolling at a reduction rate of 5 to 50%.
【請求項3】 Mn:0.5〜2.2%、Si:0.3
5%を越え1.2%以下を含有し、さらに、Zn:0.
5〜3.0%、Sn:0.01〜0.1%、In:0.
005〜0.1%、Ga:0.01〜0.2%の群から
選ばれた1種または2種以上、及びZr:0.25%以
下、Cr:0.25%以下の群から選ばれた1種又は2
種を含有し、残部が不可避的不純物及びAlからなる合
金の鋳塊を、400〜560℃で均質化処理し、400
〜560℃に加熱して熱間圧延を開始し、300℃以下
で熱間圧延を終了した後、40%以上の圧下率で冷間圧
延を施し、180℃以上240℃未満で焼鈍をした後、
さらに、5〜50%の圧下率で冷間仕上げ圧延を行うこ
とを特徴とする熱交換器用高強度アルミニウム合金フィ
ン材の製造方法。
3. Mn: 0.5 to 2.2%, Si: 0.3
5% to 1.2% is contained, and Zn: 0.
5 to 3.0%, Sn: 0.01 to 0.1%, In: 0.
005 to 0.1%, Ga: 0.01 to 0.2%, one or more selected from the group, and Zr: 0.25% or less, Cr: 0.25% or less selected from the group 1 or 2
An ingot of an alloy containing seeds and the balance consisting of unavoidable impurities and Al was homogenized at 400 to 560 ° C.
After heating to 560 ° C. to start hot rolling, finishing hot rolling at 300 ° C. or lower, performing cold rolling at a reduction rate of 40% or higher, and annealing at 180 ° C. or higher and lower than 240 ° C. ,
Furthermore, the method for producing a high-strength aluminum alloy fin material for a heat exchanger, which comprises performing cold finish rolling at a reduction rate of 5 to 50%.
【請求項4】 Mn:0.5〜2.2%、Si:0.3
5%を越え1.2%以下を含有し、さらに、Zn:0.
5〜3.0%、Sn:0.01〜0.1%、In:0.
005〜0.1%、Ga:0.01〜0.2%の群から
選ばれた1種または2種以上と、Zr:0.25%以
下、Cr:0.25%以下の群から選ばれた1種又は2
種、及びMg:0.05〜1.0%、Cu:0.3%以
下、Fe:0.1〜0.6%の群から選ばれた1種また
は2種以上を含有し、残部が不可避的不純物及びAlか
らなる合金の鋳塊を、400〜560℃で均質化処理
し、400〜560℃に加熱して熱間圧延を開始し、3
00℃以下で熱間圧延を終了した後、40%以上の圧下
率で冷間圧延を施し、180℃以上240℃未満で焼鈍
をした後、さらに、5〜50%の圧下率で冷間仕上げ圧
延を行うことを特徴とする熱交換器用高強度アルミニウ
ム合金フィン材の製造方法。
4. Mn: 0.5 to 2.2%, Si: 0.3
5% to 1.2% is contained, and Zn: 0.
5 to 3.0%, Sn: 0.01 to 0.1%, In: 0.
One or two or more selected from the group of 005 to 0.1% and Ga: 0.01 to 0.2%, and a group of Zr: 0.25% or less and Cr: 0.25% or less. 1 or 2
And one or more selected from the group consisting of Mg: 0.05 to 1.0%, Cu: 0.3% or less, and Fe: 0.1 to 0.6%, with the balance being An ingot of an alloy consisting of unavoidable impurities and Al is homogenized at 400 to 560 ° C., heated to 400 to 560 ° C. to start hot rolling, and 3
After finishing the hot rolling at 00 ° C or lower, cold rolling is performed at a rolling reduction of 40% or more, annealing is performed at 180 ° C or more and less than 240 ° C, and further cold finishing is performed at a rolling reduction of 5 to 50%. A method for producing a high-strength aluminum alloy fin material for a heat exchanger, which comprises rolling.
【請求項5】 Mn:0.5〜2.2%、Si:0.3
5%を越え1.2%以下を含有し、さらに、Zn:0.
5〜3.0%、Sn:0.01〜0.1%、In:0.
005〜0.1%、Ga:0.01〜0.2%の群から
選ばれた1種または2種以上及びMg:0.05〜1.
0%、Cu:0.3%以下、Fe:0.1〜0.6%の
群から選ばれた1種または2種以上を含有し、残部が不
可避的不純物及びAlからなる合金の鋳塊を、400〜
560℃で均質化処理し、400〜560℃に加熱して
熱間圧延を開始し、300℃以下で熱間圧延を終了した
後、40%以上の圧下率で冷間圧延を施し、180℃以
上240℃未満で焼鈍をした後、さらに、5〜50%の
圧下率で冷間仕上げ圧延を行うことを特徴とする熱交換
器用高強度アルミニウム合金フィン材の製造方法。
5. Mn: 0.5 to 2.2%, Si: 0.3
5% to 1.2% is contained, and Zn: 0.
5 to 3.0%, Sn: 0.01 to 0.1%, In: 0.
005 to 0.1%, Ga: 0.01 to 0.2%, one or more selected from the group, and Mg: 0.05 to 1.
Ingot of alloy containing 0%, Cu: 0.3% or less, Fe: 0.1 to 0.6% and one or more selected from the group, the balance being unavoidable impurities and Al. From 400
After homogenizing at 560 ° C., heating to 400 to 560 ° C. to start hot rolling, and finishing hot rolling at 300 ° C. or less, cold rolling is performed at a rolling reduction of 40% or more to 180 ° C. A method for producing a high-strength aluminum alloy fin material for a heat exchanger, which comprises annealing at 240 ° C. or higher and further cold finishing rolling at a reduction rate of 5 to 50%.
【請求項6】 Mn:0.5〜2.2%、Si:0.3
5%を越え1.2%以下を含有し、さらに、Zr:0.
25%以下、Cr:0.25%以下の群から選ばれた1
種又は2種を含有し、残部が不可避的不純物及びAlか
らなる合金の鋳塊を、400〜560℃で均質化処理
し、400〜560℃に加熱して熱間圧延を開始し、3
00℃以下で熱間圧延を終了した後、40%以上の圧下
率で冷間圧延を施し、180℃以上240℃未満で焼鈍
をした後、さらに、5〜50%の圧下率で冷間仕上げ圧
延を行うことを特徴とする熱交換器用高強度アルミニウ
ム合金フィン材の製造方法。
6. Mn: 0.5 to 2.2%, Si: 0.3
More than 5% and 1.2% or less, and further Zr: 0.
1 selected from the group of 25% or less and Cr: 0.25% or less
The alloy ingot containing two or two kinds and the balance consisting of unavoidable impurities and Al is homogenized at 400 to 560 ° C., heated to 400 to 560 ° C. to start hot rolling, and 3
After finishing the hot rolling at 00 ° C or less, cold rolling is performed at a reduction rate of 40% or more, annealing is performed at 180 ° C or more and less than 240 ° C, and then cold finishing is performed at a reduction rate of 5 to 50%. A method for producing a high-strength aluminum alloy fin material for a heat exchanger, which comprises rolling.
【請求項7】 Mn:0.5〜2.2%、Si:0.3
5%を越え1.2%以下を含有し、さらに、Zr:0.
25%以下、Cr:0.25%以下の群から選ばれた1
種又は2種、及びMg:0.05〜1.0%、Cu:
0.3%以下、Fe:0.1〜0.6%の群から選ばれ
た1種または2種以上を含有し、残部が不可避的不純物
及びAlからなる合金の鋳塊を、400〜560℃で均
質化処理し、400〜560℃に加熱して熱間圧延を開
始し、300℃以下で熱間圧延を終了した後、40%以
上の圧下率で冷間圧延を施し、180℃以上240℃未
満で焼鈍をした後、さらに、5〜50%の圧下率で冷間
仕上げ圧延を行うことを特徴とする熱交換器用高強度ア
ルミニウム合金フィン材の製造方法。
7. Mn: 0.5 to 2.2%, Si: 0.3
More than 5% and 1.2% or less, and further Zr: 0.
1 selected from the group of 25% or less and Cr: 0.25% or less
Or two, and Mg: 0.05 to 1.0%, Cu:
An alloy ingot containing one or more selected from the group of 0.3% or less and Fe: 0.1 to 0.6%, the balance being inevitable impurities and Al, 400 to 560 After homogenizing treatment at ℃, heating to 400 to 560 ℃ to start hot rolling, after finishing hot rolling at 300 ℃ or less, cold rolling is performed at a reduction rate of 40% or more, 180 ℃ or more A method for producing a high-strength aluminum alloy fin material for a heat exchanger, which comprises performing annealing at a temperature lower than 240 ° C. and then performing cold finish rolling at a reduction rate of 5 to 50%.
【請求項8】 Mn:0.5〜2.2%、Si:0.3
5%を越え1.2%以下を含有し、さらに、Mg:0.
05〜1.0%、Cu:0.3%以下、Fe:0.1〜
0.6%の群から選ばれた1種または2種以上を含有
し、残部が不可避的不純物及びAlからなる合金の鋳塊
を、400〜560℃で均質化処理し、400〜560
℃に加熱して熱間圧延を開始し、300℃以下で熱間圧
延を終了した後、40%以上の圧下率で冷間圧延を施
し、180℃以上240℃未満で焼鈍をした後、さら
に、5〜50%の圧下率で冷間仕上げ圧延を行うことを
特徴とする熱交換器用高強度アルミニウム合金フィン材
の製造方法。
8. Mn: 0.5 to 2.2%, Si: 0.3
The content of Mg: 0.
05-1.0%, Cu: 0.3% or less, Fe: 0.1
An ingot of an alloy containing one or more selected from the group of 0.6% and the balance consisting of inevitable impurities and Al is homogenized at 400 to 560 ° C., and 400 to 560.
After heating to ℃ to start hot rolling, after finishing the hot rolling at 300 ℃ or less, after performing cold rolling at a reduction rate of 40% or more, after annealing at 180 ℃ or more and less than 240 ℃, A method for producing a high-strength aluminum alloy fin material for a heat exchanger, which comprises performing cold finish rolling at a rolling reduction of 5 to 50%.
JP11291092A 1992-05-01 1992-05-01 Manufacture of high strength aluminum alloy clad fin stock for heat exchanger Pending JPH05305307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11291092A JPH05305307A (en) 1992-05-01 1992-05-01 Manufacture of high strength aluminum alloy clad fin stock for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11291092A JPH05305307A (en) 1992-05-01 1992-05-01 Manufacture of high strength aluminum alloy clad fin stock for heat exchanger

Publications (1)

Publication Number Publication Date
JPH05305307A true JPH05305307A (en) 1993-11-19

Family

ID=14598556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11291092A Pending JPH05305307A (en) 1992-05-01 1992-05-01 Manufacture of high strength aluminum alloy clad fin stock for heat exchanger

Country Status (1)

Country Link
JP (1) JPH05305307A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010095758A (en) * 2008-10-16 2010-04-30 Mitsubishi Alum Co Ltd Brazing sheet for automotive heat exchanger for brazed tube making
JP2011099154A (en) * 2009-11-09 2011-05-19 Mitsubishi Alum Co Ltd Aluminum alloy brazing fin material for heat exchanger, and heat exchanger using the same
JP2013216935A (en) * 2012-04-06 2013-10-24 Sumitomo Light Metal Ind Ltd Aluminum alloy fin material for heat exchanger, method for producing the same, and method for producing the heat exchanger
JP2014125642A (en) * 2012-12-25 2014-07-07 Mitsubishi Alum Co Ltd Aluminum alloy sheet excellent in press formability and its manufacturing method
JP2016148071A (en) * 2015-02-10 2016-08-18 三菱アルミニウム株式会社 Aluminum alloy fin material
CN111809082A (en) * 2020-05-28 2020-10-23 大力神铝业股份有限公司 Aluminum alloy material processing technology for hollow glass parting bead

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010095758A (en) * 2008-10-16 2010-04-30 Mitsubishi Alum Co Ltd Brazing sheet for automotive heat exchanger for brazed tube making
JP2011099154A (en) * 2009-11-09 2011-05-19 Mitsubishi Alum Co Ltd Aluminum alloy brazing fin material for heat exchanger, and heat exchanger using the same
JP2013216935A (en) * 2012-04-06 2013-10-24 Sumitomo Light Metal Ind Ltd Aluminum alloy fin material for heat exchanger, method for producing the same, and method for producing the heat exchanger
JP2014125642A (en) * 2012-12-25 2014-07-07 Mitsubishi Alum Co Ltd Aluminum alloy sheet excellent in press formability and its manufacturing method
JP2016148071A (en) * 2015-02-10 2016-08-18 三菱アルミニウム株式会社 Aluminum alloy fin material
WO2016129175A1 (en) * 2015-02-10 2016-08-18 三菱アルミニウム株式会社 Aluminum alloy fin material
US10378088B2 (en) 2015-02-10 2019-08-13 Mitsubishi Aluminum Co., Ltd. Aluminum alloy fin material and heat exchanger
CN111809082A (en) * 2020-05-28 2020-10-23 大力神铝业股份有限公司 Aluminum alloy material processing technology for hollow glass parting bead

Similar Documents

Publication Publication Date Title
JPH08246117A (en) High strength aluminum brazing sheet and its production
JPH05104287A (en) Production of aluminum brazing sheet having excellent moldability
JPH05305307A (en) Manufacture of high strength aluminum alloy clad fin stock for heat exchanger
JP2002256402A (en) Method of producing fin material for use in heat exchanger
JP4574036B2 (en) Aluminum alloy for fin material of heat exchanger and manufacturing method of fin material of heat exchanger
JPH11241136A (en) High corrosion resistant aluminum alloy, clad material thereof, and its production
JPH1088265A (en) Aluminum alloy fin material for heat exchanger, excellent in sacrificial anode effect as well as in strength after brazing
JPH1017969A (en) Aluminum alloy clad fin material and its production
JPH058087A (en) Production of high-strength aluminum brazing sheet
JPH08291353A (en) Aluminum alloy brazing sheet bar excellent in resistance weldability
JPH05305306A (en) Manufacture of high strength aluminum alloy clad fin stock for heat exchanger
JPH06322494A (en) Production of aluminum alloy fin material for heat exchanger
JPH0313550A (en) Production of high strength aluminum alloy fin material for heat exchanger
JP3253823B2 (en) Method for producing high strength and high heat resistant fin material made of aluminum alloy for heat exchanger
JP2874764B2 (en) Method of manufacturing high strength aluminum alloy fin material for heat exchanger
JPH03197652A (en) Production of aluminum alloy fin material for brazing
KR20060030910A (en) Resistant alloy for heat exchanger
JP2002256403A (en) Method of producing fin material for use in heat exchanger
JPH0931614A (en) Production of aluminum alloy fin material with high strength and high heat resistance for heat exchanger
JPH0841573A (en) High strength aluminum alloy fin material for heat exchanger
JPH07102337A (en) Production of aluminum alloy fin material for brazing and heat exchanger made of aluminum alloy
JP2907353B2 (en) Method of manufacturing high strength aluminum alloy sacrificial fin material for low temperature brazing
JPH08291377A (en) Production of high strength and high heat resistant fin material for heat exchanger
JPH0931613A (en) Production of aluminum alloy fin material with high strength and high heat resistance for heat exchanger
JPH0718358A (en) High strength aluminum alloy fin material for heat exchanger