JP2002155332A - Aluminum alloy fin material for heat exchanger having excellent formability and brazability - Google Patents

Aluminum alloy fin material for heat exchanger having excellent formability and brazability

Info

Publication number
JP2002155332A
JP2002155332A JP2000351018A JP2000351018A JP2002155332A JP 2002155332 A JP2002155332 A JP 2002155332A JP 2000351018 A JP2000351018 A JP 2000351018A JP 2000351018 A JP2000351018 A JP 2000351018A JP 2002155332 A JP2002155332 A JP 2002155332A
Authority
JP
Japan
Prior art keywords
fin material
aluminum alloy
brazing
fin
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000351018A
Other languages
Japanese (ja)
Other versions
JP3847076B2 (en
Inventor
Yoshifusa Shoji
美房 正路
Hirokazu Tanaka
宏和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2000351018A priority Critical patent/JP3847076B2/en
Publication of JP2002155332A publication Critical patent/JP2002155332A/en
Application granted granted Critical
Publication of JP3847076B2 publication Critical patent/JP3847076B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy fin material for heat exchanger which has excellent forming workability before brazing, and excellent brazability, further has high strength characteristics and thermal conductivity after brazing, and has excellent sacrificial anode effect as well. SOLUTION: This fin material has a composition containing 1.0 to 2.0% Mn, 0.5 to 1.3% Si, 0.1 to 0.8% Fe and 0.5 to 3% Zn, in which the ratio of the Mn content to the Si content (Mn%/Si%) is 1.0 to 3.5, and further containing one or two kinds of 0.05 to 0.3% Zr and 0.05 to 0.3% Cr, and the balance Al with inevitable impurities. Its tensile strength is 160 to 270 MPa.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、成形性及びろう付
け性に優れた熱交換器用アルミニウム合金フィン材、詳
しくは、ラジエータ、カーヒータ、カーエアコン等のよ
うに、フィンと作動流体通路の構成材料とをろう付けに
より接合する熱交換器用アルミニウム合金フィン材、特
に成形性及びろう付け性に優れ、ろう付け後の強度と熱
伝導率とが高く、且つ犠牲陽極効果に優れたアルミニウ
ム合金フィン材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy fin material for a heat exchanger having excellent formability and brazing properties, and more particularly, to a fin and a working fluid passage material such as a radiator, a car heater and a car air conditioner. Aluminum alloy fin material for heat exchangers, in particular, having excellent formability and brazing properties, high strength and thermal conductivity after brazing, and excellent sacrificial anode effect .

【0002】[0002]

【従来の技術】アルミニウム合金製熱交換器は、自動車
のラジエータ、オイルクーラ、インタークーラ、ヒータ
及びエアコンのエバポレータやコンデンサあるいは油圧
機器や産業機械のオイルクーラ等の熱交換器として、広
く使用されている。このアルミニウム合金製熱交換器の
フィン材には、チューブ材(作動流体通路材)を防食す
るために犠牲陽極効果が要求されると共に、ろう付け時
の高温加熱による変形防止やろうの浸食防止のために耐
高温座屈性が要求される。このような要求を満たすため
に、従来、アルミニウム合金フィン材としては、JIS
A3003、JISA3203等のAl−Mn系、Al
−Mn−Si系、Al−Mn−Si−Cu系等、Mnを
有するアルミニウム合金が用いられている。Mnは、ろ
う付け時の変形やろうの浸食を防ぐのに有効に作用し、
更に、Mnを含むアルミニウム合金フィン材に犠牲陽極
効果を付与するために、Zn、Sn、In等を添加して
電気化学的に卑にする手法が知られている(特開昭62
−120455号公報)。
2. Description of the Related Art Aluminum alloy heat exchangers are widely used as radiators for automobiles, oil coolers, intercoolers, evaporators and condensers for heaters and air conditioners, and heat exchangers for oil coolers for hydraulic equipment and industrial machinery. I have. The fin material of this aluminum alloy heat exchanger is required to have a sacrificial anode effect in order to prevent the tube material (working fluid passage material) from corroding, and also to prevent deformation due to high temperature heating during brazing and to prevent erosion of the brazing material. Therefore, high-temperature buckling resistance is required. In order to satisfy such demands, aluminum alloy fin materials have conventionally been JIS
A-Mn, such as A3003 and JISA3203, Al
Aluminum alloys containing Mn, such as -Mn-Si-based and Al-Mn-Si-Cu-based, are used. Mn works effectively to prevent deformation and erosion of brazing during brazing,
Further, in order to impart a sacrificial anode effect to an aluminum alloy fin material containing Mn, there is known a method of adding Zn, Sn, In, or the like to make it electrochemically low (Japanese Patent Laid-Open No. Sho 62).
No. 120455).

【0003】フィン材は、例えば、図1に示すようにコ
ルゲート成形され、このコルゲートフィン1を図2に示
すように、チューブ材2と組み合わせ、ろう付け接合す
ることにより熱交換器エレメント3となる。近年、自動
車の一層の軽量化のために、自動車用熱交換器の軽量化
の要求がますます強くなっており、これに対応して熱交
換器の構成部材のフィン材、チューブ材等の薄肉化が進
行しているが、例えば、厚み0.1mm以下のアルミニウ
ム合金フィン材をコルゲート成形すると、図1に示すよ
うに、上側R頂点と下側R頂点との間のフィン山高さh
に、h1 、h2、h3 、h4 のように、バラツキが生じ
ることがあり、このバラツキが生じると、コルゲートフ
ィン1とチューブ材2とのろう付け接合率が低下して、
熱交換性能が低下するため、バラツキを低減するため
に、通常、フィン成形機を試行錯誤で調整することによ
り対処しているのが現状である。
[0003] The fin material is, for example, corrugated as shown in FIG. 1, and this corrugated fin 1 is combined with a tube material 2 as shown in FIG. . In recent years, in order to further reduce the weight of automobiles, the demand for lighter heat exchangers for automobiles has become more and more intense. In response to this, thin-walled components such as fin materials and tube materials of heat exchangers have been required. For example, when an aluminum alloy fin material having a thickness of 0.1 mm or less is corrugated, as shown in FIG. 1, a fin height h between an upper R vertex and a lower R vertex is increased.
, As the h 1, h 2, h 3 , h 4, may variations occur, this variation occurs, brazing ratio between the corrugated fin 1 and the tube member 2 is lowered,
At present, the heat exchange performance is reduced, and in order to reduce the variation, the fin molding machine is usually adjusted by trial and error to cope with the situation.

【0004】このように、フィン材の薄肉化、更にフィ
ン成形機の高速化に伴って、フィン材の成形性、その後
のろう付け性に問題が生じ、アルミニウム合金製熱交換
器の生産性や製造性にも影響することから、アルミニウ
ム合金フィン材の成形性及びろう付け性について一層の
改善が望まれている。また、フィンの薄肉化に伴うろう
付け後の強度や熱伝導度を更に改善することも要求され
ている。
[0004] As described above, as the thickness of the fin material is reduced and the speed of the fin forming machine is increased, problems arise in the formability of the fin material and the subsequent brazing property, and the productivity of the aluminum alloy heat exchanger is reduced. Since it also affects the manufacturability, it is desired to further improve the formability and brazing properties of the aluminum alloy fin material. Further, it is also required to further improve the strength and thermal conductivity after brazing accompanying the thinning of the fin.

【0005】Mnを含有するアルミニウム合金は、ろう
付け時の加熱によりMnが固溶して熱伝導率が低下する
という難点があり、この問題を解決するため、Mn含有
量を0.8%以下に制限し、Zr:0.02 %〜0.2 %、S
i:0.1%〜0.8 %を添加したアルミニウム合金が提案さ
れている(特開昭63−23260号公報参照)が、こ
のアルミニウム合金においては、ろう付け後の熱伝導率
は改善されるが、Mn含有量が少ないため、ろう付け後
の強度が十分でなく、熱交換器として使用中に、フィン
倒れや変形が生じ易く、更に電位が十分に卑でないため
犠牲陽極効果が小さいという別の問題が生じる。
[0005] Aluminum alloys containing Mn have the disadvantage that Mn forms a solid solution due to heating during brazing and lowers the thermal conductivity. To solve this problem, the Mn content is reduced to 0.8% or less. And Zr: 0.02% to 0.2%, S
i: An aluminum alloy to which 0.1% to 0.8% is added has been proposed (see JP-A-63-23260). In this aluminum alloy, the thermal conductivity after brazing is improved, but Mn is not improved. Another problem is that the content is low, so the strength after brazing is not sufficient, the fins are likely to collapse or deform during use as a heat exchanger, and the sacrificial anode effect is small because the potential is not sufficiently low. Occurs.

【0006】先に、発明者らは、ろう付け後の強度を改
良したフィン材用アルミニウム合金として、Al−Mn
−Si−Mg−Fe系合金にZnを添加したアルミニウ
ム合金を提案した(特開平5−230578号公報参
照)。このアルミニウム合金は、ろう付け後の強度に優
れ、ある程度の薄肉化は可能となるが、なお一層の薄肉
化を図るためには、成形性及びろう付け性について更に
改善が必要である。
First, the present inventors have proposed Al-Mn as an aluminum alloy for a fin material having improved strength after brazing.
An aluminum alloy in which Zn is added to a -Si-Mg-Fe alloy has been proposed (see JP-A-5-230578). This aluminum alloy has excellent strength after brazing and can be reduced in thickness to some extent. However, in order to further reduce the thickness, it is necessary to further improve the formability and brazing properties.

【0007】[0007]

【発明が解決しようとする課題】本発明は、熱交換器用
アルミニウム合金フィン材の薄肉化に伴う上記の問題点
を解消し改善要求を満足するアルミニウム合金フィン材
を得るために、フィン成形性、ろう付け性、強度特性、
伝熱性能及び犠牲陽極効果と、合金成分、合金成分の組
み合わせ、材料の強度特性、内部組織等との関連につい
て検討を加えた結果としてなされたものであり、その目
的は、ろう付け前の成形加工性に優れると共に、ろう付
け性に優れ、ろう付け後の強度特性及び熱伝導度が良好
で、犠牲陽極効果にも優れた熱交換器用アルミニウム合
金フィン材を提供することにある。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems associated with the thinning of aluminum alloy fin materials for heat exchangers and obtains an aluminum alloy fin material satisfying the demand for improvement. Brazing properties, strength properties,
The purpose of this study was to examine the relationship between heat transfer performance and sacrificial anode effect, alloy components, combinations of alloy components, material strength characteristics, internal structure, etc. An object of the present invention is to provide an aluminum alloy fin material for a heat exchanger which is excellent in workability, excellent in brazing properties, good in strength characteristics and thermal conductivity after brazing, and excellent in sacrificial anode effect.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めの本発明の請求項1による成形性及びろう付け性に優
れた熱交換器用アルミニウム合金フィン材は、Mn:1.0
%〜2.0 %、Si:0.5%〜1.3 %、Fe:0.1%〜0.8
%、Zn:0.5%〜3 %を含有し、MnとSiとの含有比
(Mn%/Si%)を1.0〜3.5とし、更に、Z
r:0.05 %〜0.3 %及びCr:0.05 %〜0.3 %のうちの
1種又は2種を含み、残部Alと不可避的不純物からな
り、引張強さが160〜270MPaであることを特徴
とする。
According to the first aspect of the present invention, there is provided an aluminum alloy fin material for a heat exchanger having excellent formability and brazing properties, wherein Mn: 1.0.
% To 2.0%, Si: 0.5% to 1.3%, Fe: 0.1% to 0.8%
%, Zn: 0.5% to 3%, the content ratio of Mn to Si (Mn% / Si%) is 1.0 to 3.5, and Z
It contains one or two of r: 0.05% to 0.3% and Cr: 0.05% to 0.3%, and is characterized by having a balance of Al and inevitable impurities and a tensile strength of 160 to 270 MPa.

【0009】請求項2による成形性及びろう付け性に優
れた熱交換器用アルミニウム合金フィン材は、請求項1
において、アルミニウム合金フィン材が、更に、In:
0.005%〜0.1 %、Sn:0.01 %〜0.1 %、Mg:0.05
%〜0.2 %のうちの1種以上を含有してなることを特徴
とする。
[0009] The aluminum alloy fin material for a heat exchanger according to claim 2 which is excellent in formability and brazing property is claimed in claim 1.
Wherein the aluminum alloy fin material further comprises In:
0.005% to 0.1%, Sn: 0.01% to 0.1%, Mg: 0.05
% To 0.2%.

【0010】また、請求項3による成形性及びろう付け
性に優れた熱交換器用アルミニウム合金フィン材は、請
求項1〜2において、アルミニウム合金フィン材のマト
リックスが繊維組織であることを特徴とする。
According to a third aspect of the present invention, there is provided an aluminum alloy fin material for a heat exchanger having excellent formability and brazing properties, wherein the matrix of the aluminum alloy fin material is a fiber structure. .

【0011】[0011]

【発明の実施の形態】本発明の熱交換器用アルミニウム
合金フィン材における(1)合金成分の意義及びその限
定理由、(2)素材の引張強さの意義及びその限定理由
について説明する。 (1)合金成分の意義及びその限定理由 フィン材中のMnは、Siと共存することによりAl−
Mn−Si系の化合物を生成して、ろう付け前及びろう
付け後のフィン材の強度を向上させると共に、耐高温座
屈性及び成形加工性を改良する。Mnの好ましい含有範
囲は、1.0 %〜2.0 %であり、1.0 %未満ではその効果
が小さく、2.0 %を越えて含有すると、鋳造時に粗大な
晶出物が生成して板材の製造が困難となり、更に、Mn
の固溶量が増加して熱伝導度が低下する。
BEST MODE FOR CARRYING OUT THE INVENTION In the aluminum fin material for a heat exchanger according to the present invention, (1) the significance of the alloy component and the reason for the limitation, and (2) the significance of the tensile strength of the material and the reason for the limitation will be described. (1) Significance of alloy components and the reason for the limitation Mn in the fin material becomes Al-
A Mn-Si-based compound is generated to improve the strength of the fin material before and after brazing, and to improve high-temperature buckling resistance and formability. The preferred range of Mn content is 1.0% to 2.0%. If the content is less than 1.0%, the effect is small. If the content is more than 2.0%, coarse crystals are formed at the time of casting, and it becomes difficult to produce a sheet material. Further, Mn
Increases in the amount of solid solution and the thermal conductivity decreases.

【0012】フィン材中のSiは、Mnと共存してAl
−Mn−Si系化合物を生成し、フィン材の強度を向上
させると共に、Mnの固溶量を減少させて熱伝導度を向
上させる。Siの好ましい含有範囲は0.5 %〜1.3 %で
あり、0.5 %未満ではその効果が十分でなく、1.3 %を
越えるとろう付け時にフィン材の溶融が生じるおそれが
ある。
Si in the fin material coexists with Mn and
-Generates a Mn-Si-based compound, improves the strength of the fin material, and reduces the amount of solid solution of Mn to improve the thermal conductivity. The preferred content range of Si is 0.5% to 1.3%. If the content is less than 0.5%, the effect is not sufficient, and if it exceeds 1.3%, the fin material may be melted during brazing.

【0013】MnとSiとは、Al−Mn−Si系化合
物を生成し、Mn及びSiの各固溶量を減少させて熱伝
導度を向上させる。MnとSiとの好ましい含有比(M
n%/Si%)の範囲は1.0〜3.5であり、1.0
未満ではSiの固溶量が増加して熱伝導度が低下し、
3.5を越えるとMnの固溶量が増加して熱伝導度が低
下する。
[0013] Mn and Si form an Al-Mn-Si-based compound and reduce the solid solution amount of Mn and Si to improve the thermal conductivity. The preferred content ratio of Mn and Si (M
n% / Si%) is 1.0 to 3.5,
If less, the amount of solid solution of Si increases and the thermal conductivity decreases,
If it exceeds 3.5, the solid solution amount of Mn increases and the thermal conductivity decreases.

【0014】フィン材中のFeは、ろう付け前及びろう
付け後のフィン材の強度を向上させると共に成形加工性
を改良する。Feの好ましい含有量は0.1 〜0.8 %の範
囲であり、0.1 %未満ではその効果が十分でなく、0.8
%を越えると、フィン材の自己耐食性が劣化する。
[0014] Fe in the fin material improves the strength of the fin material before and after brazing and also improves the formability. The preferred content of Fe is in the range of 0.1 to 0.8%. If the content is less than 0.1%, the effect is not sufficient.
%, The self-corrosion resistance of the fin material deteriorates.

【0015】フィン材中のZnは、フィン材の電位を卑
にし、犠牲陽極効果を与える。Znの好ましい含有範囲
は0.5 %〜3 %であり、0.5 %未満ではその効果が小さ
く、3 %を越えて含有すると、フィン材自体の自己耐食
性が悪くなる。
[0015] Zn in the fin material makes the potential of the fin material low and gives a sacrificial anode effect. The preferred range of Zn content is 0.5% to 3%. If the content is less than 0.5%, the effect is small. If the content exceeds 3%, the self-corrosion resistance of the fin material itself deteriorates.

【0016】フィン材中のZr及びCrは、ろう付け前
及びろう付け後のフィン材の強度を向上させると共に耐
高温座屈性及び成形加工性を改良する。Zr及びCrの
好ましい含有範囲は、共に0.05 %〜0.3 %であり、0.
05%未満ではその効果が小さく、0.3 %を越えて含有す
ると、鋳造時に粗大な晶出物が生成して圧延加工性を害
し、板材の製造が困難となる。
Zr and Cr in the fin material improve the strength of the fin material before and after brazing, and also improve the high-temperature buckling resistance and the formability. The preferred ranges of Zr and Cr are both 0.05% to 0.3%, and
If the content is less than 05%, the effect is small. If the content exceeds 0.3%, coarse crystals are formed at the time of casting, impairing the rolling workability and making the sheet material difficult.

【0017】フィン材中のIn及びSnは、いずれもフ
ィン材の熱伝導度をほとんど低下させることなく電位を
卑にし、犠牲陽極効果を与える。Inの好ましい含有範
囲は、0.005 %〜0.1 %、Snの好ましい含有範囲は、
0.01%〜0.1 %である。In及びSnの含有量がそれぞ
れ下限値未満ではその効果が小さく、上限値を越えると
効果が飽和するばかりでなく、フィン材の自己耐食性及
び圧延加工性が低下する。
Both In and Sn in the fin material lower the potential without substantially reducing the thermal conductivity of the fin material, and provide a sacrificial anode effect. The preferred content range of In is 0.005% to 0.1%, and the preferred content range of Sn is
It is 0.01% to 0.1%. If the contents of In and Sn are less than the lower limits, respectively, the effect is small, and if it exceeds the upper limit, not only the effect is saturated, but also the self-corrosion resistance and rolling workability of the fin material deteriorate.

【0018】フィン材中のMgは、ろう付け前及びろう
付け後のフィン材の強度を向上させると共に耐高温座屈
性及び成形加工性を改良する。Mgの好ましい含有範囲
は、0.05%〜0.2 %であり、0.05%未満ではその効果が
小さく、0.2 %を越えて含有すると、ろう付け性を害す
るおそれがある。特に、フッ化物系フラックスろう付け
の場合、フラックスの成分であるふっ素(F)とフィン
材中のMgとが反応し易くなり、MgF2 等の化合物が
生成し、これが原因となってろう付け時に有効に作用す
るフラックスの絶対量が不足し、ろう付け不良が生じ易
くなる。
Mg in the fin material improves the strength of the fin material before and after brazing, and also improves the high-temperature buckling resistance and the formability. The preferred range of the Mg content is 0.05% to 0.2%. If the content is less than 0.05%, the effect is small. If the content exceeds 0.2%, the brazing property may be impaired. In particular, in the case of the brazing of a fluoride flux, fluorine (F), which is a component of the flux, and Mg in the fin material easily react with each other, and a compound such as MgF 2 is formed. The absolute amount of the flux that works effectively is insufficient, and poor brazing tends to occur.

【0019】なお、その他の成分として、0.3 %未満の
Ti、Vを含有しても、本発明の効果が損なわれること
はないが、0.3 %以上含有すると、加工性を害するおそ
れがある。
Although the effects of the present invention are not impaired if the content of Ti and V is less than 0.3% as other components, the workability may be impaired if the content is more than 0.3%.

【0020】(2)素材の引張強さの意義及びその限定
理由 本発明の熱交換器用アルミニウム合金フィン材は、成形
前のフィン材(素材)の引張強さが160〜270MP
aの範囲内にあることが重要である。引張強さを160
〜270MPaの範囲内とすることにより、成形性に優
れ、コルゲート成形時のフィン山高さのバラツキをなく
すことができる。素材の引張強さが160MPa未満で
は、コルゲート成形時の加工応力によって異常変形し易
く、フィン山高さのバラツキが大きくなり、素材の引張
強さが270MPaを越えると、コルゲート成形時のス
プリングバックが大きくなって、フィン山高さのバラツ
キが大きくなり、いずれの場合も、ろう付け時にフィン
とチューブとの間に接合不良が生じ易くなる。なお、フ
ィン材の引張強さを160〜270MPaの範囲内にす
るには、フィン材製造時の均質化処理温度、焼鈍処理温
度及び冷間圧延の加工度を調整する等の手法を用いるこ
とができる。
(2) Significance of the tensile strength of the raw material and the reason for the limitation The aluminum alloy fin material for heat exchangers of the present invention has a tensile strength of 160 to 270 MPa for the fin material (raw material) before forming.
It is important to be within the range of a. 160 tensile strength
By setting it within the range of 2270 MPa, the moldability is excellent, and the fin height variation during corrugation molding can be eliminated. If the tensile strength of the material is less than 160 MPa, it tends to be abnormally deformed due to the processing stress at the time of forming the corrugate, and the height variation of the fins becomes large. As a result, the variation in the height of the fin peaks becomes large, and in any case, poor joining easily occurs between the fin and the tube during brazing. In order to make the tensile strength of the fin material within the range of 160 to 270 MPa, it is necessary to use a technique such as adjusting a homogenization temperature, an annealing temperature, and a workability of cold rolling at the time of fin material production. it can.

【0021】また、本発明の熱交換器用アルミニウム合
金フィン材は、その素材のマトリックスを繊維組織とす
るのが好ましく、繊維組織とすることによりフィン材の
成形加工性が均一となり、コルゲート成形時のフィン山
高さのバラツキを更に低減することができる。素材のマ
トリックスが再結晶組織の場合には、フィン材の成形加
工性が不均一となることがあり、フィン山高さのバラツ
キが大きくなり易く、ろう付け時にフィンとチューブと
の間に接合不良が生じ易くなる。素材のマトリックスを
繊維組織にするには、フィン材製造時の焼鈍処理温度
を、合金の再結晶温度より低い温度に調整する手法を用
いるのが好ましい。
Further, the aluminum alloy fin material for a heat exchanger of the present invention preferably has a fiber structure as a matrix of the material. By forming the fiber structure, the formability of the fin material becomes uniform, and the fin material at the time of corrugating is formed. Variations in the height of the fin peaks can be further reduced. If the matrix of the material has a recrystallized structure, the fin material may have non-uniform moldability, and the height of the fins tends to vary widely, resulting in poor bonding between the fin and the tube during brazing. It is easy to occur. In order to make the matrix of the material a fibrous structure, it is preferable to use a method of adjusting the annealing treatment temperature during the production of the fin material to a temperature lower than the recrystallization temperature of the alloy.

【0022】本発明の成形性及びろう付け性に優れた熱
交換器用アルミニウム合金フィン材(以下単にアルミ合
金フィン材という)は、このアルミ合金フィン材を構成
するアルミニウム合金を、例えば、半連続鋳造により造
塊し、常法に従い、均質化処理後、熱間圧延、冷間圧
延、中間焼鈍及び仕上げ冷間圧延を経て製造され、通
常、厚み0.1mm以下の板材とする。この板材を所定幅
にスリッティングした後、コルゲート加工して、作動流
体通路用材料、例えば、ろう材を被覆したJISA30
03合金等で構成したクラッド板からなる偏平管と交互
に積層し、ろう付け接合することにより、熱交換器ユニ
ットとする。
The aluminum alloy fin material for heat exchangers (hereinafter simply referred to as aluminum alloy fin material) of the present invention which has excellent formability and brazing properties is obtained by, for example, semi-continuous casting of the aluminum alloy constituting this aluminum alloy fin material. In accordance with a conventional method, the ingot is homogenized, manufactured by hot rolling, cold rolling, intermediate annealing, and finish cold rolling, and is usually made into a sheet having a thickness of 0.1 mm or less. After slitting this plate material to a predetermined width, the plate material is corrugated and coated with a working fluid passage material, for example, a JIS A30 coated with a brazing material.
A heat exchanger unit is obtained by alternately laminating flat tubes made of a clad plate made of 03 alloy or the like and brazing them.

【0023】本発明においては、引張強さを160〜2
70MPaの範囲に調整し、素材マトリックスの組織を
繊維組織とすることにより、成形性に優れ、コルゲート
成形時のフィン山高さのバラツキを無くすことができ、
MnとSiとを共存させることでAl−Mn−Si系化
合物を生成させ、Mn%/Si%比を調整することによ
り、Mn及びSiの固溶量を減少させ、Zn、In、S
nを含有させることによって材料の電位を卑にし、Z
r、Crを含有させることにより耐高温座屈性を向上さ
せ、これら合金元素の相互作用により、成形性及びろう
付け性に優れ、ろう付け後の強度と熱伝導度が高く、且
つ犠牲陽極効果に優れた熱交換器用高強度アルミニウム
合金フィン材を得るものである。
In the present invention, the tensile strength is from 160 to 2
By adjusting it to the range of 70 MPa and making the structure of the material matrix a fibrous structure, it is excellent in moldability and can eliminate variations in the height of the fins at the time of corrugating,
By coexisting Mn and Si, an Al-Mn-Si-based compound is generated, and by adjusting the Mn% / Si% ratio, the solid solution amount of Mn and Si is reduced, and Zn, In, S
n makes the potential of the material low,
High temperature buckling resistance is improved by containing r and Cr, and due to the interaction of these alloy elements, excellent in formability and brazing property, high strength and thermal conductivity after brazing, and sacrificial anode effect To obtain a high-strength aluminum alloy fin material for a heat exchanger having excellent heat resistance.

【0024】[0024]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。 実施例1 連続鋳造により、表1に示す組成(合金No.1〜12
に示す組成)を有するアルミニウム合金を造塊し、常法
に従って均質化処理した後、熱間圧延し、ついで冷間圧
延(加工度88〜96%)した後、中間焼鈍(温度20
0〜400℃)及び仕上げ冷間圧延(加工度13〜70
%)を経て厚み0.07mmのアルミ合金フィン材を製造
した。このアルミ合金フィン材における引張強さ及び組
織は、中間焼鈍温度及び冷間圧延の加工度を調整するこ
とにより、引張強さを160〜270MPaの範囲内で
変化させ、且つ組織を調整した。
Hereinafter, examples of the present invention will be described in comparison with comparative examples. Example 1 The compositions (alloys Nos. 1 to 12) shown in Table 1 were obtained by continuous casting.
An aluminum alloy having the following composition is ingoted, homogenized according to a conventional method, hot-rolled, then cold-rolled (workability 88 to 96%), and then subjected to intermediate annealing (temperature 20).
0-400 ° C) and finish cold rolling (work degree 13-70)
%) To produce an aluminum alloy fin material having a thickness of 0.07 mm. The tensile strength and the structure of this aluminum alloy fin material were adjusted by adjusting the intermediate annealing temperature and the working degree of cold rolling to change the tensile strength within the range of 160 to 270 MPa and to adjust the structure.

【0025】[0025]

【表1】 [Table 1]

【0026】上記により得られたアルミ合金フィン材
(フィン材No.1〜14)について、以下の方法に従
って、(1)ろう付け前の引張強さ、(2)組織状況、
(3)成形性(フィン山高さのバラツキ)、(4)ろう
付け後の引張強さ、(5)ろう付け後の電気伝導度、
(6)ろう付け性(フィン接合率)、(7)耐食性を評
価した。結果を表2に示す。
With respect to the aluminum alloy fin materials (fin materials Nos. 1 to 14) obtained as described above, (1) tensile strength before brazing, (2) microstructure,
(3) Formability (variation in fin height), (4) Tensile strength after brazing, (5) Electric conductivity after brazing,
(6) Brazing properties (fin joining rate) and (7) corrosion resistance were evaluated. Table 2 shows the results.

【0027】(1)ろう付け前の引張強さ 上記アルミ合金フィン材について、JIS−5号試験片
を採取して引張試験を行い、引張強さを測定した。
(1) Tensile strength before brazing For the above aluminum alloy fin material, a JIS-5 test piece was sampled and subjected to a tensile test to measure the tensile strength.

【0028】(2)組織状況 上記アルミ合金フィン材について、表面のミクロ組織を
顕微鏡で観察することにより、組織状況(繊維組織か再
結晶組織か)を判定した。
(2) Structure The structure of the aluminum alloy fin material (fibrous structure or recrystallized structure) was determined by observing the surface microstructure with a microscope.

【0029】(3)成形性(フィン山高さのバラツキ) 上記アルミ合金フィン材について、所定幅の帯状に切断
した後、歯車回転式の成形機を通してコルゲート成形を
行い、これを投影機に映してコルゲート成形したフィン
山高さh(図1参照)のバラツキを測定し、その標準偏
差σ(mm)を求めた。標準偏差が0.1mmを越えると、
ろう付け時にフィンとチューブとの間に接合不良が生じ
易くなるため、成形性の良否は、標準偏差が0.1mm以
下を良好(○)とし、0.1mmを越えるものを不良
(×)とした。
(3) Formability (Variation in fin height) After cutting the aluminum alloy fin material into a strip having a predetermined width, corrugating is performed through a gear-rotating molding machine, and this is projected on a projector. The variation of the corrugated fin height h (see FIG. 1) was measured, and its standard deviation σ (mm) was determined. When the standard deviation exceeds 0.1 mm,
Since poor joining is likely to occur between the fin and the tube during brazing, the formability is evaluated as good (良好) when the standard deviation is 0.1 mm or less, and as poor (x) when the standard deviation exceeds 0.1 mm. did.

【0030】(4)ろう付け後の引張強さ 上記アルミ合金フィン材について、ろう付け条件と同様
に、フッ化物系フラックスろう付け加熱処理(以下、N
B加熱という)として、アルミ合金フィン材に濃度3%
のフッ化物系フラックスを塗布した後、窒素ガス雰囲気
中600℃で3分間加熱し、NB加熱後のアルミ合金フ
ィン材について、(1)と同様に引張試験を行い、引張
強さを測定した。
(4) Tensile strength after brazing For the aluminum alloy fin material, a fluoride flux brazing heat treatment (hereinafter referred to as N
3% in aluminum alloy fin material
Was heated at 600 ° C. for 3 minutes in a nitrogen gas atmosphere, and a tensile test was performed on the aluminum alloy fin material after NB heating in the same manner as in (1) to measure the tensile strength.

【0031】(5)ろう付け後の電気伝導度 上記NB加熱後のアルミ合金フィン材について、25℃
で電気伝導度を測定することにより熱伝導度を評価し
た。実施例のアルミ合金フィン材は、一般の金属材料と
同様に熱伝導度と電気伝導度との間に比例関係があり、
電気伝導度を測定することにより、熱伝導度を評価する
ことができる。
(5) Electric Conductivity After Brazing The aluminum alloy fin material after the above-mentioned NB heating was subjected to 25 ° C.
The thermal conductivity was evaluated by measuring the electrical conductivity. The aluminum alloy fin material of the embodiment has a proportional relationship between the thermal conductivity and the electrical conductivity like a general metal material,
By measuring the electrical conductivity, the thermal conductivity can be evaluated.

【0032】(6)ろう付け性(フィン接合率) 上記アルミ合金フィン材について、(3)の場合と同様
にコルゲート成形し、JISA3003合金を芯材と
し、JISA4045合金を皮材(ろう材、クラッド率
10%)とする厚さ0.25mmのチューブ材とを組み付
けて、濃度3%のフッ化物系フラックスを塗布した後、
窒素ガス雰囲気中600℃で3分間加熱して、ろう付け
を行い、図2に示すような熱交換器のミニコアを作製し
た。このミニコアについて、フィン材とチューブ材との
接合部を目視観察して、フィン材とチューブ材とがろう
付け接合している割合を調べ、フィン接合率(%)及び
フィンの座屈の有無からろう付け性を評価した。
(6) Brazing properties (fin joining ratio) The above-mentioned aluminum alloy fin material is corrugated in the same manner as in (3), and a JISA3003 alloy is used as a core material, and a JISA4045 alloy is used as a cladding material (brazing material, clad). Rate of 10%) and a 0.25mm thick tube material, and then apply a 3% concentration of fluoride flux.
Brazing was performed by heating at 600 ° C. for 3 minutes in a nitrogen gas atmosphere to produce a mini-core of a heat exchanger as shown in FIG. For this mini-core, the joint between the fin material and the tube material is visually observed to determine the ratio of the brazed joint between the fin material and the tube material, and based on the fin joining ratio (%) and the presence or absence of buckling of the fin. The brazeability was evaluated.

【0033】(7)耐食性 (6)の場合と同様にして作製した熱交換器のミニコア
について、CASS試験をJISH8681に基づいて
1か月間実施し、フィン材及びチューブ材の腐食状況を
調査し、耐食性の評価を行った。耐食性の良否は、チュ
ーブ材に貫通孔が無いものを○:良好、チューブ材に貫
通孔が発生したもの及びフィン材の自己腐食の大きいも
のを×:不良と評価した。
(7) Corrosion resistance The CASS test was conducted for one month based on JIS H8681 for the mini-core of the heat exchanger manufactured in the same manner as in (6), and the corrosion state of the fin material and the tube material was investigated. The corrosion resistance was evaluated. The corrosion resistance was evaluated as good when the tube material had no through-hole, and evaluated as good when the tube material had a through-hole and when the fin material had large self-corrosion as bad.

【0034】表2に示すように、本発明の条件を満たす
フィン材No.1〜14はいずれも、コルゲート成形後
のバラツキ(標準偏差)が0.1mm以下で良好な成形性
を示した。ろう付け後の引張強さはいずれも130MP
a以上の優れた強度を示し、電気伝導度は、従来のJI
S3003のフィン材が37%IACSであるのに対し
て、いずれも40%IACS以上あり、熱伝導度が良好
なことを示した。また、フィン接合率も90%以上でろ
う付け性に優れている。耐食性試験においても、CAS
S試験後、チューブ材に貫通孔が発生しておらず、フィ
ン材の犠牲陽極効果が優れていることを示した。なお、
同一の合金No.で組織状況が繊維組織のものと再結晶
組織のもの(フィン材No.3と4、フィン材No.7
と8)とを比較すると、フィン山高さのバラツキは繊維
組織のものの方がより小さく良好な成形性を示した。
As shown in Table 2, the fin material No. satisfying the conditions of the present invention. All of Nos. 1 to 14 showed good moldability with a variation (standard deviation) after corrugation molding of 0.1 mm or less. Tensile strength after brazing is 130MP
a) or more, and the electric conductivity is higher than that of the conventional JI
While the fin material of S3003 was 37% IACS, the fin material was 40% IACS or more, indicating that the thermal conductivity was good. In addition, the fin bonding ratio is 90% or more, and the brazing property is excellent. In the corrosion resistance test, CAS
After the S test, no through-hole was generated in the tube material, indicating that the sacrificial anode effect of the fin material was excellent. In addition,
The same alloy No. , The textures of which are fibrous and recrystallized (fin material Nos. 3 and 4, fin material no. 7)
Comparing with 8), the variation in the height of the fins was smaller in the case of the fiber structure, indicating better moldability.

【0035】[0035]

【表2】 《表注》組織状況:Fは繊維組織を示し、Rは再結晶組織を示す。[Table 2] << Table Note >> Microstructure: F indicates fiber structure, and R indicates recrystallized structure.

【0036】比較例1 連続鋳造により、表3に示す組成(合金No.13〜2
6に示す組成)を有するアルミニウム合金を造塊し、実
施例1と同様にして厚み0.07mmのアルミ合金フィン
材を製造した。得られたアルミ合金フィン材(フィン材
No.15〜32)について、実施例1と同様の方法に
従って、(1)ろう付け前の引張強さ、(2)組織状
況、(3)成形性(フィン山高さのバラツキ)、(4)
ろう付け後の引張強さ、(5)ろう付け後の電気伝導
度、(6)ろう付け性(フィン接合率)、(7)耐食性
を評価した。結果を表4に示す。
Comparative Example 1 The compositions (alloys Nos. 13 to 2) shown in Table 3 were obtained by continuous casting.
Aluminum alloy fin material having a thickness of 0.07 mm was produced in the same manner as in Example 1. About the obtained aluminum alloy fin material (fin material Nos. 15 to 32), (1) tensile strength before brazing, (2) structure, (3) formability ( Fin height variations), (4)
Tensile strength after brazing, (5) electrical conductivity after brazing, (6) brazing property (fin joining rate), and (7) corrosion resistance were evaluated. Table 4 shows the results.

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【表4】 《表注》組織状況:Fは繊維組織を示し、Rは再結晶組織を示す。[Table 4] << Table Note >> Microstructure: F indicates fiber structure, and R indicates recrystallized structure.

【0039】本発明の条件を外れたフィン材No.15
〜32は、表4に示すように、いずれもアルミ合金フィ
ン材としての十分な性能を示していない。すなわち、フ
ィン材No.15は、Mnの含有量が少ないため、引張
強度が十分でない。フィン材No.16は、Mnの含有
量が多すぎるため、熱間圧延が困難となり健全な材料が
製造できなかった。フィン材No.17は、Siの含有
量が少ないため、引張強度が十分でなく、また、Mn/
Si比が大きいためMnの固溶量が増加して電気伝導度
を低下させ、熱伝導度が不十分なものとなった。フィン
材No.18は、Siの含有量が多すぎるため、ろう付
け時の加熱によってフィン材の局部溶融が生じた。
The fin material No. out of the conditions of the present invention was used. Fifteen
As shown in Table 4, Nos. To 32 do not show sufficient performance as aluminum alloy fin materials. That is, the fin material No. No. 15 has insufficient tensile strength because the content of Mn is small. Fin material No. In No. 16, since the content of Mn was too large, hot rolling was difficult and a sound material could not be produced. Fin material No. No. 17 has a low tensile strength due to a low content of Si, and has an Mn /
Since the Si ratio was large, the amount of solid solution of Mn was increased to lower the electric conductivity, and the heat conductivity was insufficient. Fin material No. In No. 18, the fin material was locally melted by heating during brazing because the content of Si was too large.

【0040】フィン材No.19は、Feの含有量が少
ないため、引張強度が十分でなく、フィン材No.20
は、Feの含有量が多すぎるため、自己腐食性が大きく
なってフィン材の腐食消耗が顕著となり、フィン材の犠
牲陽極効果が長時間持続できなかった。フィン材No.
21は、Zn、In、Snの各含有量が少ないため、犠
牲陽極効果が劣り、CASS試験後のチューブ材に貫通
孔が発生した。フィン材No.22、26、27は、Z
n、In、Snの各含有量が多すぎるため、自己腐食性
が大きくなってフィン材の腐食消耗が顕著となり、フィ
ン材の犠牲陽極効果が長時間持続できなかった。
Fin material no. No. 19 has a low Fe content and therefore has insufficient tensile strength. 20
However, since the content of Fe was too large, the self-corrosion property was increased and the corrosion and consumption of the fin material became remarkable, and the sacrificial anode effect of the fin material could not be maintained for a long time. Fin material No.
In Sample No. 21, since the contents of Zn, In, and Sn were small, the sacrificial anode effect was poor, and a through-hole was generated in the tube material after the CASS test. Fin material No. 22, 26 and 27 are Z
Since the respective contents of n, In, and Sn are too large, the self-corrosion becomes large, and the corrosion consumption of the fin material becomes remarkable, and the sacrificial anode effect of the fin material cannot be maintained for a long time.

【0041】フィン材No.23は、Zr、Crの各含
有量が少ないため、ろう付け時にフィン材が座屈変形し
た。フィン材No.24、25は、Zr、Crの各含有
量が多すぎるため、熱間圧延が困難となり健全な材料が
製造できなかった。フィン材No.28は、Mgの含有
量が多すぎるためろう付け性が悪く、フィン接合率が低
くなり、熱交換器に組み込んだ場合、熱交換器の熱特性
を低下させる。
The fin material No. In No. 23, since the contents of Zr and Cr were small, the fin material buckled and deformed during brazing. Fin material No. In Nos. 24 and 25, since the respective contents of Zr and Cr were too large, hot rolling was difficult and a sound material could not be produced. Fin material No. In No. 28, the content of Mg is too large, so that the brazing property is poor, the fin joining ratio is low, and when incorporated into a heat exchanger, the thermal characteristics of the heat exchanger are deteriorated.

【0042】フィン材No.29は、引張強さが低いた
め、また、フィン材No.30は、引張強さが高すぎる
ためフィン山高さのバラツキが大きく、フィン接合率が
低くなり、熱交換器に組み込んだ場合、熱交換器の熱特
性を低下させる。フィン材No.31は、引張強さが低
く且つ再結晶組織のため、フィン材No.32は、引張
強さが高く且つ再結晶組織のため、いずれもフィン山高
さのバラツキが大きく、フィン接合率が低くなり、熱交
換器に組み込んだ場合、熱交換器の熱特性を低下させ
る。
The fin material No. No. 29 has a low tensile strength. In No. 30, since the tensile strength is too high, the height of the fins varies widely, and the fin joining ratio is low, and when incorporated in a heat exchanger, the heat characteristics of the heat exchanger deteriorate. Fin material No. No. 31 has a low tensile strength and a recrystallized structure. No. 32 has a high tensile strength and a recrystallized structure, so that the fin height varies greatly and the fin joining ratio decreases, and when incorporated into a heat exchanger, the heat characteristics of the heat exchanger deteriorate.

【0043】[0043]

【発明の効果】本発明によれば、成形性及びろう付け性
に優れ、ろう付け後の強度と熱伝導度が高く、且つ犠牲
陽極効果に優れた熱交換器用アルミニウム合金フィン材
が提供される。当該熱交換器用アルミニウム合金フィン
材によれば、フィン材の薄肉化が可能となり、熱交換器
の軽量化、長寿命化、生産性の向上が達成される。
According to the present invention, there is provided an aluminum alloy fin material for a heat exchanger having excellent formability and brazing properties, high strength and thermal conductivity after brazing, and excellent sacrificial anode effect. . According to the heat exchanger aluminum alloy fin material, the thickness of the fin material can be reduced, and the heat exchanger can be reduced in weight, prolonged in life, and improved in productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】フィン材をコルゲート成形した状態を示す正面
図である。
FIG. 1 is a front view showing a state where a fin material is corrugated.

【図2】図1のコルゲート成形されたフィン材とチュー
ブ材とを組み合わせ、ろう付け接合した熱交換器エレメ
ントを示す正面図である。
FIG. 2 is a front view showing a heat exchanger element obtained by combining and brazing the corrugated fin material and the tube material of FIG. 1;

【符号の説明】[Explanation of symbols]

1 コルゲートフィン 2 チューブ材 3 熱交換器エレメント DESCRIPTION OF SYMBOLS 1 Corrugated fin 2 Tube material 3 Heat exchanger element

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Mn:1.0%(質量%、以下同じ)〜2.0
%、Si:0.5%〜1.3 %、Fe:0.1%〜0.8 %、Zn:
0.5%〜3 %を含有し、MnとSiとの含有比(Mn%
/Si%)を1.0〜3.5とし、更に、Zr:0.05 %
〜0.3 %及びCr:0.05 %〜0.3 %のうちの1種又は2
種を含み、残部Alと不可避的不純物からなり、引張強
さが160〜270MPaであることを特徴とする成形
性及びろう付け性に優れた熱交換器用アルミニウム合金
フィン材。
1. Mn: 1.0% (% by mass, hereinafter the same) to 2.0
%, Si: 0.5% to 1.3%, Fe: 0.1% to 0.8%, Zn:
0.5% to 3%, and the content ratio of Mn to Si (Mn%
/ Si%) is set to 1.0 to 3.5, and Zr: 0.05%
Or 0.3% and Cr: 0.05% to 0.3%.
An aluminum alloy fin material for a heat exchanger having excellent formability and brazing properties, comprising a seed, the balance being Al and unavoidable impurities, and having a tensile strength of 160 to 270 MPa.
【請求項2】 請求項1記載のアルミニウム合金フィン
材が、更に、In:0.005%〜0.1 %、Sn:0.01 %〜0.
1 %、Mg:0.05 %〜0.2 %のうちの1種以上を含有し
てなることを特徴とする成形性及びろう付け性に優れた
熱交換器用アルミニウム合金フィン材。
2. The aluminum alloy fin material according to claim 1, further comprising: In: 0.005% to 0.1%, Sn: 0.01% to 0.1%.
An aluminum alloy fin material for heat exchangers having excellent formability and brazing properties, characterized by containing one or more of 1% and Mg: 0.05% to 0.2%.
【請求項3】 請求項1又は2記載のアルミニウム合金
フィン材のマトリックスが繊維組織であることを特徴と
する成形性及びろう付け性に優れた熱交換器用アルミニ
ウム合金フィン材。
3. An aluminum alloy fin material for a heat exchanger having excellent formability and brazing properties, wherein the matrix of the aluminum alloy fin material according to claim 1 or 2 is a fibrous structure.
JP2000351018A 2000-11-17 2000-11-17 Aluminum alloy fin material for heat exchangers with excellent formability and brazing Expired - Fee Related JP3847076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000351018A JP3847076B2 (en) 2000-11-17 2000-11-17 Aluminum alloy fin material for heat exchangers with excellent formability and brazing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000351018A JP3847076B2 (en) 2000-11-17 2000-11-17 Aluminum alloy fin material for heat exchangers with excellent formability and brazing

Publications (2)

Publication Number Publication Date
JP2002155332A true JP2002155332A (en) 2002-05-31
JP3847076B2 JP3847076B2 (en) 2006-11-15

Family

ID=18824144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000351018A Expired - Fee Related JP3847076B2 (en) 2000-11-17 2000-11-17 Aluminum alloy fin material for heat exchangers with excellent formability and brazing

Country Status (1)

Country Link
JP (1) JP3847076B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2390099A (en) * 2002-06-24 2003-12-31 Denso Corp Heat exchanger with brazed fins of an aluminium alloy
JP2006225724A (en) * 2005-02-17 2006-08-31 Furukawa Sky Kk Fin material for brazing and manufacturing method therefor
JP2014125642A (en) * 2012-12-25 2014-07-07 Mitsubishi Alum Co Ltd Aluminum alloy sheet excellent in press formability and its manufacturing method
WO2018140896A1 (en) * 2017-01-27 2018-08-02 Airxchange, Inc. Rotary heat regenerator using parallel plate media

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2390099A (en) * 2002-06-24 2003-12-31 Denso Corp Heat exchanger with brazed fins of an aluminium alloy
GB2390099B (en) * 2002-06-24 2006-02-22 Denso Corp Heat exchanger with aluminium alloy fin material
US7018722B2 (en) * 2002-06-24 2006-03-28 Denso Corporation Aluminum alloy fin material for heat exchangers and heat exchanger including the fin material
DE10327755B4 (en) * 2002-06-24 2013-01-31 Denso Corporation A heat exchanger comprising an aluminum fin material, and manufacturing method for this heat exchanger
DE10327755B9 (en) * 2002-06-24 2013-03-14 Denso Corporation A heat exchanger comprising an aluminum fin material, and manufacturing method for this heat exchanger
JP2006225724A (en) * 2005-02-17 2006-08-31 Furukawa Sky Kk Fin material for brazing and manufacturing method therefor
JP4669712B2 (en) * 2005-02-17 2011-04-13 古河スカイ株式会社 Brazing fin material and manufacturing method thereof
JP2014125642A (en) * 2012-12-25 2014-07-07 Mitsubishi Alum Co Ltd Aluminum alloy sheet excellent in press formability and its manufacturing method
WO2018140896A1 (en) * 2017-01-27 2018-08-02 Airxchange, Inc. Rotary heat regenerator using parallel plate media

Also Published As

Publication number Publication date
JP3847076B2 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
JP3847077B2 (en) Aluminum alloy fin material for heat exchangers with excellent formability and brazing
JP4166613B2 (en) Aluminum alloy fin material for heat exchanger and heat exchanger formed by assembling the fin material
US20190323788A1 (en) Method for producing aluminum alloy clad material
JP4623729B2 (en) Aluminum alloy clad material and heat exchanger excellent in surface bonding by brazing of sacrificial anode material surface
JP2007152421A (en) Aluminum alloy brazing sheet
JP4807826B2 (en) Aluminum alloy clad material with excellent surface bonding by brazing sacrificial anode material
JP2005504890A (en) Aluminum alloy for fin material production
JP5836695B2 (en) Aluminum alloy fin material for heat exchangers with excellent strength and corrosion resistance after brazing
US20170113305A1 (en) Cladded aluminium-alloy material and production method therefor, and heat exchanger using said cladded aluminium-alloy material and production method therefor
WO2019181768A1 (en) Aluminum alloy fin material for heat exchanger, production method therefor, and heat exchanger
JP2002161324A (en) Aluminum alloy fin-material for heat exchanger superior in formability and brazability
JP2001170793A (en) High-strength aluminum alloy clad metal for heat exchanger excellent in tube manufacturing property and corrosion resistance
JPH1088265A (en) Aluminum alloy fin material for heat exchanger, excellent in sacrificial anode effect as well as in strength after brazing
JP3847076B2 (en) Aluminum alloy fin material for heat exchangers with excellent formability and brazing
JP3743709B2 (en) Aluminum alloy fin material for heat exchangers with excellent formability and brazing
JP3859781B2 (en) Aluminum alloy clad fin material and aluminum alloy heat exchanger using the clad fin material
JP2006015377A (en) Aluminum alloy brazing sheet for heat exchanger
JP4906162B2 (en) Aluminum alloy brazing sheet
JP2001170794A (en) High-strength aluminum alloy clad material for heat exchanger excellent in tube manufacturing property and corrosion resistance
JP3763522B2 (en) Aluminum alloy fin material for heat exchangers with excellent formability and brazing
JPH0250934A (en) Brazing sheet made of aluminum for heat exchanger member
JPH0347940A (en) Aluminum alloy for heat exchanger fin
JP2768393B2 (en) Aluminum alloy for heat exchanger fin material with excellent strength after brazing and sacrificial anode effect
JP2004218044A (en) Aluminum alloy clad material for heat exchanger
JP2000202681A (en) Aluminum alloy fin material for heat exchanger excellent in brazability

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060822

R150 Certificate of patent or registration of utility model

Ref document number: 3847076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees