JP3859781B2 - Aluminum alloy clad fin material and aluminum alloy heat exchanger using the clad fin material - Google Patents
Aluminum alloy clad fin material and aluminum alloy heat exchanger using the clad fin material Download PDFInfo
- Publication number
- JP3859781B2 JP3859781B2 JP26522596A JP26522596A JP3859781B2 JP 3859781 B2 JP3859781 B2 JP 3859781B2 JP 26522596 A JP26522596 A JP 26522596A JP 26522596 A JP26522596 A JP 26522596A JP 3859781 B2 JP3859781 B2 JP 3859781B2
- Authority
- JP
- Japan
- Prior art keywords
- brazing
- aluminum alloy
- clad
- fin material
- fin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Laminated Bodies (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、アルミニウム合金クラッドフィン材、詳しくは、ろう付けにより製造されるカーエアコンのコンデンサ、エバポレータ、ラジエータ、ヒーターコア、オイルクーラ、インタークーラなどの自動車用アルミニウム合金製熱交換器のフィン材として好適に使用されるアルミニウム合金クラッドフィン材、および当該クラッドフィン材を使用したアルミニウム合金製熱交換器に関する。
【0002】
【従来の技術】
自動車用アルミニウム製熱交換器は、Al−Cu系合金、Al−Mn系合金、Al−Mn−Cu系合金により構成される押出偏平多孔管などの作動流体通路構成部材にアルミニウム合金のフィン材を組合わせ、塩化物系フラックスを使用するフラックスろう付け、フッ化物系のフラックスを使用する不活性ガス雰囲気ろう付け、あるいは真空ろう付けにより組立てられている。
【0003】
この場合、ろう材を作動流体通路構成部材に配置する場合もあるが、一般には、フィン材として、アルミニウム合金の芯材の両面にAl−Si系ろう材をクラッドしたクラッドフィン材が使用されている。アルミニウム合金製熱交換器用のフィン材には、作動流体通路構成材料を防食するために犠牲陽極効果が要求され、溶融ろうの侵食もなく、ろう付け加熱時に変形しない耐高温座屈性(耐高温サグ性)も要求される。
【0004】
ろう付け時の変形や溶融ろうの侵食を防止するためには、Mnの添加が有効であることが知られており、クラッドフィン材の芯材用アルミニウム合金として、3003合金、3203合金などAl−Mn系合金が用いられている。犠牲陽極効果を与えるには、Al−Mn系合金にZn、Sn、Inなどの元素を添加して電気化学的に卑にする方法が提案され(特公昭56-12395号公報他) 、耐サグ性をさらに向上させるために、Cr、Ti、Zrなどを添加する方法が提案されている。(特公昭57-13787号公報他)
【0005】
近年、自動車の軽量化の観点から、自動車用熱交換器の軽量化が要求され、この要求に対応するためにフィン材、作動流体通路構成材料など、熱交換器構成材料の薄肉化が要請されている。ろう材をクラッドしてなるフィン材を薄肉化した場合、ろう付け接合部に流動してくるろうが少なくなり、未接合部が生じ易い。未接合部の形成を防止するために、フィン材のろう材クラッド率を増加する方法、Al−Si系ろう材のSi濃度を高くしてろうの流動量を増加する方法があるが、これらの方法では、溶融ろうが多くなり過ぎて、芯材が溶融ろうにより溶解、侵食され座屈が生じることが少なくない。また、ろう付けは、通常、約 600℃の高温で行われるため、フィンが変形し易く、ろう付け加熱後の強度が低くなるため、フィン倒れが生じるという問題もある。
【0006】
発明者らは、上記の問題点を解決して、アルミニウム合金クラッドフィン材の薄肉化を達成するために、薄肉化されたアルミニウム合金クラッドフィン材おいて、芯材およびろう材の成分組成の組合わせ、厚さ、クラッド率などと、ろう付け中の溶融ろうの芯材への侵食、フィン材の座屈、耐食性、加工性との関連について多角的な実験、検討を行った結果、特定組成の芯材を組合わせ、厚さに応じて材料中の平均Si濃度を適正範囲にし、クラッド率を調整することによって、溶融ろうの侵食が防止されるとともに、高温座屈が防止でき、加工性、耐食性が保持され、犠牲陽極効果が向上することを見出した。
【0007】
本発明は、上記の知見に基づいてなされたものであり、その目的は、厚さ0.1mm 未満に薄肉化されたフィン材において、ろうの流動不足および溶融ろうの侵食による座屈が確実に防止でき、ろう付け加熱後の強度および犠牲陽極効果に優れた熱交換器用アルミニウム合金クラッドフィン材を提供することにある。また、当該アルミニウム合金クラッドフィン材を使用したアルミニウム合金製熱交換器を提供することを本発明の他の目的とする。
【0008】
【課題を解決するための手段】
上記の目的を達成するための本発明によるアルミニウム合金クラッドフィン材は、芯材の両面にAl−Si系合金のろう材をクラッドしてなるアルミニウム合金クラッドフィン材において、ろう材が、Si:5〜15%を含有し、残部Alおよび不可避的不純物からなるアルミニウム合金で構成され、芯材が、Si:0.01 〜1.6 %、Mn:0.4〜1.5 %、Fe:0.06 〜0.8 %、Zn:0.3〜5.0 %を含有し、残部Alおよび不可避的不純物からなるアルミニウム合金で構成され、クラッドフィン材の厚さtが0.04mm以上0.1mm 未満、クラッドフィン材中の平均Si濃度TSi( %)とt(mm)との関係が、7.3×TSi−0.7×t-1−1.0>0(但し、TSi:1.1〜2.7)を満たし、ろう材のクラッド率が片面で平均3 〜30%であることを構成上の特徴とする。
【0009】
また、本発明によるアルミニウム合金製熱交換器は、上記のアルミニウム合金クラッドフィン材と、アルミニウム合金からなる押出偏平多孔管などの流体通路構成部材を組合わせ、ろう付け一体としてなることを特徴とする。
【0010】
本発明における合金成分の意義およびその限定理由について説明すると、ろう材中のSiは、ろう材の融点を低下させ、溶融ろうの流動性を高める効果を有する。好ましい含有量は5 〜15%の範囲であり、5 %未満ではその効果が小さく、15%を越えると融点が急激に高くなり、製造時の加工性も低下する。Siのさらに好ましい含有範囲は7.0 〜13%である。
【0011】
ろう材中には、0.3 %以下のCu、CrおよびMn、0.1 %以下のPb、LiおよびCaが含まれていても、本発明の効果を損なうことはない。また、鋳造組織の微細化のために0.3 %以下のTi、0.01%以下のB、ろう材中のSi粒子の微細化のために0.1 %以下のSr、Na、電位を低くして犠牲陽極効果を与えるために0.1 %以下のIn、SnおよびGa、表面酸化皮膜の成長を抑制するために0.1 %以下のBeが添加されてもよい。但し、Feは、多量に含まれると自己腐食性が増加するため0.8 %以下に制限することが好ましい。また、Mgについては、真空ろう付けの場合、0.3 〜2.0 %含有させてもよいが、フッ化物系のフラックスを使用してろう付けを行う場合には、ろう付け性を阻害しないよう0.5 %以下に制限することが好ましい。
【0012】
厚さが0.1mm 未満の薄肉フィン材の場合、ろう付け後の芯材のSi濃度は、ろう付け加熱時にろう材から芯材へSiが拡散するため、ろう付け前の芯材のSi濃度にかかわらず、ほぼ同程度の均一な濃度となる。芯材にSiを添加すると、ろう付け加熱時、ろう材から芯材へのSiの拡散量が減少し、ろう付け加熱過程におけるろう材中のSi濃度の減少が少なくなって、ろうの流動性が向上する。芯材中のSiの好ましい含有量は0.01〜1.6 %の範囲であり、0.01%未満の場合には所期の効果を得ることは可能であるが、高純度のアルミニウム地金を使用しなければならないために製造コストが増加する。1.6 %を越えると芯材の結晶粒径が細かくなって、ろうが芯材中に侵食し易くなり、耐高温座屈性が低下し、自己腐食性も増加する。芯材中のSiのさらに好ましい含有量は0.1 〜1.0 %の範囲である。
【0013】
芯材中のMnは、芯材の強度を向上させ、耐高温座屈性を改善するよう機能する。好ましい含有範囲は0.4 〜1.5 %であり、0.3 %未満ではその効果が小さく、1.5 %を越えて含有すると、鋳造時に粗大な化合物が生成し、圧延加工性が害される結果、健全な板材が得難い。Mnのさらに好ましい含有量は0.8 〜1.2 %の範囲である。
【0014】
Feは、Mnと共存して芯材の強度をさらに向上させる。Feの好ましい含有量は0.06〜0.8 %の範囲であり、0.06%未満ではその効果が小さく、0.8 %を越えると、結晶粒が細かくなって、溶融ろうが芯材中に侵食し易くなり、耐高温座屈性が低下し、自己腐食性も増加する。Feのさらに好ましい含有範囲は0.1 〜〜0.6 %である。
【0015】
Znは、芯材の自然電位を卑にして犠牲陽極効果を高める効果を有する。好ましい含有量を0.3 〜5.0 %であり、0.3 %以下ではその効果が十分でなく、5.0 %を越えると自己腐食性が増加する。Znのさらに好ましい含有量は1.0 〜4.0 %の範囲である。
【0016】
芯材中には、0.1 %以下のPb、Li、Sr、CaおよびNaが含有されていても本発明の効果が損なわれることはない。また強度を向上させるために0.3 %以下のV、Mo、Ni、鋳造組織の微細化のために0.3 %以下のTi、0.01%以下のB、酸化防止のために0.1 %以下のBeを添加することもできる。
【0017】
本発明においては、ろう付け部において十分なフィレットを形成するために、クラッドフィン材中のろう材のSi濃度と芯材のSi濃度を混合した平均Si濃度TSi(%)とクラッドフィン材の全体厚さt(mm) との関係が、7.3×TSi−0.7×t-1−1.0>0(但し、TSi:1.1〜2.7 %、t:0.04mm以上0.1mm 未満) を満たしていなければならない。平均Si濃度TSiが増加するとフィレットの面積が増加し、フィン材厚さtが減少するとフィレット面積は急激に減少する。上記の関係式が満たされない場合には、厚さが0.10mm未満のクラッドフィン材において、フィンとチューブ( 流体通路構成部材) との接合部に十分なフィレットが形成されず接合不良が生じる。
【0018】
TSiは、芯材とろう材からなるフィン材中の全Si成分の平均濃度であり、TSi={Sb×2C+Sc×(100−2C)}/100(但し、Sbはろう材のSi濃度(重量%)で、Sb:5 〜15%、Scは芯材のSi濃度(重量%)で、Sc:0.01〜1.6 %、Cは片面クラッド率で、C:3 〜30%)の式により求められる。
【0019】
厚さが0.1mm 未満のフィン材において、平均Si濃度TSiの好ましい値は1.1 〜2.7 %の範囲であり、1.1 %未満では、溶融ろうが不足して上記の関係式が満たされず、フィレットが十分に形成されない。2.7 %を越えると、溶融ろうが過多となって、厚さ0.1mm 未満のフィン材において芯材の溶解、侵食が生じ易くなる。TSiのさらに好ましい範囲は1.3 〜2.5 %である。
【0020】
ろう材のクラッド率が増加すると、ろうの流動量が増加する。本発明においては、フィン材の全体厚さを0.04mm以上0.1mm 未満に規定し、クラッド率を片面で平均3 〜30%とする。厚さが0.04mm未満では、フィン材自体の強度が不足し、ろう付け加熱時の変形が大きくなり座屈が生じる。片面の平均クラッド率が3 %未満では、芯材に対するろう材の量が少な過ぎて、均一なクラッド率を得ることが難しく、クラッドフィン材の製造が困難となる。30%を越える平均クラッド率では、ろうの溶融量が多過ぎて、芯材が溶解、侵食され易くなる。平均クラッド率のさらに好ましい範囲は5 〜20%である。本発明における平均Si濃度などに関する前記の限定は、厚さが0.04mm以上0.1mm 未満のクラッドフィン材に所期の性能を与えるためになされるものであり、クラッドフィン材の厚さが0.1mm 以上の場合には、TSiを適正範囲に制御しなくともろう付けが可能となる。
【0021】
【発明の実施の形態】
本発明のアルミニウム合金クラッドフィン材は、芯材およびろう材を構成するアルミニウム合金をそれぞれ溶解、鋳造し、各鋳塊を均質化処理したのち、ろう材を構成するアルミニウム合金鋳塊を熱間圧延して、芯材の鋳塊の両面にクラッドしたクラッド鋳塊とし、あるいは芯材の鋳塊の両面にろう材を構成するアルミニウム合金材をクラッドしたクラッド鋳塊を均質化処理し、クラッド鋳塊を熱間圧延、冷間圧延し、中間焼鈍を施し、最終冷間圧延を行うことにより製造され、H14調質材として供給される。
【0022】
上記の製造工程により得られた本発明のアルミニウム合金クラッドフィン材を、自動車用のラジエータ、ヒータコア、オイルクーラ、インタークーラ、カーエアコンのコンデンサ、エバポレータなどのアルミニウム合金製熱交換器の組立てに使用する場合には、当該クラッドフィンを流体通路構成部材となるアルミニウム合金の押出偏平多孔管などと組合わせ、ろう付け炉中において、通常のフラックスろう付け、フッ化物系フラックスを用いる不活性ガス雰囲気ろう付け、あるいは真空ろう付けを行うことにより、ろう付け接合する。
【0023】
【実施例】
以下、実施例により、本発明を比較例と対比して説明する。
実施例1
芯材およびろう材用アルミニウム合金を、溶解、鋳造し、常法に従って均質化処理を行ったのち、ろう材鋳塊を熱間圧延し、得られたろう材板を芯材の鋳塊の両面にクラッド溶接した。このクラッド鋳塊について、熱間圧延、中間冷間圧延を行い、中間焼鈍を施したのち、最終冷間圧延を行い、最終厚さ0.038 〜0.098mm のクラッドフィン材(H14調質材)とした。芯材およびろう材の組成を表1に、得られたクラッドフィン材の板厚、片側平均クラッド率、平均Si濃度TSi、関係式A(7.3×TSi−0.7×t-1−1.0)の値を表2に示す。
【0024】
【表1】
《表注》No.14 は従来材
【0025】
【表2】
《表注》No.14 は従来材
【0026】
得られたクラッドフィン材にコルゲート加工を施し、JIS A1050 の押出偏平多穴管の表層部にZn溶射被覆層を形成した流体通路構成部材、4045合金を皮材とし3003合金を内側材とし、押出偏平多穴管を挿入するための穴をプレス成形した押出2重管からなるタンクを組合わせて熱交換器形状に組付け、フッ化物系フラックス( 水で濃度3 %に希釈したもの)を吹き付けて乾燥させたのち、窒素ガス雰囲気炉内で600 ℃の温度に3 分間加熱し、ろう付け接合を行った。
【0027】
ろう付け後、得られた熱交換器モデルの熱効率をJIS D 1618( 自動車用冷房機試験方法)に従って測定し、その値を単位重量当たりの熱効率に換算して、従来材No.14 の熱効率を標準(100%)とした場合の熱効率の向上度を求めた。ついで、熱交換器モデルの断面を観察し、フィン・チューブ間の接合部のフィレット形成の有無、芯材の溶融、侵食による座屈の有無を調査して、ろう付け性を評価した。また、接合部の一部を取り出して、2週間のCASS試験(JIS D 0201)を行い、フィンおよび管の腐食状況を調査した。
【0028】
その結果、本発明に従う試験材No.1〜13はいずれも、フィンと管との接触部に十分にろうが流動してフィレットが形成され、芯材の溶融、侵食による座屈もなく、製造時の加工性も良好で圧延割れなどを生じることがなかった。また、腐食試験においても貫通孔を生じることがなく良好な耐食性を示した。熱交換器コアの熱効率を表3に示す。表3にみられるように、試験材においては、従来材に比べて5 %以上の向上が認められた。
【0029】
【表3】
【0030】
比較例1
実施例1と同様の工程でクラッドフィン材を製造した。芯材およびろう材の組成を表4に、クラッドフィン材の厚さ、片面平均クラッド率、平均Si濃度TSi、Aの値を表5に示す。得られたクラッドフィン材を使用して、実施例1と同様に熱交換器モデルを作製し、熱効率の向上度を求めるとともに、熱交換器モデルの断面を観察して、ろう付け性を評価し、腐食試験を行った。これらの評価、試験の結果を表6に示す。なお、表4、表5において、本発明の条件を外れたものには下線を付した。
【0031】
【表4】
【0032】
【表5】
《表注》* は目標値
【0033】
【表6】
《表注》腐食試験 ○:フィン材の犠牲陽極効果が良好で管に貫通孔無し
×フィン:フィンの腐食・消耗大 ×管:管に貫通孔発生
製造時の加工性 ○:製造が容易 ×:製造が困難
【0034】
表6に示すように、試験材No.15 はフィン材の厚さが0.04mm未満であるため、フィレット形成がなくフィンが座屈した。試験材No.16 は、フィンの厚さが小さく平均Si濃度TSiが大きいため、フィンの座屈が生じた。試験材No.17 はクラッド率が高くTSiが大きいため、フィンに座屈が生じた。試験材No.18 はクラッド率が低過ぎるため、圧延工程で割れが生じ、フィン材の製造が困難であった。試験材No.19 は、ろう材のSi量が少なく、ろう付け時に流動するろうが少ないため、フィレットが形成されなかった。試験材No.20 は、ろう材のSi量が多く硬度が高いため、熱間圧延工程において、ろう材と芯材とがクラッドされず、フィン材の製造が困難であった。
【0035】
試験材No.21 は芯材のSi量が多いため、フィン材の溶融、溶融ろうによる芯材の侵食が激しく、フィンに座屈が生じた。試験材No.22 はTSiが低いため、フィレットが形成されなかった。試験材No.23 はTSiが高いためフィンに座屈が生じた。試験材No.24 は関係式Aの値が-1.1となるため、フィレットが形成されなかった。試験材No.25 は芯材のMn量が高いため、圧延時に割れが生じ、フィン材の製造が困難となった、試験材No.26 は芯材のMn量が少ないため、強度が不足し、フィンが座屈した。
【0036】
試験材No.27 は芯材のFe量が少ないため、強度が十分出なく、フィンに座屈が生じた。試験材No.28 は芯材のFe量が多いため、芯材の結晶粒が微細となり、溶融ろうの侵食によりフィンに座屈が生じた。試験材No.29 は芯材のZn量が少ないため、フィン材の電位が高く十分な犠牲陽極効果が得られず、腐食試験において管に貫通孔が生じた。試験材No.30 は芯材のZn量が多いため、フィンの自己腐食が激しく、腐食試験におけるフィンの腐食・消耗が著しかった。
【0037】
【発明の効果】
本発明によれば、フィン材を0.1mm 未満の厚さに薄肉化した場合にも、ろうの流動性、溶融ろうの侵食によるフィンの座屈が防止され、ろう付け後の強度、犠牲陽極効果に優れ、とくに、ラジエータ、ヒータコア、オイルクーラ、インタークーラ、カーエアコンのコンデンサ、エバポレータなど自動車用熱交換器のフィン材として好適に使用できるアルミニウム合金クラッドフィン材、および該クラッドフィン材を使用したアルミニウム合金製熱交換器が提供される。[0001]
[Industrial application fields]
The present invention is an aluminum alloy clad fin material, and more specifically, as a fin material of a heat exchanger made of aluminum alloy for automobiles such as condensers, evaporators, radiators, heater cores, oil coolers, intercoolers of car air conditioners manufactured by brazing. The present invention relates to a suitably used aluminum alloy clad fin material, and an aluminum alloy heat exchanger using the clad fin material.
[0002]
[Prior art]
Aluminum heat exchangers for automobiles use aluminum alloy fins for working fluid passage components such as extruded flat porous tubes made of Al-Cu alloys, Al-Mn alloys, Al-Mn-Cu alloys. They are assembled by combination, flux brazing using a chloride flux, inert gas atmosphere brazing using a fluoride flux, or vacuum brazing.
[0003]
In this case, the brazing material may be arranged in the working fluid passage component, but generally, a clad fin material in which Al—Si brazing material is clad on both surfaces of the core material of the aluminum alloy is used as the fin material. Yes. The fin material for aluminum alloy heat exchangers requires a sacrificial anode effect to prevent corrosion of the working fluid passage component material, does not erode the molten braze, and resists deformation at the time of brazing heating (high temperature resistance) Sag) is also required.
[0004]
It is known that the addition of Mn is effective for preventing deformation during brazing and erosion of the molten braze. As an aluminum alloy for the core material of the clad fin material, 3003 alloy, 3203 alloy, etc. A Mn-based alloy is used. In order to give the sacrificial anode effect, a method of adding an element such as Zn, Sn, In or the like to an Al—Mn alloy and making it electrochemically base has been proposed (Japanese Patent Publication No. 56-12395, etc.). In order to further improve the properties, a method of adding Cr, Ti, Zr or the like has been proposed. (Japanese Patent Publication No.57-13787, etc.)
[0005]
In recent years, from the viewpoint of reducing the weight of automobiles, it has been required to reduce the weight of automobile heat exchangers. To meet this demand, it has been required to reduce the thickness of heat exchanger components such as fin materials and working fluid passage components. ing. When the fin material formed by cladding the brazing material is thinned, the amount of the solder flowing into the brazed joint portion is reduced, and an unjoined portion is likely to occur. In order to prevent the formation of unjoined parts, there are a method for increasing the brazing filler metal cladding ratio and a method for increasing the flow rate of the brazing by increasing the Si concentration of the Al-Si based brazing material. In the method, there are not a few cases where the amount of the molten solder becomes excessive, and the core material is melted and eroded by the molten wax to cause buckling. In addition, since brazing is usually performed at a high temperature of about 600 ° C., the fins are likely to be deformed, and the strength after brazing heating is lowered.
[0006]
In order to solve the above-described problems and achieve thinning of the aluminum alloy clad fin material, the inventors of the thinned aluminum alloy clad fin material have a combination of component compositions of the core material and the brazing material. As a result of diversified experiments and examinations on the relationship between the thickness, clad rate, etc., and the erosion of the molten brazing core material during brazing, buckling of the fin material, corrosion resistance, and workability In combination with the core material, the average Si concentration in the material is adjusted to an appropriate range according to the thickness, and the clad rate is adjusted, so that erosion of the molten brazing can be prevented and high temperature buckling can be prevented. It was found that the corrosion resistance is maintained and the sacrificial anode effect is improved.
[0007]
The present invention has been made on the basis of the above-mentioned knowledge, and its purpose is to reliably prevent buckling due to insufficient flow of the solder and erosion of the molten solder in the fin material thinned to a thickness of less than 0.1 mm. Another object of the present invention is to provide an aluminum alloy clad fin material for a heat exchanger that is excellent in strength after brazing heating and in a sacrificial anode effect. It is another object of the present invention to provide an aluminum alloy heat exchanger using the aluminum alloy clad fin material.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, an aluminum alloy clad fin material according to the present invention is an aluminum alloy clad fin material obtained by clad a brazing material of an Al-Si based alloy on both sides of a core material. It is composed of an aluminum alloy containing -15% and the balance Al and unavoidable impurities, and the core material is Si: 0.01 to 1.6%, Mn: 0.4 to 1.5%, Fe: 0.06 to 0.8%, Zn: 0.3 to It is composed of an aluminum alloy containing 5.0% of the balance Al and unavoidable impurities, the thickness t of the clad fin material is 0.04 mm or more and less than 0.1 mm, and the average Si concentration T Si (%) and t in the clad fin material (mm) satisfies 7.3 × T Si −0.7 × t −1 −1.0> 0 (where T Si : 1.1 to 2.7), and the clad rate of the brazing material is average on one side It is a structural feature that it is 3 to 30%.
[0009]
An aluminum alloy heat exchanger according to the present invention is characterized in that the above aluminum alloy clad fin material and a fluid passage component such as an extruded flat porous tube made of an aluminum alloy are combined to form a brazing unit. .
[0010]
The significance of the alloy components in the present invention and the reason for the limitation will be described. Si in the brazing material has the effect of lowering the melting point of the brazing material and increasing the flowability of the molten brazing material. The preferable content is in the range of 5 to 15%. If the content is less than 5%, the effect is small. If the content exceeds 15%, the melting point increases rapidly, and the workability during production also decreases. A more preferable content range of Si is 7.0 to 13%.
[0011]
Even if 0.3% or less of Cu, Cr and Mn and 0.1% or less of Pb, Li and Ca are contained in the brazing material, the effect of the present invention is not impaired. Also, sacrificial anode effect by reducing Ti to 0.3% or less for refinement of the cast structure, B or less of 0.01% or less, Sr, Na of 0.1% or less for refining the Si particles in the brazing material, and lowering the electric potential. 0.1% or less of In, Sn and Ga, and 0.1% or less of Be may be added to suppress the growth of the surface oxide film. However, when Fe is contained in a large amount, self-corrosion increases, so it is preferable to limit it to 0.8% or less. In addition, Mg may be contained in an amount of 0.3 to 2.0% in the case of vacuum brazing, but when brazing using a fluoride-based flux, 0.5% or less so as not to impair brazing properties. It is preferable to limit to.
[0012]
In the case of a thin fin material with a thickness of less than 0.1 mm, the Si concentration of the core material after brazing is equal to the Si concentration of the core material before brazing because Si diffuses from the brazing material to the core material during brazing heating. Regardless, the density is almost the same. When Si is added to the core material, the diffusion amount of Si from the brazing material to the core material is reduced during brazing heating, and the decrease in the Si concentration in the brazing material during the brazing heating process is reduced. Will improve. The preferable content of Si in the core material is in the range of 0.01 to 1.6%. If it is less than 0.01%, the desired effect can be obtained, but a high-purity aluminum ingot must be used. This increases manufacturing costs. When it exceeds 1.6%, the crystal grain size of the core material becomes finer, so that the wax is easily eroded into the core material, the high temperature buckling resistance is lowered, and the self-corrosion property is also increased. A more preferable content of Si in the core material is in the range of 0.1 to 1.0%.
[0013]
Mn in the core material functions to improve the strength of the core material and improve high temperature buckling resistance. The preferable content range is 0.4 to 1.5%. If the content is less than 0.3%, the effect is small. If the content exceeds 1.5%, a coarse compound is produced during casting, and the rolling processability is impaired. As a result, it is difficult to obtain a sound plate material. . A more preferable content of Mn is in the range of 0.8 to 1.2%.
[0014]
Fe coexists with Mn and further improves the strength of the core material. The preferable content of Fe is in the range of 0.06 to 0.8%. When the content is less than 0.06%, the effect is small. When the content exceeds 0.8%, the crystal grains become fine, and the molten brazing is easily eroded in the core material. High temperature buckling is reduced and self-corrosion is increased. A more preferable content range of Fe is 0.1 to 0.6%.
[0015]
Zn has the effect of increasing the sacrificial anode effect by lowering the natural potential of the core material. A preferable content is 0.3 to 5.0%, and if it is 0.3% or less, the effect is not sufficient, and if it exceeds 5.0%, self-corrosion increases. A more preferable content of Zn is in the range of 1.0 to 4.0%.
[0016]
Even if 0.1% or less of Pb, Li, Sr, Ca and Na are contained in the core material, the effect of the present invention is not impaired. In addition, 0.3% or less of V, Mo, Ni, 0.3% or less of Ti, 0.01% or less of B, and 0.1% or less of Be are added to prevent oxidation in order to improve the strength. You can also.
[0017]
In the present invention, in order to form a sufficient fillet in the brazed portion, the average Si concentration T Si (%) obtained by mixing the Si concentration of the brazing material in the clad fin material and the Si concentration of the core material and the clad fin material The relationship with the total thickness t (mm) is 7.3 × T Si −0.7 × t −1 −1.0> 0 (where T Si : 1.1 to 2.7%, t: 0.04 mm or more and 0.1 mm) Less than). As the average Si concentration T Si increases, the area of the fillet increases, and as the fin material thickness t decreases, the fillet area decreases rapidly. When the above relational expression is not satisfied, in the clad fin material having a thickness of less than 0.10 mm, a sufficient fillet is not formed at the joint between the fin and the tube (fluid passage constituent member), resulting in poor bonding.
[0018]
T Si is the average concentration of all Si components in the fin material composed of the core material and the brazing material, and T Si = {Sb × 2C + Sc × (100−2C)} / 100 (where Sb is the Si concentration of the brazing material) (Wt%), Sb: 5 to 15%, Sc is Si concentration (wt%) of the core material, Sc: 0.01 to 1.6%, C is the single-sided cladding ratio, C: 3 to 30%) Desired.
[0019]
In a fin material having a thickness of less than 0.1 mm, a preferable value of the average Si concentration T Si is in the range of 1.1 to 2.7%. When the thickness is less than 1.1%, the above-mentioned relational expression is not satisfied due to insufficient melting brazing, and the fillet is Not fully formed. If it exceeds 2.7%, excessive melting will occur, and melting and erosion of the core material are likely to occur in fin materials with a thickness of less than 0.1 mm. A more preferable range of T Si is 1.3 to 2.5%.
[0020]
As the clad rate of the brazing material increases, the amount of brazing flow increases. In the present invention, the total thickness of the fin material is specified to be 0.04 mm or more and less than 0.1 mm, and the clad rate is averaged from 3 to 30% on one side. If the thickness is less than 0.04 mm, the strength of the fin material itself is insufficient, deformation during brazing heating increases, and buckling occurs. If the average clad rate on one side is less than 3%, the amount of brazing material relative to the core material is too small, making it difficult to obtain a uniform clad rate, and making the clad fin material difficult. If the average clad ratio exceeds 30%, the amount of melting of the wax is too large, and the core material is likely to be dissolved and eroded. A more preferable range of the average cladding ratio is 5 to 20%. The above limitation on the average Si concentration and the like in the present invention is made in order to give a desired performance to a clad fin material having a thickness of 0.04 mm or more and less than 0.1 mm, and the thickness of the clad fin material is 0.1 mm. In the above case, brazing can be performed without controlling T Si within an appropriate range.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
The aluminum alloy clad fin material of the present invention melts and casts the aluminum alloy constituting the core material and the brazing material, homogenizes each ingot, and then hot-rolls the aluminum alloy ingot constituting the brazing material Then, the clad ingot clad on both sides of the core ingot or the clad ingot clad with the aluminum alloy material constituting the brazing material on both sides of the core ingot is homogenized, and the clad ingot is obtained. Is subjected to hot rolling, cold rolling, intermediate annealing, and final cold rolling, and supplied as an H14 tempered material.
[0022]
The aluminum alloy clad fin material of the present invention obtained by the above manufacturing process is used for assembling aluminum alloy heat exchangers such as automobile radiators, heater cores, oil coolers, intercoolers, car air conditioner condensers and evaporators. In this case, the clad fin is combined with an aluminum alloy extruded flat porous tube or the like as a fluid passage component, and in a brazing furnace, ordinary flux brazing or inert gas atmosphere brazing using a fluoride-based flux is performed. Or by brazing by vacuum brazing.
[0023]
【Example】
Hereinafter, the present invention will be described in comparison with comparative examples by way of examples.
Example 1
After melting and casting the core material and the aluminum alloy for the brazing material, homogenization treatment was performed according to a conventional method, the brazing material ingot was hot-rolled, and the obtained brazing material plate was applied to both sides of the ingot of the core material. Clad welded. The clad ingot is subjected to hot rolling and intermediate cold rolling, and after intermediate annealing, final cold rolling is performed to obtain a clad fin material (H14 tempered material) having a final thickness of 0.038 to 0.098 mm. . The composition of the core material and the brazing material is shown in Table 1. The thickness of the obtained clad fin material, the average clad ratio on one side, the average Si concentration T Si , and the relational expression A (7.3 × T Si −0.7 × t − the value of 1 -1.0) shown in Table 2.
[0024]
[Table 1]
<< Table Note >> No.14 is a conventional material.
[Table 2]
<< Table Note >> No.14 is a conventional material.
The resulting clad fin material is corrugated, and a fluid passage component with a Zn sprayed coating layer on the surface layer of an extruded flat multi-hole tube of JIS A1050. Extruded with 4045 alloy as skin and 3003 alloy as inner material A tank consisting of an extruded double pipe with a press-molded hole for inserting a flat multi-hole pipe is assembled into a heat exchanger shape, and fluoride-based flux (diluted to 3% with water) is sprayed. After drying, it was heated in a nitrogen gas atmosphere furnace to a temperature of 600 ° C. for 3 minutes to perform brazing joining.
[0027]
After brazing, the thermal efficiency of the obtained heat exchanger model is measured according to JIS D 1618 (Testing method for air conditioners for automobiles), and the value is converted into the thermal efficiency per unit weight to obtain the thermal efficiency of conventional material No.14. The degree of improvement in thermal efficiency was determined when standard (100%) was used. Next, the cross section of the heat exchanger model was observed, and the presence or absence of fillet formation at the joint between the fin and tube, the melting of the core material, and the presence or absence of buckling due to erosion were investigated to evaluate brazeability. Further, a part of the joint was taken out and subjected to a 2-week CASS test (JIS D 0201) to investigate the corrosion status of the fins and pipes.
[0028]
As a result, all of the test materials No. 1 to 13 according to the present invention are produced without any brazing due to melting and erosion of the core material by sufficiently flowing the braze into the contact portion between the fin and the tube to form a fillet. The workability at the time was also good, and there were no rolling cracks. Also, in the corrosion test, no through-hole was generated and good corrosion resistance was shown. Table 3 shows the thermal efficiency of the heat exchanger core. As seen in Table 3, the test material showed an improvement of 5% or more compared to the conventional material.
[0029]
[Table 3]
[0030]
Comparative Example 1
A clad fin material was manufactured in the same process as in Example 1. Table 4 shows the composition of the core material and the brazing material, and Table 5 shows the thickness of the clad fin material, the single-sided average clad rate, and the average Si concentration T Si , A. Using the obtained clad fin material, a heat exchanger model is produced in the same manner as in Example 1, and the degree of improvement in thermal efficiency is obtained, and the cross section of the heat exchanger model is observed to evaluate brazing properties. A corrosion test was conducted. Table 6 shows the results of these evaluations and tests. In Tables 4 and 5, those outside the conditions of the present invention are underlined.
[0031]
[Table 4]
[0032]
[Table 5]
<< Table Note >> * is the target value [0033]
[Table 6]
<< Table Note >> Corrosion test ○: Sacrificial anode effect of fin material is good and there is no through hole in the tube × Fin: Corrosion and wear of the fin is large × Tube: Through hole is generated in the tube ○: Easy to manufacture × : Difficult to manufacture [0034]
As shown in Table 6, since the test material No. 15 had a fin material thickness of less than 0.04 mm, the fin was buckled without any fillet formation. In Test Material No. 16, the fin thickness was small and the average Si concentration T Si was large, so that the buckling of the fin occurred. Test material No. 17 had a high cladding ratio and a large T Si , so that the fin was buckled. Since the test material No. 18 had a too low cladding ratio, cracking occurred in the rolling process, making it difficult to produce the fin material. In the test material No. 19, since the amount of Si in the brazing material was small and the amount of brazing that occurred during brazing was small, no fillet was formed. Test material No. 20 had a large amount of Si in the brazing material and had a high hardness, so that the brazing material and the core material were not clad in the hot rolling process, making it difficult to produce the fin material.
[0035]
Since test material No. 21 had a large amount of Si in the core material, the fin material melted, and the core material was severely eroded by the melting brazing, causing the fin to buckle. Since test material No. 22 had low T Si , no fillet was formed. Test material No. 23 had a high T Si, which caused buckling of the fin. In the test material No. 24, the value of the relational expression A was −1.1, so that no fillet was formed. Test material No. 25 has a high Mn content in the core material, so cracking occurred during rolling, making it difficult to produce the fin material. Test material No. 26 has a low strength because the Mn content of the core material is small. The fin buckled.
[0036]
Since test material No. 27 had a small amount of Fe in the core material, the strength was not sufficient and the fins were buckled. Since test material No. 28 had a large amount of Fe in the core material, the crystal grains of the core material became fine, and the fins buckled due to the erosion of the molten solder. Since test material No. 29 had a small amount of Zn in the core material, the potential of the fin material was high and a sufficient sacrificial anode effect could not be obtained, and through holes were formed in the tube in the corrosion test. Since test material No. 30 had a large amount of Zn in the core material, the self-corrosion of the fins was severe, and the corrosion and consumption of the fins in the corrosion test were remarkable.
[0037]
【The invention's effect】
According to the present invention, even when the fin material is thinned to a thickness of less than 0.1 mm, the flowability of the braze, the buckling of the fin due to the erosion of the molten braze is prevented, the strength after brazing, the sacrificial anode effect In particular, aluminum alloy clad fin material that can be suitably used as a fin material for automotive heat exchangers such as radiators, heater cores, oil coolers, intercoolers, condensers for car air conditioners, evaporators, and aluminum using the clad fin materials An alloy heat exchanger is provided.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26522596A JP3859781B2 (en) | 1996-09-13 | 1996-09-13 | Aluminum alloy clad fin material and aluminum alloy heat exchanger using the clad fin material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26522596A JP3859781B2 (en) | 1996-09-13 | 1996-09-13 | Aluminum alloy clad fin material and aluminum alloy heat exchanger using the clad fin material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1088267A JPH1088267A (en) | 1998-04-07 |
JP3859781B2 true JP3859781B2 (en) | 2006-12-20 |
Family
ID=17414271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26522596A Expired - Lifetime JP3859781B2 (en) | 1996-09-13 | 1996-09-13 | Aluminum alloy clad fin material and aluminum alloy heat exchanger using the clad fin material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3859781B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO20016355D0 (en) * | 2001-12-21 | 2001-12-21 | Norsk Hydro As | Aluminum heat sink with improved strength and durability |
JP2008013844A (en) * | 2006-06-07 | 2008-01-24 | Nippon Light Metal Co Ltd | Clad aluminum alloy material for heat exchanger and process for producing the same |
JP2008006480A (en) * | 2006-06-30 | 2008-01-17 | Sumitomo Light Metal Ind Ltd | Brazing fin material for heat exchanger, heat exchanger, and method for manufacturing the same |
JP5258637B2 (en) | 2009-03-13 | 2013-08-07 | 古河スカイ株式会社 | Thin brazing sheet fin material for high temperature brazing and manufacturing method of heat exchanger using the same |
JP5258636B2 (en) * | 2009-03-13 | 2013-08-07 | 古河スカイ株式会社 | Thin brazing sheet fin material for high temperature brazing and manufacturing method of heat exchanger using the same |
JP6155156B2 (en) * | 2013-09-30 | 2017-06-28 | 株式会社Uacj | Aluminum alloy heat exchanger |
-
1996
- 1996-09-13 JP JP26522596A patent/JP3859781B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH1088267A (en) | 1998-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4166613B2 (en) | Aluminum alloy fin material for heat exchanger and heat exchanger formed by assembling the fin material | |
JP4822277B2 (en) | Aluminum alloy brazing sheet for heat exchanger tubes with excellent brazing and corrosion resistance and heat exchanger tubes with excellent corrosion resistance | |
JP3847077B2 (en) | Aluminum alloy fin material for heat exchangers with excellent formability and brazing | |
JP6726370B1 (en) | Aluminum brazing sheet for flux-free brazing | |
JP6315365B2 (en) | Brazing sheet for heat exchanger and method for producing the same | |
JP4023760B2 (en) | Aluminum alloy clad material for heat exchangers with excellent brazing and corrosion resistance | |
JP5279278B2 (en) | Brazing sheet for tube material of heat exchanger and method of manufacturing heat exchanger using the same | |
JP5279277B2 (en) | Brazing sheet for tube material of heat exchanger, heat exchanger and manufacturing method thereof | |
JP5836695B2 (en) | Aluminum alloy fin material for heat exchangers with excellent strength and corrosion resistance after brazing | |
JP2005232506A (en) | Aluminum alloy clad material for heat exchanger | |
JP3859781B2 (en) | Aluminum alloy clad fin material and aluminum alloy heat exchanger using the clad fin material | |
JP2000008130A (en) | Member for heat exchanger made of aluminum alloy excellent in corrosion resistance | |
JP3170202B2 (en) | Aluminum alloy clad fin material and method of manufacturing the same | |
JP2004017116A (en) | Aluminum alloy brazing sheet for brazed pipe making tubes, and its producing method | |
JP3360026B2 (en) | Brazing method of aluminum alloy brazing sheet for heat exchanger | |
JP2000167688A (en) | Aluminum alloy clad material for heat exchanger excellent in brazability and corrosion resistance | |
JP5159709B2 (en) | Aluminum alloy clad material for heat exchanger tube and heat exchanger core using the same | |
JPH1088265A (en) | Aluminum alloy fin material for heat exchanger, excellent in sacrificial anode effect as well as in strength after brazing | |
JP2007182602A (en) | Aluminum brazing alloy with suppressed erosion during brazing, brazing sheet using the same, header pipe for heat exchanger, and heat exchanger | |
JP2002161324A (en) | Aluminum alloy fin-material for heat exchanger superior in formability and brazability | |
JPH0436434A (en) | High strength and high corrosion resistant al alloy clad material for al heat exchanger | |
JP3743709B2 (en) | Aluminum alloy fin material for heat exchangers with excellent formability and brazing | |
JP2000135590A (en) | High strength aluminum alloy clad material for heat exchanger | |
JPH1017968A (en) | Aluminum alloy clad fin material | |
JP2000202681A (en) | Aluminum alloy fin material for heat exchanger excellent in brazability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060907 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060920 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100929 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110929 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110929 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120929 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130929 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |