JP2006015377A - Aluminum alloy brazing sheet for heat exchanger - Google Patents

Aluminum alloy brazing sheet for heat exchanger Download PDF

Info

Publication number
JP2006015377A
JP2006015377A JP2004196372A JP2004196372A JP2006015377A JP 2006015377 A JP2006015377 A JP 2006015377A JP 2004196372 A JP2004196372 A JP 2004196372A JP 2004196372 A JP2004196372 A JP 2004196372A JP 2006015377 A JP2006015377 A JP 2006015377A
Authority
JP
Japan
Prior art keywords
sacrificial anode
brazing
hardness
anode material
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004196372A
Other languages
Japanese (ja)
Inventor
Takahiro Koyama
高弘 小山
Ryota Ozaki
良太 尾崎
Yoshifusa Shoji
美房 正路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2004196372A priority Critical patent/JP2006015377A/en
Publication of JP2006015377A publication Critical patent/JP2006015377A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy brazing sheet for a heat exchanger, which has basic properties as a pipe material, such as corrosion resistance, brazing ability, strength characteristics and further has excellent slit cutting property, and of which all slit-cut strips can be formed into pipes under the same pipe production condition. <P>SOLUTION: The aluminum alloy brazing sheet has a three layer structure, which has a sacrificial anode material clad on one surface of a core material and has a solder material clad on the other surface of the core material. The core material is made of an Al-Mn alloy containing 0.05-1.2% Si, 0.05-1.0% Cu, 0.6-2.0% Mn, and 0.01-0.5% Fe. The sacrificial anode material is made of an Al-Zn alloy containing 0.5-6% Zn, 0.5-3% Mg, 0.05-1.2% Si, and 0.01-0.5% Fe. The difference between the hardness of the sacrificial anode material and the hardness of the solder material in the Micro-Vickers hardness is within 30% of the higher hardness of either the hardness of the sacrificial anode material or the hardness of the solder material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、熱交換器用アルミニウム合金ブレージングシート、とくにラジエータなど、自動車用熱交換器のチューブ材を、多条スリット切断されたブレージングシートの条材を曲成して高周波溶接により造管加工する場合に使用されるスリット切断性に優れた熱交換器用アルミニウム合金ブレージングシートに関する。   The present invention is a case where an aluminum alloy brazing sheet for heat exchangers, in particular, a heat exchanger tube material for automobiles, such as a radiator, is formed by bending a strip material of a brazing sheet that has been cut into multiple slits, and pipe-formed by high frequency welding. It is related with the aluminum alloy brazing sheet for heat exchangers excellent in the slit cutting property used for.

自動車熱交換器、例えばラジエータは、積層された複数の偏平チューブ、その間にろう付けされたコルゲート状の薄肉フィンおよびヘッダーとタンクから構成されており、偏平チューブは、JIS3003などのAl−Mn系合金を芯材とし、芯材の一方の面にJIS4045などのAl−Si系合金ろう材をクラッドし、他方の面にJIS7072などのAl−Zn系合金またはAl−Zn−Mg系合金の犠牲陽極材をクラッドした三層構造のアルミニウム合金ブレージングシートを多条スリット切断し、得られた条材を曲成して高周波溶接により造管加工することにより成形され、Al−Si系ろう材はチューブとフィンとのろう付け接合、チューブとヘッダープレートとのろう付け接合に用いられ、犠牲陽極材は作動流体(冷媒)に接して犠牲陽極効果を発揮する。ろう付け接合としては、通常のフラックスろう付け、フッ化物系のフラックスやセシウム系のフラックスを用いる不活性ガス雰囲気ろう付け、または真空ろう付けが適用され、600℃付近の高温に加熱してろう付けされる。   An automobile heat exchanger such as a radiator is composed of a plurality of flat tubes stacked, corrugated thin fins brazed between them, a header and a tank, and the flat tubes are made of an Al-Mn alloy such as JIS3003. A core material, one surface of the core material is clad with an Al—Si alloy brazing material such as JIS4045, and the other surface is a sacrificial anode material of an Al—Zn alloy or Al—Zn—Mg alloy such as JIS7072 The aluminum alloy brazing sheet with a three-layer structure clad is cut by multiple slits, the resulting strip is bent and formed by pipe-forming by high frequency welding, and the Al-Si brazing material is made of tubes and fins. The sacrificial anode material is in contact with the working fluid (refrigerant). To exert a sacrificial anode effect Te. As the brazing joint, normal flux brazing, inert gas atmosphere brazing using a fluoride-based flux or a cesium-based flux, or vacuum brazing is applied, and the brazing is performed by heating to a high temperature around 600 ° C. Is done.

従来、熱交換器のチューブ材用アルミニウム合金ブレージングシートにおける芯材、ろう材および犠牲陽極材との組み合わせについては、高周波溶接性に優れたろう付け用アルミニウム合金複合材として、例えば、Mg:0.2%以下に規制し、Cr:0.3%以下、Fe:0.2%以下、Cu:0.2%を超え1.0%以下、Si:0.3〜1.3%、を含有し、CuとSiの合計含有量を1.5%以下に規制し、さらにMn:0.3〜1.5%、Ti:0.02〜0.3%を含有し、残部Alおよび不可避的不純物からなる芯材の一面に、Al−Si系ろう材を、他面にMg:0.3〜3%、Zn:2.2%を超え5%以下を含有し、残部Alおよび不可避的不純物からなる犠牲陽極材をクラッドしてなる複合材が提案されている(特許文献1参照)。   Conventionally, for a combination of a core material, a brazing material, and a sacrificial anode material in an aluminum alloy brazing sheet for a tube material of a heat exchanger, as an aluminum alloy composite material for brazing excellent in high-frequency weldability, for example, Mg: 0.2 %: Cr: 0.3% or less, Fe: 0.2% or less, Cu: more than 0.2% and 1.0% or less, Si: 0.3 to 1.3% The total content of Cu and Si is regulated to 1.5% or less, and further contains Mn: 0.3 to 1.5%, Ti: 0.02 to 0.3%, the balance Al and inevitable impurities Al-Si based brazing material on one side of the core material, Mg: 0.3-3%, Zn: more than 2.2% and 5% or less on the other side, the balance from Al and inevitable impurities A composite material made by cladding a sacrificial anode material has been proposed (patented) Document reference 1).

また、上記のアルミニウム合金複合材において、芯材のSiを0.3〜1.0%、Cuを0.3%を超え1.0%以下、Mnを0.8〜1.5%とし、CuとSiの合計含有量を1.3〜1.6%に規制し、他面にクラッドされる犠牲陽極材のMgを2.0〜3.0%とし、Si:0.1〜1.0%を含有させたものも提案されている(特許文献2参照)。   In the above aluminum alloy composite material, the core material Si is 0.3 to 1.0%, Cu is more than 0.3% and 1.0% or less, Mn is 0.8 to 1.5%, The total content of Cu and Si is regulated to 1.3 to 1.6%, the Mg of the sacrificial anode material clad on the other surface is set to 2.0 to 3.0%, and Si: 0.1 to 1. The thing containing 0% is also proposed (refer patent document 2).

このようなアルミニウム合金複合材(ブレージングシート)を多条スリット切断し、造管加工機によって高周波溶接する場合、切断されたスリット端面の形状が造管性に影響する。一般に、端面形状は、バリ、ダレが少なく平滑であることが要求されるが、多条切断された条材を連続的に造管加工する場合には、条毎に形状特性が変化してしまうと造管加工条件、例えばロール調整、アップセット調整、高周波出力調整などの再調整が必要となるため、さらに条毎の形状変化が少ないことが望まれる。   When such an aluminum alloy composite material (brazing sheet) is subjected to multi-slit slit cutting and high-frequency welding is performed by a pipe making machine, the shape of the cut slit end face affects pipe forming properties. In general, the end face shape is required to be smooth with few burrs and sagging, but the shape characteristics change for each strip when continuously forming the strip material that has been cut into multiple strips. Further, since it is necessary to readjust pipe forming processing conditions such as roll adjustment, upset adjustment, and high-frequency output adjustment, it is desired that the shape change for each line is small.

通常、スリット切断機は、図1に示すように、多条切断において、隣り合う条は切断刃の入る方向が表裏逆となるよう構成されており、例えば、奇数条が犠牲陽極材側から切断されると、偶数条はろう材側から切断され、条端面のバリの向きが互いに逆向きとなる。この場合、ろう材側から切断された条と犠牲陽極材側から切断された条の端面特性に大きな差が生じると、それぞれ同一条件で造管加工するのが難しくなり生産能率が低下することとなる。このような観点において従来のチューブ材用アルミニウム合金ブレージングシートは必ずしも満足すべきものではない。
特開平8−283891号公報 特開平9−291328号公報
Usually, as shown in FIG. 1, the slit cutter is configured so that adjacent strips are arranged so that the direction in which the cutting blade enters is reversed, for example, odd-numbered strips are cut from the sacrificial anode material side, as shown in FIG. 1. Then, the even strips are cut from the brazing material side, and the direction of the burrs on the strip end faces are opposite to each other. In this case, if there is a large difference in the end face characteristics between the strip cut from the brazing filler metal side and the strip cut from the sacrificial anode material side, it becomes difficult to make a tube under the same conditions, and the production efficiency decreases. Become. From this point of view, conventional aluminum alloy brazing sheets for tube materials are not necessarily satisfactory.
JP-A-8-283891 JP-A-9-291328

発明者らは、スリット切断機により多条切断されて造管加工機に送られ高周波溶接されるチューブ材用アルミニウム合金ブレージングシートにおける上記の問題点を解決するために、材料特性と切断されたスリット端面の形状との関連について試験、検討を行った結果、切断刃の入る面側の材料(ろう材または犠牲陽極材)の硬さがスリット端面の形状特性、とくに面粗度に影響を与えることを見出した。   In order to solve the above-mentioned problems in the aluminum alloy brazing sheet for tube material that is multi-cut by a slit cutting machine, sent to a pipe making machine and welded at high frequency, the inventors have made the material characteristics and slits cut. As a result of testing and studying the relationship with the shape of the end face, the hardness of the material (brazing material or sacrificial anode material) on the face side where the cutting blade enters affects the shape characteristics of the slit end face, especially the surface roughness. I found.

本発明は、上記の知見に基づいてさらに検討を加えた結果としてなされたものであり、その目的は、多条スリット切断されたブレージングシートの条材を曲成して高周波溶接により造管加工する場合に使用される熱交換器のチューブ用アルミニウム合金ブレージングシートであって、チューブ用材料としての基礎特性(耐食性、ろう付け性、強度特性)を有するとともに、優れたスリット切断性をそなえ、切断された全ての条材を同一条件で造管加工することを可能する熱交換器用アルミニウム合金ブレージングシートを提供することにある。   The present invention has been made as a result of further investigation based on the above knowledge, and its purpose is to bend the brazing sheet strip that has been subjected to multi-slit cutting and to perform pipe forming by high frequency welding. Aluminum alloy brazing sheet for tubes of heat exchangers used in certain cases, which has basic properties (corrosion resistance, brazing properties, strength properties) as a tube material and has excellent slit cutting properties and is cut Another object of the present invention is to provide an aluminum alloy brazing sheet for a heat exchanger capable of pipe-forming all the strip materials under the same conditions.

上記の目的を達成するための請求項1による熱交換器用アルミニウム合金ブレージングシートは、芯材の一方の面に犠牲陽極材をクラッドし、他方の面にろう材をクラッドした3層構造のアルミニウム合金ブレージングシートであって、芯材がSi:0.05〜1.2%、Cu:0.05〜1.0%、Mn:0.6〜2.0%、、Fe:0.01〜0.5%を含有するAl−Mn系合金からなり、犠牲陽極材がZn:0.5〜6%、Mg:0.5〜3%、Si:0.05〜1.2%、Fe:0.01〜0.5%を含有するAl−Zn系合金からなり、マイクロビッカース硬度において、犠牲陽極材の硬度とろう材の硬度の差が、犠牲陽極材の硬度とろう材の硬度のうち、いずれか高い方の硬度の30%以内であることを特徴とする。   An aluminum alloy brazing sheet for a heat exchanger according to claim 1 for achieving the above object is a three-layer aluminum alloy in which a sacrificial anode material is clad on one surface of a core material and a brazing material is clad on the other surface. Brazing sheet, core material: Si: 0.05-1.2%, Cu: 0.05-1.0%, Mn: 0.6-2.0%, Fe: 0.01-0 The sacrificial anode material is made of Zn: 0.5-6%, Mg: 0.5-3%, Si: 0.05-1.2%, Fe: 0 0.01-0.5% Al-Zn based alloy, and in micro Vickers hardness, the difference between the hardness of the sacrificial anode material and the hardness of the brazing material is, among the hardness of the sacrificial anode material and the hardness of the brazing material, It is characterized by being within 30% of the higher hardness.

請求項2による熱交換器用アミニウム合金ブレージングシートは、請求項1において、前記芯材のAl−Mn系合金が、さらにCr:0.03〜0.3%,Zr:0.03〜0.3%、Mg:0.06〜1.0%のうちの1種または2種以上を含有することを特徴とする。   An aminium alloy brazing sheet for a heat exchanger according to claim 2 is the aluminium alloy brazing sheet according to claim 1, wherein the Al-Mn alloy of the core is further Cr: 0.03-0.3%, Zr: 0.03-0.3. %, Mg: One or more of 0.06 to 1.0% are contained.

請求項3による熱交換器用アルミニウム合金ブレージングシートは、請求項1または2において、前記犠牲陽極材のAl−Zn系合金が、さらにIn:0.005〜0.1%、Sn:0.01〜0.1%のうちの1種または2種を含有することを特徴とする。   The aluminum alloy brazing sheet for a heat exchanger according to claim 3 is the aluminum alloy brazing sheet according to claim 1 or 2, wherein the sacrificial anode material further contains In: 0.005-0.1%, Sn: 0.01- It is characterized by containing one or two of 0.1%.

本発明によれば、多条スリット切断されたブレージングシートの条材を曲成して高周波溶接により造管加工する場合に使用される熱交換器のチューブ用アルミニウム合金ブレージングシートであって、チューブ用材料としての耐食性、ろう付け性、強度特性などの基礎特性を有するとともに、優れたスリット切断性をそなえ、切断された全ての条材を同一条件で造管加工することを可能する熱交換器用アルミニウム合金ブレージングシートが提供される。   According to the present invention, there is provided an aluminum alloy brazing sheet for a tube of a heat exchanger that is used when bending a strip material of a brazing sheet that has been cut into multiple slits and pipe-forming by high-frequency welding, Aluminum for heat exchangers that has basic properties such as corrosion resistance, brazing and strength properties as materials, and has excellent slit cutting properties, making it possible to tube-process all cut strips under the same conditions. An alloy brazing sheet is provided.

本発明のアルミニウム合金ブレージングシートの組成およびその限定理由について説明する。
(芯材)
Mn:0.6〜2.0%
Mnは、芯材の強度を向上させるとともに、芯材の電位を貴にして犠牲陽極材との電位差を大きくして耐食性を高めるよう機能する。Mnの好ましい含有量は0.6〜2.0%の範囲であり、0.6%未満ではその効果が小さく、2.0%を越えると、鋳造時に粗大な化合物が生成し圧延加工性が低下して健全な板材(芯材)が得難くなる。Mnのさらに好ましい含有範囲は1.5%を越え2.0%以下であり、さらに優れた耐食性を達成することができる。
The composition of the aluminum alloy brazing sheet of the present invention and the reason for limitation will be described.
(Core material)
Mn: 0.6 to 2.0%
Mn functions to improve the corrosion resistance by improving the strength of the core material and making the potential of the core material noble and increasing the potential difference from the sacrificial anode material. The preferable content of Mn is in the range of 0.6 to 2.0%. If the content is less than 0.6%, the effect is small. If the content exceeds 2.0%, a coarse compound is produced during casting, and the rolling processability is low. It decreases and it becomes difficult to obtain a healthy plate (core material). A more preferable content range of Mn is more than 1.5% and 2.0% or less, and further excellent corrosion resistance can be achieved.

Cu:0.05〜1.0%
Cuは、芯材の強度を向上させるとともに、芯材の電位を貴にし、犠牲陽極材のとの電位差およびろう材との電位差を大きくして耐食性を向上させるよう機能する。Cuの好ましい含有量は0.05〜1.0%の範囲であり、0.05%未満ではその効果が小さく、1.0%を越えると芯材の耐食性が低下し、また融点が低下して加熱ろう付け時に局部的な溶融が生じ易くなる。
Cu: 0.05 to 1.0%
Cu functions to improve the corrosion resistance by improving the strength of the core material, making the potential of the core material noble, and increasing the potential difference with the sacrificial anode material and the potential difference with the brazing material. The preferable content of Cu is in the range of 0.05 to 1.0%. If the content is less than 0.05%, the effect is small. If the content exceeds 1.0%, the corrosion resistance of the core material is lowered, and the melting point is lowered. Thus, local melting is likely to occur during heat brazing.

Si:0.05〜1.2%
Siは、芯材の強度を向上させる効果を有する。Siの好ましい含有量は0.05〜1.2%の範囲であり、0.05%未満ではその効果が小さく、1.2%を越えると、芯材の耐食性が低下するとともに、芯材の融点を下げ、加熱ろう付け時に局部溶融が生じ易くなる。
Si: 0.05-1.2%
Si has the effect of improving the strength of the core material. The preferable content of Si is in the range of 0.05 to 1.2%. If the content is less than 0.05%, the effect is small. If the content exceeds 1.2%, the corrosion resistance of the core material decreases, and The melting point is lowered, and local melting tends to occur during brazing with heating.

Fe:0.01〜0.5%
Feは、芯材の強度を向上させる効果を有する。Feの好ましい含有量は0.01〜0.5%の範囲であり、0.01%未満ではその効果が小さく、また、高純度アルミニウム地金を使用することとなるからコスト高となり実用上問題である。Feが0.5%を越えると、芯材の耐食性を低下させる。
Fe: 0.01 to 0.5%
Fe has the effect of improving the strength of the core material. The preferable content of Fe is in the range of 0.01 to 0.5%. If the content is less than 0.01%, the effect is small, and a high-purity aluminum ingot is used, resulting in high costs and practical problems. It is. If Fe exceeds 0.5%, the corrosion resistance of the core material is lowered.

Cr:0.3%以下、Zr:0.3%以下
CrおよびZrは、組織を制御し、ろう付け性を向上させるが、CrおよびZrがそれぞれ0.3%を越えると、鋳造時に巨大晶出物が生成し、加工性が低下して健全な板材の製造が困難となる。
Cr: 0.3% or less, Zr: 0.3% or less Cr and Zr control the structure and improve brazeability. However, when Cr and Zr exceed 0.3%, respectively, macrocrystals are formed during casting. A product is generated, workability is lowered, and it is difficult to produce a sound plate material.

Mg:0.06〜1%
Mgは、芯材の強度を向上させる。Mgの好ましい含有量は0.06〜1%の範囲であり、0.06%未満ではその効果が十分でなく、1%を越えて含有すると、フッ化物系フラックスを用いて不活性ガス雰囲気中で加熱ろう付けを行う場合、ろう付け時にMgがフッ化物系フラックスと反応してMgのフッ化物が生成し、ろう付け性を低下させるとともに、ろう付け部の外観が悪くなる。
Mg: 0.06 to 1%
Mg improves the strength of the core material. The preferable content of Mg is in the range of 0.06 to 1%, and if it is less than 0.06%, the effect is not sufficient, and if it exceeds 1%, it is contained in an inert gas atmosphere using a fluoride-based flux. When brazing with heat, Mg reacts with the fluoride-based flux at the time of brazing to produce Mg fluoride, reducing brazing properties and deteriorating the appearance of the brazed part.

(犠牲陽極材)
Zn:0.5〜6%
Znは、犠牲陽極材の電位を卑にし、芯材に対する犠牲陽極効果を発揮させ、芯材の孔食や隙間腐食の発生を防止する。Znの好ましい含有量は0.5〜6%の範囲であり、0.5%未満ではその効果が十分でなく、6%を越えて含有してもその効果が飽和して、それ以上の効果の向上が期待できないとともに、犠牲陽極材の自己耐食性が低下する。
(Sacrificial anode material)
Zn: 0.5-6%
Zn lowers the potential of the sacrificial anode material, exhibits the sacrificial anode effect on the core material, and prevents the occurrence of pitting corrosion and crevice corrosion of the core material. The preferable content of Zn is in the range of 0.5 to 6%. If the content is less than 0.5%, the effect is not sufficient. If the content exceeds 6%, the effect is saturated, and the effect is higher. Improvement cannot be expected, and the self-corrosion resistance of the sacrificial anode material decreases.

Mg:0.5〜3%
Mgは、強度を向上させるよう機能するとともに、犠牲陽極材の硬度を高める。Mgの好ましい含有量は0.05〜3%の範囲であり、0.05%未満ではその効果が十分でなく、3%を越えると融点が低下して、ろう付け時に局部的な溶融が生じるおそれがある。
Mg: 0.5-3%
Mg functions to improve the strength and increases the hardness of the sacrificial anode material. The preferable content of Mg is in the range of 0.05 to 3%. If the content is less than 0.05%, the effect is not sufficient. If the content exceeds 3%, the melting point is lowered and local melting occurs during brazing. There is a fear.

Si:0.05〜1.2%
Siは、強度を向上させるよう機能するとともに、犠牲陽極材の硬度を高める。Siの好ましい含有量は0.05〜1.2%の範囲であり、0.05%未満ではその効果が十分でなく、1.2%を越えると融点が低下して、ろう付け時に局部的な溶融が生じるおそれがある。
Si: 0.05-1.2%
Si functions to improve the strength and increases the hardness of the sacrificial anode material. The preferable content of Si is in the range of 0.05 to 1.2%, and if it is less than 0.05%, the effect is not sufficient, and if it exceeds 1.2%, the melting point is lowered, and it is localized during brazing. May melt.

Fe:0.01〜0.5%
Feは、強度を向上させるよう機能するとともに、犠牲陽極材の硬度を高める。Feの好ましい含有量は0.01〜0.5%の範囲であり、0.01%未満ではその効果が小さく、また、高純度アルミニウム地金を使用することとなるからコスト高となり実用上問題である。Feが0.5%を越えると、犠牲陽極材の自己耐食性を低下させる。
Fe: 0.01 to 0.5%
Fe functions to improve the strength and increases the hardness of the sacrificial anode material. The preferable content of Fe is in the range of 0.01 to 0.5%. If the content is less than 0.01%, the effect is small, and a high-purity aluminum ingot is used, resulting in high costs and practical problems. It is. When Fe exceeds 0.5%, the self-corrosion resistance of the sacrificial anode material is lowered.

In:0.005〜0.1%
Inは、犠牲陽極材の電位を卑にして芯材に対する犠牲陽極効果を付与し、腐食の形態を全面腐食型にして、孔食や隙間腐食を抑制するよう機能する。Inの好ましい含有量は0.005〜0.1%の範囲であり、0.005%未満ではその効果が十分でなく、0.1%を越えて含有してもその効果が飽和してそれ以上の効果の向上が期待できず、また、犠牲陽極材の自己耐食性が低下するとともに、圧延加工性の低下も生じる。
In: 0.005 to 0.1%
In functions to suppress pitting corrosion and crevice corrosion by applying a sacrificial anode effect to the core material by lowering the potential of the sacrificial anode material and making the form of corrosion entirely corrosive. The preferable content of In is in the range of 0.005 to 0.1%. If the content is less than 0.005%, the effect is not sufficient, and if the content exceeds 0.1%, the effect is saturated. The improvement of the above effects cannot be expected, and the self-corrosion resistance of the sacrificial anode material is lowered, and the rolling workability is also lowered.

Sn:0.01〜0.1%
Snは、犠牲陽極材の電位を卑にして芯材に対する犠牲陽極効果を付与し、腐食の形態を全面腐食型にして、孔食や隙間腐食を抑制するよう機能する。Snの好ましい含有量は0.01〜0.1%の範囲であり、0.01%未満ではその効果が十分でなく、0.1%を越えて含有してもその効果が飽和してそれ以上の効果の向上が期待できず、また、犠牲陽極材の自己耐食性が低下するとともに、圧延加工性の低下も生じる。
Sn: 0.01 to 0.1%
Sn functions to suppress the pitting corrosion and crevice corrosion by making the potential of the sacrificial anode material lower and imparting a sacrificial anode effect to the core material, making the form of corrosion entirely corrosive. The preferable content of Sn is in the range of 0.01 to 0.1%. If the content is less than 0.01%, the effect is not sufficient, and if the content exceeds 0.1%, the effect is saturated. The improvement of the above effects cannot be expected, and the self-corrosion resistance of the sacrificial anode material is lowered, and the rolling workability is also lowered.

本発明においては、犠牲陽極材の成分のうち、Mg、Si、Feの合計含有量を1.9〜4.2%の範囲とするのが好ましく、犠牲陽極材におけるMg、Si、Feの合計含有量がこの範囲となるよう各成分の含有量を選択し、犠牲陽極材の硬度を調整することにより、犠牲陽極材とろう材の硬度差を小さくして優れたスリット切断性が得易くなる。   In the present invention, among the components of the sacrificial anode material, the total content of Mg, Si and Fe is preferably in the range of 1.9 to 4.2%, and the total of Mg, Si and Fe in the sacrificial anode material By selecting the content of each component so that the content falls within this range and adjusting the hardness of the sacrificial anode material, it becomes easy to obtain excellent slit cutting performance by reducing the hardness difference between the sacrificial anode material and the brazing material. .

なお、前記芯材には、特性を改善するために、必要に応じて、例えば0.2%以下のZn、0.1%以下のV、Bなどが含有されてもよく、犠牲陽極材には、0.2%以下のCr、Zr、0.1%以下のBなどが添加されてもよい。   The core material may contain, for example, 0.2% or less of Zn, 0.1% or less of V, B, or the like, if necessary, in order to improve the characteristics. May contain 0.2% or less of Cr, Zr, 0.1% or less of B, and the like.

(ろう材)
ろう材としては、通常用いられているAl−Si系合金、例えば、JIS BA4343(Al−7.5%Si)、4045(Al−10%Si)、4047(Al−12%Si)など、Si:6〜13%を含むAl−Si系合金、Al−Si−Mg系合金、4104(Al−10%Si−1.5%Mg−0.1%Bi)などのAl−Si−Mg−Bi系合金、Al−Si−Mg−Be系合金、Al−Si−Mg−Bi−Be系合金などが適用される。これらのろう材には、ろう付け性を改善するために、必要に応じて少量例えば0.2%以下のBi、Be、Sr、Li、Naなどの1種以上が添加されてもよい。
(Brazing material)
Examples of the brazing material include commonly used Al-Si alloys such as JIS BA4343 (Al-7.5% Si), 4045 (Al-10% Si), 4047 (Al-12% Si), and the like. : Al-Si-Mg-Bi such as Al-Si-based alloy, Al-Si-Mg-based alloy containing 4 to 13%, 4104 (Al-10% Si-1.5% Mg-0.1% Bi) An Al-Si-Mg-Be-based alloy, an Al-Si-Mg-Bi-Be-based alloy, or the like is used. In order to improve the brazing property, one or more kinds of Bi, Be, Sr, Li, Na, etc. in a small amount, for example, 0.2% or less may be added to these brazing materials.

スリット切断において切断刃が入る面となる犠牲陽極材およびろう材の硬度は、スリット切断された端面の面粗度など、切断端面特性に影響し、硬度が高いほど面粗度は小さくなる傾向がある。特定の面粗度を得るためには、造管加工機のロール調整、アプセット量、高周波出力などの造管加工条件を最適値に調整することが必要で、各条材の切断端面特性が異なる場合には、各条材毎に造管加工条件を設定しなければならない。   The hardness of the sacrificial anode material and brazing material, which are the surfaces into which the cutting blade enters in slit cutting, affects the characteristics of the cutting end surface, such as the surface roughness of the slit-cut end surface, and the higher the hardness, the smaller the surface roughness tends to be. is there. In order to obtain a specific surface roughness, it is necessary to adjust pipe making conditions such as roll adjustment, upset amount, and high frequency output of the pipe making machine to optimum values, and the cutting end face characteristics of each strip differ. In that case, pipe making conditions must be set for each strip.

前記のように、多条切断においては、犠牲陽極材側から切断される条と、ろう材側から切断される条が交互に作製されるが、量産ラインにおいては、生産性の観点から、両者は同一の造管加工条件で造管するのが望ましく、そのためには、犠牲陽極材側から切断される条材と、ろう材側から切断される条材の端面特性を同一にしておくことが重要であり、犠牲陽極材の硬度と、ろう材の硬度を出来るだけ近い値に調整する必要がある。   As described above, in multi-strip cutting, strips cut from the sacrificial anode material side and strips cut from the brazing material side are alternately produced, but in the mass production line, both from the viewpoint of productivity It is desirable to make pipes under the same pipe making conditions, and for this purpose, the end face characteristics of the strip material cut from the sacrificial anode material side and the strip material cut from the brazing material side should be the same. It is important to adjust the hardness of the sacrificial anode material and the hardness of the brazing material as close as possible.

実用上、多条スリット切断された各条材について、同一の造管加工条件を適用するためには、マイクロビッカース硬度において、犠牲陽極材の硬度とろう材の硬度の差が、犠牲陽極材の硬度とろう材の硬度のうち、いずれか高い方の硬度の30%以内、言い換えれば、マイクロビッカース硬度において、犠牲陽極材の硬度とろう材の硬度のうち、いずれか低い方の硬度が高い方の硬度の70%以上の値とするのが望ましく、硬度差が前記高い方の硬度の30%を越えると、ろう材側から切断された条材端面特性と、犠牲陽極材側から切断された条材の端面特性との差が大きくなり過ぎて、同一の造管加工条件で造管加工することが難しくなる。   In practice, in order to apply the same tube forming process conditions to each strip material that has been subjected to multiple slit cutting, in micro Vickers hardness, the difference between the hardness of the sacrificial anode material and the hardness of the brazing material is Within 30% of the higher of the hardness and the hardness of the brazing material, in other words, in the micro Vickers hardness, the lower of the sacrificial anode material hardness and the brazing material hardness, whichever is higher It is desirable that the hardness be 70% or more of the hardness, and when the hardness difference exceeds 30% of the higher hardness, the strip end face characteristics cut from the brazing material side and the sacrificial anode material side were cut. The difference from the end face characteristics of the strip material becomes too large, and it becomes difficult to make a pipe under the same pipe making conditions.

本発明のアルミニウム合金ブレージングシートは、芯材、犠牲陽極材およびろう材を構成するアルミニウム合金を、たとえば、連続鋳造により造塊し、必要に応じて均質化処理後、犠牲陽極材用およびろう材用アルミニウム合金の鋳塊については、それぞれ所定厚さまで熱間圧延し、ついで、芯材用アルミニウム合金鋳塊と、犠牲陽極用アルミニウム合金およびろう材用アルミニウム合金を組み合わせて、常法に従って熱間圧延によりクラッド材とし、その後冷間圧延、中間焼鈍、冷間圧延により所定の厚さとすることによって製造される。   The aluminum alloy brazing sheet of the present invention comprises an aluminum alloy constituting a core material, a sacrificial anode material and a brazing material, which is ingoted by, for example, continuous casting, and after homogenization treatment as necessary, for sacrificial anode material and brazing material Each aluminum alloy ingot is hot rolled to a predetermined thickness, and then the aluminum alloy ingot for the core material, the aluminum alloy for the sacrificial anode and the aluminum alloy for the brazing material are combined and hot rolled according to a conventional method. Thus, the clad material is produced by cold rolling, intermediate annealing, and cold rolling to obtain a predetermined thickness.

以下、本発明の実施例を比較例と対比して説明する。これらの実施例は、本発明の一実施態様を示すものであり、本発明はこれらに限定されるものではない。   Examples of the present invention will be described below in comparison with comparative examples. These examples show one embodiment of the present invention, and the present invention is not limited to these examples.

実施例1
連続鋳造によって表1に示す組成を有する芯材用合金、表2に示す組成を有する犠牲陽極材用合金、および表3に示す組成を有するろう材用合金を造塊し、得られた鋳塊のうち、芯材用合金および犠牲陽極材用合金の鋳塊については均質化処理を行った。
Example 1
An ingot obtained by ingoting a core material alloy having the composition shown in Table 1, a sacrificial anode material alloy having the composition shown in Table 2, and a brazing alloy having the composition shown in Table 3 by continuous casting. Among these, the ingots of the core material alloy and the sacrificial anode material alloy were subjected to a homogenization treatment.

ついで、犠牲陽極材用合金およびろう材用合金の鋳塊を所定の厚さまで熱間圧延し、これらの熱間圧延板と芯材用合金の鋳塊とを合わせて熱間圧延しクラッド材(ブレージングシート)を得た。その後、冷間圧延、中間焼鈍、冷間圧延によって厚さ0.25mmのブレージングシート(調質H14、H24またはH26)のコイルを得た。ブレージングシートの構成は、犠牲陽極材およびろう材のクラッド率を10%または15%とした。   Subsequently, the ingot of the sacrificial anode material alloy and the brazing material alloy is hot-rolled to a predetermined thickness, and the hot-rolled plate and the core alloy ingot are hot-rolled together and clad ( A brazing sheet) was obtained. Thereafter, a coil of a brazing sheet (tempered H14, H24 or H26) having a thickness of 0.25 mm was obtained by cold rolling, intermediate annealing, and cold rolling. The composition of the brazing sheet was such that the clad rate of the sacrificial anode material and the brazing material was 10% or 15%.

Figure 2006015377
Figure 2006015377

Figure 2006015377
Figure 2006015377

Figure 2006015377
Figure 2006015377

得られたブレージングシートを試験材として、以下の方法により(1)素材の引張強さ、(2)ろう付け後の引張強さ、(3)ろう材および犠牲陽極材のマイクロビッカース硬度とその差、(4)ろう付け性、(5)耐食性、(6)造管加工性を評価した。結果を表4に示す。   Using the obtained brazing sheet as a test material, the following methods were used: (1) Tensile strength of the material, (2) Tensile strength after brazing, (3) Micro Vickers hardness of the brazing material and sacrificial anode material and their differences (4) Brazing property, (5) Corrosion resistance, (6) Pipe-forming workability was evaluated. The results are shown in Table 4.

素材の引張強さ:試験材から引張試験片を採取して引張試験を行う。
ろう付け後の引張強さ:試験材にフッ化物系のフラックスを塗布し、窒素ガス雰囲気中で、ろう付け温度の600℃(材料温度)に3分間加熱した後、引張試験片を採取して引張試験を行う。
ろう材および犠牲陽極材の硬度:試験材を樹脂埋めして断面を研磨し、ろう材および犠牲陽極材についてマイクロビッカース試験機により硬度を測定する。
Tensile strength of material: A tensile test piece is taken from a test material and a tensile test is performed.
Tensile strength after brazing: Fluoride-based flux was applied to the test material, heated to a brazing temperature of 600 ° C (material temperature) for 3 minutes in a nitrogen gas atmosphere, and then a tensile test piece was collected. Perform a tensile test.
Hardness of brazing material and sacrificial anode material: The test material is filled with resin and the cross section is polished, and the hardness of the brazing material and sacrificial anode material is measured by a micro Vickers tester.

ろう付け性:試験材にフッ化物系のフラックスを塗布し、窒素ガス雰囲気中で、ろう付け温度の600℃(材料温度)に3分加熱した後、断面観察を行い、ろう材が芯材側に拡散していないものを、ろう付け性良好(○)とした。   Brazing: Applying a fluoride-based flux to the test material, heating it to a brazing temperature of 600 ° C (material temperature) for 3 minutes in a nitrogen gas atmosphere, then observing the cross section, and the brazing material is on the core material side Those that were not diffused were considered to have good brazing properties (◯).

耐食性:試験材にフッ化物系フラックスを塗布して窒素ガス雰囲気中で600℃(材料温度)のろう付け温度に加熱した後、下記の条件で腐食試験を行った。
腐食液:Cl- :100ppm、SO4 2- :100ppm、HCO3-- :100ppm、Cu2+:10ppmを含む水溶液
試験方法:80℃に加熱した腐食液中に8時間浸漬した後、室温まで放冷しながら16時間放置するサイクルを12週間繰り返し、犠牲陽極材側の最大腐食深さを測定した。最大腐食深さが0.02mm以下のものを良好とした。
Corrosion resistance: A fluoride-based flux was applied to a test material and heated to a brazing temperature of 600 ° C. (material temperature) in a nitrogen gas atmosphere, and then a corrosion test was performed under the following conditions.
Corrosion solution: Cl : 100 ppm, SO 4 2− : 100 ppm, HCO 3 : 100 ppm, Cu 2+ : An aqueous solution containing 10 ppm Test method: After immersion in a corrosion solution heated to 80 ° C. for 8 hours, to room temperature The cycle of standing for 16 hours while allowing to cool was repeated for 12 weeks, and the maximum corrosion depth on the sacrificial anode material side was measured. The maximum corrosion depth was 0.02 mm or less.

造管加工性:試験材のコイルについて、図1に示すスリット切断機により、幅34.8mmの条材に4条切断し、得られた条材を用いて、造管加工機((株)明電舎製溶接管ライン:高周波溶接管試作試験装置、形式RFG−120、発信周波数400kHz)で造管テストを行った。造管テストは、奇数条(ろう材側から切断した条)で最適となるように、ロール調整、アプセット量、高周波出力などの造管条件を調整して造管した後、同一の造管条件で、偶数条(犠牲陽極材側から切断した条)の造管を行った。製造された管の評価は、耐圧試験により行い、奇数条、偶数条ともに30kgf/cm2 以上の耐圧強度が得られたものを良好(○)、30kgf/cm2 未満のものは不良(×)とした。 Pipemaking workability: The test material coil was cut into four strips with a width of 34.8 mm using the slit cutter shown in FIG. (Meidensha Welded Pipe Line: High frequency welded pipe prototype test equipment, model RFG-120, transmission frequency 400 kHz). The pipe making test is performed after adjusting the pipe making conditions such as roll adjustment, upset amount, high frequency output, etc. so that it is optimal for odd-numbered strips (strips cut from the brazing filler metal side). Then, even-numbered strips (strips cut from the sacrificial anode material side) were formed. The manufactured pipes were evaluated by a pressure test, and those with a pressure strength of 30 kgf / cm 2 or more were obtained for both odd and even strips (good), and those with less than 30 kgf / cm 2 were poor (×). It was.

Figure 2006015377
Figure 2006015377

表4にみられるように、本発明に従う試験材No.1〜33はいずれも、ろう付け後の強度に優れ、造管加工において、奇数条、偶数条ともに加工性に差がなく、いずれも30kgf/cm2 以上の耐圧強度を示し、犠牲陽極材側の最大腐食深さはいずれも0.10mm以下の優れた耐食性をそなえている。 As seen in Table 4, the test material No. Nos. 1 to 33 all have excellent strength after brazing, and there is no difference in workability between the odd and even strips in pipe forming, both show a pressure strength of 30 kgf / cm 2 or more, and the sacrificial anode material side The maximum corrosion depth of each has excellent corrosion resistance of 0.10 mm or less.

比較例1
連続鋳造によって表5に示す組成を有する芯材用合金、表6に示す組成を有する犠牲陽極材用合金を造塊し、得られた鋳塊を均質化処理した。ろう材としては、表3に示す組成を有するろう材用合金鋳塊を使用した。
Comparative Example 1
A core material alloy having the composition shown in Table 5 and a sacrificial anode material alloy having the composition shown in Table 6 were ingoted by continuous casting, and the resulting ingot was homogenized. As the brazing material, an alloy ingot for brazing material having the composition shown in Table 3 was used.

ついで、犠牲陽極材用合金の鋳塊およびろう材用合金の鋳塊を所定の厚さまで熱間圧延し、これらの熱間圧延板と芯材用合金の鋳塊とを合わせて熱間圧延し、クラッド材(ブレージングシート)を得た。その後、冷間圧延、中間焼鈍、冷間圧延によって厚さ0.25mmのブレージングシート(調質H14、H24またはH26)のコイルを得た。ブレージングシートの構成は、犠牲陽極材およびろう材のクラッド率を10%とした。なお、表5〜6において、本発明の条件を外れたものには下線を付した。   Subsequently, the ingot of the alloy for sacrificial anode material and the ingot of the alloy for brazing material are hot-rolled to a predetermined thickness, and the hot-rolled plate and the ingot of the core material alloy are hot-rolled together. A clad material (brazing sheet) was obtained. Thereafter, a coil of a brazing sheet (tempered H14, H24 or H26) having a thickness of 0.25 mm was obtained by cold rolling, intermediate annealing, and cold rolling. The composition of the brazing sheet was such that the clad rate of the sacrificial anode material and the brazing material was 10%. In Tables 5-6, those outside the conditions of the present invention are underlined.

得られたブレージングシートを試験材として、実施例1と同じ方法により(1)素材の引張強さ、(2)ろう付け後の引張強さ、(3)ろう材および犠牲陽極材のマイクロビッカース硬度とその差、(4)ろう付け性、(5)耐食性、(6)造管加工性を評価した。結果を表7に示す。なお、表7において、本発明の条件を外れたものには下線を付した。   Using the obtained brazing sheet as a test material, by the same method as in Example 1, (1) Tensile strength of material, (2) Tensile strength after brazing, (3) Micro Vickers hardness of brazing material and sacrificial anode material And the difference between them, (4) brazeability, (5) corrosion resistance, and (6) tube-forming workability. The results are shown in Table 7. In Table 7, those outside the conditions of the present invention are underlined.

Figure 2006015377
Figure 2006015377

Figure 2006015377
Figure 2006015377

Figure 2006015377
Figure 2006015377

試験材No.32は犠牲陽極材のZn量が多いため、犠牲陽極材の消耗が早くなり耐食性が低下している。試験材No.33は犠牲陽極材のZn量が少ないため、犠牲陽極効果が十分でなく耐食性が劣っている。試験材No.34は犠牲陽極材のMg量が多いため、犠牲陽極材の製造において圧延加工性がわるく健全な犠牲陽極材の製造が困難となった。試験材No.35は犠牲陽極材のMg量が少ないため、犠牲陽極材の硬度とろう材の硬度の差が大きくなり、条材の端面特性に差が生じた結果、造管加工性が低下した。   Test material No. No. 32 has a large amount of Zn in the sacrificial anode material, so that the sacrificial anode material is quickly consumed and the corrosion resistance is lowered. Test material No. No. 33 has a small amount of Zn in the sacrificial anode material, so the sacrificial anode effect is not sufficient and the corrosion resistance is poor. Test material No. No. 34 has a large amount of Mg in the sacrificial anode material, so that it is difficult to produce a sacrificial anode material with poor rolling processability in the production of the sacrificial anode material. Test material No. No. 35 has a small amount of Mg in the sacrificial anode material, so that the difference between the hardness of the sacrificial anode material and the hardness of the brazing material is increased, resulting in a difference in the end face characteristics of the strip material.

試験材No.36は犠牲陽極材のSi量が多いため、ろう付け加熱時に局部溶融が生じた。試験材No.37は犠牲陽極材のSi量が少ないため、犠牲陽極材の硬度とろう材の硬度の差が大きくなり、条材の端面特性に差が生じた結果、造管加工性が低下した。試験材No.38は犠牲陽極材のFe量が多いため、耐食試験において犠牲陽極材の消耗が早くなり耐食性が劣る。   Test material No. Since No. 36 had a large amount of Si in the sacrificial anode material, local melting occurred during brazing heating. Test material No. No. 37 has a small amount of Si in the sacrificial anode material, so that the difference between the hardness of the sacrificial anode material and the hardness of the brazing material is increased, resulting in a difference in the end face characteristics of the strip material. Test material No. No. 38 has a large amount of Fe in the sacrificial anode material, so that the sacrificial anode material is quickly consumed in the corrosion resistance test, resulting in poor corrosion resistance.

試験材No.39は芯材のMn量が少ないため、ろう付け後の強度が劣る。試験材No.40は芯材のMn量が多いため、ブレージングシートの製造において圧延加工性がわるく、健全な材料の製造ができなかった。試験材No.41は芯材のCu量が多いため、ろう付け加熱時に局部溶融が生じた。試験材No.42は芯材のCu量が少ないため、犠牲陽極材との電位差が不十分となり耐食性が劣っている。   Test material No. Since No. 39 has a small amount of Mn in the core material, the strength after brazing is inferior. Test material No. Since No. 40 had a large amount of Mn in the core material, rolling processability was poor in the production of the brazing sheet, and a sound material could not be produced. Test material No. Since No. 41 had a large amount of Cu in the core material, local melting occurred during brazing heating. Test material No. Since 42 has a small amount of Cu in the core material, the potential difference from the sacrificial anode material is insufficient and the corrosion resistance is poor.

試験材No.43は芯材のSi量が多いため、ろう付け加熱時に局部溶融が生じた。試験材No.44は芯材のFe量が多いため、芯材の自己耐食性がわるく、耐食性が低下している。試験材No.45は芯材および犠牲陽極材の組成は本発明に従うものであるが、犠牲陽極材とろう材の硬度差が大きいため、造管加工性が劣っている。   Test material No. Since 43 had a large amount of Si in the core, local melting occurred during brazing heating. Test material No. No. 44 has a large amount of Fe in the core material, so the self-corrosion resistance of the core material is poor and the corrosion resistance is lowered. Test material No. No. 45 has the composition of the core material and the sacrificial anode material in accordance with the present invention. However, since the hardness difference between the sacrificial anode material and the brazing material is large, the tube-forming processability is inferior.

多条切断のためのスリット切断機の説明図である。(隣り合う条は切断刃の入る方向が表裏逆となるよう構成されており、例えば、奇数条が犠牲陽極材側から切断されると、偶数条はろう材側から切断され、条端面のバリの向きが互いに逆向きとなる)It is explanatory drawing of the slit cutter for multi-strip cutting. (The adjacent strips are configured so that the direction in which the cutting blade enters is reversed. For example, when the odd strip is cut from the sacrificial anode material side, the even strip is cut from the brazing filler metal side and Are opposite to each other)

Claims (3)

芯材の一方の面に犠牲陽極材をクラッドし、他方の面にろう材をクラッドした3層構造のアルミニウム合金ブレージングシートであって、芯材がSi:0.05〜1.2%(質量%、以下同じ)、Cu:0.05〜1.0%、Mn:0.6〜2.0%、Fe:0.01〜0.5%を含有するAl−Mn系合金からなり、犠牲陽極材がZn:0.5〜6%、Mg:0.5〜3%、Si:0.05〜1.2%、Fe:0.01〜0.5%を含有するAl−Zn系合金からなり、マイクロビッカース硬度において、犠牲陽極材の硬度とろう材の硬度の差が、犠牲陽極材の硬度とろう材の硬度のうち、いずれか高い方の硬度の30%以内であることを特徴とする熱交換器用アミニウム合金ブレージングシート。 An aluminum alloy brazing sheet having a three-layer structure in which a sacrificial anode material is clad on one surface of a core material and a brazing material is clad on the other surface, and the core material is Si: 0.05 to 1.2% (mass) %, The same applies hereinafter), Cu: 0.05-1.0%, Mn: 0.6-2.0%, Fe: 0.01-0.5% containing Al-Mn alloy and sacrificed Al—Zn alloy containing anode material containing Zn: 0.5-6%, Mg: 0.5-3%, Si: 0.05-1.2%, Fe: 0.01-0.5% The difference between the hardness of the sacrificial anode material and the hardness of the brazing material is within 30% of the higher one of the hardness of the sacrificial anode material and the hardness of the brazing material in the micro Vickers hardness. An aminium alloy brazing sheet for heat exchangers. 前記芯材のAl−Mn系合金が、さらにCr:0.03〜0.3%,Zr:0.03〜0.3%、Mg:0.06〜1.0%のうちの1種または2種以上を含有することを特徴とする請求項1記載の熱交換器用アルミニウム合金ブレージングシート。 The Al—Mn-based alloy of the core material is one of Cr: 0.03 to 0.3%, Zr: 0.03 to 0.3%, Mg: 0.06 to 1.0%, or The aluminum alloy brazing sheet for a heat exchanger according to claim 1, comprising two or more kinds. 前記犠牲陽極材のAl−Zn系合金が、さらにIn:0.005〜0.1%、Sn:0.01〜0.1%のうちの1種または2種を含有することを特徴とする請求項1または2記載の熱交換器用アルミニウム合金ブレージングシート。
The Al—Zn-based alloy of the sacrificial anode material further contains one or two of In: 0.005 to 0.1% and Sn: 0.01 to 0.1%. The aluminum alloy brazing sheet for heat exchangers according to claim 1 or 2.
JP2004196372A 2004-07-02 2004-07-02 Aluminum alloy brazing sheet for heat exchanger Pending JP2006015377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004196372A JP2006015377A (en) 2004-07-02 2004-07-02 Aluminum alloy brazing sheet for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004196372A JP2006015377A (en) 2004-07-02 2004-07-02 Aluminum alloy brazing sheet for heat exchanger

Publications (1)

Publication Number Publication Date
JP2006015377A true JP2006015377A (en) 2006-01-19

Family

ID=35790075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004196372A Pending JP2006015377A (en) 2004-07-02 2004-07-02 Aluminum alloy brazing sheet for heat exchanger

Country Status (1)

Country Link
JP (1) JP2006015377A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7771840B2 (en) * 2005-03-25 2010-08-10 Kabushiki Kaisha Kobe Seiko Sho Aluminum alloy plate and heat exchanger formed thereof
JP2011144447A (en) * 2009-12-16 2011-07-28 Mitsubishi Alum Co Ltd Aluminum alloy brazing fin material for heat exchanger and heat exchanger using the same
JP2011241439A (en) * 2010-05-18 2011-12-01 Kobe Steel Ltd Aluminum alloy brazing sheet
JP2011241440A (en) * 2010-05-18 2011-12-01 Kobe Steel Ltd Aluminum alloy brazing sheet
JP2015148013A (en) * 2009-05-14 2015-08-20 グランジス スウェーデン アーベー Aluminum brazing sheet with high strength and excellent corrosion performance
CN107326226A (en) * 2017-07-06 2017-11-07 华峰日轻铝业股份有限公司 A kind of auto radiator fin anticorodal foil and its manufacture method
CN112210700A (en) * 2020-10-09 2021-01-12 上海华峰铝业股份有限公司 Al-Mg-Mn-Si alloy, alloy plate strip and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7771840B2 (en) * 2005-03-25 2010-08-10 Kabushiki Kaisha Kobe Seiko Sho Aluminum alloy plate and heat exchanger formed thereof
JP2015148013A (en) * 2009-05-14 2015-08-20 グランジス スウェーデン アーベー Aluminum brazing sheet with high strength and excellent corrosion performance
JP2011144447A (en) * 2009-12-16 2011-07-28 Mitsubishi Alum Co Ltd Aluminum alloy brazing fin material for heat exchanger and heat exchanger using the same
JP2011241439A (en) * 2010-05-18 2011-12-01 Kobe Steel Ltd Aluminum alloy brazing sheet
JP2011241440A (en) * 2010-05-18 2011-12-01 Kobe Steel Ltd Aluminum alloy brazing sheet
CN107326226A (en) * 2017-07-06 2017-11-07 华峰日轻铝业股份有限公司 A kind of auto radiator fin anticorodal foil and its manufacture method
CN112210700A (en) * 2020-10-09 2021-01-12 上海华峰铝业股份有限公司 Al-Mg-Mn-Si alloy, alloy plate strip and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6452626B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP4166613B2 (en) Aluminum alloy fin material for heat exchanger and heat exchanger formed by assembling the fin material
JP3276790B2 (en) Method for producing aluminum alloy brazing sheet, heat exchanger using the brazing sheet, and method for producing the heat exchanger
JP6452627B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP3847077B2 (en) Aluminum alloy fin material for heat exchangers with excellent formability and brazing
JP4623729B2 (en) Aluminum alloy clad material and heat exchanger excellent in surface bonding by brazing of sacrificial anode material surface
JP5476029B2 (en) Clad material for welded tube of aluminum alloy heat exchanger and manufacturing method thereof
JP5054404B2 (en) Aluminum alloy clad material and brazing sheet for heat exchanger
JP6418714B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP2006015376A (en) Aluminum alloy brazing sheet for heat exchanger
JP5836695B2 (en) Aluminum alloy fin material for heat exchangers with excellent strength and corrosion resistance after brazing
JP2010197002A (en) Tube for plate bending-type aluminum heat exchanger, aluminum heat exchanger, and method of manufacturing tube for plate bending-type aluminum heat exchanger
JP4424568B2 (en) High strength aluminum alloy clad material for heat exchangers excellent in tube forming property and corrosion resistance, and method for producing the same
JP2006015377A (en) Aluminum alloy brazing sheet for heat exchanger
WO2020085488A1 (en) Aluminum alloy brazing sheet and production method therefor
WO2020085487A1 (en) Aluminum alloy brazing sheet and production method therefor
JP4954551B2 (en) Aluminum brazing alloy in which erosion during brazing is suppressed, brazing sheet using the same, header pipe for heat exchanger, and heat exchanger
JPH11315335A (en) Aluminum alloy brazing sheet for formation of brazed tube, and brazed tube
JP4424569B2 (en) High strength aluminum alloy clad material for heat exchangers excellent in tube forming property and corrosion resistance, and method for producing the same
JP2002161324A (en) Aluminum alloy fin-material for heat exchanger superior in formability and brazability
JP3847076B2 (en) Aluminum alloy fin material for heat exchangers with excellent formability and brazing
WO2014141912A1 (en) Aluminum alloy plate for fabrication, method for producing same, and aluminum alloy brazing sheet
JP2010209426A (en) Aluminum alloy brazed body, method for heat-treating the same, and heat exchanger
JP2010255015A (en) Clad material for welded tube of heat exchanger made from aluminum alloy, and method for manufacturing the same
JP4906162B2 (en) Aluminum alloy brazing sheet