JP2010197002A - Tube for plate bending-type aluminum heat exchanger, aluminum heat exchanger, and method of manufacturing tube for plate bending-type aluminum heat exchanger - Google Patents

Tube for plate bending-type aluminum heat exchanger, aluminum heat exchanger, and method of manufacturing tube for plate bending-type aluminum heat exchanger Download PDF

Info

Publication number
JP2010197002A
JP2010197002A JP2009044008A JP2009044008A JP2010197002A JP 2010197002 A JP2010197002 A JP 2010197002A JP 2009044008 A JP2009044008 A JP 2009044008A JP 2009044008 A JP2009044008 A JP 2009044008A JP 2010197002 A JP2010197002 A JP 2010197002A
Authority
JP
Japan
Prior art keywords
heat exchanger
brazing
aluminum heat
sacrificial anode
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009044008A
Other languages
Japanese (ja)
Inventor
Hiroshi Shikano
鹿野浩
Atsushi Fukumoto
福元敦志
Akio Niikura
新倉昭男
Yoichiro Totsugi
戸次洋一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP2009044008A priority Critical patent/JP2010197002A/en
Publication of JP2010197002A publication Critical patent/JP2010197002A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tube for the plate bending-type aluminum heat exchanger capable of reducing defective brazing at a joining section of a surface of a sacrificial anode material and a surface of brazing filler metal. <P>SOLUTION: A groove 13 extending in the direction not in parallel with a threading direction in manufacturing the tube for the aluminum heat exchanger, that is, in the direction intersecting with the threading direction in manufacturing the tube for the aluminum heat exchanger, is formed, thus the flux can easily flow to the joining section of the sacrificial anode material not exposed to the external of a center pillar section and the like, and the brazing filler metal while guided by the groove 13, and the brazing performance can be improved. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、板折り曲げ式のアルミニウム製熱交換器用チューブ、アルミニウム製熱交換器及び板折り曲げ式のアルミニウム製熱交換器用チューブの製造方法に関するものであり、特にラジエータ、コンデンサなどの自動車用熱交換器のチューブ材として好適に使用されるアルミニウム合金ブレージングシートを用いた板折り曲げ式のアルミニウム製熱交換器用チューブ、アルミニウム製熱交換器及び板折り曲げ式のアルミニウム製熱交換器用チューブの製造方法に関する。   The present invention relates to a plate folding type aluminum heat exchanger tube, an aluminum heat exchanger, and a method for manufacturing a plate folding type aluminum heat exchanger tube, and more particularly to an automotive heat exchanger such as a radiator and a condenser. The present invention relates to a plate folding type aluminum heat exchanger tube using an aluminum alloy brazing sheet suitably used as a tube material, an aluminum heat exchanger and a plate folding type aluminum heat exchanger tube manufacturing method.

アルミニウム合金は軽量かつ高熱伝導性を備えているため、自動車用熱交換器、例えば、ラジエータ、コンデンサ、エバポレータ、ヒーター、インタークーラなどに用いられている。自動車用熱交換器は主にろう付法によって製造される。通常、ろう付はAl−Si系合金のろう材を用い、600℃程度の高温で行われる。
ろう付方法には様々あるが、非腐食性フラックスであるフッ化物系フラックスを用いて、Nガス中でろう付するNB法が一般的に用いられている。このNB法において使用されるろう材合金には、例えばJIS4343合金、JIS4045合金、JIS4047合金等のAl−Si系ろう材がある。
Aluminum alloys are lightweight and have high thermal conductivity, and are therefore used in automotive heat exchangers such as radiators, condensers, evaporators, heaters, and intercoolers. Automotive heat exchangers are mainly manufactured by the brazing method. Usually, brazing is performed at a high temperature of about 600 ° C. using a brazing material of an Al—Si alloy.
Although there are various brazing methods, the NB method of brazing in N 2 gas using a fluoride-based flux that is a non-corrosive flux is generally used. Examples of the brazing alloy used in the NB method include Al—Si based brazing materials such as JIS 4343 alloy, JIS 4045 alloy, and JIS 4047 alloy.

ろう付を用いて製造するラジエータ等のアルミニウム合金製熱交換器1は、例えば図6に示すように複数本の扁平チューブ2の間にコルゲート状に加工したフィン3を一体に形成し、該扁平チューブ2の両端はプレート4とタンク5とで構成される空間にそれぞれ開口させ、扁平チューブ2とタンク5とで冷却水の循環経路構造を形成する。ここで扁平チューブ2には、例えば図7に示すように板材6をロール成形等により、断面略B型状に加工した板折り曲げ式のB型チューブ2が用いられることがある。   A heat exchanger 1 made of aluminum alloy such as a radiator manufactured using brazing integrally forms fins 3 processed into a corrugated shape between a plurality of flat tubes 2 as shown in FIG. Both ends of the tube 2 are opened in spaces formed by the plate 4 and the tank 5, respectively, and the flat tube 2 and the tank 5 form a cooling water circulation path structure. Here, as the flat tube 2, for example, as shown in FIG. 7, a plate-folded B-type tube 2 in which a plate material 6 is processed into a substantially B-shaped cross section by roll forming or the like may be used.

B型チューブ2を用いた場合、図8に示すように、犠牲陽極材7表面の外部に露出していない領域7bとろう材8表面の外部に露出していない領域8bとの接合部9が存在する場合がある。その様に組み合わせた熱交換器部品に粉体のフラックスを付着させる場合には、B型チューブ2の幅方向内部の外部に露出していない領域7b、8bまでフラックスを流入させることはできず、フラックスが付着しない。
そのため、犠牲陽極材表面7の外部に露出していない領域7bとろう材表面8の外部に露出していない領域8bとの接合部9はフラックスが不足し、これがろう付け不良を引き起こす要因となっている。
When the B-type tube 2 is used, as shown in FIG. 8, a joint portion 9 between a region 7 b that is not exposed outside the surface of the sacrificial anode material 7 and a region 8 b that is not exposed outside the surface of the brazing material 8 is formed. May exist. When the powder flux is attached to the heat exchanger component combined in such a manner, the flux cannot be allowed to flow into the regions 7b and 8b that are not exposed to the outside inside the width direction of the B-type tube 2, Flux does not adhere.
Therefore, the joint 9 between the region 7b not exposed to the outside of the sacrificial anode material surface 7 and the region 8b not exposed to the outside of the brazing material surface 8 lacks flux, which causes a defective brazing. ing.

特許文献1には一対のプレートの間にインナーフィンを配置し、プレートとインナーフィンをろう付け接合すると共に、一対のプレートの外周縁部をろう付け接合して偏平状のチューブを形成してなるアルミニウム合金製熱交換器に関し、チューブ内側に、フラックスを保持するための溝を形成し、少なくとも溝部分においては、部品搬送中にフラックスが脱落することを防止できる様にしてろう付け不良を防止できるろう付け用プレートが開示された。   In Patent Document 1, an inner fin is disposed between a pair of plates, the plate and the inner fin are brazed and joined, and the outer peripheral edge of the pair of plates is brazed and joined to form a flat tube. With regard to aluminum alloy heat exchangers, a groove for holding flux is formed inside the tube, and at least in the groove part, it is possible to prevent the flux from falling off during parts conveyance, thereby preventing brazing defects. A brazing plate has been disclosed.

特開2000−141028号公報JP 2000-1441028 A

前述の特許文献1は、一対のプレートの間にインナーフィンを配置し、プレートとインナーフィンをろう付け接合するために予め塗布されたフラックスが部品搬送中に脱落することを防止するものである。
したがってインナーフィンを有さず、組み立ててからフラックスを塗布するタイプのアルミニウム製熱交換器のろう付、特にB型チューブを用いた熱交換器のろう付けにおいて、中柱ろう付け部等の外部に露出していない犠牲陽極材表面とろう材表面との接合部のろう付不良を抑制する対策とはならない。
In the above-mentioned Patent Document 1, an inner fin is disposed between a pair of plates, and flux applied in advance for brazing and joining the plate and the inner fin is prevented from falling off during component conveyance.
Therefore, when brazing aluminum heat exchangers that do not have inner fins and apply flux after assembling, especially when heat exchangers using B-type tubes are brazed to the outside of the middle column brazing part, etc. It is not a measure to suppress the brazing failure of the joint between the surface of the sacrificial anode material not exposed and the surface of the brazing material.

本発明は、この問題点を解消するべく行われたものであって、外部に露出していない犠牲陽極材表面とろう材表面の接合部のろう付不良を低減することができる板折り曲げ式のアルミニウム製熱交換器用チューブ、アルミニウム製熱交換器及び板折り曲げ式のアルミニウム製熱交換器用チューブの製造方法を提供することを目的とするものである。   The present invention has been made to solve this problem, and is a plate folding type that can reduce the brazing failure of the joint between the sacrificial anode material surface and the brazing material surface that are not exposed to the outside. It aims at providing the manufacturing method of the tube for aluminum heat exchangers, the heat exchanger made from aluminum, and the plate for aluminum heat exchangers of a plate folding type.

本発明者らは上記課題について研究した結果、特定の合金組成を有する犠牲陽極材およびアルミニウム合金ブレージングシートからなり、犠牲陽極材表面及びろう材表面の少なくともいずれか一方に特定の溝を有するチューブがその目的に適合することを見出し、これに基づき本発明をなすに至った。   As a result of studying the above problems, the present inventors have found that a tube comprising a sacrificial anode material and an aluminum alloy brazing sheet having a specific alloy composition, and having a specific groove on at least one of the sacrificial anode material surface and the brazing material surface. Based on this finding, the present invention has been made.

すなわち本発明の板折り曲げ式のアルミニウム製熱交換器用チューブは、Al−Mn系合金またはAl−Mn−Cu系合金を心材とし、一方の面にSi:2〜4%(質量%、以下同じ)、Zn:2〜8%を含有し、残部Alと不可避的不純物からなるアルミニウム合金犠牲陽極材をクラッドし、もう一方の面にAl−Si系またはAl−Si−Zn系合金ろう材をクラッドしたアルミニウム合金ブレージングシートを折り曲げて、ろう材表面と犠牲陽極材表面との接合部をろう付けで接合してなり、犠牲陽極材表面及びろう材表面の少なくともいずれか一方に、チューブ造管時の通板方向と平行でない溝を有することを特徴とする。   That is, the plate folding type aluminum heat exchanger tube of the present invention has an Al—Mn alloy or an Al—Mn—Cu alloy as a core material, and Si: 2 to 4% (mass%, hereinafter the same) on one surface , Zn: Cladded with an aluminum alloy sacrificial anode material containing 2 to 8%, the balance being Al and inevitable impurities, and clad an Al—Si or Al—Si—Zn alloy brazing material on the other surface The aluminum alloy brazing sheet is folded and the joint between the brazing material surface and the sacrificial anode material surface is joined by brazing, and at least one of the sacrificial anode material surface and the brazing material surface is passed through at the time of tube forming. It has a groove that is not parallel to the plate direction.

前記犠牲陽極材が、更にMn:1.8%以下、Ti:0.25%以下、Zr:0.25%以下のうち1種または2種を含有しても良い。   The sacrificial anode material may further contain one or two of Mn: 1.8% or less, Ti: 0.25% or less, and Zr: 0.25% or less.

前記溝を、その表面開口部の幅を0.5mm以下とし、深さを20μm以下とし、かつ5本/cm以上の間隔で設けるのがよい。   The groove is preferably provided with a width of a surface opening of 0.5 mm or less, a depth of 20 μm or less, and an interval of 5 lines / cm or more.

本発明の板折り曲げ式のアルミニウム製熱交換器用チューブを用いてアルミニウム製熱交換器を構成することができる。   An aluminum heat exchanger can be configured using the plate folding type aluminum heat exchanger tube of the present invention.

また本発明の板折り曲げ式のアルミニウム製熱交換器用チューブの製造方法は、ろう材表面と犠牲陽極材表面との接合部を有し、その接合部が外部に露出していないろう付けで接合される板折り曲げ式チューブを用い、Al−Mn系合金またはAl−Mn−Cu系合金を心材とし、一方の面にSi:2〜4%、Zn:2〜8%を含有し、残部Alと不可避的不純物からなるアルミニウム合金犠牲陽極材をクラッドし、もう一方の面にAl−Si系またはAl−Si−Zn系合金ろう材をクラッドしたアルミニウム合金ブレージングシートを用い、犠牲陽極材表面及びろう材表面の少なくともいずれか一方の面に、表面開口部の幅が0.5mm以下であり、深さ20μm以下でかつ5本/cm以上の間隔でチューブ造管時の通板方向と平行でない溝を設けることを特徴とする。   In addition, the method for producing a plate folding type aluminum heat exchanger tube according to the present invention has a joint portion between the brazing material surface and the sacrificial anode material surface, and the joining portion is joined by brazing that is not exposed to the outside. Using an Al-Mn alloy or Al-Mn-Cu alloy as the core material, Si: 2 to 4%, Zn: 2 to 8% on one side, the remainder being inevitable with Al An aluminum alloy brazing sheet clad with an aluminum alloy sacrificial anode material made of mechanical impurities and clad with an Al-Si or Al-Si-Zn alloy brazing material on the other surface, and the sacrificial anode material surface and brazing material surface On at least one of the surfaces, the width of the surface opening is 0.5 mm or less, the depth is 20 μm or less, and it is parallel to the sheet passing direction at the time of tube making at intervals of 5 / cm or more. And providing a groove.

本発明の板折り曲げ式のアルミニウム製熱交換器用チューブ、アルミニウム製熱交換器及び板折り曲げ式のアルミニウム製熱交換器用チューブの製造方法によれば、板折り曲げ式のアルミニウム製熱交換器用チューブの外部に露出していない犠牲陽極材表面とろう材表面の接合部のろう付不良を低減することができる。その結果、熱交換器のろう付において、ろう付の不良率低減を図ることができ、更に耐食性にも優れた熱交換器の製造が可能となる。   According to the plate folding aluminum heat exchanger tube, the aluminum heat exchanger, and the plate folding aluminum heat exchanger tube manufacturing method of the present invention, the plate folding aluminum heat exchanger tube is arranged outside the plate folding aluminum heat exchanger tube. It is possible to reduce defective brazing at the joint between the sacrificial anode material surface and the brazing material surface that are not exposed. As a result, in the brazing of the heat exchanger, it is possible to reduce the defective rate of brazing, and it is possible to manufacture a heat exchanger having excellent corrosion resistance.

(a)本発明の板折り曲げ式のアルミニウム製熱交換器用チューブの好ましい実施の態様の平面模式図、(b)本発明の板折り曲げ式のアルミニウム製熱交換器用チューブの好ましい実施の態様の他の平面模式図、(c)比較例の板折り曲げ式のアルミニウム製熱交換器用チューブの平面模式図、(d)他の比較例の板折り曲げ式のアルミニウム製熱交換器用チューブの平面模式図(A) A schematic plan view of a preferred embodiment of the plate-foldable aluminum heat exchanger tube of the present invention, (b) Another preferred embodiment of the plate-foldable aluminum heat exchanger tube of the present invention. (C) Plane schematic diagram of a plate-foldable aluminum heat exchanger tube of a comparative example, (d) Planar schematic diagram of a plate-foldable aluminum heat exchanger tube of another comparative example (a)本発明の板折り曲げ式のアルミニウム製熱交換器用チューブの好ましい実施の態様の部分断面模式図、(b)本発明の板折り曲げ式のアルミニウム製熱交換器用チューブの好ましい実施の態様の他の部分断面模式図(A) Partial cross-sectional schematic diagram of a preferred embodiment of the plate-foldable aluminum heat exchanger tube of the present invention, (b) Other preferred embodiment of the plate-foldable aluminum heat exchanger tube of the present invention Partial sectional schematic diagram of 本発明の実施例で用いた試験用TPの部分斜視図The partial perspective view of test TP used in the example of the present invention 本発明の実施例で用いた試験用TPの斜視図The perspective view of test TP used in the Example of this invention (a)本発明の実施例で用いた試験用TPの断面図、(b)本発明の実施例で用いた試験用TPの他の断面図(A) Cross-sectional view of the test TP used in the example of the present invention, (b) Other cross-sectional view of the test TP used in the example of the present invention アルミニウム合金製熱交換器の分解斜視図Disassembled perspective view of aluminum alloy heat exchanger アルミニウム合金製熱交換器の部分分解斜視図Partially exploded perspective view of aluminum alloy heat exchanger アルミニウム合金製熱交換器の部分断面図Partial sectional view of aluminum alloy heat exchanger

本発明の板折り曲げ式のアルミニウム製熱交換器用チューブの好ましい実施の態様について、詳細に説明する。
本発明の板折り曲げ式のアルミニウム製熱交換器用チューブ2は、図1(a)(b)若しくは図2(a)(b)に示す様にブレージングシート10のろう材8表面11及び犠牲陽極材7表面12の少なくともいずれか一方に、アルミニウム製熱交換器用チューブ2造管時の通板方向と平行でない各種溝13を有することを特徴とする。
A preferred embodiment of the plate folding type aluminum heat exchanger tube of the present invention will be described in detail.
The plate-folding aluminum heat exchanger tube 2 of the present invention comprises a brazing material 8 surface 11 of a brazing sheet 10 and a sacrificial anode material as shown in FIG. 1 (a) (b) or FIG. 2 (a) (b). 7 At least one of the surfaces 12 has various grooves 13 that are not parallel to the plate passing direction when the tube 2 for aluminum heat exchanger is formed.

図1に示すブレージングシート10の犠牲陽極材7表面若しくはろう材8表面における溝加工の態様は図1(a)に示す犠牲陽極材7表面12a又はろう材8表面11aがアルミニウム製熱交換器用チューブ2造管時の通板方向と90°方向に相当し、図1(b)に示す犠牲陽極材7表面12b又はろう材8表面11bがアルミニウム製熱交換器用チューブ2造管時の通板方向と45°方向に相当する。   The groove processing on the surface of the sacrificial anode material 7 or the brazing material 8 of the brazing sheet 10 shown in FIG. 1 is a tube for an aluminum heat exchanger in which the sacrificial anode material 7 surface 12a or the brazing material 8 surface 11a shown in FIG. Corresponding to the plate-passing direction at the time of 2 pipe making and the 90 ° direction, the sacrificial anode material 7 surface 12b or the brazing material 8 surface 11b shown in FIG. 1 (b) is passed through the aluminum heat exchanger tube 2 And 45 ° direction.

この様にアルミニウム製熱交換器用チューブ2造管時の通板方向と平行ではない、したがってアルミニウム製熱交換器用チューブ2造管時の通板方向と交差する方向に伸びる溝13を付けることにより中柱部14等の外部に露出していない犠牲陽極材7とろう材8の接合部9へフラックスが溝13に案内されて流入しやすくなり、ろう付け性を向上することができる。ここで中柱部14とは、図7及び図8に示される様に、ブレージングシート10から板折り曲げ式でアルミニウム製熱交換器用チューブ2を形成する際に、外部に開放されない一対の中空部の境界部として一対の中空部の中間位置に形成される部分である。   In this way, by adding a groove 13 extending in a direction that is not parallel to the plate passing direction when forming the aluminum heat exchanger tube 2 and thus intersecting the plate passing direction when forming the aluminum heat exchanger tube 2 is formed. The flux is easily guided by the groove 13 to the joint portion 9 between the sacrificial anode material 7 and the brazing material 8 which is not exposed to the outside such as the column portion 14 and the brazing property can be improved. Here, as shown in FIG. 7 and FIG. 8, the middle column portion 14 is a pair of hollow portions that are not opened to the outside when the aluminum heat exchanger tube 2 is formed from the brazing sheet 10 in a plate folding manner. It is a part formed in the intermediate position of a pair of hollow part as a boundary part.

溝13がアルミニウム製熱交換器用チューブ2造管時の通板方向と平行であると中柱部14等の外部に露出していない犠牲陽極材7とろう材8の接合部9へフラックスが流入する効果が得られない。溝13がアルミニウム製熱交換器用チューブ2造管時の通板方向と平行でなければフラックス流入効果を得られる。しかし、溝13は好ましくはアルミニウム製熱交換器用チューブ2造管時の通板方向と90°方向に交差する方向に伸びる溝13とするのがより好ましい。 If the groove 13 is parallel to the sheet passing direction when the aluminum heat exchanger tube 2 is formed, the flux flows into the joint portion 9 between the sacrificial anode material 7 and the brazing material 8 which are not exposed to the outside, such as the middle column portion 14. Effect is not obtained. If the groove 13 is not parallel to the sheet passing direction when forming the aluminum heat exchanger tube 2, the flux inflow effect can be obtained. However, the groove 13 is preferably a groove 13 that extends in a direction intersecting the 90 ° direction with the plate-passing direction when the aluminum heat exchanger tube 2 is formed.

アルミニウム製熱交換器用チューブ2造管時の通板方向と90°方向に交差する方向に伸びる溝13とすることによって、溝13とアウターフィン3とが交差する点を最小にすることができる。その様に、溝13とアウターフィン3とが交差する点を最小にすることによって、溝13とアウターフィン3とが交差する点が多すぎる場合に外部のフィレット形成にフラックスの多くが使われてしまい内側のフィレット形成に寄与しにくいという問題を解消することができる。 By making the groove 13 extending in the direction intersecting the 90 ° direction with the sheet passing direction when the aluminum heat exchanger tube 2 is formed, the point where the groove 13 and the outer fin 3 intersect can be minimized. In this way, by minimizing the point where the groove 13 and the outer fin 3 intersect, when there are too many points where the groove 13 and the outer fin 3 intersect, much of the flux is used for external fillet formation. The problem that it is difficult to contribute to the formation of fillets on the inside can be solved.

なお溝13の加工はブレージングシート10の圧延工程、アルミニウム製熱交換器用チューブ2の造管工程のどちらで行っても良い。また、溝13の加工の方法はロール加工、プレス加工等があるが、特に制限されるものではない。また、アルミニウム製熱交換器用チューブ2の接合形状に応じて溝13の長さ、溝13を付ける位置を変えても良い。 The groove 13 may be processed by either the rolling process of the brazing sheet 10 or the pipe forming process of the aluminum heat exchanger tube 2. Moreover, although the processing method of the groove | channel 13 has roll processing, press processing, etc., it does not restrict | limit in particular. Moreover, you may change the length of the groove | channel 13, and the position which attaches the groove | channel 13 according to the joining shape of the tube 2 for aluminum heat exchangers.

次に本発明の板折り曲げ式のアルミニウム製熱交換器用チューブ2に使用されるアルミニウム合金犠牲陽極材の成分元素の添加理由および添加範囲について説明する。
Si:Siは融点を低下させ、ろう付け性を向上する効果を有する。Siの含有量は、2〜4%の範囲であり、2%未満ではその効果が小さく、4%を超えると融点が低くなり過ぎて溶融してしまい犠牲陽極材としての機能が低下する。
Next, the reason and range of addition of the component elements of the aluminum alloy sacrificial anode material used in the plate folding type aluminum heat exchanger tube 2 of the present invention will be described.
Si: Si has an effect of lowering the melting point and improving brazing properties. The Si content is in the range of 2 to 4%. If the content is less than 2%, the effect is small. If the content exceeds 4%, the melting point becomes too low and the material is melted to deteriorate the function as a sacrificial anode material.

Zn:Znは犠牲陽極材の電位を卑にし心材との電位差を大きくして耐食性を向上する効果を有する。Znの含有量は2%〜8%の範囲であり、2%未満ではその効果が小さく、8%以上では電位が卑になり過ぎて犠牲陽極材が早期に損耗し、耐食性が低下する。
Mn:Mnは強度を高めるとともに耐食性を向上する効果を有する。Mnの含有量は1.8%以下であり、1.8%を越えると鋳造時に粗大な初晶AlMn化合物を生成し、加工性の低下、耐食性の低下をまねく。好ましい範囲は0.5〜1.5%である。
Zn: Zn has the effect of improving the corrosion resistance by lowering the potential of the sacrificial anode material and increasing the potential difference from the core material. The Zn content is in the range of 2% to 8%. If the content is less than 2%, the effect is small. If the content is 8% or more, the potential becomes too low, the sacrificial anode material is worn out early, and the corrosion resistance decreases.
Mn: Mn has the effect of increasing strength and improving corrosion resistance. The Mn content is 1.8% or less, and if it exceeds 1.8%, a coarse primary crystal Al 6 Mn compound is produced at the time of casting, resulting in deterioration of workability and corrosion resistance. A preferable range is 0.5 to 1.5%.

Ti:Tiは板厚方向で濃度の高い領域と低い領域とが交互に分布し、濃度の低い層が優先的に腐食するため、層状の腐食形態となり、板厚方向への孔食の進行を抑制する効果を有する。Tiの含有量は0.25%以下であり、0.25%を越えると鋳造時に粗大な初晶AlTi化合物を生成し、加工性の低下、耐食性の低下をまねく。好ましい範囲は、0.1〜0.2%である。 Ti: Ti has a high concentration region and a low concentration region alternately distributed in the plate thickness direction, and the low concentration layer corrodes preferentially, so that it becomes a layered corrosion form and progresses pitting corrosion in the plate thickness direction. It has a suppressing effect. The Ti content is 0.25% or less, and if it exceeds 0.25%, a coarse primary crystal Al 3 Ti compound is produced at the time of casting, resulting in deterioration of workability and corrosion resistance. A preferable range is 0.1 to 0.2%.

Zr:Zrは、強度を高めるとともに耐食性を向上する効果を有する。Zrの含有量は0.25%以下であり、0.25%を越えると鋳造時に粗大な初晶AlZr化合物を生成し、加工性の低下、耐食性の低下をまねく。好ましい範囲は、0.05〜0.15%である。
犠牲陽極材のクラッド厚さは特に限定されるものではないが、好ましい範囲は20μm〜60μmである。
心材はAl−Mn系合金、Al−Mn−Cu系合金を用いるが、必要に応じてSi、Mg,Ti、Zrを添加しても良い。
Zr: Zr has the effect of increasing strength and improving corrosion resistance. The Zr content is 0.25% or less, and if it exceeds 0.25%, a coarse primary crystal Al 3 Zr compound is produced at the time of casting, resulting in deterioration of workability and corrosion resistance. A preferable range is 0.05 to 0.15%.
The clad thickness of the sacrificial anode material is not particularly limited, but a preferable range is 20 μm to 60 μm.
As the core material, an Al—Mn alloy or an Al—Mn—Cu alloy is used, but Si, Mg, Ti, or Zr may be added as necessary.

ろう材はAl−Si系合金、Al−Si−Zn系合金を用いるが、必要に応じてMn、Fe,Ti、Zrを添加しても良い。ろう材のクラッド厚さは特に限定されるものではないが、好ましい範囲は20μm〜60μmである。
犠牲陽極材7表面はアルミニウム製熱交換器用チューブ2の外部側、内部側に限定されるものではなく、ラジエータ、ヒータ等の内部耐食性を要する場合は内部側を犠牲陽極材7表面とし、コンデンサ、エバポレータ等の外部耐食性を要する場合は外気側を犠牲陽極材7表面とすれば良い。
As the brazing material, an Al—Si based alloy or an Al—Si—Zn based alloy is used, but Mn, Fe, Ti, or Zr may be added as necessary. The clad thickness of the brazing material is not particularly limited, but a preferable range is 20 μm to 60 μm.
The surface of the sacrificial anode material 7 is not limited to the outer side and the inner side of the aluminum heat exchanger tube 2. When internal corrosion resistance such as a radiator or a heater is required, the inner side is used as the surface of the sacrificial anode material 7, and a capacitor, When external corrosion resistance such as an evaporator is required, the outside air side may be the surface of the sacrificial anode material 7.

溝13は、図2に示す様にその表面開口部の幅wが0.5mm以下であり、深さdが20μm以下でかつ5本/cm以上の間隔で設けられるのがよい。
5本/cm未満では中柱部14へフラックスが流入する効果が小さく、深さ20μmを越えるとフラックスのみではなく、ろうも多量に流動するため心材にエロージョンが発生して耐食性が低下する。
表面開口部の幅が0.5mmを越えると毛細管力が働きにくくなる結果フラックスが流動しにくくなり中柱部14へフラックスが流入する効果を得られないためろう付け性が低下する。
As shown in FIG. 2, the groove 13 is preferably provided with a width w of the surface opening of 0.5 mm or less, a depth d of 20 μm or less, and an interval of 5 lines / cm or more.
If it is less than 5 lines / cm, the effect of the flux flowing into the middle pillar portion 14 is small, and if the depth exceeds 20 μm, not only the flux but also the wax flows in a large amount, so that erosion occurs in the core material and the corrosion resistance decreases.
When the width of the surface opening exceeds 0.5 mm, the capillary force becomes difficult to work. As a result, the flux is difficult to flow, and the effect of the flux flowing into the middle column portion 14 cannot be obtained.

次に、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれに制限されるものではない。
表1に示す組成をもつ犠牲陽極材とJIS4045合金ろう材をそれぞれ金型鋳造により鋳造して、各々両面を面削して仕上げ、450℃にて熱間圧延により9mmの厚さまで圧延した。次に、心材としてJIS3003合金を金型鋳造により鋳造し、600℃×3hの均質化処理を実施し、その後面削して仕上げ、42mm厚とした。その後、心材の片面に15%のクラッド率で犠牲陽極材を、もう一方の面に15%のクラッド率でろう材を組み合わせて、450℃にて熱間圧延により圧着して、3mmの3層クラッドのブレージングシート10とした。その後、冷間圧延を行い、0.4mmの板材とした後に350℃×3hの中間焼鈍を行い、再度冷間圧延を行い板厚0.3mmのH14調質材とした。
Next, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.
A sacrificial anode material and a JIS 4045 alloy brazing material having the composition shown in Table 1 were each cast by die casting, each face was chamfered and finished, and rolled to a thickness of 9 mm by hot rolling at 450 ° C. Next, JIS3003 alloy was cast as a core material by die casting, subjected to a homogenization treatment at 600 ° C. × 3 h, and then face-finished to a thickness of 42 mm. Thereafter, a sacrificial anode material with a clad rate of 15% is combined on one side of the core material, and a brazing material is clad with a clad rate of 15% on the other surface, and crimped by hot rolling at 450 ° C., and 3 layers of 3 mm A clad brazing sheet 10 was obtained. After that, cold rolling was performed to obtain a 0.4 mm plate material, followed by intermediate annealing at 350 ° C. × 3 h, and cold rolling again to obtain a H14 tempered material having a plate thickness of 0.3 mm.


Figure 2010197002
Figure 2010197002

次に、前記作製した板材を供試材とし、ろう付性、耐食性の評価を以下に示す方法で行った。
(1) ろう付性:
特には溝加工を施さない図1(d)に示す平板サンプルd及び図1(a)(b)(c)に示すように、0.3mmのブレージングシート10のろう材8表面にプレス加工により各種溝13を形成させた平板サンプル11a、b、cを作製した。なお、ろう材8表面における溝加工の態様として図1(c)に示す通板方向と90°方向及び図1(b)に示す通板方向と45°方向以外に図1(c)に示すろう材8表面12がアルミニウム製熱交換器用チューブ2造管時の通板方向と0°方向、すなわち平行に相当するものを用意した。
Next, the produced plate material was used as a test material, and the brazing property and corrosion resistance were evaluated by the following methods.
(1) Brazability:
In particular, as shown in FIGS. 1D and 1A, 1B, and 1C, the surface of the brazing material 10 of the 0.3 mm brazing sheet 10 is subjected to press work without pressing the groove. Flat plate samples 11a, 11b, 11c having various grooves 13 formed thereon were produced. In addition to the threading direction and 90 ° direction shown in FIG. 1C and the threading direction and 45 ° direction shown in FIG. The brazing material 8 surface 12 was prepared so as to correspond to the plate passing direction and the 0 ° direction at the time of forming the aluminum heat exchanger tube 2, that is, in parallel.

また犠牲陽極材7表面12にプレス加工により各種溝13を形成した図3に示す外形のW字型折り曲げサンプル10a及び特には溝加工を施さない0.3mmのブレージングシート10を用いてなる図3に示す外形のW字型折り曲げサンプル10aを作製した。なお犠牲陽極材7表面における溝加工の態様として図1(a)に示す通板方向と90°方向及び図1(b)に示す通板方向と45°方向以外に図1(c)に示す犠牲陽極材7表面12cの溝13がアルミニウム製熱交換器用チューブ2造管時の通板方向と0°方向、すなわち平行である場合に相当するものを用意した。   3 using a W-shaped bent sample 10a having the outer shape shown in FIG. 3 in which various grooves 13 are formed on the surface 12 of the sacrificial anode material 7 by press working and a 0.3 mm brazing sheet 10 not particularly subjected to groove machining. A W-shaped bent sample 10a having the outer shape shown in FIG. In addition, as a mode of the groove processing on the surface of the sacrificial anode material 7, it is shown in FIG. 1 (c) other than the plate passing direction and 90 ° direction shown in FIG. 1 (a) and the plate passing direction and 45 ° direction shown in FIG. The groove 13 on the surface 12c of the sacrificial anode material 7 was prepared corresponding to the case where the groove plate 13 for aluminum heat exchanger tube 2 was formed at 0 ° direction, that is, parallel to the plate passing direction.

その後、図4に示す様に平板サンプル11a、b、c、d及びW字型折り曲げサンプル10a(12a〜d)とを種々組み合わせ、さらにコルゲート成形した3003合金のフィン3とを組み合わせることで、ろう付試験用TP15を作製した。その際、図5(a)(b)に示す様に平板サンプル11a、b、c、dはW字型に折り曲げたサンプル10a(12a〜d)と接合する面をろう材8に、一方、W字型折り曲げサンプル10a(12a〜d)は平板サンプル11a、b、c、dと接合する面を犠牲陽極材7とした。また、フィン3と接合するサンプルはいずれもフィン3と接合する面をろう材8とした。その様に作製したろう付試験用TP15には、W字型に折り曲げたサンプル10a(12a〜d)の犠牲陽極材7と平板サンプル11a、b、c、dのろう材8とによって囲まれ、両端部のみが外部に開放された領域20が形成される。   Thereafter, as shown in FIG. 4, various combinations of the flat plate samples 11a, b, c, d and the W-shaped bent sample 10a (12a-d) are combined with the corrugated 3003 alloy fins 3, Attached test TP15 was prepared. At that time, as shown in FIGS. 5 (a) and 5 (b), the flat plate samples 11a, b, c, and d are joined to the brazing material 8 on the surface to be joined to the W-shaped sample 10a (12a to d), The sacrificial anode material 7 was used as the surface of the W-shaped bent sample 10a (12a to 12d) to be joined to the flat plate samples 11a, b, c, and d. Moreover, the sample joined to the fin 3 used the brazing material 8 for the surface joined to the fin 3. The brazing test TP15 thus produced is surrounded by the sacrificial anode material 7 of the sample 10a (12a to 12d) bent into a W shape and the brazing material 8 of the flat plate samples 11a, b, c, d. A region 20 in which only both end portions are open to the outside is formed.

図5(a)に示す様に領域20内側に付着しない様にろう付試験用TP15の外部側からフッ化物フラックスの粉体16を5g/mを付着させ、窒素ガス雰囲気中の加熱炉で250℃の温度で10min保持後、590℃の温度で3min保持のろう付けを行った。
以上の様にして外部側からのフッ化物フラックスの付着を行うことによって、図5(a)に示す様にろう付試験用TP15において、犠牲陽極材7とろう材8とによって囲まれた領域20における犠牲陽極材7とろう材8とには直接フッ化物フラックスは付着しない。
As shown in FIG. 5A, 5 g / m 2 of fluoride flux powder 16 is attached from the outside of the brazing test TP 15 so that it does not adhere to the inside of the region 20 and is heated in a heating furnace in a nitrogen gas atmosphere. After holding at a temperature of 250 ° C. for 10 min, brazing was held at a temperature of 590 ° C. for 3 min.
By attaching the fluoride flux from the outside as described above, the region 20 surrounded by the sacrificial anode material 7 and the brazing material 8 in the brazing test TP15 as shown in FIG. The fluoride flux does not directly adhere to the sacrificial anode material 7 and the brazing material 8 in FIG.

その後、図5(b)に示す平板サンプル11a、b、c、dとW字型折り曲げサンプル10a(12a〜d)の外部に露出していない領域20における犠牲陽極材7とろう材8との接合部のフィレット17の形成状態を評価した。評価のための試験は繰返し3回行い、3回の平均値で評価した。ろう付け性の評価は、フィレット17にろう切れがほとんどない接合率95%以上のものを「◎」、接合率が85%以上で95%未満のものを「○」、70%以上で85%未満のもの、あるいは接合率は85%以上で95%未満だが心材にエロージョンが発生したものを「△」、フィレット17の接合率が70%未満のものをろう付性が不十分「×」とした。 Thereafter, the sacrificial anode material 7 and the brazing material 8 in the region 20 not exposed to the outside of the flat plate samples 11a, b, c, d and the W-shaped bent sample 10a (12a-d) shown in FIG. The formation state of the fillet 17 at the joint was evaluated. The test for evaluation was repeated 3 times, and the average value of 3 times was evaluated. The evaluation of brazing is “◎” when the fillet 17 has a brazing rate of 95% or more with almost no brazing, “○” when the joining rate is 85% or more and less than 95%, and 85% when 70% or more. Less than 95% or less than 95% but with erosion of the core material, “△”, and less than 70% fillet 17 with insufficient brazing as “x” did.

(2) 耐食性評価:
590℃の温度で3min保持のろう付加熱後、犠牲陽極材の耐食性を評価するため、犠牲陽極材7表面を露出させ、端面およびろう材8表面をシールしたサンプルを作製した。
外気側を想定した耐食性の評価は単板でCASS試験(JIS H8681)500hを実施した後に、犠牲陽極材7表面から光学顕微鏡を用いて焦点深度法により孔食深さを測定した。最大孔食深さが150μm未満のものは外部耐食性が良好「○」、150μm以上のものは外部耐食性が不十分「×」とした。
(2) Corrosion resistance evaluation:
In order to evaluate the corrosion resistance of the sacrificial anode material after brazing heat at a temperature of 590 ° C. for 3 minutes, a sample was prepared in which the surface of the sacrificial anode material 7 was exposed and the end face and the surface of the brazing material 8 were sealed.
Evaluation of corrosion resistance on the outside air side was performed by performing a CASS test (JIS H8681) 500 h on a single plate, and then measuring the pitting corrosion depth from the surface of the sacrificial anode material 7 using an optical microscope by a focal depth method. When the maximum pitting depth is less than 150 μm, the external corrosion resistance is good “◯”, and when the maximum pitting depth is 150 μm or more, the external corrosion resistance is insufficient “x”.

また、内部側を想定した耐食性の評価はASTM規格液(Cl、SO 2−、HCO を各100ppm)にCu2+を10ppm添加した水溶液を用い、88℃の温度で8h浸漬、室温で16hの浸漬のサイクルを30日間行った後に犠牲陽極材7表面から光学顕微鏡を用いて焦点深度法により孔食深さを測定した。最大孔食深さが150μm未満のものは内部耐食性が良好「○」、150μm以上のものは内部耐食性が不十分「×」とした。
以上のろう付け性の評価結果を表2に、耐食性の評価結果を表3に示した。
In addition, the corrosion resistance evaluation assuming the inner side was performed by using an aqueous solution in which 10 ppm of Cu 2+ was added to ASTM standard solution (Cl , SO 4 2− , HCO 3 each 100 ppm), immersed at 88 ° C. for 8 hours, and room temperature Then, the pitting corrosion depth was measured by the depth of focus method from the surface of the sacrificial anode material 7 using an optical microscope after 30 hours of immersion for 16 hours. When the maximum pitting depth is less than 150 μm, the internal corrosion resistance is good “◯”, and when the maximum pitting corrosion depth is 150 μm or more, the internal corrosion resistance is insufficient “x”.
The evaluation results of the above brazing properties are shown in Table 2, and the evaluation results of corrosion resistance are shown in Table 3.

Figure 2010197002
Figure 2010197002

Figure 2010197002
Figure 2010197002

表2から明らかなように、本発明例である試験材No.1〜19はフィレット17の形成状態は良好である。特に犠牲陽極材7表面及びろう材8表面のいずれか一方にアルミニウム製熱交換器用チューブ2造管時の通板方向と90°方向に溝13を設けた場合に相当する試験材No.1、4、5、9、11、15、18、19はろう付け性に優れていた。   As is apparent from Table 2, the test material No. 1 to 19 have good formation of the fillet 17. In particular, the test material No. corresponding to the case where the groove 13 is provided on either the surface of the sacrificial anode material 7 or the surface of the brazing material 8 in the 90 ° direction and the sheet passing direction when the aluminum heat exchanger tube 2 is formed. 1, 4, 5, 9, 11, 15, 18, and 19 were excellent in brazeability.

それに対して、犠牲陽極材7表面及びろう材8表面のいずれか一方にアルミニウム製熱交換器用チューブ2造管時の通板方向と45°方向に溝13を設けた場合に相当する試験材No.20,21はろう付け性にやや優れた。犠牲陽極材7表面にアルミニウム製熱交換器用チューブ2造管時の通板方向と45°方向に溝13を設けた場合に相当する試験材No.22は溝が深いため高い接合率は得られたものの溝が深いことに起因して溝に沿って心材にエロージョンが発生してしまった。ろう材8表面にアルミニウム製熱交換器用チューブ2造管時の通板方向と45°方向に相当する幅が0.5mmを超える0.7mmである溝を設けた試験材No.23はろう付け性にやや優れるという結果であった。   On the other hand, the test material No. corresponding to the case where the groove 13 is provided on either the surface of the sacrificial anode material 7 or the surface of the brazing material 8 in the direction of the plate when forming the aluminum heat exchanger tube 2 and the direction of 45 °. . 20 and 21 were slightly superior in brazing. A test material No. corresponding to the case where grooves 13 are provided on the surface of the sacrificial anode material 7 in the 45 ° direction and the sheet passing direction when the aluminum heat exchanger tube 2 is formed. No. 22 has a deep groove, so that a high bonding rate was obtained, but erosion occurred in the core material along the groove due to the deep groove. The test material No. 1 was provided with grooves on the surface of the brazing material 8 having a width corresponding to the 45 ° direction and a width of 0.7 mm exceeding 0.5 mm at the time of forming the aluminum heat exchanger tube 2. No. 23 was the result that it was somewhat excellent in brazing property.

犠牲陽極材7表面及びろう材8表面のいずれか一方にアルミニウム製熱交換器用チューブ2造管時の通板方向と平行な方向に溝13を設けた場合に相当する比較例である試験材No.24、25は溝による内部へのフラックス流入効果が得られずろう付け性が不十分であった。また、犠牲陽極材7表面にアルミニウム製熱交換器用チューブ2造管時の通板方向と90°方向に溝13を設けた場合に相当する試験材No.26は溝によるフラックス流入効果は得られたが比較ブレージングシートHを用いて犠牲陽極材のSi量が2%未満であり少ないためにろう付け性向上効果が得られなかった。   Test material No. which is a comparative example corresponding to the case where the groove 13 is provided on either the surface of the sacrificial anode material 7 or the surface of the brazing material 8 in the direction parallel to the plate passing direction when forming the aluminum heat exchanger tube 2 . In 24 and 25, the flux inflow effect by the groove was not obtained, and the brazing property was insufficient. Further, the test material No. corresponding to the case where the groove 13 is provided on the surface of the sacrificial anode material 7 in the 90 ° direction and the sheet passing direction when the tube 2 for aluminum heat exchanger is formed. In No. 26, the flux inflow effect by the groove was obtained, but since the amount of Si in the sacrificial anode material was less than 2% using the comparative brazing sheet H, the effect of improving brazing was not obtained.

表3から明らかなように、本発明例である試験材No.25〜31は外気側耐食性、内部耐食性のいずれも優れていた。一方、比較例である試験材No.32は耐食性は優れているものの、前述した様にろう付け性に劣るため、本発明の目的を達成出来ない。また、比較ブレージングシートIを用いたNO.33はSi量が4%を超えて5%であり多いため犠牲陽極材が溶融してしまい、耐食性が低下した。No.34はZn量が少ないために犠牲陽極効果が得られず耐食性に劣り、No.35はZn量が多すぎて犠牲陽極材が早期に損耗し耐食性に劣った。No.36〜38はMn,Ti,Zrの量が多いため粗大な金属間化合物が存在し、耐食性に劣った。   As is apparent from Table 3, the test material No. Nos. 25 to 31 were excellent both in the outside air side corrosion resistance and the internal corrosion resistance. On the other hand, test material No. which is a comparative example. Although 32 is excellent in corrosion resistance, it is inferior in brazing as described above, and thus the object of the present invention cannot be achieved. In addition, NO. In No. 33, the amount of Si was more than 4% and 5%, so the sacrificial anode material was melted and the corrosion resistance was lowered. No. No. 34 is inferior in corrosion resistance due to the small amount of Zn, so that the sacrificial anode effect is not obtained. No. 35 has too much Zn content, so that the sacrificial anode material was quickly worn out and inferior in corrosion resistance. No. Since 36-38 had many amounts of Mn, Ti, and Zr, the coarse intermetallic compound existed and it was inferior to corrosion resistance.

1・・・アルミニウム合金製熱交換器、2・・・アルミニウム製熱交換器用チューブ、3・・・アウターフィン、7・・・犠牲陽極材、8・・・ろう材、9・・・接合部、10・・・ブレージングシート、11a、b、c、d・・・平板サンプル、10a(12a〜d)・・・W字型折り曲げサンプル、13・・・溝、
15・・・ろう付試験用TP、17・・・フィレット。
DESCRIPTION OF SYMBOLS 1 ... Aluminum alloy heat exchanger, 2 ... Aluminum heat exchanger tube, 3 ... Outer fin, 7 ... Sacrificial anode material, 8 ... Brazing material, 9 ... Joining part DESCRIPTION OF SYMBOLS 10 ... Brazing sheet, 11a, b, c, d ... Flat plate sample, 10a (12a-d) ... W-shaped bending sample, 13 ... Groove,
15 ... TP for brazing test, 17 ... fillet.

Claims (5)

Al−Mn系合金またはAl−Mn−Cu系合金を心材とし、一方の面にSi:2〜4%、Zn:2〜8%(質量%、以下同じ)を含有し、残部Alと不可避的不純物からなるアルミニウム合金犠牲陽極材をクラッドし、もう一方の面にAl−Si系またはAl−Si−Zn系合金ろう材をクラッドしたアルミニウム合金ブレージングシートを折り曲げて、ろう材8表面と犠牲陽極材表面との接合部をろう付けで接合してなり、犠牲陽極材表面及びろう材8表面の少なくともいずれか一方に、アルミニウム製熱交換器用チューブ造管時の通板方向と平行でない溝を有することを特徴とする板折り曲げ式のアルミニウム製熱交換器用チューブ。 An Al—Mn alloy or an Al—Mn—Cu alloy is used as a core material, and Si: 2 to 4%, Zn: 2 to 8% (mass%, hereinafter the same) is contained on one side, and the remainder is inevitable with Al. An aluminum alloy sacrificial anode material made of impurities is clad, and an aluminum alloy brazing sheet clad with an Al—Si or Al—Si—Zn alloy brazing material on the other surface is folded, and the surface of the brazing material 8 and the sacrificial anode material The joint with the surface is joined by brazing, and at least one of the surface of the sacrificial anode material and the surface of the brazing material 8 has a groove that is not parallel to the plate passing direction when forming the tube for the aluminum heat exchanger. A plate-foldable aluminum heat exchanger tube. 前記犠牲陽極材が、更にMn:1.8%以下、Ti:0.25%以下、Zr:0.25%以下のうち1種または2種を含有することを特徴とする請求項1記載の板折り曲げ式のアルミニウム製熱交換器用チューブ。 The sacrificial anode material further contains one or two of Mn: 1.8% or less, Ti: 0.25% or less, and Zr: 0.25% or less. Plate folding aluminum heat exchanger tube. 前記溝が、その表面開口部の幅が0.5mm以下であり、深さ20μm以下でかつ5本/cm以上の間隔で設けられることを特徴とする請求項1又は請求項2記載の板折り曲げ式のアルミニウム製熱交換器用チューブ。 3. The plate bending according to claim 1, wherein the groove has a width of a surface opening of 0.5 mm or less, a depth of 20 μm or less, and an interval of 5 / cm or more. Type aluminum heat exchanger tube. 請求項1乃至請求項3のいずれか一に記載の板折り曲げ式のアルミニウム製熱交換器用チューブを用いてなることを特徴とするアルミニウム製熱交換器。 An aluminum heat exchanger comprising the plate-foldable aluminum heat exchanger tube according to any one of claims 1 to 3. ろう材表面と犠牲陽極材表面との接合部を有し、その接合部が外部に露出していないろう付けで接合される板折り曲げ式のアルミニウム製熱交換器用チューブを用い、Al−Mn系合金またはAl−Mn−Cu系合金を心材とし、一方の面にSi:2〜4%、Zn:2〜8%を含有し、残部Alと不可避的不純物からなるアルミニウム合金犠牲陽極材をクラッドし、もう一方の面にAl−Si系またはAl−Si−Zn系合金ろう材をクラッドしたアルミニウム合金ブレージングシートを用い、犠牲陽極材表面及びろう材表面の少なくともいずれか一方の面に、表面開口部の幅が0.5mm以下であり、深さ20μm以下でかつ5本/cm以上の間隔でアルミニウム製熱交換器用チューブ造管時の通板方向と平行でない溝を設けることを特徴とする板折り曲げ式のアルミニウム製熱交換器用チューブの製造方法。
An Al-Mn alloy having a joint between a brazing material surface and a sacrificial anode material surface and using a plate-folding aluminum heat exchanger tube joined by brazing that the joint is not exposed to the outside. Alternatively, an Al-Mn-Cu alloy is used as a core material, and Si: 2 to 4%, Zn: 2 to 8% is contained on one surface, and an aluminum alloy sacrificial anode material composed of the remaining Al and inevitable impurities is clad, An aluminum alloy brazing sheet clad with an Al—Si-based or Al—Si—Zn-based alloy brazing material on the other surface is used, and a surface opening is formed on at least one of the sacrificial anode material surface and the brazing material surface. A groove having a width of 0.5 mm or less, a depth of 20 μm or less, and an interval of 5 pieces / cm or more is provided that is not parallel to the plate passing direction when forming a tube for an aluminum heat exchanger. Plate folding type method for producing an aluminum heat exchanger tube to be.
JP2009044008A 2009-02-26 2009-02-26 Tube for plate bending-type aluminum heat exchanger, aluminum heat exchanger, and method of manufacturing tube for plate bending-type aluminum heat exchanger Pending JP2010197002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009044008A JP2010197002A (en) 2009-02-26 2009-02-26 Tube for plate bending-type aluminum heat exchanger, aluminum heat exchanger, and method of manufacturing tube for plate bending-type aluminum heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009044008A JP2010197002A (en) 2009-02-26 2009-02-26 Tube for plate bending-type aluminum heat exchanger, aluminum heat exchanger, and method of manufacturing tube for plate bending-type aluminum heat exchanger

Publications (1)

Publication Number Publication Date
JP2010197002A true JP2010197002A (en) 2010-09-09

Family

ID=42821903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009044008A Pending JP2010197002A (en) 2009-02-26 2009-02-26 Tube for plate bending-type aluminum heat exchanger, aluminum heat exchanger, and method of manufacturing tube for plate bending-type aluminum heat exchanger

Country Status (1)

Country Link
JP (1) JP2010197002A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011034102A1 (en) * 2009-09-21 2011-03-24 株式会社デンソー Highly corrosion-resistant aluminum alloy brazing sheet, process for production of the brazing sheet, and highly corrosion-resistant heat exchanger equipped with the brazing sheet
CN103252628A (en) * 2012-02-20 2013-08-21 株式会社京滨冷暖科技 Method of manufacturing evaporator with cool storage function
WO2016080433A1 (en) * 2014-11-21 2016-05-26 株式会社デンソー Aluminum alloy cladding material for heat exchanger
WO2016080434A1 (en) * 2014-11-21 2016-05-26 株式会社Uacj Aluminum alloy cladding material for heat exchanger
CN111527368A (en) * 2018-01-19 2020-08-11 株式会社电装 Heat exchanger
JP2021038904A (en) * 2019-09-05 2021-03-11 株式会社ティラド Flat tube for heat exchanger and manufacturing method thereof
KR20210103778A (en) * 2020-02-14 2021-08-24 한국해양대학교 산학협력단 Manufacturing method of cooling block and coolant flow plate for cooling block applied to radiator
CN113453840A (en) * 2019-10-11 2021-09-28 松下知识产权经营株式会社 Brazing sheet for heat exchanger, joining structure of brazing sheet for heat exchanger, joining method of brazing sheet for heat exchanger, and heat exchanger
DE112018006891B4 (en) 2018-01-19 2022-10-06 Denso Corporation heat exchanger

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09216050A (en) * 1996-02-09 1997-08-19 Showa Alum Corp Aluminum brazed part
JP2000141028A (en) * 1998-11-04 2000-05-23 Denso Corp Plate for brazing and manufacture of heat exchanger
JP2002071286A (en) * 2000-08-24 2002-03-08 Toyo Radiator Co Ltd Flat tube for heat exchanger and method for manufacturing the same
JP2002103027A (en) * 2000-09-22 2002-04-09 Mitsubishi Alum Co Ltd Method of manufacturing heat exchanger
JP2005307251A (en) * 2004-04-20 2005-11-04 Sumitomo Light Metal Ind Ltd Aluminum alloy clad material for automobile heat exchanger
JP2006226613A (en) * 2005-02-17 2006-08-31 Shinko Alcoa Yuso Kizai Kk Flat tube for heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09216050A (en) * 1996-02-09 1997-08-19 Showa Alum Corp Aluminum brazed part
JP2000141028A (en) * 1998-11-04 2000-05-23 Denso Corp Plate for brazing and manufacture of heat exchanger
JP2002071286A (en) * 2000-08-24 2002-03-08 Toyo Radiator Co Ltd Flat tube for heat exchanger and method for manufacturing the same
JP2002103027A (en) * 2000-09-22 2002-04-09 Mitsubishi Alum Co Ltd Method of manufacturing heat exchanger
JP2005307251A (en) * 2004-04-20 2005-11-04 Sumitomo Light Metal Ind Ltd Aluminum alloy clad material for automobile heat exchanger
JP2006226613A (en) * 2005-02-17 2006-08-31 Shinko Alcoa Yuso Kizai Kk Flat tube for heat exchanger

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011034102A1 (en) * 2009-09-21 2011-03-24 株式会社デンソー Highly corrosion-resistant aluminum alloy brazing sheet, process for production of the brazing sheet, and highly corrosion-resistant heat exchanger equipped with the brazing sheet
JP5602747B2 (en) * 2009-09-21 2014-10-08 株式会社デンソー High corrosion resistance aluminum alloy brazing sheet, method for producing the same, and high corrosion resistance heat exchanger using the same
US9095934B2 (en) 2009-09-21 2015-08-04 Denso Corp. High-corrosion-resistant aluminum alloy brazing sheet, method of manufacturing such sheet, and corrosive-resistant heat exchanger using such sheet
CN103252628A (en) * 2012-02-20 2013-08-21 株式会社京滨冷暖科技 Method of manufacturing evaporator with cool storage function
JP2013170730A (en) * 2012-02-20 2013-09-02 Keihin Thermal Technology Corp Method for manufacturing evaporator with cold storage function
CN107075621A (en) * 2014-11-21 2017-08-18 株式会社电装 Heat exchanger aluminium, Al alloy clad material
US10788275B2 (en) 2014-11-21 2020-09-29 Denso Corporation Aluminum alloy cladding material for heat exchanger
JP2016098404A (en) * 2014-11-21 2016-05-30 株式会社デンソー Aluminum alloy clad material for heat exchanger
JP2016098405A (en) * 2014-11-21 2016-05-30 株式会社Uacj Aluminum alloy clad material for heat exchanger
CN107002184A (en) * 2014-11-21 2017-08-01 株式会社Uacj Aluminum alloy clad sheet for heat exchangers
WO2016080433A1 (en) * 2014-11-21 2016-05-26 株式会社デンソー Aluminum alloy cladding material for heat exchanger
EP3222738A4 (en) * 2014-11-21 2018-04-25 Denso Corporation Aluminum alloy cladding material for heat exchanger
CN107002184B (en) * 2014-11-21 2020-08-07 株式会社Uacj Aluminum alloy clad material for heat exchanger
US11015234B2 (en) 2014-11-21 2021-05-25 Uacj Corporation Aluminum alloy cladding material for heat exchanger
WO2016080434A1 (en) * 2014-11-21 2016-05-26 株式会社Uacj Aluminum alloy cladding material for heat exchanger
CN111527368A (en) * 2018-01-19 2020-08-11 株式会社电装 Heat exchanger
CN111527368B (en) * 2018-01-19 2022-05-13 株式会社电装 Heat exchanger
US11333436B2 (en) 2018-01-19 2022-05-17 Denso Corporation Heat exchanger
DE112018006891B4 (en) 2018-01-19 2022-10-06 Denso Corporation heat exchanger
JP2021038904A (en) * 2019-09-05 2021-03-11 株式会社ティラド Flat tube for heat exchanger and manufacturing method thereof
CN113453840A (en) * 2019-10-11 2021-09-28 松下知识产权经营株式会社 Brazing sheet for heat exchanger, joining structure of brazing sheet for heat exchanger, joining method of brazing sheet for heat exchanger, and heat exchanger
KR20210103778A (en) * 2020-02-14 2021-08-24 한국해양대학교 산학협력단 Manufacturing method of cooling block and coolant flow plate for cooling block applied to radiator
KR102318527B1 (en) * 2020-02-14 2021-10-28 한국해양대학교 산학협력단 Manufacturing method of cooling block and coolant flow plate for cooling block applied to radiator

Similar Documents

Publication Publication Date Title
JP6452626B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP2010197002A (en) Tube for plate bending-type aluminum heat exchanger, aluminum heat exchanger, and method of manufacturing tube for plate bending-type aluminum heat exchanger
JP6186239B2 (en) Aluminum alloy heat exchanger
JP6006421B2 (en) Aluminum alloy clad material, method for producing the same, and heat exchanger using the aluminum alloy clad material
JP4702797B2 (en) Manufacturing method of aluminum alloy clad material excellent in surface bondability by brazing of sacrificial anode material surface
JP4623729B2 (en) Aluminum alloy clad material and heat exchanger excellent in surface bonding by brazing of sacrificial anode material surface
JP6115892B2 (en) Aluminum alloy brazing sheet for fins, heat exchanger and heat exchanger manufacturing method
JP4993440B2 (en) High strength aluminum alloy clad material for heat exchangers with excellent brazeability
JP4807826B2 (en) Aluminum alloy clad material with excellent surface bonding by brazing sacrificial anode material
JP5836695B2 (en) Aluminum alloy fin material for heat exchangers with excellent strength and corrosion resistance after brazing
JP4236183B2 (en) Aluminum alloy clad material for automotive heat exchanger
JP4236185B2 (en) Aluminum alloy clad material for automotive heat exchanger
JP4993439B2 (en) High strength aluminum alloy clad material for heat exchangers with excellent brazeability
JP5599131B2 (en) Aluminum alloy brazing material and method for producing aluminum alloy brazing sheet
JP5302114B2 (en) Aluminum alloy brazing sheet for vacuum brazing
JP4954551B2 (en) Aluminum brazing alloy in which erosion during brazing is suppressed, brazing sheet using the same, header pipe for heat exchanger, and heat exchanger
JP5963112B2 (en) Aluminum heat exchanger for room air conditioner
JP4236184B2 (en) Aluminum alloy clad material for automotive heat exchanger
JP4861905B2 (en) Aluminum alloy brazing material and aluminum alloy brazing sheet
JP4236187B2 (en) Aluminum alloy clad material for automotive heat exchanger
JP5219607B2 (en) Aluminum alloy brazing sheet with excellent brazeability
JP4263160B2 (en) Aluminum alloy clad material and heat exchanger tube and heat exchanger using the same
JP2006015377A (en) Aluminum alloy brazing sheet for heat exchanger
JP5729969B2 (en) Aluminum alloy brazing wax and manufacturing method thereof
JP2007297673A (en) High corrosion resistant aluminum alloy composite material for heat exchanger, and aluminum alloy heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140410