WO2014141912A1 - Aluminum alloy plate for fabrication, method for producing same, and aluminum alloy brazing sheet - Google Patents

Aluminum alloy plate for fabrication, method for producing same, and aluminum alloy brazing sheet Download PDF

Info

Publication number
WO2014141912A1
WO2014141912A1 PCT/JP2014/055229 JP2014055229W WO2014141912A1 WO 2014141912 A1 WO2014141912 A1 WO 2014141912A1 JP 2014055229 W JP2014055229 W JP 2014055229W WO 2014141912 A1 WO2014141912 A1 WO 2014141912A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
less
brazing
ingot
plate
Prior art date
Application number
PCT/JP2014/055229
Other languages
French (fr)
Japanese (ja)
Inventor
祐希 井上
孝宏 成島
田中 宏和
Original Assignee
株式会社Uacj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Uacj filed Critical 株式会社Uacj
Publication of WO2014141912A1 publication Critical patent/WO2014141912A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0233Sheets, foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0233Sheets, foils
    • B23K35/0238Sheets, foils layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon

Abstract

The present invention provides an aluminum alloy plate that is for fabrication, has superior moldability, brazability, and post-brazing strength, is favorably used as a heat exchanger, and is characterized by resulting from hot rolling and cold rolling an aluminum alloy ingot having a composition containing 1.2-2.0% of Mn, 0.5-1.0% of Si, 0.10-0.20% of Ti, and V as an impurity restricted to no greater than 80 ppm, the remainder comprising Al and unavoidable impurities, having no greater than 1/m3 of coarse intermetallic compounds having a generated size (circular equivalent diameter) of at least 4 mm, and having no greater than 10/m3 of intermetallic compounds that are at least 1 mm and less than 4 mm.

Description

成形加工用アルミニウム合金板とその製造方法、およびアルミニウム合金ブレージングシートAluminum alloy plate for forming process, method for producing the same, and aluminum alloy brazing sheet
 本発明は、成形性、ろう付け性およびろう付け後の強度に優れ、とくにラジエータ、カーヒータ、カーエアコン等の熱交換器用として好適に使用される成形加工用アルミニウム合金板とその製造方法、および該アルミニウム合金板を心材とするアルミニウム合金ブレージングシートに関する。 The present invention is excellent in formability, brazeability and strength after brazing, and is particularly suitable for use in heat exchangers such as radiators, car heaters, car air conditioners, etc. The present invention relates to an aluminum alloy brazing sheet having an aluminum alloy plate as a core material.
 Mnを多く含むアルミニウム合金は、軽量で加工性に優れているため、熱交換器、飲料容器、電池ケースの材料としてよく用いられている。このうち、熱交換器用材料としては3003合金板および3003合金にろう材をクラッドしたブレージングシートが用いられている。 An aluminum alloy containing a large amount of Mn is light and excellent in workability, so it is often used as a material for heat exchangers, beverage containers, and battery cases. Among these, as a heat exchanger material, a brazing sheet in which a brazing material is clad on a 3003 alloy plate and a 3003 alloy is used.
 近年、とくに自動車用熱交換器の軽量化が求められ、熱交換器をさらに軽量化するために、アルミニウム合金中のMn含有量を増すことによって、ろう付け後の強度を向上させることが行われている。また、材料が薄肉になると腐食による貫通寿命が低下するため、3003合金にTiを添加して腐食の進行を横広がりにさせることにより、腐食寿命の向上を図ることも行われている。 In recent years, especially the weight reduction of the heat exchanger for automobiles has been demanded, and in order to further reduce the weight of the heat exchanger, the strength after brazing has been improved by increasing the Mn content in the aluminum alloy. ing. Further, since the penetration life due to corrosion decreases when the material becomes thin, the corrosion life is also improved by adding Ti to the 3003 alloy to make the progress of corrosion laterally spread.
 熱交換器としては、ドロンカップ型やパラレルフロー型など多様な熱交換器が用いられている。ドロンカップ型熱交換器は、複数のプレートを積層することによって構成され、プレス加工により中間部に溝状の胴部を形成し、両端部に筒状部を有するプレートを交互に裏表にして積層すると、胴部が組み合わさってチューブが形成されるとともに、筒状部が連結されて両端部にタンクが形成され、また積層方向に隣接する胴部同士の間には、フィンが設けられてなるものである。 Various heat exchangers such as a drone cup type and a parallel flow type are used as the heat exchanger. Delon cup type heat exchanger is composed by laminating a plurality of plates, forming a grooved body part in the middle part by press working, and laminating plates with cylindrical parts on both sides alternately Then, the tube is formed by combining the body portions, the cylindrical portions are connected to form tanks at both ends, and fins are provided between the body portions adjacent to each other in the stacking direction. Is.
 パラレルフロー型熱交換器は、互いに積層された複数の扁平チューブと、各扁平チューブの長手方向両端部に接続され、各扁平チューブを介して連通する一対のタンク部とを有しており、タンク部は、扁平チューブが挿入されるチューブ挿入孔が形成されたプレートヘッダと、プレートヘッダに組み合わされるタンクヘッダと、プレートヘッダおよびタンクヘッダ間に介在する中間プレートとがろう付けにより一体化された構造を備えている。 The parallel flow type heat exchanger has a plurality of flat tubes stacked on each other, and a pair of tank portions connected to both ends in the longitudinal direction of the flat tubes and communicating with each other through the flat tubes. The part has a structure in which a plate header in which a tube insertion hole into which a flat tube is inserted is formed, a tank header combined with the plate header, and an intermediate plate interposed between the plate header and the tank header are integrated by brazing It has.
 扁平チューブとしては、押出多孔管やブレージングシートを丸く成形し、端部を高周波溶接により接合して丸管を作成したのち扁平状に変形させた溶接扁平管や、ブレージングシートを扁平状に折り曲げ、ろう付け加熱により他の部材と一体的に結合してなるろう付け扁平管などがある。プレートヘッダおよびタンクヘッダにはプレス加工により扁平管を差し込む穴やタンク形状が形成される。 As flat tubes, extruded porous tubes and brazing sheets are formed into round shapes, welded flat tubes that are deformed into flat shapes after joining the ends by high-frequency welding, and the brazing sheets are bent into flat shapes, There is a brazed flat tube formed integrally with other members by brazing heating. Holes and tank shapes into which flat tubes are inserted are formed in the plate header and the tank header by pressing.
 このような熱交換器に使用されるAl-Mn系合金板において、強度向上のためにMn含有量を高め、耐食性向上のためにTiを含有させていくと、TiがAlMn等の金属間化合物の生成核となり易く、材料の鋳造時にアルミニウム合金中に粗大な金属間化合物が生成し易くなる。このような粗大な金属間化合物が生成すると、その後に均質化処理や熱間圧延等の加工を行っても分断されずに板材中に残存し、それが起点となって、板材およびブレージングシートの成形加工中に破断や割れを生じるという問題がある。 In an Al—Mn alloy plate used in such a heat exchanger, when the Mn content is increased for improving the strength and Ti is added for improving the corrosion resistance, Ti becomes a metal such as Al 6 Mn. It tends to be an intermetallic compound nucleus, and a coarse intermetallic compound is easily generated in an aluminum alloy during casting of the material. When such a coarse intermetallic compound is formed, it remains in the plate material without being divided even if processing such as homogenization treatment or hot rolling is performed thereafter, and it becomes the starting point of the plate material and brazing sheet. There is a problem that breakage and cracking occur during the molding process.
 粗大な金属間化合物の生成を抑制する方法として、溶湯圧延のように鋳造時の冷却速度を速くする方法があるが、板材の表面品質が劣るという特性上の課題があることと、鋳造機の構造が複雑となるため、多額の鋳造設備費が必要となるという難点もある。 As a method of suppressing the formation of coarse intermetallic compounds, there is a method of increasing the cooling rate at the time of casting like molten metal rolling, but there is a problem in characteristics that the surface quality of the plate material is inferior, Since the structure is complicated, there is a drawback that a large amount of casting equipment costs are required.
特開2002-155332号公報JP 2002-155332 A 特開2002-161323号公報JP 2002-161323 A 特開2002-180171号公報JP 2002-180171 A
 発明者らは、熱交換器用Al-Mn系合金板における上記の問題点を解決するために、試験、検討を重ねた結果、DC(Direct Chill)鋳造において、アルミニウム合金中に不可避不純物として存在するVが、粗大金属間化合物の生成に関与していることを見出し、V量を規制することによって、Mn含有量が高く、Tiを含有するAl-Mn系合金板に生成する金属間化合物を抑制することができることを見出した。 As a result of repeated tests and examinations in order to solve the above-described problems in the Al—Mn alloy plates for heat exchangers, the inventors have found inevitable impurities in aluminum alloys in DC (Direct Chill) casting. By finding that V is involved in the formation of coarse intermetallic compounds, by regulating the V content, the Mn content is high, and the intermetallic compounds produced in the Al-Mn alloy plates containing Ti are suppressed. Found that you can.
 本発明は、上記の知見に基づいてなされたものであり、その目的は、成形性、ろう付け性およびろう付け後の強度に優れ、とくにラジエータ、カーヒータ、カーエアコン等の熱交換器用として好適に使用される成形加工用アルミニウム合金板とその製造方法、および該アルミニウム合金板を心材とするアルミニウム合金ブレージングシートを提供することにある。 The present invention has been made on the basis of the above findings, and its purpose is excellent in moldability, brazing performance and strength after brazing, and is particularly suitable for heat exchangers such as radiators, car heaters, and car air conditioners. An object of the present invention is to provide an aluminum alloy plate for forming and a manufacturing method thereof, and an aluminum alloy brazing sheet using the aluminum alloy plate as a core material.
 上記の目的を達成するための請求項1による成形加工用アルミニウム合金板は、Mn:1.2~2.0%、Si:0.5~1.0%、Ti:0.10~0.20%を含有し、不純物としてのVを80ppm以下に規制し、残部Alおよび不可避的不純物からなる組成を有し、生成しているサイズ(円相当直径、以下同じ)4mm以上の粗大金属間化合物が1個/m以下で、1mm以上4mm未満の金属間化合物が10個/m以下のアルミニウム合金鋳塊を熱間圧延および冷間圧延してなることを特徴とする。以下の説明において、合金成分は質量%として示す。 In order to achieve the above object, an aluminum alloy sheet for forming according to claim 1 has Mn: 1.2 to 2.0%, Si: 0.5 to 1.0%, Ti: 0.10 to 0.00. Coarse intermetallic compound containing 20%, having V as an impurity regulated to 80 ppm or less, having a composition composed of the balance Al and inevitable impurities, and having a size (equivalent circle diameter, the same shall apply hereinafter) of 4 mm or more Is formed by hot rolling and cold rolling an aluminum alloy ingot in which an intermetallic compound of 1 piece / m 3 or less and 1 mm or more and less than 4 mm is 10 pieces / m 3 or less. In the following description, alloy components are shown as mass%.
 請求項2による成形加工用アルミニウム合金板は、請求項1において、前記アルミニウム合金鋳塊が、さらに、Fe:0.1~0.8%、Cu:1.2%以下、Mg:0.4%以下、Cr:0.3%以下、Zn:0.3%以下、Zr:0.3%以下のうちの1種または2種を含有することを特徴とする。 The aluminum alloy sheet for forming according to claim 2 is the aluminum alloy plate according to claim 1, wherein the aluminum alloy ingot further comprises Fe: 0.1 to 0.8%, Cu: 1.2% or less, Mg: 0.4 % Or less, Cr: 0.3% or less, Zn: 0.3% or less, and Zr: 0.3% or less.
 請求項3による成形加工用アルミニウム合金板は、請求項1または2において、前記不純物としてのVを40ppm以下に規制したことを特徴とする。 The aluminum alloy sheet for forming according to claim 3 is characterized in that, in claim 1 or 2, V as the impurity is regulated to 40 ppm or less.
 請求項4による成形加工用アルミニウム合金ブレージングシートは、請求項1~3のいずれかに記載のアルミニウム合金鋳塊の片面または両面にAl-Si系合金ろう材をクラッドし、熱間圧延および冷間圧延してなることを特徴とする。 An aluminum alloy brazing sheet for forming according to claim 4 is obtained by cladding an aluminum alloy brazing material on one side or both sides of an aluminum alloy ingot according to any one of claims 1 to 3, and performing hot rolling and cold It is characterized by being rolled.
 請求項5による成形加工用アルミニウム合金板の製造方法は、請求項1~3のいずれかに記載のアルミニウム合金を溶解し、0.09℃/s以上30℃/s以下の冷却速度で鋳造する工程、得られた鋳塊を均質化熱処理する工程、均質化熱処理した鋳塊を熱間圧延する工程、得られた熱間圧延板を冷間圧延する工程を含んでなることを特徴とする。 According to a fifth aspect of the present invention, there is provided a method for producing an aluminum alloy plate for forming by melting the aluminum alloy according to any one of the first to third aspects and casting at a cooling rate of 0.09 ° C./s to 30 ° C./s. The method includes a step, a step of homogenizing heat treatment of the obtained ingot, a step of hot rolling the ingot subjected to the homogenization heat treatment, and a step of cold rolling the obtained hot rolled plate.
 本発明によれば、成形性、ろう付け性およびろう付け後の強度に優れ、とくにラジエータ、カーヒータ、カーエアコン等の熱交換器用として好適に使用される成形加工用アルミニウム合金板とその製造方法、および該アルミニウム合金板を心材とするアルミニウム合金ブレージングシートが提供される。 According to the present invention, it is excellent in formability, brazeability and strength after brazing, and particularly an aluminum alloy plate for forming process that is suitably used for heat exchangers such as radiators, car heaters, and car air conditioners, and a manufacturing method thereof, And the aluminum alloy brazing sheet which uses this aluminum alloy plate as a core material is provided.
逆T字試験片を示す図である。It is a figure which shows an inverted T-shaped test piece. ろう付け加熱後の逆T字試験片を示す図である。It is a figure which shows the reverse T-shaped test piece after brazing heating.
 本発明による成形加工用アルミニウム合金板、該アルミニウム合金板を心材とするアルミニウム合金ブレージングシートは、熱交換器用部材として好適に使用される。ブレージングシートのろう材は心材の片面にクラッドされても両面にクラッドされてもよく、片面にろう材をクラッドし、他の片面に犠牲陽極材をクラッドすることもできる。 The aluminum alloy plate for forming according to the present invention and the aluminum alloy brazing sheet having the aluminum alloy plate as a core material are preferably used as a heat exchanger member. The brazing material of the brazing sheet may be clad on one side or both sides of the core material. The brazing material may be clad on one side and the sacrificial anode material may be clad on the other side.
 熱交換器に用いられる部位としては特に限定されないが、板材を成形して溶接により円管とした後に扁平状に変形させたチューブ、板材を扁平状に折り曲げ加工してろう付け時に接合部を接合するチューブ、コルゲートフィンやプレートフィン、ヘッダプレート、タンクプレート、サイドプレート、補強プレートなど、成形加工された後に用いられる部材として好適である。 The part used for the heat exchanger is not particularly limited, but the plate is molded into a circular tube by welding and then deformed into a flat shape, the plate is bent into a flat shape, and the joint is joined during brazing. It is suitable as a member to be used after being molded, such as a tube, a corrugated fin, a plate fin, a header plate, a tank plate, a side plate, and a reinforcing plate.
 熱交換器を製造するために、板材やブレージングシートは、所定の幅に条切断したコイル、または所定の寸法に切断したシートとし、プレス加工、曲げ加工、絞り加工、深絞り加工あるいは切断加工等を行って所定の形状に成形する。 In order to manufacture a heat exchanger, a plate material and a brazing sheet are a coil cut into a predetermined width or a sheet cut into a predetermined size, and press processing, bending processing, drawing processing, deep drawing processing, cutting processing, etc. To form a predetermined shape.
 以下、本発明の成形加工用アルミニウム合金板における合金成分の意義および限定理由について説明する。
 Mn:
Mnは、強度を高めるとともに、耐食性とくに耐孔食性を向上させるよう機能する元素である。Mnの好ましい含有量は1.2~2.0%の範囲であり、1.2%未満ではその効果が十分でなく、2.0%を超えると、粗大な金属間化合物が生成し、成形加工性が低下する。Mnのさらに好ましい含有範囲は1.3%以上1.8%未満である。
Hereinafter, the significance and reasons for limitation of the alloy components in the aluminum alloy sheet for forming according to the present invention will be described.
Mn:
Mn is an element that functions to increase strength and improve corrosion resistance, particularly pitting resistance. The preferable content of Mn is in the range of 1.2 to 2.0%. If the content is less than 1.2%, the effect is not sufficient. If the content exceeds 2.0%, a coarse intermetallic compound is formed, and molding Workability is reduced. A more preferable content range of Mn is 1.3% or more and less than 1.8%.
 Ti:
Tiは、濃度の高い領域と濃度の低い領域に分かれ、それらの領域が肉厚方向に交互に層状に分布し、Ti濃度の低い領域はTi濃度の高い領域に比べて優先的に腐食するために腐食形態が層状となり、その結果、肉厚方向への腐食の進行が妨げられて、材料の耐孔食性、耐粒界腐食性および耐隙間腐食性が向上する。Tiの好ましい含有量は0.10~0.20%の範囲であり、0.10%未満ではその効果が十分でなく、0.20%を超えると、鋳造時に粗大な金属間化合物が生成して加工性が劣化するため健全な材料が得られない。Tiのさらに好ましい含有範囲は0.11~0.18%である。
Ti:
Ti is divided into a high-concentration region and a low-concentration region, and these regions are alternately distributed in the thickness direction, and the low-Ti concentration region corrodes preferentially over the high-Ti concentration region. As a result, the corrosion form becomes layered, and as a result, the progress of corrosion in the thickness direction is hindered, and the pitting corrosion resistance, intergranular corrosion resistance and crevice corrosion resistance of the material are improved. The preferable content of Ti is in the range of 0.10 to 0.20%. If it is less than 0.10%, the effect is not sufficient, and if it exceeds 0.20%, a coarse intermetallic compound is produced during casting. As a result, processability deteriorates and a sound material cannot be obtained. A more preferable content range of Ti is 0.11 to 0.18%.
 V:
Vは、溶融塩電解法によりアルミニウムを製錬する際に用いられる黒鉛電極に不純物として含まれる元素である。酸化アルミニウムの酸素と電極の炭素が反応し、アルミニウムと二酸化炭素となるため、炭素からなる黒鉛電極は次第に消耗し、Vは不可避的不純物としてアルミニウム中に混入することになる。
V:
V is an element contained as an impurity in the graphite electrode used when smelting aluminum by the molten salt electrolysis method. Since oxygen of aluminum oxide reacts with carbon of the electrode to form aluminum and carbon dioxide, the graphite electrode made of carbon is gradually consumed, and V is mixed into aluminum as an inevitable impurity.
 Mnを多く含有するAl-Mn系アルミニウム合金においてTiを添加すると、鋳造時にTiが凝固核となってAl-Mn系の金属間化合物(AlMn等)が生成し易くなる。ここでVが多く含まれているとこの金属間化合物の生成温度が高くなり、金属間化合物が大きく成長するため、鋳塊中に粗大な金属間化合物が生成される。鋳造時に生成するサイズが4mm以上の金属間化合物が1個/m以下であれば、その後の熱間圧延、冷間圧延において分断化され微細になるため、成形性に与える影響は少ないが、1個/mを超えると分断化されても粗大な金属間化合物が残存するため、成形加工性が低下する。また、サイズが1mm以上4mm未満の金属間化合物は10個/mを超えると成形加工性が低下する。サイズが1mm以上4mm未満の金属間化合物は少ない方が好ましい。Vの含有量を低減すると金属間化合物の生成温度も低下していくため、金属間化合物の成長が抑えられ、その結果、粗大な金属間化合物の生成を抑制することができる。従って、Vは80ppm以下、より好ましくは40ppm以下に規制することが望ましい。 When Ti is added to an Al—Mn-based aluminum alloy containing a large amount of Mn, Ti becomes a solidified nucleus during casting, and an Al—Mn-based intermetallic compound (Al 6 Mn or the like) is easily generated. If a large amount of V is contained here, the production temperature of the intermetallic compound becomes high and the intermetallic compound grows greatly, so that a coarse intermetallic compound is produced in the ingot. If the size of the intermetallic compound with a size of 4 mm or more produced at the time of casting is 1 piece / m 3 or less, it is fragmented in the subsequent hot rolling and cold rolling and becomes finer. If it exceeds 1 / m 3 , a coarse intermetallic compound remains even if it is fragmented, so that moldability is lowered. On the other hand, when the size of the intermetallic compound having a size of 1 mm or more and less than 4 mm exceeds 10 / m 3 , the moldability deteriorates. The number of intermetallic compounds having a size of 1 mm or more and less than 4 mm is preferably small. When the V content is reduced, the production temperature of the intermetallic compound is also lowered, so that the growth of the intermetallic compound is suppressed, and as a result, the production of a coarse intermetallic compound can be suppressed. Therefore, it is desirable to regulate V to 80 ppm or less, more preferably 40 ppm or less.
 Vは普通純度のアルミニウム地金中に不可避不純物として100~200ppm程度含有している。Vの含有量を低減させる具体的な手法としては、V含有量の低い高純度地金の使用率を高めることや、地金に含まれるV量を分析し、V含有量の低い地金のみを用いることにより達成することができる。また、アルミニウム製錬時にV含有量の多い油脂系黒鉛電極を使用せず、V含有量の少ない石炭系黒鉛電極を用いる方法もある。 V contains about 100-200 ppm as an inevitable impurity in an aluminum ingot of ordinary purity. Specific methods for reducing the V content include increasing the usage rate of high-purity bullion with a low V content, analyzing the V content contained in the bullion, and only bullion with a low V content. Can be achieved. There is also a method using a coal-based graphite electrode with a low V content instead of using an oil-based graphite electrode with a high V content during aluminum smelting.
 Si:
Siは、Al-Mn-Si系化合物やAl-Mn-Fe-Si系化合物を形成し、強度を向上するよう機能する。Siの好ましい含有量は0.5~1.0%の範囲であり、0.5%未満ではその効果が小さく、1.0%を超えると、Si系化合物の粒子が多数形成され耐食性が低下する。Siのさらに好ましい含有範囲は0.60~0.80%である。
Si:
Si forms an Al—Mn—Si based compound or an Al—Mn—Fe—Si based compound and functions to improve the strength. The preferable content of Si is in the range of 0.5 to 1.0%. If the content is less than 0.5%, the effect is small. If the content exceeds 1.0%, a large number of Si compound particles are formed and the corrosion resistance is lowered. To do. A more preferable content range of Si is 0.60 to 0.80%.
 Cu:
Cuは、合金の強度向上のために機能する。好ましい含有量は1.20%以下の範囲であり、1.20%を超えて含有すると耐食性が低下する。Cuのさらに好ましい含有範囲は0.20~1.00%である。
Cu:
Cu functions to improve the strength of the alloy. The preferable content is in the range of 1.20% or less, and if it exceeds 1.20%, the corrosion resistance decreases. A more preferable content range of Cu is 0.20 to 1.00%.
 Fe:
Feは、アルミニウム合金材の結晶粒径を小さくして、成形性を向上させ、肌荒れの発生を防止するよう機能する。Feの好ましい含有量は0.1~0.8%の範囲であり、0.1%未満ではその効果が小さく、0.8%を超えると、Fe系化合物の粒子が多数形成され耐食性が低下する。Feのさらに好ましい含有範囲は0.20~0.70%である。
Fe:
Fe functions to reduce the crystal grain size of the aluminum alloy material, improve the formability, and prevent the occurrence of rough skin. The preferable content of Fe is in the range of 0.1 to 0.8%. If the content is less than 0.1%, the effect is small. To do. A more preferable content range of Fe is 0.20 to 0.70%.
 Mg:
Mgは、合金の強度向上のために機能するが、フラックスろう付けを行う場合はフラックスに含まれるFがMgと反応して化合物を生成し、ろう付け性が低下する。Mgの好ましい含有量は0.4%以下の範囲であり、0.4%を超えるとろう付け性が低下する。Mgのさらに好ましい含有範囲は0.20%以下である。
Mg:
Mg functions to improve the strength of the alloy, but when flux brazing is performed, F contained in the flux reacts with Mg to form a compound, resulting in a decrease in brazing properties. The preferable content of Mg is in the range of 0.4% or less. If it exceeds 0.4%, the brazing property is lowered. A more preferable content range of Mg is 0.20% or less.
 CrおよびZr:
Cr、Zrは、ろう付け前及びろう付け後の材料強度を向上させる。CrおよびZrの好ましい含有量は、それぞれ0.3%以下であり、0.3%を超えると、鋳造時に粗大な金属間化合物が生成して加工性が低下するため、健全な材料が得られなくなる。
Cr and Zr:
Cr and Zr improve the material strength before brazing and after brazing. The preferable contents of Cr and Zr are each 0.3% or less, and if it exceeds 0.3%, a coarse intermetallic compound is produced during casting and the workability is lowered, so that a sound material can be obtained. Disappear.
 Zn:
Znは板材あるいはブレージングシートの心材の電位を卑にする効果がある。0.3%を超えると自己耐食性が悪くなる。
Zn:
Zn has the effect of lowering the potential of the core material of the plate material or brazing sheet. If it exceeds 0.3%, the self-corrosion resistance is deteriorated.
 鋳塊中の金属間化合物のサイズと数:
鋳造時に生成する金属間化合物を確認する方法としては、鋳塊を長さ方向に10~30mm程度の厚さに切断し、X線を照射して透過したX線像を観察する方法や、鋳塊のミクロ組織を観察する方法などがある。ミクロ組織を観察する方法では、小さい金属間化合物を確認できるが確認できる範囲が小さいため、鋳塊全体を調べるには向いていない。一方、X線透過像を観察する方法では、鋳塊全体の広い範囲で粗大な金属間化合物を調査することができるが、1mm未満の大きさの金属間化合物を確認することは困難である。
Size and number of intermetallic compounds in the ingot:
Methods for confirming the intermetallic compounds produced during casting include cutting the ingot to a thickness of about 10 to 30 mm in the length direction, irradiating X-rays and observing the transmitted X-ray image, There is a method of observing the microstructure of a lump. In the method of observing the microstructure, a small intermetallic compound can be confirmed, but since the range that can be confirmed is small, it is not suitable for examining the entire ingot. On the other hand, in the method of observing an X-ray transmission image, coarse intermetallic compounds can be investigated in a wide range of the entire ingot, but it is difficult to confirm intermetallic compounds having a size of less than 1 mm.
 鋳造時の冷却速度:
DC鋳造における鋳造時の冷却速度(鋳塊表面から20mm以内の表層部を除く部分の冷却速度)は0.09℃/s以上30℃/s以下とするのが好ましい。0.09℃/s未満では製造能率が低下して好ましくなく、金属間化合物も大きくなり易い。冷却速度が30℃/s以上になると、鋳型内の溶湯温度が高温になり溶湯漏れを発生し易くなる。
Cooling speed during casting:
The cooling rate during casting in DC casting (the cooling rate of the portion excluding the surface layer portion within 20 mm from the ingot surface) is preferably 0.09 ° C./s or more and 30 ° C./s or less. If it is less than 0.09 ° C./s, the production efficiency is lowered, which is not preferable, and the intermetallic compound tends to be large. When the cooling rate is 30 ° C./s or more, the temperature of the molten metal in the mold becomes high, and the molten metal leak is likely to occur.
 本発明の成形加工用アルミニウム合金板を心材とするブレージングシートにおいて、ろう材としては、Siを6~15%含有するAl-Si系合金が用いられる。ろう材には必要に応じ、0.05~2%までのMg、0.5~10%のZn、0.05~1%のCu、0.01~0.3%のCr、Ti、Bi、Srを含有することもできる。ろう材は、必要に応じ、前記心材の片面もしくは両面にクラッドされる。 In the brazing sheet using the forming aluminum alloy plate of the present invention as a core material, an Al—Si alloy containing 6 to 15% of Si is used as the brazing material. For the brazing material, 0.05 to 2% Mg, 0.5 to 10% Zn, 0.05 to 1% Cu, 0.01 to 0.3% Cr, Ti, Bi as required , Sr can also be contained. The brazing material is clad on one side or both sides of the core material as necessary.
 Al-Si系合金ろう材において、Siの含有量が6%未満ではろう付け性が低下するので好ましくなく、15%を超えるとエロージョンが発生してチューブを浸食することが懸念されるので好ましくない。とくに好ましいSiの含有量は6~12.5%である。ろう材にCuまたはMnを添加することにより、フィレットの電位を調整することができ、腐食が発生する部位を好ましい領域に調整することが可能となる。また、Al-Si系合金ろう材においては、Feは0.6%以下であれば含有可能であり、In、Sn、Ni、Ti、Cr等の元素もろう付け接合性に影響を及ぼさない範囲であれば含有してもよく、ZnもチューブにおけるZn拡散層の厚さを著しく厚くして耐食性に影響を及ぼすことがない範囲であれば含有してもよい。 In an Al—Si based brazing filler metal, if the Si content is less than 6%, the brazing property is lowered, which is not preferable. If it exceeds 15%, erosion is generated and the tube may be eroded, which is not preferable. . A particularly preferable Si content is 6 to 12.5%. By adding Cu or Mn to the brazing material, the potential of the fillet can be adjusted, and the site where corrosion occurs can be adjusted to a preferred region. Also, in the Al—Si alloy brazing material, Fe can be contained if it is 0.6% or less, and elements such as In, Sn, Ni, Ti, and Cr do not affect the brazing joint property. If necessary, Zn may be contained as long as the thickness of the Zn diffusion layer in the tube is remarkably increased so as not to affect the corrosion resistance.
 本発明の成形加工用アルミニウム合金板を心材とするブレージングシートにおいて、心材の片側にろう材をクラッドし、ろう材の反対面に犠牲陽極材をクラッドしたブレージングシートを用いることもできる。犠牲陽極材には必要に応じ、0.5~10%のZn、0~2.0%のMn、0~2.0%のSi、0~2.0%のFeの内1種または2種以上を含有することができる。 In the brazing sheet using the aluminum alloy plate for forming according to the present invention as a core material, a brazing sheet in which a brazing material is clad on one side of the core material and a sacrificial anode material is clad on the opposite surface of the brazing material can also be used. For the sacrificial anode material, one or two of 0.5 to 10% Zn, 0 to 2.0% Mn, 0 to 2.0% Si, 0 to 2.0% Fe, as required. More than seeds can be contained.
 ブレージングシートの製造方法としては、ろう材成分を有するアルミニウム合金鋳塊を作製し、均質化処理および熱間圧延により所定の厚さとしたろう材用皮材を作製して、本発明の成形加工用アルミニウム合金心材の片側あるいは両側に重ね合わせて熱間クラッド圧延によりクラッド板を作製し、冷間圧延により所定の板厚にする。必要に応じ中間焼鈍または最終焼鈍を行ってもよい。ろう材用皮材にはろう材用鋳塊を所定の板厚に切断したものを用いることもできる。 As a method for producing a brazing sheet, an aluminum alloy ingot having a brazing material component is produced, and a brazing material for brazing material having a predetermined thickness is produced by homogenization treatment and hot rolling. A clad plate is produced by hot clad rolling on one side or both sides of the alloy core material, and is cold rolled to a predetermined thickness. If necessary, intermediate annealing or final annealing may be performed. As the brazing material, a brazing material ingot cut into a predetermined thickness can be used.
 本発明の成形加工用アルミニウム合金心材の片側にろう材をクラッドしたブレージングシートにおいては、ろう材の反対側は心材のままとしてもよいし、ろう材の反対面が腐食性が高い環境で用いられる場合は、犠牲陽極材をクラッドして耐貫通性を向上させることもできる。 In the brazing sheet in which the brazing material is clad on one side of the aluminum alloy core material for forming according to the present invention, the opposite side of the brazing material may be left as the core material, or the opposite surface of the brazing material is used in an environment where the corrosiveness is high. In this case, the sacrificial anode material can be clad to improve penetration resistance.
 以下、本発明の実施例を比較例と対比して説明し、本発明の効果を実証する。なお、これらの実施例は本発明の一実施態様を示すものであり、本発明はこれらに限定されない。 Hereinafter, examples of the present invention will be described in comparison with comparative examples to demonstrate the effects of the present invention. In addition, these Examples show one embodiment of this invention, and this invention is not limited to these.
実施例1
 表1に示す組成を有するアルミニウム合金(A~U)を溶解し、DC鋳造により造塊した。冷却速度の測定は、ダミーの鋳塊を鋳造することにより行った。ダミーの鋳塊の鋳造において、鋳型内の溶湯中に、鋳型上方からみて鋳型中心部と、幅方向中央部で幅方向の鋳型壁面から20mm内側の位置(2個所)および厚さ方向中央部で厚さ方向の鋳型壁面から20mm内側の位置(2個所)の計5個所に熱電対を入れて、そのまま溶湯が凝固するのと同時に埋め込んで冷却速度を測定し、凝固開始から500℃になるまでの冷却速度を求めた。平均冷却速度が0.10℃/s以上0.20℃/s以下、10℃/s以上12℃/s以下および27℃/s以上29℃/s以下となる鋳造条件をそれぞれ確認して、この鋳造条件と同じ鋳造条件で鋳造し、幅175mm×長さ175mm×厚さ30mmの鋳塊を得た。
Example 1
Aluminum alloys (A to U) having the compositions shown in Table 1 were melted and agglomerated by DC casting. The cooling rate was measured by casting a dummy ingot. In the casting of a dummy ingot, in the molten metal in the mold, at the mold center as viewed from above the mold, the position in the center in the width direction (20 locations from the mold wall in the width direction (two locations), and the thickness in the center. Insert thermocouples into a total of 5 locations (2 locations) 20 mm inside from the mold wall surface in the thickness direction, and fill the melt as it is solidified and measure the cooling rate until the temperature reaches 500 ° C from the start of solidification. The cooling rate of was determined. Check the casting conditions at which the average cooling rate is 0.10 ° C / s or more and 0.20 ° C / s or less, 10 ° C / s or more and 12 ° C / s or less, and 27 ° C / s or more and 29 ° C / s or less, Casting was performed under the same casting conditions as this casting condition, and an ingot having a width of 175 mm, a length of 175 mm, and a thickness of 30 mm was obtained.
 得られた鋳塊を600℃で10h均質化処理した後、鋳塊の圧延面を2mm切削した。続いて、500℃の温度に加熱して熱間圧延を開始し、厚さ3mmまで熱間圧延した。熱間圧延の終了温度は200℃であった。熱間圧延板について、厚さ0.4mmまで冷間圧延を行い、400℃で3hの最終焼鈍を行って質別をO材とした。得られたアルミニウム合金板を試験材として以下の評価を行い、鋳塊を用いて金属間化合物サイズの測定を行った。評価、測定結果を表2に示す。 The obtained ingot was homogenized at 600 ° C. for 10 hours, and then the rolled surface of the ingot was cut by 2 mm. Then, it heated to the temperature of 500 degreeC, the hot rolling was started, and it hot-rolled to thickness 3mm. The end temperature of hot rolling was 200 ° C. The hot-rolled sheet was cold-rolled to a thickness of 0.4 mm, and subjected to final annealing at 400 ° C. for 3 hours, and the material was classified as O material. The obtained aluminum alloy sheet was used as a test material for the following evaluation, and the size of the intermetallic compound was measured using an ingot. Table 2 shows the evaluation and measurement results.
(成形性)
 成形性は素材の伸びで評価した。試験材からJIS5号引張試験片を採取して、JISに準拠する引張試験を行い、伸び(δ)を測定し、伸びが20%以上のものを優良(◎)、15%以上20%未満のものを良好(○)でいずれも合格、15%未満のものは不合格(×)とした。
(Formability)
Formability was evaluated by the elongation of the material. A JIS No. 5 tensile test piece is taken from the test material, a tensile test in accordance with JIS is performed, and the elongation (δ) is measured. When the elongation is 20% or more, excellent (◎), 15% or more and less than 20% Those with good (◯) were all passed, and those with less than 15% were rejected (×).
(ろう付け性)
 図1に示すように、試験材2を25×50mmに切断して垂直板とし、25×50mmに切断したBAS121Pブレージングシート3(心材:3003合金、ろう材:4045合金片面クラッド、クラッド率:10%、板厚:1.0mm、調質:O材)を水平板として、ブレージングシート3のろう材面が垂直板(試験材2)と当接するようにして、逆T字試験片1を作製し、ブレージングシートのろう材面にフッ化物系フラックスとアルコールを混合した塗料を乾燥質量として5g/m塗布して、窒素ガス雰囲気中で、平均50℃/分の昇温速度で600℃(到達温度)まで加熱するろう付け加熱を行った。接合された試験片4(図2)を樹脂に埋め込み、垂直板との接合面に形成されたフィレット5の断面積を測定した。その後、ろうが流動した割合(ろう付け後のフィレットの断面積/ろう付け前のろう材の断面積)を算出して、これを逆T字試験による流動係数とし、逆T字試験による流動係数の値が0.3以上を合格(○)、0.3未満を不合格(×)と評価した。
(Brassability)
As shown in FIG. 1, BAS121P brazing sheet 3 (core material: 3003 alloy, brazing material: 4045 alloy single-sided clad, clad rate: 10 cut into 25 × 50 mm to obtain a vertical plate and cut into 25 × 50 mm. %, Plate thickness: 1.0 mm, tempering: O material), and the brazing material surface of the brazing sheet 3 is in contact with the vertical plate (test material 2) to produce an inverted T-shaped test piece 1 Then, 5 g / m 2 of dry paint mixed with a fluoride-based flux and alcohol was applied to the brazing sheet surface of the brazing sheet, and the temperature was raised to 600 ° C. at an average rate of 50 ° C./min in a nitrogen gas atmosphere. Brazing heating was performed to reach the final temperature. The bonded test piece 4 (FIG. 2) was embedded in resin, and the cross-sectional area of the fillet 5 formed on the bonding surface with the vertical plate was measured. After that, the ratio of brazing flow (cross-sectional area of the fillet after brazing / cross-sectional area of the brazing material before brazing) is calculated, and this is used as the flow coefficient by the reverse T-shaped test, and the flow coefficient by the reverse T-shaped test. A value of 0.3 or more was evaluated as pass (◯), and less than 0.3 was evaluated as reject (x).
(ろう付け後の強度特性)
 試験材を50×300mmに切断して、窒素ガス雰囲気中で、平均50℃/分の昇温速度で600℃(到達温度)まで加熱するろう付け加熱を行い、ろう付け加熱後の板から、JIS5号引張試験片を採取して、JISに準拠する引張試験を行い、引張強さ(σB)を測定した。引張強さが120MPa以上のものを合格(○)、120MPa未満のものを不合格(×)とした。
(Strength characteristics after brazing)
The test material is cut into 50 × 300 mm, and brazing heating is performed in a nitrogen gas atmosphere to a temperature of 600 ° C. (attainment temperature) at an average rate of 50 ° C./min. From the plate after brazing heating, A JIS No. 5 tensile test piece was sampled and subjected to a tensile test based on JIS to measure the tensile strength (σB). Those having a tensile strength of 120 MPa or more were regarded as acceptable (◯), and those having a tensile strength of less than 120 MPa were regarded as unacceptable (x).
(金属間化合物サイズの測定)
 鋳塊の中心部から厚さ30mmの試料を切断、採取し、理学電機(株)製のX線透過装置(型番:RAD10FLEX-100GS)を用いて出力:125KV、2mAで透過X線像を撮影した。撮影した写真に写ったサイズ1mm以上の影を粗大な金属間化合物と判断し、大きさと個数を測定し、試料の大きさから1mあたりの個数に換算した。
(Measurement of intermetallic compound size)
A sample with a thickness of 30 mm is cut and collected from the center of the ingot, and an X-ray transmission device (model number: RAD10FLEX-100GS) manufactured by Rigaku Corporation is used to output a transmission X-ray image at 125 KV and 2 mA. did. A shadow of 1 mm or more in size in the photograph taken was judged as a coarse intermetallic compound, the size and number were measured, and the number per 1 m 3 was converted from the sample size.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、本発明に従う試験材1~23はいずれも、成形性およびろう付け後の強度に優れ、優れたろう付け性をそなえていた。 As shown in Table 2, all of the test materials 1 to 23 according to the present invention were excellent in moldability and strength after brazing, and had excellent brazing properties.
比較例1
 表3に示す組成を有するアルミニウム合金(a~k)を溶解し、実施例1と同様、DC鋳造により冷却速度0.10℃/s以上0.20℃/s以下、0.03℃/s以上0.05℃/s以下で鋳造し、幅175mm×長さ175mm×厚さ30mmの鋳塊を得た。なお、冷却速度35℃/s以上40℃/s以下で鋳造したものは、鋳型から溶湯が漏れ出したため、途中で鋳造を中止した。表3において、本発明の条件を外れたものには下線を付した。
Comparative Example 1
Aluminum alloys (a to k) having the compositions shown in Table 3 were dissolved, and the cooling rate was 0.10 ° C./s or more and 0.20 ° C./s or less and 0.03 ° C./s by DC casting as in Example 1. The casting was performed at 0.05 ° C./s or less to obtain an ingot having a width of 175 mm × a length of 175 mm × a thickness of 30 mm. In the case of casting at a cooling rate of 35 ° C./s or more and 40 ° C./s or less, since the molten metal leaked from the mold, casting was stopped halfway. In Table 3, those outside the conditions of the present invention are underlined.
 得られた鋳塊を、実施例1と同じ条件で、均質化処理、表面切削、熱間圧延、冷間圧延し、最終焼鈍を行って質別をO材とした。得られたアルミニウム合金板を試験材として実施例1と同一の評価、測定を行った。評価、測定結果を表4に示す。 The obtained ingot was homogenized, surface-cut, hot-rolled, and cold-rolled under the same conditions as in Example 1 and subjected to final annealing to make an O material. The same evaluation and measurement as in Example 1 were performed using the obtained aluminum alloy plate as a test material. Table 4 shows the evaluation and measurement results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 試験材24~26は、V量が多いため鋳造時にサイズ4mm以上の金属間化合物が生成し、伸び率が低く成形加工性が劣るものとなった。試験材27は、Ti量が多いため鋳造時にサイズ4mm以上の金属間化合物が生成し、伸び率が低く成形加工性が劣るものとなった。試験材28、29は、Mn量が少ないため、ろう付け後の強度が劣っていた。試験材30はMg量が多いため、ろう付け性が劣っていた。また、試験材31~34は、それぞれMn、Cr、Zn、Zrの含有量が多いため、加工性が劣り、健全な板材を製造することができなかった。試験材35は、冷却速度が遅すぎるため鋳造時にサイズ4mm以上の金属間化合物が生成し、伸び率が低く成形加工性が劣るものとなった。 Since the test materials 24 to 26 had a large amount of V, an intermetallic compound having a size of 4 mm or more was generated during casting, and the elongation rate was low and the moldability was poor. Since the test material 27 had a large amount of Ti, an intermetallic compound having a size of 4 mm or more was generated during casting, and the elongation rate was low and the moldability was poor. Since the test materials 28 and 29 had a small amount of Mn, the strength after brazing was inferior. Since the test material 30 had a large amount of Mg, the brazing property was inferior. Further, each of the test materials 31 to 34 had a high content of Mn, Cr, Zn, and Zr, so that the workability was inferior and a sound plate material could not be produced. Since the test material 35 had a cooling rate that was too slow, an intermetallic compound having a size of 4 mm or more was generated during casting, and the elongation rate was low and the moldability was poor.
実施例2
 実施例1で鋳造した合金D~Iの鋳塊を用いて、実施例1と同様に均質化処理、表面切削を行い、心材用鋳塊とした。Si:10%を含有し、残部アルミニウムおよび不可避不純物からなるろう材、およびZn:1%を含有し、残部アルミニウムおよび不可避不純物からなる犠牲陽極材を、常法に従って溶解、DC鋳造し、得られた鋳塊の表面を10mm切削した後、500℃で所定の板厚まで熱間圧延を行い、ろう材用皮板および犠牲陽極材用皮板を作製した。
Example 2
Using the ingots of alloys D to I cast in Example 1, homogenization treatment and surface cutting were performed in the same manner as in Example 1 to obtain a core material ingot. It is obtained by melting and DC casting a brazing material containing Si: 10%, the balance aluminum and inevitable impurities, and a sacrificial anode material containing Zn: 1%, the balance aluminum and inevitable impurities, in accordance with a conventional method. After the surface of the ingot was cut by 10 mm, it was hot-rolled to a predetermined plate thickness at 500 ° C. to produce a brazing material skin plate and a sacrificial anode material skin plate.
 続いて、表5に示す組み合わせで、心材用鋳塊の片面あるいは両面に、ろう材用皮材または犠牲陽極材用皮材をクラッド率10%となるように積層し、500℃に加熱して、厚さ3mmまで熱間圧延した。熱間圧延の終了温度は170℃であった。熱間圧延板を厚さ0.4mmまで冷間圧延し、400℃で3hの最終焼鈍を行って質別をO材とし、得られたアルミニウム合金ブレージングシートを試験材として以下の評価を行い、心材用鋳塊を用いて金属間化合物サイズの測定を行った。評価、測定結果を表5に示す。 Subsequently, in the combinations shown in Table 5, the brazing material skin or the sacrificial anode material skin material is laminated so as to have a cladding rate of 10% on one or both surfaces of the core material ingot, and heated to 500 ° C. And hot rolled to a thickness of 3 mm. The end temperature of hot rolling was 170 ° C. The hot-rolled sheet is cold-rolled to a thickness of 0.4 mm, subjected to a final annealing at 400 ° C. for 3 hours to make the material O, and the obtained aluminum alloy brazing sheet is used as a test material for the following evaluation. The intermetallic compound size was measured using the core material ingot. Table 5 shows the evaluation and measurement results.
(成形性)
 ブレージングシートの成形性は素材の伸びで評価した。試験材からJIS5号引張試験片を採取して、JISに準拠する引張試験を行い、伸び(δ)を測定した。伸びが、20%以上のものを優良(◎)、15%以上20%未満のものを良好(○)でいずれも合格、15%未満のものは不合格(×)とした。
(Formability)
The formability of the brazing sheet was evaluated by the elongation of the material. A JIS No. 5 tensile test piece was collected from the test material, subjected to a tensile test in accordance with JIS, and measured for elongation (δ). Elongation of 20% or more was evaluated as excellent ()), 15% or more and less than 20% was evaluated as good (◯), and any of those with an elongation of less than 15% was rejected (x).
(ろう付け後の強度特性)
 試験材を50×300mmに切断して、ブレージングシートのろう材面にフッ化物系フラックスとアルコールを混合した塗料を乾燥質量として5g/m塗布し、窒素ガス雰囲気中で、平均50℃/分の昇温速度で600℃(到達温度)まで加熱するろう付け加熱を行った。ろう付け加熱後の板から、JIS5号引張試験片を採取して、JISに準拠する引張試験を行い、引張強さ(σB)を測定し、引張強さが120MPa以上のものを合格(○)、120MPa未満のものを不合格(×)とした。
(Strength characteristics after brazing)
The test material was cut to 50 × 300 mm, and a coating material mixed with fluoride-based flux and alcohol was applied to the brazing material surface of the brazing sheet in a dry mass of 5 g / m 2 and averaged at 50 ° C./min in a nitrogen gas atmosphere. Brazing heating was performed at a heating rate of 600 ° C. (attainable temperature). A JIS No. 5 tensile test piece is taken from the plate after brazing and heating, and a tensile test according to JIS is performed to measure the tensile strength (σB). If the tensile strength is 120 MPa or more, it passes (○). , Less than 120 MPa was regarded as rejected (x).
(ろう付け性)
 図1に示すように、25×50mmに切断した試験材3を、ろう材面が上になるようにして水平板とし、25×50mmの3003合金板2(板厚:1.0mm、調質:O材)を垂直板とし、試験材のろう材面と3003合金板を当接させて、逆T字試験片1を作製した。試験材のろう材面にフッ化物系フラックスとアルコール混合塗料を乾燥質量として5g/m塗布し、窒素ガス雰囲気中で、平均50℃/分の昇温速度で600℃(到達温度)まで加熱するろう付け加熱を行った。接合された試験片4(図2)を樹脂に埋め込み、垂直板との接合面に形成されたフィレット5の断面積を測定した。その後、ろうが流動した割合(ろう付け後のフィレットの断面積/ろう付け前のろう材の断面積)を算出して、これを逆T字試験による流動係数と、逆T字試験による流動係数の値が0.3以上を合格(○)、0.3未満を不合格(×)と評価した。
(Brassability)
As shown in FIG. 1, the test material 3 cut to 25 × 50 mm was made into a horizontal plate with the brazing material surface facing upward, and a 25 × 50 mm 3003 alloy plate 2 (plate thickness: 1.0 mm, tempered) : O material) was a vertical plate, and the brazing material surface of the test material was brought into contact with the 3003 alloy plate to produce an inverted T-shaped test piece 1. Apply 5 g / m 2 of fluoride-based flux and alcohol mixed paint as dry mass on the brazing filler metal surface of the test material, and heat to 600 ° C. (attainment temperature) at an average temperature increase rate of 50 ° C./min in a nitrogen gas atmosphere. Brazing heating was performed. The bonded test piece 4 (FIG. 2) was embedded in resin, and the cross-sectional area of the fillet 5 formed on the bonding surface with the vertical plate was measured. After that, the ratio of brazing flow (cross-sectional area of the fillet after brazing / cross-sectional area of the brazing material before brazing) is calculated, and this is calculated based on the flow coefficient by the reverse T-shaped test and the flow coefficient by the reverse T-shaped test. A value of 0.3 or more was evaluated as pass (◯), and less than 0.3 was evaluated as reject (x).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、本発明に従って得られた試験材(アルミニウム合金ブレージングシート)36~53はいずれも、成形性およびろう付け後の強度に優れ、優れたろう付け性を有していた。 As shown in Table 5, all of the test materials (aluminum alloy brazing sheets) 36 to 53 obtained according to the present invention were excellent in formability and strength after brazing, and had excellent brazing properties.
1  逆T字試験片
2  実施例1、比較例1では試験片、実施例2では3003合金板
3  実施例2、比較例1ではブレージングシート、実施例2では試験片
4  接合された試験片
5  フィレット
DESCRIPTION OF SYMBOLS 1 Inverted T-shaped test piece 2 Example 1 and comparative example 1 are test pieces, Example 2 is 3003 alloy plate 3 Example 2 and comparative example 1 are brazing sheets, Example 2 is test piece 4 Test piece 5 joined Fillet

Claims (5)

  1. Mn:1.2~2.0%(質量%、以下同じ)、Si:0.5~1.0%、Ti:0.10~0.20%を含有し、不純物としてのVを80ppm以下に規制し、残部Alおよび不可避的不純物からなる組成を有し、生成しているサイズ(円相当直径)4mm以上の粗大金属間化合物が1個/m以下で、1mm以上4mm未満の金属間化合物が10個/m以下のアルミニウム合金鋳塊を熱間圧延および冷間圧延してなることを特徴とする成形加工用アルミニウム合金板。 Mn: 1.2 to 2.0% (mass%, the same applies hereinafter), Si: 0.5 to 1.0%, Ti: 0.10 to 0.20%, and V as an impurity of 80 ppm or less And having a composition composed of the balance Al and inevitable impurities, the generated intermetallic compound having a size (equivalent circle diameter) of 4 mm or more is 1 / m 3 or less, and is between 1 mm or more and less than 4 mm. An aluminum alloy plate for forming, which is obtained by hot-rolling and cold-rolling an aluminum alloy ingot having 10 or less compounds / m 3 .
  2. 前記アルミニウム合金鋳塊が、さらに、Fe:0.1~0.8%、Cu:1.2%以下、Mg:0.4%以下、Cr:0.3%以下、Zn:0.3%以下、Zr:0.3%以下のうちの1種または2種を含有することを特徴とする請求項1記載の成形加工用アルミニウム合金板。 The aluminum alloy ingot further comprises Fe: 0.1 to 0.8%, Cu: 1.2% or less, Mg: 0.4% or less, Cr: 0.3% or less, Zn: 0.3% The aluminum alloy sheet for forming according to claim 1, wherein one or two of Zr: 0.3% or less are contained.
  3. 前記不純物としてのVを40ppm以下に規制したことを特徴とする請求項1または2記載の成形加工用アルミニウム合金板。 The aluminum alloy sheet for forming according to claim 1 or 2, wherein V as the impurity is regulated to 40 ppm or less.
  4. 請求項1~3のいずれかに記載のアルミニウム合金鋳塊の片面または両面にAl-Si系合金ろう材をクラッドし、熱間圧延および冷間圧延してなることを特徴とする成形加工用アルミニウム合金ブレージングシート。 An aluminum for forming process, comprising: an aluminum alloy ingot according to any one of claims 1 to 3 clad with an Al-Si alloy brazing material on one side or both sides, and hot rolling and cold rolling. Alloy brazing sheet.
  5. 請求項1~3のいずれかに記載のアルミニウム合金を溶解し、0.09℃/s以上30℃/s以下の冷却速度で鋳造する工程、得られた鋳塊を均質化熱処理する工程、均質化熱処理した鋳塊を熱間圧延する工程、得られた熱間圧延板を冷間圧延する工程を含んでなることを特徴とする成形加工用アルミニウム合金板の製造方法。 A step of melting the aluminum alloy according to any one of claims 1 to 3 and casting at a cooling rate of 0.09 ° C / s to 30 ° C / s, a step of homogenizing heat treatment of the obtained ingot, homogenization A method for producing an aluminum alloy sheet for forming, characterized by comprising a step of hot-rolling the ingot that has been heat-treated and a step of cold-rolling the obtained hot-rolled plate.
PCT/JP2014/055229 2013-03-11 2014-03-03 Aluminum alloy plate for fabrication, method for producing same, and aluminum alloy brazing sheet WO2014141912A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013047820A JP6236207B2 (en) 2013-03-11 2013-03-11 Aluminum alloy plate for forming process, method for producing the same, and aluminum alloy brazing sheet
JP2013-047820 2013-03-11

Publications (1)

Publication Number Publication Date
WO2014141912A1 true WO2014141912A1 (en) 2014-09-18

Family

ID=51536585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055229 WO2014141912A1 (en) 2013-03-11 2014-03-03 Aluminum alloy plate for fabrication, method for producing same, and aluminum alloy brazing sheet

Country Status (2)

Country Link
JP (1) JP6236207B2 (en)
WO (1) WO2014141912A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110106402A (en) * 2019-05-24 2019-08-09 北京诺飞新能源科技有限责任公司 A kind of production technology of aluminum alloy battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016198937A (en) * 2015-04-09 2016-12-01 株式会社デンソー Composite material containing carbon material layer and heat exchanger

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04289142A (en) * 1991-03-18 1992-10-14 Nippon Light Metal Co Ltd Aluminum alloy for natural color anodizing and its manufacture
JPH0623535A (en) * 1991-05-24 1994-02-01 Kobe Steel Ltd Aluminum alloy composite material for brazing
JPH0741894A (en) * 1993-07-26 1995-02-10 Nippon Light Metal Co Ltd High corrosion resistant aluminum alloy material for heat exchanger tube
JPH08246117A (en) * 1995-03-06 1996-09-24 Furukawa Electric Co Ltd:The High strength aluminum brazing sheet and its production
JPH0978168A (en) * 1995-09-18 1997-03-25 Kobe Steel Ltd Aluminum alloy sheet
JPH10259464A (en) * 1997-03-19 1998-09-29 Mitsubishi Alum Co Ltd Production of aluminum alloy sheet for forming
JPH11293372A (en) * 1998-04-07 1999-10-26 Sumitomo Light Metal Ind Ltd Aluminum alloy clad material for heat exchanger, having high strength and high corrosion resistance
JP2000087165A (en) * 1998-09-08 2000-03-28 Mitsubishi Alum Co Ltd Aluminum alloy clad material for heat exchanger excellent in corrosion resistance
JP2005220425A (en) * 2004-02-09 2005-08-18 Mitsubishi Alum Co Ltd High strength aluminum alloy material for brazing used for heat exchanger
JP2006265701A (en) * 2005-03-25 2006-10-05 Kobe Steel Ltd Cold-rolled aluminum alloy sheet superior in high-temperature property for bottle-shaped can
JP2008516090A (en) * 2004-10-13 2008-05-15 アルコア インコーポレイテッド Recovered high-strength multilayer aluminum brazing sheet products
JP2008188616A (en) * 2007-02-02 2008-08-21 Mitsubishi Alum Co Ltd Aluminum alloy-brazing sheet for heat exchanger having excellent brazability and corrosion resistance, and heat exchanger tube having excellent corrosion resistance
JP2008231555A (en) * 2007-03-23 2008-10-02 Furukawa Sky Kk High corrosion resistant aluminum alloy compound material for heat exchanger, and method of manufacturing the same
JP2011224656A (en) * 2010-03-31 2011-11-10 Kobe Steel Ltd Aluminum alloy brazing sheet and heat exchanger

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04289142A (en) * 1991-03-18 1992-10-14 Nippon Light Metal Co Ltd Aluminum alloy for natural color anodizing and its manufacture
JPH0623535A (en) * 1991-05-24 1994-02-01 Kobe Steel Ltd Aluminum alloy composite material for brazing
JPH0741894A (en) * 1993-07-26 1995-02-10 Nippon Light Metal Co Ltd High corrosion resistant aluminum alloy material for heat exchanger tube
JPH08246117A (en) * 1995-03-06 1996-09-24 Furukawa Electric Co Ltd:The High strength aluminum brazing sheet and its production
JPH0978168A (en) * 1995-09-18 1997-03-25 Kobe Steel Ltd Aluminum alloy sheet
JPH10259464A (en) * 1997-03-19 1998-09-29 Mitsubishi Alum Co Ltd Production of aluminum alloy sheet for forming
JPH11293372A (en) * 1998-04-07 1999-10-26 Sumitomo Light Metal Ind Ltd Aluminum alloy clad material for heat exchanger, having high strength and high corrosion resistance
JP2000087165A (en) * 1998-09-08 2000-03-28 Mitsubishi Alum Co Ltd Aluminum alloy clad material for heat exchanger excellent in corrosion resistance
JP2005220425A (en) * 2004-02-09 2005-08-18 Mitsubishi Alum Co Ltd High strength aluminum alloy material for brazing used for heat exchanger
JP2008516090A (en) * 2004-10-13 2008-05-15 アルコア インコーポレイテッド Recovered high-strength multilayer aluminum brazing sheet products
JP2006265701A (en) * 2005-03-25 2006-10-05 Kobe Steel Ltd Cold-rolled aluminum alloy sheet superior in high-temperature property for bottle-shaped can
JP2008188616A (en) * 2007-02-02 2008-08-21 Mitsubishi Alum Co Ltd Aluminum alloy-brazing sheet for heat exchanger having excellent brazability and corrosion resistance, and heat exchanger tube having excellent corrosion resistance
JP2008231555A (en) * 2007-03-23 2008-10-02 Furukawa Sky Kk High corrosion resistant aluminum alloy compound material for heat exchanger, and method of manufacturing the same
JP2011224656A (en) * 2010-03-31 2011-11-10 Kobe Steel Ltd Aluminum alloy brazing sheet and heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110106402A (en) * 2019-05-24 2019-08-09 北京诺飞新能源科技有限责任公司 A kind of production technology of aluminum alloy battery
CN110106402B (en) * 2019-05-24 2020-06-09 北京诺飞新能源科技有限责任公司 Production process of aluminum alloy battery box

Also Published As

Publication number Publication date
JP6236207B2 (en) 2017-11-22
JP2014173153A (en) 2014-09-22

Similar Documents

Publication Publication Date Title
JP4166613B2 (en) Aluminum alloy fin material for heat exchanger and heat exchanger formed by assembling the fin material
US7989087B2 (en) Brazing fin material for heat exchangers, heat exchanger, and method of manufacturing same
JP4547032B1 (en) Fluxless brazing method of aluminum material and aluminum clad material for fluxless brazing
JP6452626B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP4702797B2 (en) Manufacturing method of aluminum alloy clad material excellent in surface bondability by brazing of sacrificial anode material surface
JP6452627B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP4623729B2 (en) Aluminum alloy clad material and heat exchanger excellent in surface bonding by brazing of sacrificial anode material surface
JP4993440B2 (en) High strength aluminum alloy clad material for heat exchangers with excellent brazeability
WO2014065355A1 (en) Aluminum alloy brazing sheet for fin, heat exchanger, and method for producing heat exchanger
JP6726370B1 (en) Aluminum brazing sheet for flux-free brazing
JP6726371B1 (en) Aluminum alloy plate for brazing and aluminum brazing sheet
JP4220410B2 (en) Aluminum alloy clad material for heat exchanger
JP5836695B2 (en) Aluminum alloy fin material for heat exchangers with excellent strength and corrosion resistance after brazing
JP2008240084A (en) Aluminum alloy-clad material for heat exchanger and brazing sheet
WO2016143119A1 (en) Brazing sheet with excellent corrosion resistance after brazing
JP5629113B2 (en) Aluminum alloy brazing sheet excellent in brazing and corrosion resistance, and heat exchanger using the same
JP4220411B2 (en) Aluminum alloy clad material for heat exchanger
JP5578702B2 (en) Aluminum alloy fin material for heat exchanger and heat exchanger
JP6236207B2 (en) Aluminum alloy plate for forming process, method for producing the same, and aluminum alloy brazing sheet
WO2017169633A1 (en) Aluminum alloy brazing sheet
JP5084490B2 (en) Aluminum alloy clad material
JP2001170793A (en) High-strength aluminum alloy clad metal for heat exchanger excellent in tube manufacturing property and corrosion resistance
JP2010209426A (en) Aluminum alloy brazed body, method for heat-treating the same, and heat exchanger
JP2017110266A (en) Aluminum alloy-made brazing sheet excellent strength after brazing
JP6624417B2 (en) Brazing sheet with excellent corrosion resistance after brazing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14765132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14765132

Country of ref document: EP

Kind code of ref document: A1