JP4220410B2 - Aluminum alloy clad material for heat exchanger - Google Patents

Aluminum alloy clad material for heat exchanger Download PDF

Info

Publication number
JP4220410B2
JP4220410B2 JP2004041027A JP2004041027A JP4220410B2 JP 4220410 B2 JP4220410 B2 JP 4220410B2 JP 2004041027 A JP2004041027 A JP 2004041027A JP 2004041027 A JP2004041027 A JP 2004041027A JP 4220410 B2 JP4220410 B2 JP 4220410B2
Authority
JP
Japan
Prior art keywords
sacrificial anode
brazing
aluminum alloy
less
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004041027A
Other languages
Japanese (ja)
Other versions
JP2005232506A (en
Inventor
良太 尾崎
高弘 小山
美房 正路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2004041027A priority Critical patent/JP4220410B2/en
Publication of JP2005232506A publication Critical patent/JP2005232506A/en
Application granted granted Critical
Publication of JP4220410B2 publication Critical patent/JP4220410B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、熱交換器用アルミニウム合金クラッド材、とくに、不活性ガス雰囲気中でのフッ化物フラックスを用いたろう付けや真空ろう付けにより接合されるラジエータやヒータコアなどのアルミニウム合金製熱交換器のチューブ、ヘッダーなど、流体通路構成部材の素材として好適な三層構造の熱交換器用アルミニウム合金クラッド材に関する。   The present invention is an aluminum alloy clad material for a heat exchanger, in particular, a tube of an aluminum alloy heat exchanger such as a radiator or a heater core joined by brazing or vacuum brazing using a fluoride flux in an inert gas atmosphere, The present invention relates to an aluminum alloy clad material for a heat exchanger having a three-layer structure suitable as a material for a fluid passage constituent member such as a header.

熱交換器、たとえば自動車のラジエータは、外面にフィンを有し内面が作動流体(冷媒)の通路となるチューブ(クラッド板を溶接あるいはろう付けによってチューブ形状としたもの)およびヘッダーから構成されている。このような自動車のラジエータまたはヒータコアなどのチューブ材、ヘッダープレート材としては、JIS A3003などのAl−Mn系合金を芯材とし、芯材の片面にAl−Si系合金ろう材をクラッドした二層構造のアルミニウム合金クラッド材、芯材の両面にろう材をクラッドした三層構造のアルミニウム合金クラッド材、または芯材の一方の面にろう材をクラッドし、他方の面にAl−Zn系合金またはAl−Zn−Mg系合金の犠牲陽極材をクラッドした三層構造のアルミニウム合金クラッド材が用いられている。   2. Description of the Related Art A heat exchanger, for example, an automobile radiator, includes a tube (having a clad plate formed into a tube shape by welding or brazing) and a header having fins on the outer surface and the inner surface serving as a passage for a working fluid (refrigerant). . As a tube material and header plate material such as an automobile radiator or heater core, an Al-Mn alloy such as JIS A3003 is used as a core material, and an Al-Si alloy brazing material is clad on one side of the core material. Aluminum alloy clad material with a structure, aluminum alloy clad material with a three-layer structure in which a brazing material is clad on both sides of the core material, or a brazing material is clad on one surface of the core material, and an Al-Zn alloy or An aluminum alloy clad material having a three-layer structure in which a sacrificial anode material of an Al—Zn—Mg alloy is clad is used.

クラッド材のAl−Si系ろう材は、アルミニウム合金製熱交換器を製作するとき、チューブ外面とフィンとの接合、チューブとヘッダープレートとの接合、またはクラッド板からろう付けによりチューブを製造する場合のろう付け接合のためにクラッドされている。これらのろう付には、フッ化物フラックスを用いる不活性ガス雰囲気ろう付け、真空ろう付けが適用される。   When manufacturing an aluminum alloy heat exchanger, the clad Al-Si brazing material is used when a tube is manufactured by joining the outer surface of the tube and the fin, joining the tube and the header plate, or brazing from the clad plate. Clad for brazing joints. For these brazings, inert gas atmosphere brazing using a fluoride flux and vacuum brazing are applied.

三層構造のアルミニウム合金クラッド材の犠牲陽極材は、たとえばチューブの内面側に使用され、作動流体と接して犠牲陽極作用を発揮し、芯材の孔食や隙間腐食の発生を防止する。チューブ外面に接合されたフィン材は、使用中に犠牲陽極作用を発揮して芯材の孔食の発生を防止する。   The sacrificial anode material of the aluminum alloy clad material having a three-layer structure is used on the inner surface side of the tube, for example, and exerts a sacrificial anode action in contact with the working fluid to prevent the occurrence of pitting corrosion and crevice corrosion of the core material. The fin material joined to the outer surface of the tube exhibits a sacrificial anodic action during use to prevent the occurrence of pitting corrosion of the core material.

近年、自動車の軽量化の要請に伴う自動車用熱交換器の軽量化の観点から、チューブ材を薄肉化するために、これまで芯材あるいは犠牲陽極材の組成改善により高強度化を図ったクラッド材が種々提案されており、最近では、犠牲陽極材にMn、Siを添加して強度を向上させる手法が提案されている。   In recent years, from the viewpoint of reducing the weight of automotive heat exchangers in response to demands for reducing the weight of automobiles, cladding has been improved so far by improving the composition of the core material or sacrificial anode material in order to reduce the thickness of the tube material. Various materials have been proposed, and recently, a technique for improving the strength by adding Mn and Si to the sacrificial anode material has been proposed.

例えば、犠牲陽極材にMnまたはMn、Siを添加し、Al−Mn系金属間化合物の分布を制御することにより耐食性を高めた高強度アルミニウム合金複合材(特許文献1、2参照)、犠牲陽極材にMnとSiを添加するとともに、単体Si析出物やSi含有晶出物、析出物の量を制御し、粒界析出物を生じ難くして耐食性を向上させ、さらに犠牲陽極材中のSi含有量とZn含有量との比率を調整して強度と耐食性とのバランスを得た高強度アルミニウム合金複合材が提案されている(特許文献3、4参照)。   For example, a high-strength aluminum alloy composite (see Patent Documents 1 and 2) whose corrosion resistance is improved by adding Mn, Mn, or Si to the sacrificial anode material and controlling the distribution of Al-Mn intermetallic compounds, sacrificial anode In addition to adding Mn and Si to the material, the amount of simple Si precipitates, Si-containing crystallized substances, and precipitates is controlled to make it difficult to produce grain boundary precipitates, thereby improving the corrosion resistance. Further, Si in the sacrificial anode material A high-strength aluminum alloy composite has been proposed in which the ratio between the content and the Zn content is adjusted to obtain a balance between strength and corrosion resistance (see Patent Documents 3 and 4).

しかしながら、チューブの内面となる犠牲陽極材の耐食性については、MnやSiを多く含有させた場合、粒界腐食感受性が高くなる傾向があり、とくに犠牲陽極材を薄肉化した場合、短期間に腐食が芯材まで到達してしまい、早期貫通に到るという難点がある。一方、ろう付け性に関しては、犠牲陽極材にMnやSiを添加すると、とくにチューブの接合が溶接ではなくろう付けにより行われ、ろう材と犠牲陽極材でろう付け接合される場合、析出物の分散状態によっては、加工組織を有する犠牲陽極材が加熱ろう付け中に再結晶せずに、亜結晶粒が残存し、ろう材が犠牲陽極材中に浸食(エロージョン)し、浸食部での耐圧強度や耐食性が低下するなどの問題が生じる。
特開平11−61305号公報 特開平11−61306号公報 特開2003−293060号公報 特開2003−268470号公報
However, regarding the corrosion resistance of the sacrificial anode material that forms the inner surface of the tube, when Mn and Si are contained in a large amount, the intergranular corrosion susceptibility tends to increase. However, there is a problem that it reaches the core material and leads to early penetration. On the other hand, with respect to brazeability, when Mn or Si is added to the sacrificial anode material, the tube is joined not by welding but by brazing, and when the brazing material and sacrificial anode material are brazed, Depending on the dispersion state, the sacrificial anode material having a processed structure does not recrystallize during brazing, and subcrystalline grains remain, and the brazing material erodes (eroses) in the sacrificial anode material, and the pressure resistance at the erosion part Problems such as reduced strength and corrosion resistance occur.
Japanese Patent Laid-Open No. 11-61305 JP-A-11-61306 JP 2003-293060 A JP 2003-268470 A

発明者らは、犠牲陽極材にMn、Siを添加して強度を向上させてアルミニウム合金クラッド材の薄肉化を達成する手法において、上記の問題点を解決するために、粒界腐食の発生、ろう材の浸食と添加元素や金属間化合物の分散との関係について再検討を行った結果、犠牲陽極材にTiを添加すると粒界腐食感受性が抑制できること、また、Si系化合物、Fe系化合物とともにMn系化合物の微細析出を抑え、これらの化合物の粒径、分布を制御することによりろう材の浸食が抑制できることを見出した。   In order to solve the above problems in the method of improving the strength by adding Mn, Si to the sacrificial anode material to achieve thinning of the aluminum alloy cladding material, the occurrence of intergranular corrosion, As a result of reexamination of the relationship between brazing metal erosion and dispersion of additive elements and intermetallic compounds, the addition of Ti to the sacrificial anode material can suppress intergranular corrosion susceptibility, and together with Si-based compounds and Fe-based compounds It has been found that erosion of the brazing material can be suppressed by suppressing fine precipitation of Mn-based compounds and controlling the particle size and distribution of these compounds.

本発明は、上記の知見に基づいてさらに検討を加えた結果としてなされたものであり、その目的は、ラジエータとくに自動車搭載用ラジエータやヒータコアなどのアルミニウム合金製熱交換器のチューブ材、ヘッダープレート材として好適に使用することができるろう付け性、耐食性、ろう付け後の強度特性に優れた熱交換器用アルミニウム合金クラッド材を提供することにある。   The present invention has been made as a result of further studies based on the above knowledge, and the object thereof is a tube material and a header plate material of a heat exchanger made of aluminum alloy such as a radiator, particularly a radiator mounted on an automobile and a heater core. It is an object to provide an aluminum alloy clad material for a heat exchanger that is excellent in brazing properties, corrosion resistance, and strength properties after brazing, which can be suitably used.

上記の目的を達成するための請求項1による熱交換器用アルミニウム合金クラッド材は、芯材の一方の面に犠牲陽極材をクラッドし、他方の面にろう材をクラッドしたアルミニウム合金三層構造のクラッド材であって、芯材がMn:0.6〜2.0%、Cu:0.3〜1.0%、Si:0.3〜1.2%、Fe:0.01〜0.4%,Ti:0.06〜0.35%を含有し、残部Alおよび不純物からなるアルミニウム合金であり、犠牲陽極材がZn:2.0〜6.0%、Mn:1.2〜2.0%、Si:0.4〜1.2%、Fe:0.01〜0.3%、Ti:0.01〜0.3%を含有し、残部Alおよび不純物からなるアルミニウム合金であり、ろう材がAl−Si系合金ろう材であることを特徴とする。   In order to achieve the above object, an aluminum alloy clad material for a heat exchanger according to claim 1 has an aluminum alloy three-layer structure in which a sacrificial anode material is clad on one surface of a core material and a brazing material is clad on the other surface. It is a cladding material, and the core material is Mn: 0.6-2.0%, Cu: 0.3-1.0%, Si: 0.3-1.2%, Fe: 0.01-0. 4%, Ti: 0.06 to 0.35%, an aluminum alloy composed of the balance Al and impurities. Sacrificial anode material is Zn: 2.0 to 6.0%, Mn: 1.2 to 2 0.0%, Si: 0.4 to 1.2%, Fe: 0.01 to 0.3%, Ti: 0.01 to 0.3%, an aluminum alloy composed of the balance Al and impurities The brazing material is an Al—Si alloy brazing material.

請求項2による熱交換器用アルミニウム合金クラッド材は、請求項1において、芯材が、さらにMg:0.5%以下を含有することを特徴とする。   The aluminum alloy clad material for heat exchanger according to claim 2 is characterized in that, in claim 1, the core material further contains Mg: 0.5% or less.

請求項3による熱交換器用アルミニウム合金クラッド材は、請求項1または2において、芯材が、さらにCr:0.5%以下、Zr:0.3%以下、B:0.1%以下のうちの1種または2種以上を含有することを特徴とする。   The aluminum alloy clad material for a heat exchanger according to claim 3 is the aluminum alloy clad material according to claim 1 or 2, wherein the core material is further Cr: 0.5% or less, Zr: 0.3% or less, and B: 0.1% or less. 1 type or 2 types or more are contained.

請求項4による熱交換器用アルミニウム合金クラッド材は、請求項1〜3のいずれかにおいて、犠牲陽極材が、さらにIn:0.005〜0.05%、Sn:0.005〜0.05%のうちの1種または2種を含有することを特徴とする。   The aluminum alloy clad material for a heat exchanger according to claim 4 is any one of claims 1 to 3, wherein the sacrificial anode material is further In: 0.005 to 0.05%, Sn: 0.005 to 0.05%. It contains 1 type or 2 types of these, It is characterized by the above-mentioned.

請求項5による熱交換器用アルミニウム合金クラッド材は、請求項1〜4のいずれかにおいて、犠牲陽極材が、さらにMg:2.5%以下を含有することを特徴とする。   The aluminum alloy clad material for heat exchanger according to claim 5 is characterized in that in any one of claims 1 to 4, the sacrificial anode material further contains Mg: 2.5% or less.

請求項6による熱交換器用アルミニウム合金クラッド材は、請求項1〜5のいずれかにおいて、犠牲陽極材が、さらにCu:0.2%以下、Cr:0.3%以下、Zr:0.3%以下、B:0.1%以下のうちの1種または2種以上を含有することを特徴とする。   The aluminum alloy clad material for a heat exchanger according to claim 6 is any one of claims 1 to 5, wherein the sacrificial anode material is further Cu: 0.2% or less, Cr: 0.3% or less, Zr: 0.3 % Or less, and B: 0.1% or less.

請求項7による熱交換器用アルミニウム合金クラッド材は、請求項1〜6のいずれかにおいて、ろう材がSr:0.005〜0.1%を含有するAl−Si系合金ろう材であることを特徴とする。   An aluminum alloy clad material for a heat exchanger according to claim 7 is any one of claims 1 to 6, wherein the brazing material is an Al-Si based alloy brazing material containing Sr: 0.005 to 0.1%. Features.

本発明によれば、不活性ガス雰囲気中でのフッ化物フラックスを用いたろう付けや真空ろう付けにより接合されるラジエータとくに自動車搭載用ラジエータやヒータコアなどのアルミニウム合金製熱交換器のチューブ、ヘッダーなど、流体通路構成部材の素材として好適な、ろう付け性、耐食性、ろう付け後の強度特性に優れた三層構造の熱交換器用アルミニウム合金クラッド材が提供される。   According to the present invention, radiators joined by brazing or vacuum brazing using a fluoride flux in an inert gas atmosphere, especially tubes for aluminum heat exchangers such as radiators for automobiles and heater cores, headers, etc. An aluminum alloy clad material for a heat exchanger having a three-layer structure excellent in brazing property, corrosion resistance, and strength properties after brazing, which is suitable as a material for a fluid passage constituent member is provided.

本発明のアルミニウム合金クラッド材の組成およびその限定理由について説明する。
(犠牲陽極材)
Zn:2.0〜6.0%
Znは、犠牲陽極材の電位を卑にし、芯材に対する犠牲陽極効果を発揮させ、芯材の孔食または隙間腐食の発生を防止する。Znの好ましい含有量は2.0〜6.0%の範囲であり、Znの含有量が2.0%未満ではその効果が小さく、6.0%を越えて含有すると犠牲陽極材の自己耐食性が低下する。
The composition of the aluminum alloy clad material of the present invention and the reason for limitation will be described.
(Sacrificial anode material)
Zn: 2.0-6.0%
Zn lowers the potential of the sacrificial anode material, exhibits the sacrificial anode effect on the core material, and prevents the occurrence of pitting corrosion or crevice corrosion of the core material. The preferable content of Zn is in the range of 2.0 to 6.0%. If the Zn content is less than 2.0%, the effect is small, and if the content exceeds 6.0%, the self-corrosion resistance of the sacrificial anode material Decreases.

Mn:1.2〜2.0%
Mnは、強度を向上させるとともに、クラッド圧延時における犠牲陽極材の変形抵抗を向上させ、犠牲陽極材の優先伸びを抑制することで接合性を高め、クラッド性を改善する効果がある。とくにSiとMn−Si系化合物を形成して強度向上に寄与する。Mnは、犠牲陽極材中でMn系化合物を形成し、該化合物の微細粒子の分布を後述するSi系化合物、Fe化合物の粒子分布とともに調整し、犠牲陽極材中に粒子径0.01〜0.1μmの化合物粒子の合計を1mm当たり2×10個以下とすることにより、ろう付け時におけるろう材の犠牲陽極材への浸食を抑制することができる。Mnの好ましい含有量は1.2〜2.0%の範囲であり、1.2%未満では強度向上の効果が十分ではなく、2.0%を越えると、鋳造時に粗大な化合物が生成して自己耐食性が低下する。Mnのさらに好ましい含有範囲は1.2〜1.8%である。
Mn: 1.2 to 2.0%
Mn has an effect of improving the cladability by improving the strength, improving the deformation resistance of the sacrificial anode material during clad rolling, and suppressing the preferential elongation of the sacrificial anode material. In particular, Si and a Mn-Si compound are formed to contribute to strength improvement. Mn forms a Mn-based compound in the sacrificial anode material, adjusts the fine particle distribution of the compound together with the particle distribution of the Si-based compound and Fe compound described later, and has a particle size of 0.01 to 0 in the sacrificial anode material. When the total of 1 μm compound particles is 2 × 10 7 or less per 1 mm 2 , erosion of the brazing material to the sacrificial anode material during brazing can be suppressed. The preferable content of Mn is in the range of 1.2 to 2.0%. If it is less than 1.2%, the effect of improving the strength is not sufficient, and if it exceeds 2.0%, a coarse compound is produced during casting. Self-corrosion resistance is reduced. A more preferable content range of Mn is 1.2 to 1.8%.

Si:0.4〜1.2%
Siは、犠牲陽極材のマトリックスにSi系化合物を生成させ、該化合物の粒子分布を前記Mn系化合物および後述するFe系化合物の粒子分布とともに調整することにより、ろう付け時におけるろう材の犠牲陽極材への浸食を抑制することができる。とくにMnとともにMn−Si系化合物を形成することによって強度向上効果が増大する。Siの好ましい含有量は0.4〜1.2%の範囲であり、0.4%未満では強度向上の効果が小さく、1.2%を越えると、大きなSi系化合物粒子の数が多くなり、犠牲陽極材の自己耐食性を低下させるため、犠牲陽極効果が劣るものとなる。Siのさらに好ましい含有範囲は0.6〜1.1%である。
Si: 0.4-1.2%
Si produces a Si-based compound in the matrix of the sacrificial anode material, and adjusts the particle distribution of the compound together with the particle distribution of the Mn-based compound and the Fe-based compound described later, thereby sacrificing the sacrificial anode of the brazing material at the time of brazing Erosion to the material can be suppressed. In particular, the strength improvement effect is increased by forming a Mn-Si compound together with Mn. The preferable content of Si is in the range of 0.4 to 1.2%. When the content is less than 0.4%, the effect of improving the strength is small. When the content exceeds 1.2%, the number of large Si compound particles increases. Since the self-corrosion resistance of the sacrificial anode material is lowered, the sacrificial anode effect is inferior. The more preferable content range of Si is 0.6 to 1.1%.

Fe:0.01〜0.3%
Feは、Fe系化合物の粒子分布を前記Mn系化合物、Si系化合物の粒子分布とともに調整することにより、ろう付け時におけるろう材の犠牲陽極材への浸食を抑制することができる。Fe含有量が0.3%を越えると犠牲陽極材の自己耐蝕性が低下する。Feの好ましい含有量は0.01〜0.3%の範囲であり、0.01%未満では地金コストが高くなり好ましくない。Feのさらに好ましい含有範囲は0.01〜0.2%である。
Fe: 0.01 to 0.3%
Fe can control the erosion of the brazing material to the sacrificial anode material during brazing by adjusting the particle distribution of the Fe-based compound together with the particle distribution of the Mn-based compound and the Si-based compound. If the Fe content exceeds 0.3%, the self-corrosion resistance of the sacrificial anode material decreases. The preferable content of Fe is in the range of 0.01 to 0.3%, and if it is less than 0.01%, the metal cost increases, which is not preferable. A more preferable content range of Fe is 0.01 to 0.2%.

Ti:0.01〜0.3%
Tiは、材料の板厚方向に濃度の高い領域と低い領域に分かれ、これらの領域が層状となって交互に分布し、Ti濃度の低い領域が高い領域に比べ優先的に腐食することにより、腐食形態を層状にする効果を有し、この効果により板厚方向への粒界腐食の進行が妨げられ材料の耐孔食性が向上する。Tiの好ましい含有量は0.01〜0.3%の範囲であり、0.01%未満ではその効果が小さく、0.3%を越えると、鋳造時に巨大な晶出物が生成し、また加工性が低下して健全な材料の製造が困難となる。Tiのさらに好ましい含有範囲は0.06〜0.3%である。
Ti: 0.01 to 0.3%
Ti is divided into a high concentration region and a low region in the thickness direction of the material, and these regions are alternately distributed in layers, and the low Ti concentration region corrodes preferentially compared to the high region, It has the effect of layering the corrosion form, and this effect prevents the progress of intergranular corrosion in the plate thickness direction and improves the pitting corrosion resistance of the material. The preferable content of Ti is in the range of 0.01 to 0.3%. If the content is less than 0.01%, the effect is small, and if it exceeds 0.3%, a huge crystallized product is produced during casting. The processability is lowered and it is difficult to produce a sound material. A more preferable content range of Ti is 0.06 to 0.3%.

In:0.005〜0.05%
Inは、微量の添加によって犠牲陽極材の電位を卑とし、犠牲陽極効果によって芯材の孔食や隙間腐食の発生を防止する。Inの好ましい含有量は0.005〜0.05%の範囲であり、0.005%未満ではその効果が十分でなく、0.05%を越えると、自己耐食性および圧延加工性が低下する。Inのさらに好ましい含有範囲は0.01〜0.02%である。
In: 0.005 to 0.05%
In makes the potential of the sacrificial anode material base by adding a small amount, and prevents the occurrence of pitting corrosion and crevice corrosion of the core material by the sacrificial anode effect. The preferable content of In is in the range of 0.005 to 0.05%. If it is less than 0.005%, the effect is not sufficient, and if it exceeds 0.05%, the self-corrosion resistance and the rolling workability are lowered. A more preferable content range of In is 0.01 to 0.02%.

Sn:0.05〜0.05%
Snは、微量の添加によって犠牲陽極材の電位を卑とし、犠牲陽極効果によって芯材の孔食や隙間腐食の発生を防止する効果を有し、芯材に対し確実に犠牲陽極効果を発揮するよう機能する。Snの好ましい含有量は0.005〜0.05%の範囲であり、0.005%未満ではその効果が十分でなく、0.05%を越えると、自己耐食性および圧延加工性が低下する。Snのさらに好ましい含有範囲は0.01〜0.02%である。
Sn: 0.05-0.05%
Sn has the effect of preventing the occurrence of pitting corrosion and crevice corrosion of the core material by the sacrificial anode effect by making the potential of the sacrificial anode material base by adding a small amount, and reliably exhibits the sacrificial anode effect on the core material. It works as follows. The preferable content of Sn is in the range of 0.005 to 0.05%. If it is less than 0.005%, the effect is not sufficient, and if it exceeds 0.05%, the self-corrosion resistance and the rolling processability are lowered. A more preferable content range of Sn is 0.01 to 0.02%.

Mg:2.5%以下
Mgは、熱交換器などのろう付け組み立て時、ろう付け加熱中に芯材へ拡散し、芯材中のSiやCuとともに強度を高めるよう機能する。犠牲陽極材に残存したMgはSiとともに犠牲陽極材の強度を高め、これらの効果によってクラッド材の強度を改善する。Mgの好ましい含有量は2.5%以下の範囲であり、2.5%を越えると圧延加工性が低下する。Mgのさらに好ましい含有範囲は0.5〜2.5%である。
Mg: 2.5% or less Mg is diffused into the core material during brazing heating during brazing assembly of a heat exchanger or the like, and functions to increase the strength together with Si and Cu in the core material. Mg remaining in the sacrificial anode material increases the strength of the sacrificial anode material together with Si, and improves the strength of the clad material by these effects. The preferable content of Mg is in the range of 2.5% or less. If it exceeds 2.5%, the rolling processability is lowered. A more preferable content range of Mg is 0.5 to 2.5%.

Cu:0.2%以下、Cr:0.3%以下、Zr:0.3%以下、B:0.1%以下
Cu、Cr、ZrおよびBは、上記の範囲で含有させることができる。Cuが0.2%を越えると、犠牲陽極材と芯材との間の電位差が十分確保されず、芯材に対する犠牲陽極効果が低下する。Cr、ZrおよびBはそれぞれ0.3%、0.3%および0.1%を越えて含有されると、鋳造時に巨大な晶出物が生成し、健全な板材の製造が困難となる。
Cu: 0.2% or less, Cr: 0.3% or less, Zr: 0.3% or less, B: 0.1% or less Cu, Cr, Zr and B can be contained in the above ranges. When Cu exceeds 0.2%, a sufficient potential difference between the sacrificial anode material and the core material is not secured, and the sacrificial anode effect on the core material is lowered. If Cr, Zr, and B are contained in amounts exceeding 0.3%, 0.3%, and 0.1%, respectively, huge crystallized products are generated during casting, and it becomes difficult to produce a sound plate material.

(芯材)
Mn:0.6〜2.0%
Mnは、芯材の強度を向上させるとともに、芯材の電位を貴にして犠牲陽極材との電位差を大きくして耐食性を高めるよう機能する。Mnの好ましい含有量は0.6〜2.0%の範囲であり、0.3%%未満ではその効果が小さく、2.0%を越えると、鋳造時に粗大な化合物が生成し圧延加工性が低下して健全な板材(芯材)が得難くなる。Mnのさらに好ましい含有範囲は1.2〜1.8%である。
(Core material)
Mn: 0.6 to 2.0%
Mn functions to improve the corrosion resistance by improving the strength of the core material and making the potential of the core material noble and increasing the potential difference from the sacrificial anode material. The preferable content of Mn is in the range of 0.6 to 2.0%. If the content is less than 0.3%, the effect is small. If the content exceeds 2.0%, a coarse compound is produced during casting, and the rolling processability is reduced. Decreases and it becomes difficult to obtain a sound plate material (core material). A more preferable content range of Mn is 1.2 to 1.8%.

Cu:0.3〜1.0%
Cuは、芯材の強度を向上させるとともに、芯材の電位を貴にし、犠牲陽極材のとの電位差およびろう材との電位差を大きくして耐食性を向上させるよう機能する。また、チューブをラジエータとして組み付ける際の加熱ろう付け時に犠牲陽極材およびろう材に拡散して、犠牲陽極材およびろう材の厚さ方向になだらかなCuの濃度勾配を形成させ、この結果、芯材側の電位は貴となり、犠牲陽極材の表面側およびろう材の表面側の電位は卑となって、犠牲陽極材およびろう材の厚さ方向になだらかな電位勾配が形成されるため、腐食形態が全面腐食型となる。Cuの好ましい含有量は0.3〜1.0%の範囲であり、0.3%未満ではその効果が小さく、1.0%を越えると芯材の耐食性が低下し、また融点が低下して加熱ろう付け時に局部的な溶融が生じ易くなる。Cuのさらに好ましい含有範囲は0.4〜0.7%である。
Cu: 0.3 to 1.0%
Cu functions to improve the corrosion resistance by improving the strength of the core material, making the potential of the core material noble, and increasing the potential difference with the sacrificial anode material and the potential difference with the brazing material. Further, when the tube is assembled as a radiator, it diffuses into the sacrificial anode material and the brazing material at the time of heat brazing to form a gentle Cu concentration gradient in the thickness direction of the sacrificial anode material and the brazing material. The potential on the side becomes noble, the potential on the surface side of the sacrificial anode material and the surface side of the brazing material becomes base, and a gentle potential gradient is formed in the thickness direction of the sacrificial anode material and brazing material. Becomes a full corrosive type. The preferable content of Cu is in the range of 0.3 to 1.0%. If the content is less than 0.3%, the effect is small. If the content exceeds 1.0%, the corrosion resistance of the core material is lowered, and the melting point is lowered. Thus, local melting is likely to occur during heat brazing. The more preferable content range of Cu is 0.4 to 0.7%.

Si:0.3〜1.2%
Siは、芯材の強度を向上させる効果を有する。とくに、犠牲陽極材にMgが含有する場合、Siは加熱ろう付け中に犠牲陽極材から拡散してくるMgと共存してMgと結合してMg2 Siを生成することにより、ろう付け後に時効硬化が生じ、強度がさらに向上する。Siの好ましい含有量は0.3〜1.2%の範囲であり、0.3%未満ではその効果が小さく、1.2%を越えると、芯材の耐食性が低下するとともに、芯材の融点を下げ、加熱ろう付け時に局部溶融が生じ易くなる。Siのさらに好ましい含有範囲は0.6〜1.1%である。
Si: 0.3-1.2%
Si has the effect of improving the strength of the core material. In particular, when Mg is contained in the sacrificial anode material, Si coexists with Mg diffusing from the sacrificial anode material during the heat brazing to bond with Mg to form Mg 2 Si, thereby aging after brazing. Curing occurs and the strength is further improved. The preferable content of Si is in the range of 0.3 to 1.2%. When the content is less than 0.3%, the effect is small. When the content exceeds 1.2%, the corrosion resistance of the core material decreases, and The melting point is lowered, and local melting tends to occur during brazing with heating. The more preferable content range of Si is 0.6 to 1.1%.

Ti:0.06〜0.35%
Tiは、材料の板厚方向に濃度の高い領域と低い領域に分かれ、これらの領域が層状となって交互に分布し、Ti濃度の低い領域が高い領域に比べ優先的に腐食することにより、腐食形態を層状にする効果を有し、この効果により板厚方向への粒界腐食の進行が妨げられ材料の耐孔食性が向上する。Tiの好ましい含有量は0.06〜0.35%の範囲であり、0.06%未満ではその効果が小さく、0.35%を越えると、鋳造が困難となり、また加工性が低下して健全な材料の製造が困難となる。
Ti: 0.06-0.35%
Ti is divided into a high concentration region and a low region in the thickness direction of the material, and these regions are alternately distributed in layers, and the low Ti concentration region corrodes preferentially compared to the high region, It has the effect of layering the corrosion form, and this effect prevents the progress of intergranular corrosion in the plate thickness direction and improves the pitting corrosion resistance of the material. The preferable content of Ti is in the range of 0.06 to 0.35%. If the content is less than 0.06%, the effect is small, and if it exceeds 0.35%, casting becomes difficult and workability decreases. It becomes difficult to produce sound materials.

Mg:0.5%以下
Mgは、芯材の強度を向上させる。Mgの好ましい含有量は0.05〜0.5%の範囲であり、0.05%未満ではその効果が小さく、0.5%を越えて含有すると、フッ化物系フラックスを用いて不活性ガス雰囲気中で加熱ろう付けを行う場合、ろう付け時にMgがフッ化物系フラックスと反応してMgのフッ化物が生成し、ろう付け性を低下させるとともに、ろう付け部の外観が悪くなる。Mgのさらに好ましい含有範囲は0.05〜0.15%である。
Mg: 0.5% or less Mg improves the strength of the core material. The preferable content of Mg is in the range of 0.05 to 0.5%. If the content is less than 0.05%, the effect is small. If the content exceeds 0.5%, an inert gas is used using a fluoride-based flux. When heat brazing is performed in an atmosphere, Mg reacts with a fluoride-based flux during brazing to produce Mg fluoride, which lowers the brazeability and deteriorates the appearance of the brazed portion. A more preferable content range of Mg is 0.05 to 0.15%.

Cr:0.5%以下、Zr:0.3%以下、B:0.1%以下
Cr、ZrおよびBは、上記の範囲内で含有させることができる。Cr、ZrおよびBの含有量がそれぞれ0.5%、0.3%および0.1%を越えると、鋳造時に巨大晶出物が生成し、健全な板材の製造が困難となる。
(ろう材)
ろう材としては、通常用いられているAl−Si系合金、例えばSi:6〜13%を含む合金が使用される。ラジエータなどを構成するために行われるろう付けが真空ろう付けの場合には、Al−Si−1.0〜2.0%Mg系合金などが用いられる。これらのAl−Si系合金、Al−Si−Mg系合金には、必要に応じて、Bi:0.2%以下、Be:0.1%以下、Ca:1.0%以下、Li:1.0%以下が添加されてもよい。
Cr: 0.5% or less, Zr: 0.3% or less, B: 0.1% or less Cr, Zr and B can be contained within the above ranges. If the contents of Cr, Zr, and B exceed 0.5%, 0.3%, and 0.1%, respectively, giant crystals are generated during casting, making it difficult to produce a sound plate material.
(Brazing material)
As the brazing material, a commonly used Al—Si alloy, for example, an alloy containing Si: 6 to 13% is used. In the case where brazing performed to constitute a radiator or the like is vacuum brazing, an Al-Si-1.0 to 2.0% Mg-based alloy or the like is used. These Al—Si based alloys and Al—Si—Mg based alloys include Bi: 0.2% or less, Be: 0.1% or less, Ca: 1.0% or less, Li: 1, as necessary. 0.0% or less may be added.

Sr:0.005〜0.1%
Srは、ろう材中のSi粒子を微細かつ均一に分散させる効果がある。Si粒子が微細かつ均一に分散することにより、ろうの溶融が均一になり、ろう付け性が改善される。Srの好ましい含有量は0.005〜0.1%の範囲であり、0.005%未満ではその効果が小さく、0.1%を越えると、その効果が飽和する。Srのさらに好ましい含有範囲は0.01〜0.03%である。
Sr: 0.005 to 0.1%
Sr has an effect of finely and uniformly dispersing Si particles in the brazing material. When the Si particles are finely and uniformly dispersed, the melting of the brazing becomes uniform and the brazing property is improved. The preferable content of Sr is in the range of 0.005 to 0.1%. If it is less than 0.005%, the effect is small, and if it exceeds 0.1%, the effect is saturated. A more preferable content range of Sr is 0.01 to 0.03%.

本発明のアルミニウム合金クラッド材は、犠牲陽極材にZnの他、Mn、Siを含有させて強度を向上させるとともに、Tiを含有させることによりMn、Siの含有による粒界腐食感受性の増大を抑制して耐粒界腐食性を確保することを特徴とするものである。また、本発明のアルミニウム合金クラッド材における他の特徴は、Mn系化合物、Si系化合物およびFe系化合物のうち、粒子径0.01〜0.1μmの化合物の合計を1mm当たり2×10個以下に調整することにより、ろう付け時におけるろう材の犠牲陽極材への浸食を抑制することにある。粒子径0.01〜0.1μmの化合物の合計が1mm当たり2×10個を越えると、ろう付け時、ろう材が犠牲陽極材へ浸食し易くなり、ろう付け性が低下する。 The aluminum alloy clad material of the present invention contains Mn and Si in addition to Zn in the sacrificial anode material to improve the strength and suppresses the increase in intergranular corrosion sensitivity due to the inclusion of Mn and Si by containing Ti. Thus, intergranular corrosion resistance is ensured. Another feature of the aluminum alloy clad material according to the present invention is that the total of compounds having a particle diameter of 0.01 to 0.1 μm is 2 × 10 7 per 1 mm 2 among Mn-based compounds, Si-based compounds, and Fe-based compounds. By adjusting to the number of pieces or less, it is to suppress the erosion of the brazing material to the sacrificial anode material during brazing. When the total of the compounds having a particle diameter of 0.01 to 0.1 μm exceeds 2 × 10 7 per 1 mm 2 , the brazing material is easily eroded into the sacrificial anode material at the time of brazing, and the brazing property is lowered.

上記の化合物分布得るためには、とくに、犠牲陽極材の製造において、前記組成をそなえた材料を450〜610℃、さらに好ましくは530〜600℃の温度に2〜20時間保持する均質化処理を行うのが望ましい。均質化処理温度が450℃未満では0.01〜0.1μmの微細化合物が多く析出し易く、610℃を越えると、粗大化した化合物が析出して犠牲陽極材の自己耐食性が低下する。均質化処理時間が20時間を越えた場合も同様となる。均質化処理時間が2時間未満では、鋳造時に偏析した晶出物によって自己耐食性が低下する。 In order to obtain the above compound distribution, particularly in the production of the sacrificial anode material, the material having the above composition is kept at a temperature of 450 to 610 ° C, more preferably 530 to 600 ° C for 2 to 20 hours. It is desirable to do. When the homogenization treatment temperature is less than 450 ° C., many fine compounds of 0.01 to 0.1 μm are likely to precipitate, and when it exceeds 610 ° C., the coarsened compound is precipitated and the self-corrosion resistance of the sacrificial anode material is lowered. The same applies when the homogenization time exceeds 20 hours. If the homogenization treatment time is less than 2 hours, the self-corrosion resistance is lowered by the crystallized material segregated during casting.

本発明のアルミニウム合金クラッド材は、芯材、犠牲陽極材およびAl−Si系ろう材を構成するアルミニウム合金を、たとえば、連続鋳造により造塊し、必要に応じて均質化処理後、犠牲陽極材用およびろう材用アルミニウム合金の鋳塊については、それぞれ所定厚さまで熱間圧延し、ついで、芯材用アルミニウム合金鋳塊と、犠牲陽極用アルミニウム合金およびろう材用アルミニウム合金を組み合わせて、常法に従って熱間圧延によりクラッド材とし、その後冷間圧延、中間焼鈍、冷間圧延により所定の厚さとすることによって製造される。   The aluminum alloy clad material of the present invention comprises a core material, a sacrificial anode material, and an aluminum alloy constituting an Al—Si brazing material, for example, ingot by continuous casting, and after homogenization treatment as necessary, a sacrificial anode material The aluminum alloy ingots for solder and brazing material are each hot-rolled to a predetermined thickness, and then the aluminum alloy ingot for core material is combined with the aluminum alloy for sacrificial anode and the aluminum alloy for brazing material. Accordingly, the clad material is manufactured by hot rolling, and then is made to have a predetermined thickness by cold rolling, intermediate annealing, and cold rolling.

以下、本発明の実施例を比較例と対比して説明する。これらの実施例は、本発明の一実施態様を示すものであり、本発明はこれらに限定されるものではない。   Examples of the present invention will be described below in comparison with comparative examples. These examples show one embodiment of the present invention, and the present invention is not limited to these examples.

実施例1
連続鋳造によって表1に示す組成を有する芯材用合金、表2に示す組成を有する犠牲陽極材用合金、および表3に示す組成を有するろう材用合金を造塊し、得られた鋳塊のうち、芯材用合金および犠牲陽極材用合金の鋳塊については均質化処理を行った。犠牲陽極材用合金の鋳塊については、添加元素を均一に分布させ、微細化合物粒子の析出を抑制するために、530〜580℃の温度に10時間保持する条件で均質化処理を行った。
Example 1
An ingot obtained by ingoting a core material alloy having the composition shown in Table 1, a sacrificial anode material alloy having the composition shown in Table 2, and a brazing alloy having the composition shown in Table 3 by continuous casting. Among these, the ingots of the core material alloy and the sacrificial anode material alloy were subjected to a homogenization treatment. The ingot of the alloy for the sacrificial anode material was subjected to a homogenization treatment under the condition of maintaining the temperature at 530 to 580 ° C. for 10 hours in order to uniformly distribute the additive elements and suppress the precipitation of fine compound particles.

ついで、犠牲陽極材用合金およびろう材用合金の鋳塊を所定の厚さまで熱間圧延し、これらの熱間圧延板と芯材用合金の鋳塊(厚さ30mm)とを合わせ材として熱間圧延し、三層構造のクラッド材(厚さ3mm)を得た。その後、冷間圧延、中間焼鈍、冷間圧延によって厚さ0.20mmの板材(クラッド材、調質H14)を得た。クラッド材の構成は、犠牲陽極材は0.025〜0.05mm、ろう材は0.030mmである。   Next, the ingot of the sacrificial anode material alloy and the brazing material alloy is hot-rolled to a predetermined thickness, and the hot-rolled plate and the core alloy ingot (thickness 30 mm) are combined and heated. Cold rolling was performed to obtain a clad material having a three-layer structure (thickness: 3 mm). Thereafter, a plate material (cladding material, tempered H14) having a thickness of 0.20 mm was obtained by cold rolling, intermediate annealing, and cold rolling. The structure of the clad material is 0.025 to 0.05 mm for the sacrificial anode material and 0.030 mm for the brazing material.

Figure 0004220410
Figure 0004220410

Figure 0004220410
Figure 0004220410

Figure 0004220410
Figure 0004220410

得られたクラッド材について、以下の方法により(1)クラッド性、(2)犠牲陽極材の浸食性、(3)引張強さ、(4)犠牲陽極材中の0.1μm以下の化合物粒子数、(5)犠牲陽極材の耐食性、(6)外面の耐食性を評価した。結果を表4に示す。   About the obtained clad material, (1) clad property, (2) erodibility of sacrificial anode material, (3) tensile strength, (4) number of compound particles of 0.1 μm or less in sacrificial anode material by the following methods (5) Corrosion resistance of the sacrificial anode material and (6) Corrosion resistance of the outer surface were evaluated. The results are shown in Table 4.

クラッド性:犠牲陽極材の製造において、圧延加工性がわるく健全な犠牲陽極板材の製造が困難となったことなどに起因してクラッド圧延ができないものをクラッド性不良(×)とし、健全なクラッド材が得られたものをクラッド性良好(○)とする。   Cladity: In the production of sacrificial anode material, the rolling processability is poor and it is difficult to produce a sacrificial anode plate material. The material obtained is defined as having good cladding properties (◯).

犠牲陽極材の浸食性:図1に示すように、2つのクラッド材1、2(幅30mm、長さ30mm、厚さ0.20mm)(3は芯材、4は犠牲陽極材、5はろう材)を犠牲陽極面を上にして重ね合わせて固定する。このときクラッド材1のろう材面側には、フッ化物系フラックスを塗布しておく。重ね合わせた状態で、窒素ガス雰囲気中で595℃の温度(材料温度)に3分間保持したのち冷却する。加熱により、図2に示すように、溶融したろう6はクラッド材1、2の間隙に充填される。溶融ろう6の充填状況を観察し、ろう材が犠牲陽極材および芯材に浸食していないものを良好(○)、犠牲陽極材および芯材へのろう材の浸食が顕著なものを不良(×)とする。   Erosion of sacrificial anode material: As shown in FIG. 1, two clad materials 1 and 2 (width 30 mm, length 30 mm, thickness 0.20 mm) (3 is a core material, 4 is a sacrificial anode material, and 5 is a brazing material. Material) with the sacrificial anode side facing up and fixed. At this time, a fluoride-based flux is applied to the brazing material surface side of the clad material 1. In a superposed state, the substrate is cooled to a temperature of 595 ° C. (material temperature) in a nitrogen gas atmosphere for 3 minutes and then cooled. As shown in FIG. 2, the molten brazing filler 6 is filled in the gap between the clad materials 1 and 2 by heating. Observe the filling state of the molten solder 6, good if the brazing material is not eroded by the sacrificial anode material and the core material (○), bad if the brazing material erosion to the sacrificial anode material and the core material is not good ( X).

引張強さ:上記のろう付け加熱後のアルミニウム合金クラッド材について引張試験を行い、引張強さが170MPa以上のものを合格とする。   Tensile strength: The aluminum alloy clad material after brazing and heating is subjected to a tensile test, and those having a tensile strength of 170 MPa or more are accepted.

犠牲陽極材中の0.1μm以下の化合物粒子数:犠牲陽極材中の化合物分布を、TEM(JEM−200CX)により倍率20000倍で10視野(合計面積2.4mm2 )観察し、写真撮影する。撮影条件は、透過厚さを等しくするために、加速電圧200kVで感度5の露出条件とする。化合物粒子径および化合物の個数は、写真上の化合物粒子(粒子径:0.01μm以上)を目視でわかる範囲でマークした後、画像解析装置により測定する。 The number of compound particles of 0.1 μm or less in the sacrificial anode material: The compound distribution in the sacrificial anode material is observed by TEM (JEM-200CX) at 10 magnifications (total area 2.4 mm 2 ) at a magnification of 20000, and photographed. . The imaging conditions are an exposure condition with an acceleration voltage of 200 kV and a sensitivity of 5 in order to equalize the transmission thickness. The compound particle diameter and the number of compounds are measured by an image analyzer after marking the compound particles (particle diameter: 0.01 μm or more) on the photograph within a range that can be visually observed.

犠牲陽極材の耐食性:前記加熱ろう付け後のクラッド犠牲陽極材(図2に示すもの)を試験材として、以下に示す2種類の腐食試験を実施した。
(腐食試験1)
粒界腐食試験(ISO11846(B法))による。液組成は30g/lNaCl+10ml/lHClとする。なお、規格では試験時間は24時間となっているが、試験10時間後の試験材の断面ミクロ観察により粒界腐食の発生状況を調べた。粒界腐食が発生していないものまたは粒界腐食が軽微であり犠牲陽極層として十分に作用し得るものは良好(○)、粒界腐食が著しく、脱粒などにより犠牲陽極層として十分に作用し得ないものは不良(×)とした。
(腐食試験2)
88℃に加熱した腐食液(Cl- 100ppm、SO4 2- 100ppm、HCO3-100ppm)に336時間連続浸漬し、試験材の最大腐食深さを測定し、最大腐食深さが0.09mm以下のものを合格とした。なお、比液量は5ml/cm2 とした。
Corrosion resistance of sacrificial anode material: Using the clad sacrificial anode material (shown in FIG. 2) after heat brazing as a test material, the following two types of corrosion tests were performed.
(Corrosion test 1)
According to the intergranular corrosion test (ISO11846 (Method B)). The liquid composition is 30 g / l NaCl + 10 ml / l HCl. In the standard, the test time is 24 hours, but the occurrence of intergranular corrosion was examined by microscopic observation of the cross section of the test material 10 hours after the test. No intergranular corrosion or slight intergranular corrosion that can act satisfactorily as a sacrificial anode layer is good (○), intergranular corrosion is remarkable, and it acts satisfactorily as a sacrificial anode layer due to degranulation. Those that could not be obtained were judged as defective (x).
(Corrosion test 2)
Etchant heated to 88 ℃ (Cl - 100ppm, SO 4 2- 100ppm, HCO 3- 100ppm) To 336 hours of continuous immersion, the maximum corrosion depth of the test material is measured, the maximum corrosion depth is less 0.09mm Was accepted. The specific liquid amount was 5 ml / cm 2 .

外面の耐食性(腐食試験3):図3に示すように、クラッド材1のろう材5側に、Al−1.2%Mn−0.15%Cu−1.0%Zn合金からなる厚さ0.06mmのコルゲートフィン7を載せ、窒素ガス雰囲気中でフッ化物系フラックスを用いて、ろう付け温度600℃でろう付けを行う。得られた試験材の外面をJIS8681のCASS試験法に準拠して2週間の腐食試験を行い、試験後の試験材のろう材側(外面)の最大腐食深さを測定して、最大腐食深さが0.10mm以下のものを合格とする。   Corrosion resistance of outer surface (corrosion test 3): As shown in FIG. 3, the thickness of the cladding material 1 on the brazing material 5 side is made of an Al-1.2% Mn-0.15% Cu-1.0% Zn alloy. A 0.06 mm corrugated fin 7 is placed, and brazing is performed at a brazing temperature of 600 ° C. using a fluoride-based flux in a nitrogen gas atmosphere. The outer surface of the obtained test material is subjected to a two-week corrosion test in accordance with the CASS test method of JIS8861, and the maximum corrosion depth is measured on the brazing material side (outer surface) of the test material after the test. If the length is 0.10 mm or less, the test is accepted.

Figure 0004220410
Figure 0004220410

表4にみられるように、本発明に従う試験材No.1〜29はいずれも、クラッド性良好で、ろう材の浸食性もみられず、170MPa以上の引張強さをそなえ、耐粒界腐食性性などの耐食性に優れ、外面の耐食性についても良好な結果を示した。   As seen in Table 4, the test material No. All of Nos. 1 to 29 have good clad properties, no erosion of the brazing material, tensile strength of 170 MPa or more, excellent corrosion resistance such as intergranular corrosion resistance, and good corrosion resistance on the outer surface. showed that.

比較例1
連続鋳造によって表5に示す組成を有する芯材用合金、表6に示す組成を有する犠牲陽極材用合金を造塊し、得られた鋳塊を均質化処理した。犠牲陽極材用合金の鋳塊については、添加元素を完全に固溶させ、微細化合物粒子の析出を抑制するために、530〜580℃の温度に10時間保持する条件で均質化処理を行った。
Comparative Example 1
A core material alloy having the composition shown in Table 5 and a sacrificial anode material alloy having the composition shown in Table 6 were ingoted by continuous casting, and the resulting ingot was homogenized. The ingot of the alloy for the sacrificial anode material was subjected to a homogenization treatment under the condition of maintaining the temperature at 530 to 580 ° C. for 10 hours in order to completely dissolve the additive element and suppress the precipitation of fine compound particles. .

ついで、犠牲陽極材用合金の鋳塊および実施例1で造塊したろう材用合金の鋳塊を所定の厚さまで熱間圧延し、これらの熱間圧延板と芯材用合金の鋳塊(厚さ30mm)とを合わせ材として熱間圧延し、三層構造のクラッド材(厚さ3mm)を得た。その後、冷間圧延、中間焼鈍、冷間圧延によって厚さ0.25mmの板材(クラッド材、調質H14)を得た。クラッド材の構成は、犠牲陽極材は0.025〜0.05mm、ろう材は0.030mmである。なお、表5、6において、本発明の条件を外れたものには下線を付した。   Subsequently, the ingot of the alloy for sacrificial anode material and the ingot of the alloy for brazing material ingoted in Example 1 were hot-rolled to a predetermined thickness, and the ingot of these hot-rolled plate and core material alloy ( And a three-layer clad material (thickness 3 mm). Thereafter, a plate material (clad material, tempered H14) having a thickness of 0.25 mm was obtained by cold rolling, intermediate annealing, and cold rolling. The structure of the clad material is 0.025 to 0.05 mm for the sacrificial anode material and 0.030 mm for the brazing material. In Tables 5 and 6, those outside the conditions of the present invention are underlined.

Figure 0004220410
Figure 0004220410

Figure 0004220410
Figure 0004220410

得られたクラッド材について、実施例1と同じ方法で(1)クラッド性、(2)犠牲陽極材の浸食性、(3)引張強さ、(4)犠牲陽極材中の0.1μm以下の化合物粒子数、(5)犠牲陽極材の耐食性、(6)外面の耐食性を評価した。結果を表7に示す。   With respect to the obtained clad material, (1) clad property, (2) erodibility of the sacrificial anode material, (3) tensile strength, and (4) 0.1 μm or less in the sacrificial anode material by the same method as in Example 1. The number of compound particles, (5) corrosion resistance of the sacrificial anode material, and (6) corrosion resistance of the outer surface were evaluated. The results are shown in Table 7.

Figure 0004220410
Figure 0004220410

表7に示すように、試験材No.30は、犠牲陽極材のMn量が多いため、鋳造時に粗大な化合物が生成して自己耐食性が低下し耐食性が劣る。試験材No.31は、犠牲陽極材のMn量が少ないため、加熱ろう付け後の引張強さが劣る。試験材No.32は、犠牲陽極材のZn量が多いため、犠牲陽極材の消耗が早くなり耐食性が低下している。試験材No.33は、犠牲陽極材のZn量が少ないため、犠牲陽極効果が十分でなく耐食性(耐孔食性)が劣る。   As shown in Table 7, the test material No. No. 30 has a large amount of Mn in the sacrificial anode material, so that a coarse compound is generated during casting, the self-corrosion resistance is lowered, and the corrosion resistance is inferior. Test material No. No. 31 is inferior in tensile strength after heat brazing because the amount of Mn in the sacrificial anode material is small. Test material No. No. 32 has a large amount of Zn in the sacrificial anode material, so that the sacrificial anode material is quickly consumed and the corrosion resistance is lowered. Test material No. No. 33 has a small amount of Zn in the sacrificial anode material, so that the sacrificial anode effect is not sufficient and the corrosion resistance (pitting corrosion resistance) is poor.

試験材No.34は、犠牲陽極材のSi量が多いため、Si系化合物粒子の数が多くなって自己耐食性が低下し耐食性が劣る。試験材No.35は、犠牲陽極材のSi量が少ないため、加熱ろう付け後の引張強さが劣る。試験材No.36は、犠牲陽極材のFe量が多いため、犠牲陽極材中の0.1μm以下の化合物が多くなり犠牲陽極材へのろうの浸食が生じる。試験材No.37および試験材No.38はそれぞれ、犠牲陽極材のIn量およびSn量が多いため、いずれも犠牲陽極材の製造において圧延加工性がわるく、健全な犠牲陽極材の製造が困難となった結果、クラッド性不良となった。   Test material No. No. 34 has a large amount of Si in the sacrificial anode material, so that the number of Si-based compound particles increases, and the self-corrosion resistance is lowered and the corrosion resistance is inferior. Test material No. No. 35 is inferior in tensile strength after heat brazing because the amount of Si in the sacrificial anode material is small. Test material No. In No. 36, since the amount of Fe in the sacrificial anode material is large, the compound of 0.1 μm or less in the sacrificial anode material is increased, and the sacrificial erosion of the sacrificial anode material occurs. Test material No. 37 and test material No. Since each of No. 38 has a large amount of In and Sn in the sacrificial anode material, both have poor rolling processability in the production of the sacrificial anode material, and as a result, it became difficult to produce a sound sacrificial anode material, resulting in poor cladding properties. It was.

試験材No.39は、犠牲陽極材のMg量が多いため、ろう付け性が劣り接合不良が生じた。試験材No.40は、犠牲陽極材のTi量が少ないため、耐粒界腐食性が低下している。試験材No.41は、犠牲陽極材のTi量が多いため、犠牲陽極材の製造において圧延加工性がわるく、健全な犠牲陽極材の製造が困難となった結果、クラッド性不良となった。試験材No.42は、芯材のMn量が多いため、芯材の製造において圧延加工性がわるく、健全な芯材の製造が困難となった結果、クラッド性不良となった。試験材No.43は、芯材のMn量が少ないため、加熱ろう付け後の引張強さが劣っている。   Test material No. In No. 39, the sacrificial anode material had a large amount of Mg, so that the brazing property was poor and poor bonding occurred. Test material No. No. 40 has low intergranular corrosion resistance because the amount of Ti in the sacrificial anode material is small. Test material No. No. 41 had a high amount of Ti in the sacrificial anode material, so that rolling processability was poor in the production of the sacrificial anode material, and it became difficult to produce a sound sacrificial anode material, resulting in poor cladness. Test material No. Since No. 42 has a large amount of Mn in the core material, rolling processability is deteriorated in the production of the core material, and as a result, it is difficult to produce a sound core material. Test material No. No. 43 is inferior in tensile strength after heat brazing because the amount of Mn in the core material is small.

試験材No.44は、芯材のCu量が多いため、加熱ろう付け時に芯材に局部溶融が生じろう付け性が低下した。試験材No.45、芯材のCu量が少ないため、加熱ろう付け後の引張強さが劣っている。試験材No.46は、芯材のSi量が多いため、加熱ろう付け時に芯材に局部溶融が生じろう付け性が低下した。試験材No.47、芯材のSi量が少ないため、加熱ろう付け後の引張強さが劣っている。試験材No.48は、芯材のMg量が多いため、ろう付け性が劣り接合不良が生じた。試験材No.49は、芯材のTi量が多いため、芯材の製造において圧延加工性がわるく、健全な芯材の製造が困難となった結果、クラッド性不良となった。試験材No.50は芯材のFe量が多いため、外面耐食性が低下している。   Test material No. In No. 44, since the amount of Cu in the core material is large, local melting occurred in the core material at the time of heat brazing, and the brazing property was lowered. Test material No. 45. Since the amount of Cu in the core material is small, the tensile strength after heat brazing is inferior. Test material No. No. 46 had a large amount of Si in the core material, so that local melting occurred in the core material at the time of heat brazing, and the brazing performance was lowered. Test material No. 47. Since the amount of Si in the core material is small, the tensile strength after heat brazing is inferior. Test material No. In No. 48, the amount of Mg in the core material was large, so that the brazing property was poor and a bonding failure occurred. Test material No. In No. 49, since the amount of Ti in the core material was large, rolling workability was poor in the production of the core material, and as a result, it was difficult to produce a sound core material. Test material No. Since 50 has a large amount of Fe in the core material, the outer surface corrosion resistance is lowered.

実施例でのろう材の浸食性試験におけるクラッド材の組み合わせを示す概略断面図である。It is a schematic sectional drawing which shows the combination of the clad material in the erodibility test of the brazing material in an Example. ろう材の浸食試験後のクラッド材の概略断面図である。It is a schematic sectional drawing of the clad material after the brazing material erosion test. クラッド材の外面腐食試験の概略を示す断面図である。It is sectional drawing which shows the outline of the outer surface corrosion test of a clad material.

符号の説明Explanation of symbols

1 クラッド材
2 クラッド材
3 芯材
4 犠牲陽極材
5 ろう材
6 溶融ろう
7 コルゲートフィン
DESCRIPTION OF SYMBOLS 1 Cladding material 2 Cladding material 3 Core material 4 Sacrificial anode material 5 Brazing material 6 Melting brazing 7 Corrugated fin

Claims (7)

芯材の一方の面に犠牲陽極材をクラッドし、他方の面にろう材をクラッドしたアルミニウム合金三層構造のクラッド材であって、芯材がMn:0.6〜2.0%(質量%、以下同じ)、Cu:0.3〜1.0%、Si:0.3〜1.2%、Fe:0.01〜0.4%、Ti:0.06〜0.35%を含有し、残部Alおよび不純物からなるアルミニウム合金であり、犠牲陽極材がZn:2.0〜6.0%、Mn:1.2〜2.0%、Si:0.4〜1.2%、Fe:0.01〜0.3%、Ti:0.01〜0.3%を含有し、残部Alおよび不純物からなるアルミニウム合金であり、ろう材がAl−Si系合金ろう材であることを特徴とする熱交換器用アルミニウム合金クラッド材。 A clad material having an aluminum alloy three-layer structure in which a sacrificial anode material is clad on one surface of a core material and a brazing material is clad on the other surface, and the core material is Mn: 0.6 to 2.0% (mass) %, The same applies hereinafter), Cu: 0.3-1.0%, Si: 0.3-1.2%, Fe: 0.01-0.4%, Ti: 0.06-0.35% It is an aluminum alloy containing the balance Al and impurities, and the sacrificial anode material is Zn: 2.0-6.0%, Mn: 1.2-2.0%, Si: 0.4-1.2% Fe: 0.01 to 0.3%, Ti: 0.01 to 0.3%, the balance being an aluminum alloy composed of Al and impurities, and the brazing material being an Al-Si alloy brazing material Aluminum alloy clad material for heat exchanger. 芯材が、さらにMg:0.5%以下を含有することを特徴とする請求項1記載の熱交換器用アルミニウム合金クラッド材。 The aluminum alloy clad material for a heat exchanger according to claim 1, wherein the core material further contains Mg: 0.5% or less. 芯材が、さらにCr:0.5%以下、Zr:0.3%以下、B:0.1%以下のうちの1種または2種以上を含有することを特徴とする請求項1または2記載の熱交換器用アルミニウム合金クラッド材。 The core material further contains one or more of Cr: 0.5% or less, Zr: 0.3% or less, and B: 0.1% or less. The aluminum alloy clad material for heat exchangers as described. 犠牲陽極材が、さらにIn:0.005〜0.05%、Sn:0.005〜0.05%のうちの1種または2種を含有することを特徴とする請求項1〜3のいずれかに記載の熱交換器用アルミニウム合金クラッド材。 The sacrificial anode material further contains one or two of In: 0.005 to 0.05% and Sn: 0.005 to 0.05%. The aluminum alloy clad material for heat exchangers according to claim 1. 犠牲陽極材が、さらにMg:2.5%以下を含有することを特徴とする請求項1〜4のいずれかに記載の熱交換器用アルミニウム合金クラッド材。 The aluminum alloy clad material for a heat exchanger according to any one of claims 1 to 4, wherein the sacrificial anode material further contains Mg: 2.5% or less. 犠牲陽極材が、さらにCu:0.2%以下、Cr:0.3%以下、Zr:0.3%以下、B:0.1%以下のうちの1種または2種以上を含有することを特徴とする請求項1〜5のいずれかに記載の熱交換器用アルミニウム合金クラッド材。 The sacrificial anode material further contains one or more of Cu: 0.2% or less, Cr: 0.3% or less, Zr: 0.3% or less, and B: 0.1% or less. The aluminum alloy clad material for a heat exchanger according to any one of claims 1 to 5. ろう材がSr:0.005〜0.1%を含有するAl−Si系合金ろう材であることを特徴とする請求項1〜6記載の熱交換器用アルミニウム合金クラッド材。 The aluminum alloy clad material for a heat exchanger according to claim 1, wherein the brazing material is an Al—Si based alloy brazing material containing Sr: 0.005 to 0.1%.
JP2004041027A 2004-02-18 2004-02-18 Aluminum alloy clad material for heat exchanger Expired - Fee Related JP4220410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004041027A JP4220410B2 (en) 2004-02-18 2004-02-18 Aluminum alloy clad material for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004041027A JP4220410B2 (en) 2004-02-18 2004-02-18 Aluminum alloy clad material for heat exchanger

Publications (2)

Publication Number Publication Date
JP2005232506A JP2005232506A (en) 2005-09-02
JP4220410B2 true JP4220410B2 (en) 2009-02-04

Family

ID=35015763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004041027A Expired - Fee Related JP4220410B2 (en) 2004-02-18 2004-02-18 Aluminum alloy clad material for heat exchanger

Country Status (1)

Country Link
JP (1) JP4220410B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4623729B2 (en) * 2005-09-27 2011-02-02 株式会社デンソー Aluminum alloy clad material and heat exchanger excellent in surface bonding by brazing of sacrificial anode material surface
JP4702797B2 (en) * 2006-02-20 2011-06-15 住友軽金属工業株式会社 Manufacturing method of aluminum alloy clad material excellent in surface bondability by brazing of sacrificial anode material surface
JP5068981B2 (en) * 2006-11-17 2012-11-07 古河スカイ株式会社 Aluminum alloy clad material
JP4111456B1 (en) * 2006-12-27 2008-07-02 株式会社神戸製鋼所 Aluminum alloy brazing sheet for heat exchanger
JP5325389B2 (en) * 2007-02-05 2013-10-23 株式会社神戸製鋼所 Aluminum alloy brazing sheet for heat exchanger
JP4181607B2 (en) * 2007-03-29 2008-11-19 株式会社神戸製鋼所 Aluminum alloy brazing sheet and method for producing the same
JP5188116B2 (en) * 2007-07-19 2013-04-24 古河スカイ株式会社 High strength aluminum alloy brazing sheet and method for producing the same
US8142907B2 (en) 2007-07-19 2012-03-27 Furukawa-Sky Aluminum Corp Aluminum alloy brazing sheet having high-strength and production method therefor
JP5230231B2 (en) * 2008-03-19 2013-07-10 株式会社神戸製鋼所 Aluminum alloy brazing sheet, heat exchanger and method for producing the same
JP5466409B2 (en) * 2009-01-22 2014-04-09 株式会社神戸製鋼所 Aluminum alloy clad material for heat exchanger
JP5476030B2 (en) * 2009-04-21 2014-04-23 株式会社Uacj Clad material for welded tube of aluminum alloy heat exchanger and manufacturing method thereof
JP5498214B2 (en) * 2010-03-19 2014-05-21 株式会社Uacj Aluminum alloy clad material for high-strength heat exchangers with excellent brazeability
JP5498213B2 (en) * 2010-03-19 2014-05-21 株式会社Uacj Aluminum alloy clad material for high-strength heat exchangers with excellent brazeability
JP5498215B2 (en) * 2010-03-19 2014-05-21 株式会社Uacj Aluminum alloy clad material for high-strength heat exchangers with excellent brazeability
JP5614883B2 (en) * 2010-08-31 2014-10-29 三菱アルミニウム株式会社 Fluxless brazing method of aluminum material, aluminum alloy brazing sheet for fluxless brazing, and aluminum alloy brazing material for fluxless brazing
JP5973948B2 (en) * 2013-03-28 2016-08-23 株式会社神戸製鋼所 Aluminum alloy brazing material and brazing sheet
JP5650305B2 (en) * 2013-10-30 2015-01-07 株式会社神戸製鋼所 Aluminum alloy clad material for heat exchanger
JP6877426B2 (en) 2015-11-13 2021-05-26 グランジェス・アーベー Brazing sheet and its manufacturing method

Also Published As

Publication number Publication date
JP2005232506A (en) 2005-09-02

Similar Documents

Publication Publication Date Title
EP1090745B1 (en) Aluminum alloy clad material for heat exchangers exhibiting high strength and excellent corrosion resistance
JP4825507B2 (en) Aluminum alloy brazing sheet
JP4220410B2 (en) Aluminum alloy clad material for heat exchanger
JP6452627B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP4702797B2 (en) Manufacturing method of aluminum alloy clad material excellent in surface bondability by brazing of sacrificial anode material surface
US20110240280A1 (en) Aluminum alloy brazing sheet and heat exchanger
JP4993440B2 (en) High strength aluminum alloy clad material for heat exchangers with excellent brazeability
JP4623729B2 (en) Aluminum alloy clad material and heat exchanger excellent in surface bonding by brazing of sacrificial anode material surface
JP5918089B2 (en) Aluminum alloy heat exchanger and method of manufacturing the same
WO2017141921A1 (en) Aluminum alloy brazing sheet, manufacturing method therefor, and manufacturing method for vehicle heat exchanger using said brazing sheet
JP3910506B2 (en) Aluminum alloy clad material and manufacturing method thereof
JP4220411B2 (en) Aluminum alloy clad material for heat exchanger
JP4448758B2 (en) Aluminum alloy clad material for heat exchangers with excellent brazing, corrosion resistance and hot rolling properties
CN111065753B (en) Aluminum alloy brazing sheet for heat exchanger
JP2007131872A (en) Aluminum alloy clad material for heat exchanger
JP4030006B2 (en) Aluminum alloy clad material and manufacturing method thereof
JPH11293372A (en) Aluminum alloy clad material for heat exchanger, having high strength and high corrosion resistance
JP3827601B2 (en) Aluminum alloy composite for brazing
CN110997958B (en) Aluminum alloy brazing sheet for heat exchanger
JP5498213B2 (en) Aluminum alloy clad material for high-strength heat exchangers with excellent brazeability
WO2018110320A1 (en) Aluminum alloy brazing sheet and method for manufacturing same
JP2004017116A (en) Aluminum alloy brazing sheet for brazed pipe making tubes, and its producing method
JP3326106B2 (en) Aluminum alloy clad material for heat exchanger with excellent strength and corrosion resistance
JPH07179971A (en) Aluminum alloy brazing sheet bar for resistance welding
JP5306836B2 (en) Aluminum alloy brazing sheet with excellent strength and corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4220410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees