JP5084490B2 - Aluminum alloy clad material - Google Patents

Aluminum alloy clad material Download PDF

Info

Publication number
JP5084490B2
JP5084490B2 JP2007333607A JP2007333607A JP5084490B2 JP 5084490 B2 JP5084490 B2 JP 5084490B2 JP 2007333607 A JP2007333607 A JP 2007333607A JP 2007333607 A JP2007333607 A JP 2007333607A JP 5084490 B2 JP5084490 B2 JP 5084490B2
Authority
JP
Japan
Prior art keywords
brazing
core material
sacrificial
concentration
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007333607A
Other languages
Japanese (ja)
Other versions
JP2009155679A (en
Inventor
恩田時伯
兒島洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP2007333607A priority Critical patent/JP5084490B2/en
Publication of JP2009155679A publication Critical patent/JP2009155679A/en
Application granted granted Critical
Publication of JP5084490B2 publication Critical patent/JP5084490B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は、熱交換器等に用いられるアルミニウム合金クラッド材に関し、例えばフッ化物系フラックスを用いる不活性ガス雰囲気ろう付けによってアルミニウム製熱交換器として組み立てられるクラッド材に関する。本発明に係るアルミニウム合金クラッド材は、自動車用エバポレーター、コンデンサーなどのアルミニウム製熱交換器に好適に用いられ、優れた耐食性を備える。   The present invention relates to an aluminum alloy clad material used for a heat exchanger or the like, for example, a clad material assembled as an aluminum heat exchanger by brazing in an inert gas atmosphere using a fluoride flux. The aluminum alloy clad material according to the present invention is suitably used for aluminum heat exchangers such as automotive evaporators and condensers, and has excellent corrosion resistance.

自動車用オイルクーラー、インタークーラー、ヒーター、カーエアコンのエバポレーター、コンデンサー、或いは、油圧機器や産業機械のオイルクーラーなどの熱交換器には、アルミニウム製熱交換器が使用されている。アルミニウム製熱交換器は、通常、ろう材を被覆したアルミニウム合金ブレージングシートを成形加工し、これを積層して流体通路を形成し、流体通路間にコルゲート成形加工したアルミニウム合金のフィンを配置し、これらをろう付け接合して一体化することにより作製されている。   Aluminum heat exchangers are used as heat exchangers for automobile oil coolers, intercoolers, heaters, car air conditioner evaporators, condensers, or oil coolers for hydraulic equipment and industrial machinery. An aluminum heat exchanger usually forms an aluminum alloy brazing sheet coated with a brazing material, laminates it to form a fluid passage, and arranges corrugated aluminum alloy fins between the fluid passages, These are manufactured by brazing and integrating them.

例えば、ドロンカップ製エバポレーターにおいては、両面にろう材をクラッドしたアルミニウム合金ブレージングシート材をプレス成形してチューブシートが成形される。次いで、チューブシート間にコルゲート成形加工したアルミニウム合金のフィンを積層し、これらをろう付け接合してコアプレートとフィンを接合するとともにチューブシートの間に冷媒の通路を形成する。   For example, in a Delon cup evaporator, a tube sheet is formed by press-molding an aluminum alloy brazing sheet material clad with a brazing material on both sides. Next, corrugated aluminum alloy fins are laminated between the tube sheets, and these are brazed to join the core plate and the fins and to form a coolant passage between the tube sheets.

チューブシートとしては、Al−Mn系合金、Al−Mn−Cu系合金、Al−Mn−Cu−Mg系合金、Al−Mn−Mg系合金などMnを含有するアルミニウム合金、例えばJIS3003合金、3005合金などからなる芯材の片面又は両面に、Al−Si系合金、Al−Si−Mg系合金、Al−Si−Mg−Bi系合金、Al−Si−Bi系合金、Al−Si−Be系合金、Al−Si−Bi−Be系合金からなるろう材をクラッドしたアルミニウム合金ブレージングシートが用いられる。フィン材としてはAl−Mn系合金、Al−Mn−Mg系合金、Al−Mn−Cu系合金、Al−Mn−Zn系合金などが使用される。ろう付け法としては、真空ろう付け法や、塩化物フラックス、フッ化物系フラックスを用いるろう付け法が用いられる。   As a tube sheet, an aluminum alloy containing Mn such as an Al—Mn alloy, an Al—Mn—Cu alloy, an Al—Mn—Cu—Mg alloy, an Al—Mn—Mg alloy, such as JIS 3003 alloy, 3005 alloy, etc. Al-Si alloy, Al-Si-Mg alloy, Al-Si-Mg-Bi alloy, Al-Si-Bi alloy, Al-Si-Be alloy on one or both sides of the core material An aluminum alloy brazing sheet clad with a brazing material made of an Al—Si—Bi—Be alloy is used. As the fin material, an Al—Mn alloy, an Al—Mn—Mg alloy, an Al—Mn—Cu alloy, an Al—Mn—Zn alloy, or the like is used. As the brazing method, a vacuum brazing method or a brazing method using a chloride flux or a fluoride flux is used.

外側(外気)からのチューブシートの耐腐食性を向上させるために、チューブシートより電位の卑なフィン材、例えばAl−Mn−Zn系合金、Al−Mn−Sn系合金のフィン材を用い、フィン材の犠牲防食効果により流体通路構成材であるチューブシートの防食が図られている。しかしながら、フィン材の犠牲防食効果が及ばない範囲、例えばタンク部の一般部やろう付け部などにおいて、腐食が発生してしまう問題があった。   In order to improve the corrosion resistance of the tube sheet from the outside (outside air), a fin material having a lower potential than the tube sheet, such as an Al-Mn-Zn alloy, an Al-Mn-Sn alloy fin material, Corrosion protection of the tube sheet which is a fluid passage constituent material is achieved by the sacrificial anticorrosion effect of the fin material. However, there is a problem that corrosion occurs in a range where the sacrificial anticorrosive effect of the fin material does not reach, for example, a general portion of the tank portion or a brazed portion.

特許文献1、2には、上記問題を解決すべく外側ろう材の耐食性向上を図るために、ろう材にZnを添加して芯材との電位調整がされたクラッド材が記載されている。
特開平7−88678号公報 特開平11−199957公報
Patent Documents 1 and 2 describe a clad material in which the potential of the core material is adjusted by adding Zn to the brazing material in order to improve the corrosion resistance of the outer brazing material in order to solve the above problem.
JP-A-7-88678 JP-A-11-199957

このような外側ろう材へのZn添加によって、タンク部の平坦部の耐食性を向上させることはできる。しかしながら、ろう付け部であるタンク合わせ部においては、優先的な腐食が発生して貫通漏れが生じてしまう問題を残していた。   By adding Zn to such an outer brazing material, the corrosion resistance of the flat part of the tank part can be improved. However, in the tank mating portion which is a brazing portion, there remains a problem that preferential corrosion occurs and a through leakage occurs.

本発明は上記問題に鑑み、ろう付け部における優先腐食を防止し、貫通孔食が早期に発生するようなことがないアルミニウム合金クラッド材を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide an aluminum alloy clad material that prevents preferential corrosion at a brazed portion and that does not cause through pitting corrosion at an early stage.

本発明者らは、ろう付け前のクラッド材の段階にある外側ろう材(以下、「犠牲ろう材」と記す)と芯材の界面における犠牲ろう材側のZn濃度と芯材側のCu濃度の関係に着目し、ろう付け部における優先腐食の防止に関する有効な知見を得て本発明を完成するに至った。   The inventors of the present invention have made the Zn concentration on the sacrificial brazing material side and the Cu concentration on the core material side at the interface between the outer brazing material (hereinafter referred to as “sacrificial brazing material”) and the core material at the stage of the clad material before brazing. The present invention has been completed by obtaining effective knowledge regarding prevention of preferential corrosion at the brazed portion.

本発明は請求項1において、Si0.07〜0.40%(mass%、以下同じ)、Fe0.1〜0.4%、Cu0.3〜1.0%、Mn0.4〜1.5%、Ti0.05〜0.20%を含有し、残部Al及び不回避不純物よりなる鋳塊から製造された芯材と、当該芯材の片面又は両面にクラッドされ、Zn0.5〜4.0%、Si7.0〜12.5%、Fe0.05〜0.25%を含有し、残部Al及び不可避不純物よりなる鋳塊から製造された犠牲ろう材とを備えたアルミニウム合金クラッド材であって、ろう付け前のクラッド材の段階で犠牲ろう材と芯材の界面における犠牲ろう材側のZn濃度(ZnC)と芯材側のCu濃度(CuC)が0.9≦ZnC/CuC≦7であることを特徴とアルミニウム合金クラッド材とした。   The present invention is characterized in that, in claim 1, Si 0.07 to 0.40% (mass%, the same shall apply hereinafter), Fe 0.1 to 0.4%, Cu 0.3 to 1.0%, Mn 0.4 to 1.5% , Containing 0.05 to 0.20% Ti, the core material manufactured from an ingot consisting of the balance Al and unavoidable impurities, and clad on one or both sides of the core material, Zn 0.5 to 4.0% An aluminum alloy cladding material comprising a sacrificial brazing material made of an ingot comprising Si 7.0 to 12.5%, Fe 0.05 to 0.25%, and the balance Al and inevitable impurities, At the stage of the clad material before brazing, the sacrificial brazing material side Zn concentration (ZnC) and the core material side Cu concentration (CuC) at the interface between the sacrificial brazing material and the core material are 0.9 ≦ ZnC / CuC ≦ 7. It was characterized as an aluminum alloy clad material.

更に請求項2において、芯材がV0.02〜0.10%を更に含有するものとした。また請求項3において、犠牲ろう材が、Sn0.05〜0.20%及びIn0.05%〜0.20%の少なくともいずれか一方を含有するものとした。   Further, in claim 2, the core material further contains V 0.02 to 0.10%. Further, in claim 3, the sacrificial brazing material contains at least one of Sn 0.05 to 0.20% and In 0.05% to 0.20%.

本発明によれば、犠牲腐食フィンによる防食効果が働かないタンク部において良好な耐食性を示し、かつ、ろう材フィレット部の優先腐食を防止させたアルミニウム合金クラッド材を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the aluminum alloy clad material which showed favorable corrosion resistance in the tank part in which the corrosion prevention effect by a sacrificial corrosion fin does not work, and prevented the preferential corrosion of the brazing filler fillet part can be provided.

A.ろう付け前のクラッド材の段階におけるZn濃度とCu濃度の関係
本発明者らは、ろう付け前のクラッド材の段階での犠牲ろう材と芯材の界面におけるZn濃度とCu濃度の関係について検討した。犠牲ろう材のZn含有量及び芯材のCu含有量を種々変えたブレージングシートを作製し、図1に示すカップ1に成型した。これらカップを、図2に示すように3段重ねにして、熱交換器チューブのタンク部を模擬した試験片を作製し腐食試験に供してろう付け部の優先腐食を評価した。その結果、以下の知見を見出すに至った。なお、図2では、複数のカップ1を用いて隣接するカップ同士のタンク合わせ部2が接するように積み重ねられており、タンク平坦部3においては隣接するカップ1同士は接していない。
A. Relationship between Zn concentration and Cu concentration at the clad material stage before brazing The inventors examined the relationship between Zn concentration and Cu concentration at the interface between the sacrificial brazing material and the core material at the clad material stage before brazing. did. The brazing sheet which changed variously Zn content of a sacrificial brazing material and Cu content of a core material was produced, and it shape | molded in the cup 1 shown in FIG. These cups were stacked in three stages as shown in FIG. 2, and test pieces simulating the tank part of the heat exchanger tube were prepared and subjected to a corrosion test to evaluate the preferential corrosion of the brazed part. As a result, the following findings have been found. In FIG. 2, the plurality of cups 1 are stacked so that the tank matching portions 2 of adjacent cups are in contact with each other, and the adjacent cups 1 are not in contact with each other in the tank flat portion 3.

A−1.Znについて
図3は、図2のタンク合わせ部(ろう付け前のクラッド段階)を示す。すなわち、隣接するカップに用いられるクラッド材における犠牲ろう材4と芯材5のZn濃度(ZnC)とCu濃度(CuC)の分布を模式的に示す。図3に示すろう付け前のクラッド材では、犠牲ろう材4のZnCが高濃度で芯材5のCuCが低濃度のものを示す。このようなクラッド材を用いてろう付けを行なうと、図4に示すように、ろう付け部6における最終凝固部61のZn濃度(ZnW)が、ろう付け部5の初晶部62及び芯材5のZnWよりも高濃度となるために、この最終凝固部61の電位が周囲より卑になる。この場合においてろう付け前のクラッド材では、ZnCとCuCとの関係は、ZnC/CuC>7となる。その結果、このようなクラッド材がろう付け後に腐食環境に曝されると、最終凝固部61が優先的に腐食することによりろう付け部6の優先腐食が生じる。
A-1. For Zn, FIG. 3 shows the tank mating section (clad stage before brazing) of FIG. That is, the distribution of the Zn concentration (ZnC) and the Cu concentration (CuC) of the sacrificial brazing material 4 and the core material 5 in the clad material used for the adjacent cup is schematically shown. In the clad material before brazing shown in FIG. 3, the sacrificial brazing material 4 has a high concentration of ZnC and the core material 5 has a low concentration of CuC. When brazing is performed using such a clad material, as shown in FIG. 4, the Zn concentration (ZnW) of the final solidified portion 61 in the brazed portion 6 is such that the primary crystal portion 62 and the core material of the brazed portion 5. Since the concentration is higher than ZnW of 5, the potential of the final solidified portion 61 becomes lower than the surroundings. In this case, in the clad material before brazing, the relationship between ZnC and CuC is ZnC / CuC> 7. As a result, when such a clad material is exposed to a corrosive environment after brazing, preferential corrosion of the brazed portion 6 occurs due to preferential corrosion of the final solidified portion 61.

A−2.Cuについて
図5も、図2のタンク合わせ部(ろう付け前のクラッド段階)を示す。すなわち、隣接するカップに用いられるクラッド材における、犠牲ろう材4と芯材5のZnCとCuCの分布を模式的に示す。図5で示すろう付け前のクラッド材は、犠牲ろう材4のZnCが低濃度で芯材のCuCが高濃度のものである。このようなクラッド材を用いてろう付けを行なうと、図6に示すように、ろう付け部6と芯材5の界面においてCu濃度(CuW)の低濃度域が形成され、このCu低濃度域における電位が周囲より卑になる。この場合においてろう付け前のクラッド材では、CuCとZnCとの関係はZnC/CuC<0.9となる。その結果、このようなクラッド材がろう付け後に腐食環境に曝されると、CuW低濃度域が優先的に腐食することによりろう付け部6の優先腐食が生じる。
A-2. For Cu, FIG. 5 also shows the tank mating section (cladding stage before brazing) of FIG. That is, the distribution of ZnC and CuC in the sacrificial brazing material 4 and the core material 5 in the clad material used for the adjacent cup is schematically shown. The clad material before brazing shown in FIG. 5 has a low concentration of ZnC in the sacrificial brazing material 4 and a high concentration of CuC in the core material. When brazing is performed using such a clad material, a low concentration region of Cu concentration (CuW) is formed at the interface between the brazing portion 6 and the core material 5, as shown in FIG. The potential at becomes lower than the surroundings. In this case, in the clad material before brazing, the relationship between CuC and ZnC is ZnC / CuC <0.9. As a result, when such a clad material is exposed to a corrosive environment after brazing, preferential corrosion of the brazed portion 6 occurs due to preferential corrosion of the CuW low concentration region.

A−3.ZnCとCuCとの関係
上記のように、本発明者らはZnCとCuCとの関係に基づいて、ろう付け部の優先腐食を防止するブレージングシートの要件を明確にした。すなわち、ろう付け前のクラッド材の段階で犠牲ろう材と芯材の界面における、犠牲ろう材側のZnCと芯材側のCuCの関係で0.9≦ZnC/CuC≦7であるアルミニウム合金クラッド材において、ろう付け部の優先腐食を有効に防止することができることを見出した。
A-3. Relationship between ZnC and CuC As described above, the present inventors clarified the requirements of the brazing sheet for preventing preferential corrosion of the brazed portion based on the relationship between ZnC and CuC. That is, an aluminum alloy cladding in which 0.9 ≦ ZnC / CuC ≦ 7 in relation to ZnC on the sacrificial brazing material side and CuC on the core material side at the interface between the sacrificial brazing material and the core material at the stage of the clad material before brazing It was found that the preferential corrosion of the brazed portion can be effectively prevented in the material.

B.アルミニウム合金クラッド材を構成する各構成元素の鋳塊段階での含有量
以下に、本発明に係るアルミニウム合金クラッド材を構成する各構成元素の鋳塊段階における成分含有量について説明する。
B. The content of each constituent element constituting the aluminum alloy clad material in the ingot stage will be described below with respect to the component content in the ingot stage of each constituent element constituting the aluminum alloy clad material according to the present invention.

B−1.犠牲ろう材
Zn:Znはアルミニウム合金に固溶し、犠牲ろう材の自然電極電位を卑にして芯材を防食してチューブの耐食性を向上させる。しかしながら、Zn含有量が多過ぎるとタンクのろう付け部に濃縮し、ろう付け部の優先腐食を発生させる。Znの含有量が0.5mass%(以下、単に「%」と記す)未満では犠牲ろう材の犠牲腐食効果が発揮できず、4.0%を超えるとろう付け部の優先腐食を促進する。従って、Zn含有量は0.5〜4.0%に規定される。Zn含有量を0.5〜2.5%とするのが好ましい。
B-1. Sacrificial brazing material Zn: Zn is dissolved in an aluminum alloy, and the corrosion resistance of the tube is improved by preventing the core material from corroding the natural electrode potential of the sacrificial brazing material. However, when there is too much Zn content, it will concentrate in the brazing part of a tank and the preferential corrosion of a brazing part will generate | occur | produce. If the Zn content is less than 0.5 mass% (hereinafter simply referred to as “%”), the sacrificial corrosion effect of the sacrificial brazing material cannot be exhibited, and if it exceeds 4.0%, preferential corrosion of the brazed portion is promoted. Therefore, Zn content is prescribed | regulated to 0.5 to 4.0%. The Zn content is preferably 0.5 to 2.5%.

Si:Siをアルミニウム合金に添加すると、アルミニウム合金の融点が低下する。熱交換器を製造する際におけるろう付け温度は通常600℃近傍であり、その温度付近で犠牲ろう材が溶融することが必要である。Si含有量が7.0%未満では融点が十分に低下せず犠牲ろう材の溶融が不十分となりろう付けが十分に達成されない。一方、Si含有量が12.5%を超えると鋳造時に巨大な晶出物が生成し、この晶出物を基点としてろう付け時に芯材溶融を引き起こすおそれがある。従って、Si含有量は7.0〜12.5%に規定される。   When Si: Si is added to an aluminum alloy, the melting point of the aluminum alloy decreases. The brazing temperature in manufacturing the heat exchanger is usually around 600 ° C., and the sacrificial brazing material needs to be melted around that temperature. When the Si content is less than 7.0%, the melting point is not sufficiently lowered, the sacrificial brazing material is not sufficiently melted, and brazing is not sufficiently achieved. On the other hand, if the Si content exceeds 12.5%, a large crystallized product is generated during casting, and the core material may be melted during brazing using this crystallized product as a base point. Therefore, the Si content is defined as 7.0 to 12.5%.

Fe:Feをアルミニウム合金に添加すると、アルミニウムに固溶し又はAl−Fe系の化合物を形成して強度向上に寄与する。また、このAl−Fe系化合物は中性環境においては孔食の起点となる。Fe含有量が0.25%を超えると中性環境での耐食が顕著となり劣化が進行する。一方、Fe含有量が0.05%未満であると強度が不足する。従って、Fe含有量は0.05〜0.25%に規定される。   When Fe: Fe is added to the aluminum alloy, it is dissolved in aluminum or an Al—Fe-based compound is formed, which contributes to improving the strength. In addition, this Al—Fe compound is a starting point for pitting corrosion in a neutral environment. If the Fe content exceeds 0.25%, the corrosion resistance in a neutral environment becomes remarkable and the deterioration proceeds. On the other hand, if the Fe content is less than 0.05%, the strength is insufficient. Therefore, the Fe content is specified to be 0.05 to 0.25%.

Sn、In:Sn又はInをアルミニウム合金に添加すると、アルミニウムに固溶し電位を卑にして犠牲ろう材の犠牲腐食効果が一層高められる。含有量が0.05%未満では犠牲腐食効果の寄与が十分でなく、0.2%を超えると圧延加工性を阻害することにもなる。従って、Sn又はInの含有量は0.05〜0.2%とするのが好ましい。なお、SnとInは、単独で添加しても両方添加してもよく、両方添加する場合には、両方の合計の含有量を0.05〜0.2%とするのが好ましい。   When Sn, In: Sn or In is added to the aluminum alloy, the sacrificial corrosion effect of the sacrificial brazing material is further enhanced by solid solution in aluminum and lowering the potential. If the content is less than 0.05%, the contribution of the sacrificial corrosion effect is not sufficient, and if it exceeds 0.2%, rolling workability is also hindered. Therefore, the Sn or In content is preferably 0.05 to 0.2%. Sn and In may be added singly or both. When both are added, the total content of both is preferably 0.05 to 0.2%.

B−2.芯材
Si:Siをアルミニウム合金に添加すると、マトリックスに固溶及びFe、Mnと金属間化合物を形成して強度向上に寄与する。Si含有量が0.07%未満であると強度向上効果が不十分であり、0.4%を越えるとろう付け時における芯材の溶融性及び外部耐食性に劣る。従って、Si含有量は0.07〜0.4%に規定される。
B-2. When the core material Si: Si is added to the aluminum alloy, it forms a solid solution in the matrix and forms an intermetallic compound with Fe and Mn, thereby contributing to an improvement in strength. If the Si content is less than 0.07%, the effect of improving the strength is insufficient, and if it exceeds 0.4%, the meltability and external corrosion resistance of the core material during brazing are inferior. Accordingly, the Si content is specified to be 0.07 to 0.4%.

Fe:Feをアルミニウム合金に添加すると、マトリックスに固溶及びSi、Mnと金属間化合物を形成して強度向上に寄与する。Fe含有量が0.1%未満であると強度向上の効果が不十分であり、0.4%を超えると複合材の芯材とした場合に芯材の耐食性が劣化する。従って、Fe含有量は0.1〜0.4%に規定される。   When Fe: Fe is added to the aluminum alloy, it forms a solid solution and forms an intermetallic compound with Si and Mn in the matrix, thereby contributing to an improvement in strength. If the Fe content is less than 0.1%, the effect of improving the strength is insufficient, and if it exceeds 0.4%, the corrosion resistance of the core material deteriorates when the core material is a composite material. Therefore, the Fe content is specified to be 0.1 to 0.4%.

Cu:Cuをアルミニウム合金に添加すると、マトリックスに固溶し強度向上に寄与する。Cu含有量が0.3%未満であると強度向上効果に乏しい。一方、Cu含有量が1.0%を超えると、ろう付け時において芯材の溶融性が劣るとともに、ろう付け時において芯材に粒界腐食が発生して外部耐食性も劣ることになる。従って、Cu含有量は0.3〜1.0%に規定される。   Cu: When Cu is added to an aluminum alloy, it dissolves in the matrix and contributes to strength improvement. If the Cu content is less than 0.3%, the strength improving effect is poor. On the other hand, if the Cu content exceeds 1.0%, the meltability of the core material is inferior during brazing, and intergranular corrosion occurs in the core material during brazing, resulting in poor external corrosion resistance. Therefore, the Cu content is specified to be 0.3 to 1.0%.

Mn:Mnをアルミニウム合金に添加すると、マトリックスに固溶及びSi、Feと金属間化合物を形成して強度向上に寄与する。Mn含有量が0.4%未満では強度向上効果が不十分である。一方、Mn含有量が1.5%を越えると、複合材の芯材とした場合において圧延加工時に端部に割れが発生して圧延加工が困難になる。従って、Mn含有量は0.4〜1.5に規定される。   Mn: When Mn is added to an aluminum alloy, it forms a solid solution and forms an intermetallic compound with Si and Fe in the matrix, thereby contributing to strength improvement. If the Mn content is less than 0.4%, the strength improvement effect is insufficient. On the other hand, if the Mn content exceeds 1.5%, when the composite material is used as a core material, cracking occurs at the end during rolling, making rolling difficult. Therefore, the Mn content is specified to be 0.4 to 1.5.

Ti:Tiは鋳造時においてTiの化合物を形成しその周辺に濃淡部を形成する。この濃淡部が圧延加工により延伸され、Tiの濃淡層が圧延方向に形成される。このようなTi濃淡層によって、芯材自身の耐食性が向上する。Ti含有量が0.05%未満ではTi濃淡層による耐食性の向上効果が不十分である。一方、Ti含有量が0.20%以上ではTiの巨大晶出物を形成して圧延時に割れの原因となる。従って、Ti含有量は0.05〜0.20%に規定される。   Ti: Ti forms a compound of Ti at the time of casting and forms a light and dark part around it. This light and shade part is stretched by rolling, and a light and dark layer of Ti is formed in the rolling direction. Such a Ti light / dark layer improves the corrosion resistance of the core material itself. When the Ti content is less than 0.05%, the effect of improving the corrosion resistance by the Ti concentration layer is insufficient. On the other hand, if the Ti content is 0.20% or more, a giant Ti crystallized product is formed and causes cracking during rolling. Therefore, the Ti content is specified to be 0.05 to 0.20%.

V:Vはアルミニウム合金に添加されるとアルミニウムに固溶又はAl−V系の化合物を形成してその周辺にVの濃淡層を形成する。この濃淡層は圧延によって延伸され、板厚方向にVの濃淡層を形成してTiの添加とともに耐食性の向上に一層寄与する。V含有量が0.02%未満では、濃淡層による耐食性の向上効果が不十分である。一方、V含有量が0.1%を越えると耐食性が劣る。従って、V含有量は0.02〜0.10%とするのが好ましい。   V: When V is added to an aluminum alloy, it forms a solid solution or an Al-V compound in aluminum and forms a dark and light layer of V around it. This dark and light layer is stretched by rolling to form a dark and dark layer of V in the plate thickness direction, further contributing to the improvement of corrosion resistance along with the addition of Ti. When the V content is less than 0.02%, the effect of improving the corrosion resistance by the light and dark layer is insufficient. On the other hand, if the V content exceeds 0.1%, the corrosion resistance is poor. Therefore, the V content is preferably 0.02 to 0.10%.

C.クラッド材の製造
本発明に係るアルミニウム合金クラッド材は、芯材の両面に上記犠牲ろう材をクラッドして一方を外ろう材とし他方を内ろう材とした構成、或いは、芯材の一方の面に犠牲ろう材をクラッドして外ろう材とし、他方の面にJISに規定されているBA4343P、BA4045P、BA4047Pをクラッドして内ろう材とした構成としてもよい。このような構成は、熱交換器の形状及び熱交換器を作製する時の加熱条件によって種々選択が可能である。
C. Production of clad material The aluminum alloy clad material according to the present invention has a structure in which the sacrificial brazing material is clad on both sides of the core material and one is an outer brazing material and the other is an inner brazing material, or one surface of the core material. Alternatively, the sacrificial brazing material may be clad to form an outer brazing material, and the other surface may be clad with BA4343P, BA4045P, and BA4047P defined by JIS to form an inner brazing material. Such a configuration can be variously selected depending on the shape of the heat exchanger and the heating conditions when producing the heat exchanger.

C−1.鋳造工程
芯材、外ろう材及び内ろう材は、まず通常の半連続鋳造によって厚さ600〜700mm、長さ4000〜5000mm、幅1000〜1200mmの鋳塊に鋳造される。ここで、外ろう材と内ろう材は所定のクラッド率になるように、熱間圧延の開始温度460〜510℃で圧延される。
C-1. Casting process The core material, outer brazing material and inner brazing material are first cast into an ingot having a thickness of 600 to 700 mm, a length of 4000 to 5000 mm, and a width of 1000 to 1200 mm by ordinary semi-continuous casting. Here, the outer brazing filler metal and the inner brazing filler metal are rolled at a hot rolling start temperature of 460 to 510 ° C. so as to have a predetermined cladding ratio.

C−2.クラッド工程
熱間圧延された外ろう材及び内ろう材は、所定のクラッド率になるように芯材に重ね合わせられる。重ね合わせたものは、開始温度460℃、終了温度470℃で熱間圧延される。本発明に係るアルミニウム合金クラッド材のクラッド熱間圧延では、温度を開始から終了までを通して450〜470℃とするのが好ましい。これはこの温度範囲で熱間圧延することにより、熱間圧延時の予備加熱や圧延時の温度上昇によるろう材の中のZn及び芯材中のCuの拡散を抑制し、ろう付け加熱時におけるこれら成分の拡散量を少なくするためである。
C-2. The outer brazing filler metal and the inner brazing filler metal that have been hot-rolled in the cladding process are superimposed on the core material so as to have a predetermined cladding ratio. The superposed product is hot-rolled at a start temperature of 460 ° C. and an end temperature of 470 ° C. In the clad hot rolling of the aluminum alloy clad material according to the present invention, the temperature is preferably set to 450 to 470 ° C. from the start to the end. This is by hot rolling in this temperature range to suppress the diffusion of Zn in the brazing material and Cu in the core material due to preheating during hot rolling and temperature rise during rolling, and during brazing heating This is to reduce the amount of diffusion of these components.

なお、特に500℃を超える温度域での熱間圧延では、圧延加工による外ろう材面の温度上昇が芯材より高くなる。そのために、外ろう材から芯材へのZn拡散量が芯材から外ろう材へのCu拡散量より多量となり、外ろう材と芯材との界面におけるZn量が少なくなる。その結果、ろう付け前のクラッド材の段階でのろう材と芯材との界面におけるろう材側のZn濃度と芯材側のCu濃度の比率(ZnC/CuC)が小さくなる。   In particular, in hot rolling in a temperature range exceeding 500 ° C., the temperature increase of the outer brazing material surface due to rolling is higher than that of the core material. Therefore, the amount of Zn diffusion from the outer brazing material to the core material is larger than the amount of Cu diffusion from the core material to the outer brazing material, and the amount of Zn at the interface between the outer brazing material and the core material is reduced. As a result, the ratio (ZnC / CuC) of the Zn concentration on the brazing material side and the Cu concentration on the core material side at the interface between the brazing material and the core material at the stage of the clad material before brazing becomes small.

熱間圧延したものは、冷間圧延により最終板厚を0.20〜0.40mmとし、更に、温度360〜400℃で10秒〜8時間、最終焼鈍を行なってクラッド材(ブレージングシート)が作製される。ここで焼鈍の方法としてはバッチ焼鈍または連続焼鈍処理のどちらでも適宜用いられる。   What was hot-rolled has a final plate thickness of 0.20 to 0.40 mm by cold rolling, and is further subjected to final annealing at a temperature of 360 to 400 ° C. for 10 seconds to 8 hours to obtain a clad material (brazing sheet). Produced. Here, as a method of annealing, either batch annealing or continuous annealing treatment is appropriately used.

以下、実施例と比較例に基づいて本発明の好適な実施の形態を具体的に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail based on examples and comparative examples.

実施例1〜28及び比較例1〜27
本発明のアルミニウム合金クラッド材の犠牲ろう材である外ろう材の合金成分を、表1に示す。A〜Nは本発明の範囲内にあり、O〜Tは本発明の範囲外である。なお、内ろう材には、BA4045P合金とBA4343P合金を用いた。
Examples 1-28 and Comparative Examples 1-27
Table 1 shows the alloy components of the outer brazing material which is a sacrificial brazing material of the aluminum alloy clad material of the present invention. A to N are within the scope of the present invention, and OT is outside the scope of the present invention. In addition, BA4045P alloy and BA4343P alloy were used for the inner brazing material.

Figure 0005084490
Figure 0005084490

本発明に係るアルミニウム合金クラッド材の芯材の合金成分を、表2に示す。1〜9は本発明の範囲内にあり、10〜19は本発明の範囲外である。   Table 2 shows alloy components of the core material of the aluminum alloy clad material according to the present invention. 1-9 are within the scope of the present invention and 10-19 are outside the scope of the present invention.

Figure 0005084490
Figure 0005084490

芯材、外ろう材及び内ろう材を鋳塊サイズ幅600mm、長さ5000mm、幅1200mmのサイズで鋳造した。外ろう材と内ろう材は所定のクラッド率になるように熱間圧延の開始温度500℃で圧延した後に、所定のクラッド率になるように芯材に重ね合わせた。次いで、開始温度を460℃、終了温度470℃でクラッド熱間圧延し、冷間圧延にて最終板厚を0.3mmにしたものに、焼鈍温度を360℃で2時間、最終焼鈍を施してアルミニウム合金クラッド材(ブレージングシート)を作製した。   The core material, the outer brazing material and the inner brazing material were cast in a size of ingot size width 600 mm, length 5000 mm, width 1200 mm. The outer brazing material and the inner brazing material were rolled at a hot rolling start temperature of 500 ° C. so as to have a predetermined cladding ratio, and then superposed on the core material so as to have a predetermined cladding ratio. Next, the clad hot rolling was performed at a start temperature of 460 ° C. and an end temperature of 470 ° C., and the final plate thickness was 0.3 mm by cold rolling, and the final annealing was performed at 360 ° C. for 2 hours. An aluminum alloy clad material (brazing sheet) was prepared.

各実施例及び比較例の外ろう材、芯材、内ろう材の組み合わせを、表3に示す。なお、比較例24〜27では、芯材と外ろう材の合金鋳塊成分は本発明範囲内であるが、クラッド熱間圧延の開始温度を520℃、終了温度を530℃とし、次いで冷間圧延にて0.3mmにしたものに最終焼鈍温度を360℃で2時間実施した。   Table 3 shows combinations of the outer brazing material, the core material, and the inner brazing material of each of the examples and the comparative examples. In Comparative Examples 24-27, the alloy ingot components of the core material and the brazing filler metal are within the scope of the present invention, but the start temperature of the clad hot rolling is set to 520 ° C., the end temperature is set to 530 ° C., and then cold. A final annealing temperature of 360 ° C. was performed for 2 hours at 0.3 mm by rolling.

Figure 0005084490
Figure 0005084490

表3に示すアルミニウムブレージングシートに関して以下の評価を行った。   The following evaluation was performed on the aluminum brazing sheet shown in Table 3.

(1)ろう付け前のクラッド材の段階で犠牲ろう材と芯材の界面における犠牲ろう材側のZn濃度(ZnC)と芯材側のCu濃度(CuC)の比
ろう付け前のクラッド材を採取し、断面を研磨後、EPMA(電子線解析アナライザ)を用い断面をn=5の位置分析し、それぞれ5箇所のZnCとCuCを測定して(ZnC/CuC)の算術平均値を求めた。結果を表3に示す。なお、鋳塊段階における(Zn含有量/Cu含有量)を表3に示す。
(1) The ratio of the Zn concentration (ZnC) on the sacrificial brazing material side and the Cu concentration (CuC) on the core material side at the interface between the sacrificial brazing material and the core material at the stage of the clad material before brazing. After collecting and polishing the cross section, the position of the cross section was analyzed using EPMA (electron beam analysis analyzer) at n = 5, and ZnC and CuC were measured at five locations, respectively, to obtain the arithmetic average value of (ZnC / CuC). . The results are shown in Table 3. Table 3 shows (Zn content / Cu content) in the ingot stage.

(2)引張り試験
表3の構成のブレージングシートをJIS5号の試験片に加工し、窒素雰囲気下でろう付け相当の加熱(600℃で3分)を行った。これら試料について引張試験を行なって強度を測定した。引張り強度が140kg/cm以上を合格、それ未満を不合格とした。結果を表3に示す。
(2) Tensile test The brazing sheet having the structure shown in Table 3 was processed into a JIS No. 5 test piece, and heated corresponding to brazing (600 ° C for 3 minutes) in a nitrogen atmosphere. These samples were subjected to a tensile test to measure the strength. A tensile strength of 140 kg / cm 2 or higher was accepted and less than that was rejected. The results are shown in Table 3.

(3)外部耐食性試験
表3の構成のブレージングシートを図6に示すカップに成型し、中央部にφ12mmの穴を開け、図1に示すように3段に重ね、森田化学製FL−7の5%水溶液を塗布し、窒素雰囲気下でろう付け加熱(600℃で3分)を行った。次いで、穴の部分を信越化学製シリコンシーラントでマスキングして試験片を作製した。その後、ASTM G85に準じるSWAAT試験を500時間実施した後、試験片を水洗、硝酸・リン酸クロム酸にて腐食生成物を除去した後に、タンク平坦部の孔食部を観察し、焦点深度法にて孔食深さを測定した。その際にはタンク合わせ部の貫通有無を確認した。孔食深さ70μm未満を合格、それ以上を不合格とした。また、タンク合わせ部が貫通していないものを合格、貫通しているものを不合格とした。
(3) External corrosion resistance test A brazing sheet having the structure shown in Table 3 was molded into a cup shown in FIG. 6, a hole having a diameter of 12 mm was formed in the center, and stacked in three stages as shown in FIG. A 5% aqueous solution was applied, and brazing heating (3 minutes at 600 ° C.) was performed in a nitrogen atmosphere. Next, the hole was masked with a silicon sealant manufactured by Shin-Etsu Chemical, and a test piece was produced. Then, after conducting a SWAAT test according to ASTM G85 for 500 hours, the test piece was washed with water and the corrosion product was removed with nitric acid / chromic acid chromic acid. The pitting depth was measured at. At that time, the presence or absence of penetration of the tank fitting portion was confirmed. The pitting corrosion depth of less than 70 μm was accepted and more than that was rejected. Moreover, the thing which the tank matching part has not penetrated was made into the pass, and the thing which has penetrated was made unsuccessful.

表3から明らかなように、実施例1〜28では、ろう付け後も高強度を示していた。また、実施例1〜28では、タンク平坦部の孔食深さが70μm未満で浅く貫通孔食を発生せず、かつ、タンク合わせ部においても貫通腐食が発生しなかった。   As is apparent from Table 3, Examples 1 to 28 showed high strength even after brazing. Further, in Examples 1 to 28, the pitting corrosion depth of the tank flat portion was less than 70 μm, so that no through pitting corrosion occurred, and no through corrosion occurred in the tank matching portion.

比較例1〜4では、犠牲外ろう材の成分及び芯材の成分はそれぞれ本発明範囲内であり、タンク平坦部には貫通腐食が発生しなかった。しかしながら、ろう付け前のクラッド材の段階で、犠牲ろう材と芯材の界面におけるろう材側のZn濃度と芯材側のCu濃度の関係がZnC/CuC>7となった。その結果、ろう付け部の最終凝固部のZn濃度が、ろう付け部の初晶部および芯材よりも多くなるために、この最終凝固部が優先的に腐食してタンク合わせ部に貫通腐食を生じた。   In Comparative Examples 1 to 4, the components of the sacrificial outer brazing material and the core material were each within the scope of the present invention, and no penetration corrosion occurred in the flat portion of the tank. However, at the stage of the clad material before brazing, the relationship between the brazing material side Zn concentration and the core material side Cu concentration at the interface between the sacrificial brazing material and the core material was ZnC / CuC> 7. As a result, the Zn concentration in the final solidified part of the brazed part is higher than that of the primary crystal part and the core material of the brazed part. occured.

比較例5では、犠牲ろう材の成分及び芯材の成分は本発明範囲内である。しかしながら、ろう付け前のクラッド材の段階で、犠牲ろう材と芯材の界面における犠牲ろう材側のZn濃度と芯材側のCu濃度の関係がZn/Cu<0.9となった。その結果、タンク平坦部には貫通腐食が発生しなかったが、ろう付け部と芯材の界面にCuの低濃度域が形成され、Cu低濃度域が優先的に腐食してタンク合わせ部に貫通腐食が発生した。   In Comparative Example 5, the components of the sacrificial brazing material and the core material are within the scope of the present invention. However, at the stage of the clad material before brazing, the relationship between the Zn concentration on the sacrificial brazing material side and the Cu concentration on the core material side at the interface between the sacrificial brazing material and the core material was Zn / Cu <0.9. As a result, no penetration corrosion occurred in the flat part of the tank, but a low-concentration region of Cu was formed at the interface between the brazing part and the core material, and the low-concentration region of Cu was preferentially corroded to the tank mating part. Through corrosion occurred.

比較例6、7では、芯材の成分は本発明範囲内であるが、犠牲ろう材の成分は本発明範囲内を逸脱する。よってろう付け前のクラッド材の段階で、犠牲ろう材と芯材の界面における犠牲ろう材側のZn濃度と芯材側のCu濃度の関係がZn/Cu<0.9となった。その結果、タンク平坦部には貫通腐食が発生しなかったが、ろう付け部と芯材の界面にCuの低濃度域が形成され、Cu低濃度域が優先的に腐食してタンク合わせ部に貫通腐食が発生し、かつ平坦部の腐食も進んだ。   In Comparative Examples 6 and 7, the core component is within the scope of the present invention, but the sacrificial brazing component departs from the scope of the present invention. Therefore, at the stage of the clad material before brazing, the relationship between the Zn concentration on the sacrificial brazing material side and the Cu concentration on the core material side at the interface between the sacrificial brazing material and the core material was Zn / Cu <0.9. As a result, no penetration corrosion occurred in the flat part of the tank, but a low-concentration region of Cu was formed at the interface between the brazing part and the core material, and the low-concentration region of Cu was preferentially corroded to the tank mating part. Penetration corrosion occurred and the corrosion of the flat part also progressed.

比較例8では、ろう材のSi量が不足していたため、ろう付け時に不具合を生じ、腐食試験用サンプルの作製ができなかった。比較例9では、ろう材のSi量が多過ぎたためクラッド時に溶融し、引っ張り強度の測定サンプルの作製ができなかった。   In Comparative Example 8, because the amount of Si in the brazing material was insufficient, a problem occurred during brazing, and a sample for corrosion test could not be produced. In Comparative Example 9, since the amount of Si in the brazing material was too large, it melted at the time of cladding, and a sample for measuring the tensile strength could not be produced.

比較例10では、芯材成分は本発明例にあるが、犠牲ろう材の成分が本発明を逸脱し、、かつ、ろう付け前のクラッド材の段階で犠牲ろう材と芯材の界面における犠牲ろう材側のZn濃度と芯材側のCu濃度の関係がZnC/CuC<0.9となった。その結果、タンク平坦部の耐食性も劣り、かつろう付け部と芯材の界面にCuの低濃度域を形成し、Cu低濃度域が優先的に腐食してタンク合わせ部に貫通腐食を生じた。   In Comparative Example 10, the core material component is in the present invention example. However, the sacrificial brazing material component departs from the present invention, and the sacrificial brazing material is sacrificed at the interface between the sacrificial brazing material and the core material at the stage of the clad material before brazing. The relationship between the Zn concentration on the brazing material side and the Cu concentration on the core material side was ZnC / CuC <0.9. As a result, the corrosion resistance of the flat part of the tank was also inferior, and a low concentration region of Cu was formed at the interface between the brazing part and the core material, and the low concentration region of Cu was preferentially corroded to cause penetration corrosion in the tank mating part. .

比較例11では、芯材成分は本発明例にあるが犠牲ろう材の成分が本発明を逸脱した。タンク平坦部に貫通腐食は発生しなかったが、ろう付け前のクラッド材の段階で、犠牲ろう材と芯材の界面におけるろう材側のZn濃度と芯材側のCu濃度の関係がZnC/CuC>7となった。その結果、ろう付け部の最終凝固部のZn濃度が、ろう付け部の初晶部および芯材よりも多くなるために、この最終凝固部が優先的に腐食してタンク合わせ部に貫通腐食を生じた。比較例12では、外ろう材のFe含有量が少な過ぎたため引張り強度が不足した。   In Comparative Example 11, the core component was in the inventive example, but the sacrificial brazing component departed from the present invention. Although penetration corrosion did not occur in the flat part of the tank, the relationship between the Zn concentration on the brazing material side and the Cu concentration on the core material side at the interface between the sacrificial brazing material and the core material is ZnC / CuC> 7. As a result, the Zn concentration in the final solidified part of the brazed part is higher than that of the primary crystal part and the core material of the brazed part. occured. In Comparative Example 12, the tensile strength was insufficient because the Fe content of the outer brazing material was too small.

比較例13では、芯材成分は本発明範囲にあり、かつ、ろう付け前のクラッド材の段階で犠牲ろう材と芯材の界面におけるろう材側のZn濃度と芯材側のCu濃度の関係が0.9≦Zn/Cu≦7を満たしていた。しかしながら、犠牲ろう材の成分が本発明を逸脱し、その結果、タンク合わせ部には貫通腐食が発生しなかったが、犠牲ろう材のFe含有量が多過ぎたタンク平坦部に貫通腐食を生じた。   In Comparative Example 13, the core component is within the scope of the present invention, and the relationship between the Zn concentration on the brazing material side and the Cu concentration on the core material side at the interface between the sacrificial brazing material and the core material at the stage of the clad material before brazing. Satisfies 0.9 ≦ Zn / Cu ≦ 7. However, the components of the sacrificial brazing material deviated from the present invention, and as a result, penetration corrosion did not occur in the tank mating portion, but penetration corrosion occurred in the tank flat portion where the Fe content of the sacrificial brazing material was excessive. It was.

比較例14では、ろう付け前のクラッド材の段階で、0.9≦Zn/Cu≦7を満たしておりタンク平坦部、タンク合わせ部の耐食性は良好であったが、芯材のSi量が本発明未満であり、引っ張り強度が不足した。   In Comparative Example 14, at the stage of the clad material before brazing, 0.9 ≦ Zn / Cu ≦ 7 was satisfied, and the corrosion resistance of the tank flat portion and the tank fitting portion was good, but the Si amount of the core material was It was less than the present invention, and the tensile strength was insufficient.

比較例15では、ろう付け前のクラッド材の段階で、犠牲ろう材と芯材の界面における犠牲ろう材側のZn濃度と芯材側のCu濃度の関係が。0.9≦Zn/Cu≦7を満たしており、タンク合わせ部の耐食性は良好であったが、芯材のSi量が本発明を逸脱するためタンク平坦部が貫通した。   In Comparative Example 15, the relationship between the Zn concentration on the sacrificial brazing material side and the Cu concentration on the core material side at the interface between the sacrificial brazing material and the core material at the stage of the clad material before brazing. 0.9 ≦ Zn / Cu ≦ 7 was satisfied, and the corrosion resistance of the tank mating portion was good, but the tank flat portion penetrated because the Si content of the core material deviated from the present invention.

比較例16では、犠牲ろう材と芯材の界面における犠牲ろう材側のZn濃度と芯材側のCu濃度の関係が。0.9≦Zn/Cu≦7を満たしており、タンク合わせ部の耐食性およびタンク平坦部の良好であったが、芯材のFe含有量が不足したため引張り強度が不足した。
比較例17では、犠牲ろう材と芯材の界面における犠牲ろう材側のZn濃度と芯材側のCu濃度の関係が。0.9≦Zn/Cu≦7を満たしており、タンク合わせ部の耐食性は良好であったが、芯材のFe含有量が多過ぎたために、タンク平坦部に貫通腐食を生じた。
比較例18では、犠牲ろう材の成分が本発明範囲内であるが、芯材の成分が本発明を逸脱している。タンク平坦部に貫通腐食は発生しなかったが、ろう付け前のクラッド材の段階で犠牲ろう材と芯材の界面におけるろう材側のZn濃度と芯材側のCu濃度の関係がZn/Cu>7となった。その結果、ろう付け部の最終凝固部のZn濃度が、ろう付け部の初晶部および芯材よりも多くなるために、この最終凝固部が優先的に腐食してタンク合わせ部に貫通腐食を生じた。また、芯材のCu含有量が不足したため引張り強度が不足した。
In Comparative Example 16, the relationship between the Zn concentration on the sacrificial brazing material side and the Cu concentration on the core material side at the interface between the sacrificial brazing material and the core material. 0.9 ≦ Zn / Cu ≦ 7 was satisfied, and the corrosion resistance of the tank mating portion and the flat portion of the tank were good, but the tensile strength was insufficient because the Fe content of the core material was insufficient.
In Comparative Example 17, the relationship between the Zn concentration on the sacrificial brazing material side and the Cu concentration on the core material side at the interface between the sacrificial brazing material and the core material. 0.9 ≦ Zn / Cu ≦ 7 was satisfied, and the corrosion resistance of the tank mating portion was good. However, since the Fe content of the core material was excessive, penetration corrosion occurred in the flat portion of the tank.
In Comparative Example 18, the component of the sacrificial brazing material is within the range of the present invention, but the component of the core material deviates from the present invention. There was no penetration corrosion in the flat part of the tank, but the relationship between the Zn concentration on the brazing filler metal side and the Cu concentration on the core material side at the interface between the sacrificial brazing material and the core material at the stage of the clad material before brazing is Zn / Cu > 7. As a result, the Zn concentration in the final solidified part of the brazed part is higher than that of the primary crystal part and the core material of the brazed part. occured. Moreover, since the Cu content of the core material was insufficient, the tensile strength was insufficient.

比較例19では、芯材のCu含有量が多過ぎたために、クラッド時に溶融し、引っ張り強度の測定サンプルの作製ができなかった。
比較例20では、犠牲ろう材と芯材の界面における犠牲ろう材側のZn濃度と芯材側のCu濃度の関係が。0.9≦Zn/Cu≦7を満たしており、タンク合わせ部の耐食性およびタンク平坦部の良好であったが、芯材のMn含有量が不足していたため引張り強度が不足した。
比較例21では、芯材のMn含有量が多過ぎたために圧延加工できなかった。
比較例23では、芯材のTi含有量が多過ぎたために圧延加工できなかった。
In Comparative Example 19, since the Cu content of the core material was too large, it melted at the time of cladding, and a sample for measurement of tensile strength could not be produced.
In Comparative Example 20, there is a relationship between the Zn concentration on the sacrificial brazing material side and the Cu concentration on the core material side at the interface between the sacrificial brazing material and the core material. 0.9 ≦ Zn / Cu ≦ 7 was satisfied, and the corrosion resistance of the tank mating portion and the flat portion of the tank were good, but the tensile strength was insufficient because the Mn content of the core material was insufficient.
In Comparative Example 21, rolling was not possible because the Mn content of the core was too high.
In Comparative Example 23, rolling was not possible because the Ti content in the core was too high.

比較例22では、犠牲ろう材の成分が本発明範囲内であるが、芯材の成分が本発明を逸脱するためタンク平坦部に貫通腐食が発生した。   In Comparative Example 22, the component of the sacrificial brazing material was within the range of the present invention, but the component of the core material deviated from the present invention, so that penetration corrosion occurred in the tank flat portion.

比較例24〜27では、クラッド熱延の温度が高温過ぎたため、ろう付け前のクラッド材の段階で犠牲ろう材と芯材の界面におけるろう材側のZn濃度と芯材側のCu濃度の関係がZn/Cu<0.9となった。その結果、タンク平坦部に貫通腐食は発生しないが、タンク合わせ部に貫通腐食を生じた。   In Comparative Examples 24-27, since the temperature of the clad hot rolling was too high, the relationship between the Zn concentration on the brazing material side and the Cu concentration on the core material side at the interface between the sacrificial brazing material and the core material at the stage of the clad material before brazing. Zn / Cu <0.9. As a result, penetration corrosion did not occur in the tank flat part, but penetration corrosion occurred in the tank fitting part.

このように本発明は、高いろう付け強度、タンク一般部と合わせ部に貫通腐食を発生させず良好な耐食性を示す。例えば自動車用熱交換器のブレージングシートとして、優れたと外部耐食性を有するアルミニウム合金クラッド材を提供することができる。   Thus, the present invention exhibits high brazing strength and good corrosion resistance without causing penetration corrosion in the tank general part and the joint part. For example, an aluminum alloy clad material having excellent external corrosion resistance can be provided as a brazing sheet for an automotive heat exchanger.

図1は、本発明に係るアルミニウム合金クラッド材を用いて成型したカップを示す正面図である。FIG. 1 is a front view showing a cup molded using an aluminum alloy clad material according to the present invention. 図2は、図1に示すカップを3段重ねにして、熱交換器チューブのタンク部を模擬した試験片を示す正面図である。FIG. 2 is a front view showing a test piece simulating the tank portion of the heat exchanger tube by stacking the cups shown in FIG. 1 in three stages. 図3は、ろう付け前のクラッド材の段階におけるタンク合わせ部での、Zn濃度とCu濃度の分布を模式的に示す。FIG. 3 schematically shows the distribution of the Zn concentration and the Cu concentration at the tank matching portion at the stage of the clad material before brazing. 図4は、図3に示すクラッド材のろう付け後の状態を示す。FIG. 4 shows a state after brazing of the clad material shown in FIG. 図5は、ろう付け前のクラッド材の段階におけるタンク合わせ部での、Zn濃度とCu濃度の分布を模式的に示す。FIG. 5 schematically shows the distribution of Zn concentration and Cu concentration at the tank matching portion in the stage of the clad material before brazing. 図6は、図5に示すクラッド材のろう付け後の状態を示す。FIG. 6 shows a state after brazing of the clad material shown in FIG.

符号の説明Explanation of symbols

1‥‥‥カップ
2‥‥‥タンク合わせ部
3‥‥‥タンク平坦部
4‥‥‥犠牲ろう材
5‥‥‥芯材
6‥‥‥ろう付け部
61‥‥‥最終凝固部
62‥‥‥初晶部
CuC、CuW‥‥‥Cu濃度
ZnC、ZnW‥‥‥Zn濃度
1 ............ Cup 2 ...... ...... Tank matching part 3 ...... ...... Tank flat part 4 ...... Sacrificial brazing material 5 ...... ...... Core material 6 ...... ...... Brazed part 61 ...... Final solidification part 62 ...... Primary crystal part CuC, CuW ... Cu concentration ZnC, ZnW ... Zn concentration

Claims (3)

Si0.07〜0.40%(mass%、以下同じ)、Fe0.1〜0.4%、Cu0.3〜1.0%、Mn0.4〜1.5%、Ti0.05〜0.20%を含有し、残部Al及び不回避不純物よりなる鋳塊から製造された芯材と、当該芯材の片面又は両面にクラッドされ、Zn0.5〜4.0%、Si7.0〜12.5%、Fe0.05〜0.25%を含有し、残部Al及び不可避不純物よりなる鋳塊から製造された犠牲ろう材とを備えたアルミニウム合金クラッド材であって、ろう付け前のクラッド材の段階で犠牲ろう材と芯材の界面における犠牲ろう材側のZn濃度(ZnC)と芯材側のCu濃度(CuC)が0.9≦ZnC/CuC≦7であることを特徴とアルミニウム合金クラッド材。   Si 0.07 to 0.40% (mass%, the same applies hereinafter), Fe 0.1 to 0.4%, Cu 0.3 to 1.0%, Mn 0.4 to 1.5%, Ti 0.05 to 0.20 %, And is clad on one side or both sides of the core material made of an ingot comprising the balance Al and unavoidable impurities, Zn 0.5 to 4.0%, Si 7.0 to 12.5 And a sacrificial brazing material manufactured from an ingot consisting of the balance Al and inevitable impurities, and a stage of the clad material before brazing. An aluminum alloy clad material characterized in that the sacrificial brazing material side Zn concentration (ZnC) and the core material side Cu concentration (CuC) at the interface between the sacrificial brazing material and the core material satisfy 0.9 ≦ ZnC / CuC ≦ 7 . 前記芯材がV0.02〜0.10%を更に含有する、請求項1記載のアルミニウム合金クラッド材。   The aluminum alloy clad material according to claim 1, wherein the core material further contains V 0.02 to 0.10%. 前記犠牲ろう材が、Sn0.05〜0.20%及びIn0.05%〜0.20%の少なくともいずれか一方を含有する、請求項1又は2に記載のアルミニウム合金クラッド材。   The aluminum alloy clad material according to claim 1 or 2, wherein the sacrificial brazing material contains at least one of Sn 0.05 to 0.20% and In 0.05% to 0.20%.
JP2007333607A 2007-12-26 2007-12-26 Aluminum alloy clad material Active JP5084490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007333607A JP5084490B2 (en) 2007-12-26 2007-12-26 Aluminum alloy clad material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007333607A JP5084490B2 (en) 2007-12-26 2007-12-26 Aluminum alloy clad material

Publications (2)

Publication Number Publication Date
JP2009155679A JP2009155679A (en) 2009-07-16
JP5084490B2 true JP5084490B2 (en) 2012-11-28

Family

ID=40959997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007333607A Active JP5084490B2 (en) 2007-12-26 2007-12-26 Aluminum alloy clad material

Country Status (1)

Country Link
JP (1) JP5084490B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7020306B2 (en) 2018-06-13 2022-02-16 日本製鉄株式会社 A method for producing a water-gas shift reaction catalyst, a method for producing a water-gas shift reaction catalyst, and a method for producing hydrogen.

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016182616A (en) * 2015-03-25 2016-10-20 株式会社神戸製鋼所 Aluminum alloy cladding material and manufacturing method of the same
JP2021063264A (en) * 2019-10-11 2021-04-22 パナソニックIpマネジメント株式会社 Brazing sheet for heat exchanger and heat exchanger for air conditioner
JP2021063263A (en) * 2019-10-11 2021-04-22 パナソニックIpマネジメント株式会社 Brazing sheet for heat exchanger, joint structure of brazing sheet for heat exchanger, and heat exchanger

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2749660B2 (en) * 1989-09-22 1998-05-13 古河電気工業株式会社 Aluminum heat exchanger
JP3217607B2 (en) * 1994-08-24 2001-10-09 古河電気工業株式会社 Aluminum alloy composite for heat exchanger with excellent fatigue strength and corrosion resistance
JPH08104935A (en) * 1994-10-06 1996-04-23 Sumitomo Light Metal Ind Ltd Aluminum alloy clad material for heat exchanger
JP2001162394A (en) * 1999-12-07 2001-06-19 Shinko Alcoa Yuso Kizai Kk Brazing sheet made of high corrosion resistance aluminum alloy, producing method therefor and brazing method using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7020306B2 (en) 2018-06-13 2022-02-16 日本製鉄株式会社 A method for producing a water-gas shift reaction catalyst, a method for producing a water-gas shift reaction catalyst, and a method for producing hydrogen.

Also Published As

Publication number Publication date
JP2009155679A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
JP6452626B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP6452627B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP6006421B2 (en) Aluminum alloy clad material, method for producing the same, and heat exchanger using the aluminum alloy clad material
EP3222738B1 (en) Aluminum alloy cladding material for heat exchanger
JP2011162823A (en) Aluminum alloy clad material used for heat-exchanger and core-material for aluminum alloy clad material used for the same
JP6418714B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP5985973B2 (en) Aluminum alloy brazing sheet and method for producing the same, and heat exchanger using the aluminum alloy brazing sheet
JP2008240084A (en) Aluminum alloy-clad material for heat exchanger and brazing sheet
JP6286335B2 (en) Aluminum alloy brazing sheet
CN111065753B (en) Aluminum alloy brazing sheet for heat exchanger
JP5836695B2 (en) Aluminum alloy fin material for heat exchangers with excellent strength and corrosion resistance after brazing
WO2017169633A1 (en) Aluminum alloy brazing sheet
JP5084490B2 (en) Aluminum alloy clad material
WO2018110320A1 (en) Aluminum alloy brazing sheet and method for manufacturing same
JP2019026919A (en) Aluminum alloy brazing sheet for heat exchanger
WO2020085488A1 (en) Aluminum alloy brazing sheet and production method therefor
JP3360026B2 (en) Brazing method of aluminum alloy brazing sheet for heat exchanger
JP2010018872A (en) Aluminum alloy brazing sheet having excellent brazability
JP6159843B1 (en) Aluminum alloy brazing sheet
JP2011000594A (en) Aluminum alloy brazing sheet for vacuum brazing
JP4263160B2 (en) Aluminum alloy clad material and heat exchanger tube and heat exchanger using the same
JP5576662B2 (en) Aluminum alloy brazing sheet and method for producing aluminum alloy brazing sheet
JP4906162B2 (en) Aluminum alloy brazing sheet
JP6159841B1 (en) Aluminum alloy brazing sheet
JP6272930B2 (en) Aluminum alloy brazing sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120904

R150 Certificate of patent or registration of utility model

Ref document number: 5084490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250